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Optical Sommerfeld-Brillouin precursors significantly ahead of a main field of comparable am-
plitude have been recently observed in an opaque medium with an electromagnetically induced
transparency window [Wei et al., Phys. Rev. Lett. 103, 093602 (2009)]. We theoretically ana-
lyze in this paper the somewhat similar results obtained when the transparency is induced by the
propagating field itself and we establish an approximate analytic expression of the time-delay of the
main-field arrival, which fits fairly well the result obtained by numerically solving the Maxwell-Bloch
equations.

PACS numbers: 42.25.Bs, 42.50.Md, 42.50.Gy

More than one century ago, Sommerfeld examined the
apparent inconsistency between the existence of superlu-
minal group velocities and the theory of relativity. Con-
sidering an incident field switched on at time t = 0 (step
pulse), he showed that, no matter the value of the group
velocity, no field can be transmitted by a linear disper-
sive medium before the instant t = L/c where L is the
medium thickness and c the velocity of light in vacuum
[1]. Subsequently he and Brillouin studied the fast os-
cillatory transients appearing at t ≥ L/c in the partic-
ular case of a single-resonance Lorentz medium [2, 3].
They named them forerunners insofar as, in proper con-
ditions, they can distinctly precede the establishment of
the steady-state field (the main field). Renamed optical
precursors, forerunners have entered classical textbooks
[4, 5] and continue to raise a considerable interest. The
theoretical results of Sommerfeld and Brillouin have been
improved, even rectified (the amplitude of the precursors
was in particular strongly underestimated in their work),
and different models of linear dispersive media have been
considered. See [6] for a recent review.

Despite the abundant literature on precursors, there
are very few papers reporting direct observation of pre-
cursors distinguishable from the main field. The diffi-
culty of such an observation has been soundly discussed
by Aavikssoo et al. [7] who achieved in 1991 an exper-
iment involving single-sided exponential pulses (instead
of step-pulses) and exploiting the dispersion originating
from a narrow exciton line in AsGa [8]. For proper detun-
ing of the optical carrier frequency ωc from the resonance
frequency ω0, optical precursors appear as a small spike
superimposed on the main pulse. See also [9, 10]. The ob-
servation of precursors significantly ahead of a main field
of comparable amplitude obviously requires the use of
long enough square pulses and of a medium fairly trans-
parent at the optical carrier frequency, the corresponding
group delay being long compared to the duration of the
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precursors. As discussed in [11, 12], the latter condi-
tions are met in an opaque medium with a narrow trans-
parency window (slow light medium). Such an experi-
ment has been recently achieved by Wei et al. [13] in
an opaque cloud of cold atoms with an electromagneti-
cally induced transparency (EIT) window. Note that, in
this experiment (as in all the studies of precursors), the
propagating field linearly interacts with the medium.

For comparison, we will examine here the nonlinear sit-
uation where the medium transparency is induced by the

propagating field itself [14, 15]. Figure 1 shows the re-
sult of an experiment achieved in such conditions [16].
The medium is a gas of HC15N at low pressure con-
tained in a 182m-long oversized waveguide and the inci-
dent wave is on resonance with the molecular rotational
line J = 0, M = 0 → J = 1, M = 0 (wavelength
λc ≈ 3.5 mm). The gas behaves as a 2-level medium
[17] characterized by T1 (T2 ) the relaxation time for the
population difference (the polarization), T ∗

2 the Doppler
time and α the resonant absorption coefficient at low in-
tensity (extrapolated from the Lorentzian wings of the
line). See [18] for details. The incident wave is charac-
terized by I0 its intensity normalized to the saturation in-
tensity and τr its rise time. The observed step responses
clearly have some similarities with those obtained in the
EIT experiment [13], with a short transient preceding the
establishment of a steady state regime (main field). The
quasi Rabi oscillations [15] accompanying the latter are
obviously absent in the EIT experiments but oscillations
having a linear origin (postcursors) can also be observed
in this case [12].

To analyze the previous results, we provisionally ne-
glect the Doppler broadening and assimilate the guided
wave to a plane wave propagating in the z direction
(0 < z < L), with an electric field polarized in the x
direction. As long as τr , T1, T2 ≫ 1/ωc and α ≫ ωc/c,
the slowly varying envelope approximation (SVEA) [17]
holds [19] and we write the Ex component of the electric
field as :

Ex(z, t) = Re
[
eiωctẼ(z, t)

]
(1)
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Figure 1: Observed step response of a resonant absorbing
medium. Parameters : αL ≈ 200 , T1 ≈ T2 ≈ 10µs (T2/αL ≈

50 ns), T ∗

2 ≈ 1.3 µs , ωc = 5.4 × 1011s−1 (ω−1

c
≈ 1.8 ps ),

τr = 12 ns ; I0 ≈ (a) 2100,(b) 960 (c) 620 (d) 350. In each
case, the step transmitted in the absence of gas is given for
comparison (dashed line).

where, as in all the following, t is a local time (real time

minus z/c), and Ẽ(z, t) is the slowly varying field en-
velope. Denoting µ the dipole matrix element for the

transition (chosen real), R(z, t) = µẼ(z, t)/~ the Rabi
frequency, n(z, t) the population difference per volume

unit (n0 its value at equilibrium) and P̃ (z, t) the envelope
of the electric polarization induced in the medium, it is
convenient to introduce the dimensionless quantities D =

n/n0, P = i eP
n0µ

√
T1

T2

and E = µẼ
√

T1T2/~ = R
√

T1T2,

all real in the resonant case. I = E2 is the intensity nor-
malized to the saturation intensity. The Maxwell-Bloch
(MB) equations governing the system evolution take then
the simple form

∂E

∂z
= −

α

2
P (2)

T2
∂P

∂t
= DE − P (3)

T1
∂D

∂t
= −PE + (1 − D) (4)

We assume that the rise time τr of the incident in-
tensity, while long compared to 1/ωc (as above men-
tioned), is short with respect to all the other character-
istic times of the system (1/R, T1, T2 and T2/αL). The

response E(L, t) of the medium (with a time resolution
equal to τr) is then obtained by solving the MB equations
with P (z, 0) = 0, D(z, 0) = 1 and E(0, t) = E0Θ(t) =√

I0Θ(t) where Θ(t) is the unit step function. This prob-
lem has been examined by Crisp [15] when the relaxation
effects are negligible, a condition obviously not met in the
experiments.

The long term behavior of the step response (t ≫
T1, T2 ) is obtained by solving the MB equations in steady
state. Combining Eqs.3 and 4, we find P = E/(1 + E2)
and, putting this result in Eq.2, we easily retrieve the
transmission equation [20, 21, 22]

I(∞) + ln I(∞) = I0 + ln I0 − αL (5)

where I(t) is a short hand notation of the transmitted
intensity I(L, t). The medium being optically thick in
the linear regime (αL ≫ 1), the absorption is fully sat-
urated (I(∞)/I0 ≈ 1) only when the incident (normal-
ized) intensity is extremely large (I0 ≫ αL). In fact
the transmitted field (main field) will be significant (par-
tial transparency) as soon as I0 − αL = O(αL). The
transmission equation takes then the approximate form
I(∞)/I0 ≈ 1−αL/I0 and a transmission I(∞)/I0 > 1/3
is obtained for I0 > 3αL/2.

Consider now the short term behavior of the step re-
sponse. By combining the integral form of Eqs.3 and 4
and taking into account that D(z, t) ≤ 1, one can estab-
lish the inequality [23]

1 − D(z, t) <

∣∣∣∣
� t

0

R(z, t′)dt′
∣∣∣∣
2

< R2
0t

2 (6)

where R0 is the Rabi frequency associated with the in-
cident step ( R2

0 = I0
T1T2

). When R2
0t

2 ≪ 1, D(z, t) ≈ 1
and the MB equations are reduced to the couple of lin-
ear equations ∂E/∂z = −αP/2 and T2∂P/∂t = E − P .
So, at least in this time domain and though I0 ≫ 1, the
medium behaves as a linear system (small pulse-area ap-
proximation [23]). Its response E(L, t) is easily retrieved
from the previous couple of equations and can be written
as [24, 25]

E(L, t) = E0Θ(t)


1 − αL

t/T2�
0

J1

(√
2αLu

)

√
2αLu

e−udu




(7)
When αL ≫ 1, the integral can be transformed to obtain

E(L, t) = E0Θ(t)e−t/T2J0

(√
2αLt/T2

)
(8)

For x > 1, J0(x) ≈
√

2
πx cos

(
x − π

4

)
and E(L, t >

T2

2αL ) ≈ E+(t) + E−(t) where

E±(t) =
E0√
2π

e−t/T2

exp
[
±i

(√
2αLt/T2 − π/4

)]

(2αLt/T2)
1/4

(9)



3

So the optical field is made of two components of equal

amplitude and instantaneous frequency ωc ±
√

αL
2tT2

,

which are nothing but that the Sommerfeld (E+) and
Brillouin (E−) precursors as determined by the saddle
point method of integration [12, 26, 27]. The linear char-
acter of the short-term response (and thus its analysis
in terms of precursors) is well supported by the exper-
iments. As shown Fig.1, the shape of the correspond-
ing transient is roughly independent of the incident in-
tensity. By numerically solving the MB equations, we
find that the condition R2

0t
2 ≪ 1 is much too severe and

that the linear approximation satisfactorily holds up to
t = 2π/R0, the Rabi period of the incident field. It even
holds later in the experiments because the transversal
inhomogeneity of the field partially washes out the (non-
linear) quasi Rabi oscillations while it does not affect the
linear response (the precursors).

In the EIT experiments, the probe field linearly inter-
acts with the medium at every time and the arrival of the
main field is determined by the (slow) group velocity [12].
In the present case, this arrival is fixed by fully nonlinear
phenomena, the study of which requires the resolution
of the complete MB equations. We first examine the
solution obtained in the rate equations approximation
(REA) [17]. The equations to solve are then reduced to
∂I/∂z = −αID and T1∂D/∂t = −D((1 + I) + 1 [20, 22]
with D(z, 0) = 1 and I(0, t) = I0Θ(t). Eliminating D
and integrating in z, we get [22]

T1d (ln I) /dt = ln I0 + I0 − αL − ln I − I (10)

with I(0) = I0 exp (−αL). The transmitted intensity I(t)
is finally given by the implicit equation

t

T1
=

I(t)�
I0 exp(−αL)

dI ′

I ′ (ln I0 + I0 − αL − ln I ′ − I ′)
(11)

The transmission T (t) = I(t)/I0 monotonously increases
from exp (−αL) to I(∞)/I0, where I(∞) is given by
Eq.5. In the conditions considered here [αL ≫ 1,
I0 − αL = O(αL)], T (0) ≈ 0, T (∞) ≈ 1 − αL/I0 and
the transition between these two values is very steep
(Fig.2). The time-delay of the arrival of the main in-
tensity is conveniently defined as the time τd such that
I(τd) = I(∞)/2. It is given by Eq.11 by taking I(∞)/2
as upper limit of integration. When I0 ≫ αL (full sat-
uration limit), Eq.11 can be explicitly integrated to give

T (t) ≈ [1 + exp (αL − I0t/T1)]
−1 in agreement with the

result given in [28]. The 10-90% rise time ∆t of the inten-
sity and the time-delay τd then read as ∆t ≈ 4 ln 3 (T1/I0)
and τd ≈ αL (T1/I0) ≪ T1. When the saturation is only
partial, the time-delay τd as a function of 1/I0 increases
much faster than αLT1/I0 and values of the order of T1

can be attained while keeping a significant transmission
(Fig.2).

The REA does not take into account the coherent ef-
fects. It eliminates in particular the quasi Rabi oscilla-
tions accompanying the main field. One may however
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Figure 2: Step response obtained in the rate equations ap-
proximation (REA) as a function of the normalized time t/T1.
Optical thickness αL = 200. Each step response is labeled by
the corresponding incident intensity I0. The step response
obtained for I0 → ∞ is given for reference (dashed line).

expect that the signals obtained by this way are a satis-
factory approximation of the exact signals, the oscillatory
parts of which would have been filtered out. To check this
idea, we have compared, αL and I0 being fixed, the step
response obtained by using the REA (independent of T2)
to those obtained by numerically solving the MB equa-
tions for two different values of T2/T1 (Fig.3). The three
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Figure 3: Comparison of the step response obtained by the
REA (dashed line) to those obtained by numerically solv-
ing the Maxwell-Bloch (MB) equations with T2/T1 = 1 (full
line) and with T2/T1 = 1/2 (dotted line). Other parame-
ters: αL = 200 and I0 = 400, leading to T (∞) ≈ 1/2. Note
that the pseudo-period of the oscillations superimposed to the
steady state in the MB solutions are nearly equal to the cor-
responding Rabi period 2π/R∞ = 2π

p

T1T2/I(∞), namely
0.44T1 (0.31T1) for T2/T1 = 1 (T2/T1 = 1/2).

step responses are obviously different but the time-delays
τd (as defined before) are very close. Similar simulations
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made for different values of the parameters show that this
result is not accidental. It appears that Eq.11 provides
the exact time-delay with a precision better than 10% in
all the cases of physical interest, that is when the pre-
cursors are well developed before the arrival of the main
field and the latter has a significant amplitude.
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Figure 4: Numerical solution of the MB equations taking into
account the transverse distribution of the field (full line) for
αL = 200, I0 = 400, and T2 = T1. The REA (dashed line)
and MB (dotted line) solutions obtained with the plane wave
model are given for reference.

We will now examine the modifications brought to the
step response by some effects neglected in the previous
theoretical analysis. The most important one results
from the transverse inhomogeneity of the guided wave.
Figure 4 shows a typical step-response obtained by us-
ing a MB numerical code extended to include a trans-
verse variation of the field [29]. As expected, the linear
part of the response (precursors) is not changed (it is
even slightly prolonged) but the quasi Rabi oscillations
(strongly depending on the field amplitude) are dramat-

ically affected. Their amplitude is considerably reduced
and their damping is accelerated, in agreement with the
experimental result (Fig.1). However we remark that
the time-delay τd is not significantly larger than that ob-
tained in the plane-wave and rate-equations approxima-
tions. Similar calculations including the Doppler broad-
ening instead of the field inhomogeneity in the plane-wave
MB numerical code show that, even when T ∗

2 = 0.13T2

(parameters of Fig.1), the Doppler effect negligibly af-
fects the precursors and slightly decreases the time-delay
τd. This can be explained by observing that the right
time scale for the precursors and the nonlinear response
is not T2 but, respectively, T2/αL ≪ T ∗

2 and 1/R0 < T ∗
2 .

Finally, the finite rise time of the incident step essen-
tially affects the most rapidly varying part of the step
response, namely the transient associated with the pre-
cursors and first the intensity I1 of its first peak. When
αL ≪ 1, I1 only depends on r = αLτr/T2 and attains the
intensity I0 of the incident wave when r ≪ 1. This con-
dition is approximately met in the experiment reported
in [16] where I1 ≈ 0.9I0 (Fig.1). As a matter of fact I1 is
a rapidly decreasing function of r and can even become
smaller than the intensity of the second peak when r is
not small enough [13].

To summarize, we have shown that the experiments
involving self-induced transparency are a good alterna-
tive to the EIT experiments in order to observe optical
precursors well ahead of the main field, both having in-
tensities comparable to that of the step-modulated in-
cident wave. By using a plane-wave model and the rate
equations approximation, we have established an analyti-
cal expression for the time-delay of the main-field arrival,
which generalizes that previously obtained in the infinite
saturation limit, and we have shown that this expression
provides a good estimate of the real time-delay as long
as precursors and main field are well separated and of
significant amplitude.
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