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Abstract—This paper presents a robust descriptor for matching device and enables the use of state-of-the-art wide-pasel
vertical lines among omnidirectional images and a method for a|gorithms designed for perspective cameras.
automatically calibrating an omnidirectional camera with the Nevertheless, other researchers have attempted to apply

robot reference system. The first part of this paper describes t idirecti | i tandard feat detect d
how to build the feature descriptor. We show that the descriptor 0 omnidirectional images standard teature detectors an

is unique and distinctive for each feature and is invariant to Matching techniques which have been traditionally emmloye
rotation and slight changes of illumination. The robustness of for perspective images. In [14], for instance, the authors
the descriptor is validated through real experiments on a wheeled check the candidate correspondences between two views
robot. The second part of the paper is devoted to the extrinsic ; ;

self-calibration of the camera with the robot reference system. using RANSAC algorithm.

We show that by implementing an extended Kalman filter that . .

fuses the information of the visual features with the odometry, it~ Finally, other works have been developed, which extract
is possible to extrinsically and automatically calibrate the camera one-dimensional features from new images called Epipolar

while the robot is moving. plane images, under the assumption that the camera is
Index Terms—omnidirectional camera, visual tracking, feature moving on a flat surface [15]. These images are generated
descriptor, extrinsic camera calibration. by converting each omnidirectional picture into a 1D ciesul

image, which is obtained by averaging the scan lines of a
cylindrical panorama. Then, 1D features are extractecttijre

I. INTRODUCTION ; .
from such kinds of images.

A. Previous work

One of the most important problems in vision based In this paper, we deal with real world vertical features
robot navigation systems is the search for correspondenbesause they are predominant in structured environments.
in images taken from different viewpoints. In the lasin our experiments, we used a wheeled robot equipped
decades, the feature correspondence problem has beely larg@gth an catadioptric omnidirectional camera with the mirro
investigated for standard perspective cameras. Furthhetmaxis perpendicular to the plane of motion (Fig. 1). If the
several works have provided robust solutions for widesnvironment is flat, this implies that all world vertical dim
baseline stereo matching, structure from motion, egoanotiare mapped to radial lines on the camera image plane.
estimation, and robot navigation (see [1]-[9]). Some of
these works normalize the region around each detectedrhe use of vertical line tracking is not new in the
feature using a local affine transformation, which attentpts Robotics community. Since the beginning of machine vision,
compensate for the distortion introduced by the perspectikoboticians have been using vertical lines or other sorts of
projection. However, such methods cannot be directly adpliimage measure for autonomous robot localization or place
to images taken by omnidirectional imaging devices becauszognition.
of the non-linear distortions introduced by their largedief Several works dealing with automatic line matching havenbee
view. proposed for standard perspective cameras and can bedlivide

into two categories: those that match individual line segtsie

In order to apply those methods, one needs first to generatel those that match groups of line segments. Individual lin
a perspective view out of the omnidirectional image, predid segments are generally matched on their geometric agsbut
that the imaging model is known and that the omnidirectionét.g. orientation, length, extent of overlap) [24]-[26pbn%e
camera possesses a single effective viewpoint [10]. Asuch as [27]-[29] use a nearest line strategy which is better
application of this approach can be found in [11]. Thersuited to image tracking where the images and extracted
the authors generate perspective views from each regionsefjments are similar. Matching groups of line segments has
interest of the omnidirectional image. This image unwragpi the advantage that more geometric information is availédyle
removes the distortions of the omnidirectional imagindisambiguation. A number of methods have been developed
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around the idea of graph-matching [30]-[33]. The graphbuild the feature descriptor (Section Ill). Then, we pravid
captures relationships such as “left of”, “right of”, cysle our matching rules (Section IV) and present experimental
“collinear with” etc, as well as topological connectednessesults (Section VI). In Section VII, we describe the caliin
Although such methods can cope with more significaproblem and provide the equations to build the Extended
camera motion, they often have a high complexity and agdf@lman Filter (EKF) (Section VIII). In Section 1X, we will
they are sensitive to error in the segmentation process.  present the calibration results with our mobile robot.

Besides these methods, other approaches to individual line
matching exist, which use some similarity measure commonly
used in template matching and image registration (e.g. Sum
of Squared Differences (SSD), simple or Normalized Cross-
Correlation (NCC), image histograms [21]).

An interesting approach was proposed in [22]. Besides using
the topological information of the line, the authors alsedis
the photometric neighbourhood of the line for disambigurati
Epipolar geometry was then used to provide a point to point
correspondence on putatively matched line segments ower tw
images and the similarity of the lines neighbourhoods was
then assessed by cross-correlation at the correspondints po

A novel approach, using the intensity profile along the line
segment, was proposed in [23]. Although the application of
the method was to wide baseline point matching, the authors
used the intensity profile between two distinct points (ae.
line segment) to build a distinctive descriptor. The dexori
is based on affine invariant Fourier coefficients that are
directly computed from the intensity profile.

The methods cited above were defined for perspective
images but the same concepts have been also used by
roboticians in omnidirectional images under certain
circumstances. The use of omnidirectional vision even
facilitated the task because of t1380° field of view (See Fig. 1. The robot used in our experimets equipped with encedasors,
[18]-[20]). However, to match vertical lines among diffete omnidirectional camera, and two laser range finders
frames only mutual and topological relations have been used
(e.g. neighborhood or ordering constraints) sometimesgalo
with some of the similarity measures cited above (e.g. SSD,
NCC).

Il. VERTICAL LINE EXTRACTION

Our platform consists of a wheeled robot equipped with
an omnidirectional camera looking upwards (see Fig. 1). The
B. Outline main advantage of such kind of camera is that it provides
The contributions of this paper are two. In the first paa 360 field of view of the scene, which gives a very rich
of the paper, we describe how we built our robust descriptend sparse information. In our arrangement, we set the
for vertical lines. We show that the descriptor is unique arthmera-mirror system perpendicular to the floor where the
very distinctive for each feature and is invariant to ratati robot moves. This setting guarantees that all verticakliae
and slight changes of illumination. The robustness of thBapped to radial lines on the camera image plane (Fig. 2)
descriptor is validated through real experiments using ol this section, we detail our procedure to extract prominen
robot. vertical lines. Our procedure consists of five steps.
In the second part of the paper, we show an application
of our visual tracking to the problem of robot-camera The first step towards vertical line extraction is the
self-calibration. In particular, we describe how to fuse thdetection of the image center (i.e. the point where all fadia
visual information with the robot odometry to extrinsigall lines intersect in). As the circular external boundary o th
and automatically calibrate the camera while the robot isirror is visible in the image, we used a circle detector to
moving. determine the coordinates of the center. Note that because
This paper extends our two previous works [16], [38]. the diameter of the external boundary is known and does not
change dramatically during the motion, the detection of the
The present document is organized as follows. First, veenter can be done very efficiently and with high accuracy on
describe our procedure to extract vertical lines (Sectiparid every frame (this guarantees to cope also with the vibration
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of the platform).

The second step is the computation of the image gradier
We compute the two componerig, I, of the image gradient
by convolving the input imagd with the two Sobel masks.
From I, I,, we can calculate the magnitudel and the
phase® of the gradients as

M = /L2 + 1,2 @& = atan2(Iy,I,). (1)

Then, we do a thresholding oM, ® by retaining those

vectors whose orientation looks towards the image center
to £5°. This 10 tolerance allows us to handle the effects c
floor irregularities on the appearance of vertical linesteAf

this thresholding, we apply edge thinning and we obtain t
binary edge map depicted in Fig. 3.

) ) ) ) ~ Fig. 2. An image taken by our omnidirectional camera.
The third step consists in detecting the most reliable

vertical lines. To this end, we divide the omnidirectional
image into 720 predefined uniform sectors, which give us i
angular resolution of 055 By summing up all binary pixels
that vote for the same sector, we obtain the histogram sho
in Fig. 4. Then, we apply non-maxima suppression to identi
all local peaks.

The final step is histogram thresholding. As observed
Fig. 3, there are many potential vertical lines in struature
environments. In order to keep the most reliable and stat
lines, we put a threshold on the line length. As observed
Fig. 4), we set our threshold equal 5% of the maximum
allowed line length, i.eR,,4: — Rmin. Obviously, this choice
is purely arbitrary and a different criterion could be use
depending on the purpose (for instance, one can decide
have always a constant number of lines per each fram 100 200 300 400 500 600
Another criterion is to have this threshold adaptive. This c
be done by computing the mearand the standard deviation
o, of all line lengths in the observed image and keeping onfyg- 3. Edge image of Fig. 2.
those lines whose lengthsatisfies! > [ + 30;.

IIl. BUILDING THE DESCRIPTOR

In Section IV, we will describe our method for matching
vertical lines between consecutive frames while the rob
is moving. To make the feature correspondence robust
false positives, each vertical line is given a descriptoicivh
is unique and distinctive for each feature. Furthermor
this descriptor is invariant to rotation and slight change
of illumination. In this way, finding the correspondent of ¢
vertical line can be done by looking for the line with the
closest descriptor. In the next subsections, we descrilae h
we built our descriptor.

70+
60 T T
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40

301

20

Sum of edge points along each given radial line
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. h.m Lx.

0 100 200 300 400 500 600 700
Index of radial lines (every step corresponds to 0.5°)

o

A. Rotation Invariance

Given a radial line, we divide the space around it into thregy. 4.  Number of binary pixels voting for a given orientatiangle.
equal non-overlapping circular areas such that the radjus
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Fig. 6. Gaussian smoothing filter

50

100

150

Fig. 5. Extraction of the most reliable vertical featuresrfran omnidirec-
tional image. 200

250

of each area is equal {R,,a. — Rmin)/6 (See Fig. 7). 300
Then, we smooth each area with a Gaussian window (Fig. 6)
with o = r,/3 and compute the image gradients (magnitudio
M and phaseP) within each of these areas.

Concerning rotation invariance, this is achieved by redwdin 4
the gradient phas@ of all points relatively to the radial 459
line’'s angled (see Fig. 7).

00

100 200 300 400 500 600

Fig. 7. Extraction of the circular areas. To achieve rotafivariance, the
. . . gradient phase of all points is redefined relatively to the radial line’s &g
B. Orientation Histograms 0.
To make the descriptor robust to false matches, we split
each circular area into two parts and consider each one
individually (Fig. 8). In this way, we preserve the inforrivat To resume, in the end we have three pairs of orientation
about what we have on the left and right sides of the featufdstograms:

For each side of each circular area, we compute the gradient H = [Hyr, Hyr]
orientation histogram (Fig. 9). The whole orientation spac H. = [Hy 1, H2 r] 3)
(from -7 to 7) is divided into N, equally spaced bins. In He — [Haeo H
order to decide how much of a certain gradient magnitude s = [Hsr, Hs r]
belongs to the adjacent inferior binand how much to the
adjacent superior bin, each magnitudeis weighted by the Where subscripts L, R identify respectively the left anchtig

factor (1 — w), where section of each circular area.
-b
w=NE_2, @
27 General direction of
with ¢ being the observed gradient phase in radians. Thus, the vertical feature
m(1 — w) will vote for the adjacent inferior bin, whilenw A

will vote for the adjacent superior bin.

According to what we mentioned so far, each bin contains Part Part
the sum of the weighted gradient magnitudes which belong to
the correspondent orientation interval. We observed thiat t

weighted sum made the orientation histogram more robust to
image noise. Finally, observe that the orientation histogis
already rotation invariant because the gradient phase d&s b
redefined relatively to the radial line’s angle (SectiorA)l

Fig. 8. The two sections of a circular area.
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Left section Right section

25 12 In our work, we tried the dissimilarity measures mentioned
above but the best results were obtained using fthedis-
tance (i.e. Euclidean distance) that is a particular caghef

8 Minkoski-form distance. Therefore, in our experiments we
used the Euclidean distance as a measure of the dissigilarit
between descriptors, which is defined as:

10

= N
o =)

N
o

Sum of gradient magnitude
Sum of gradient magnitude
=

a

(6)

lmedl | 1l

0 10 20 30 0 10 20 30
Bin index Bin index

Fig. 9. An example of gradient orientation histograms for #fé &nd right By definition Of_ dIStanC?’ the correspondent of a fe"?‘ture’
sides of a circular area. in the observed image, is expected to be the one, in the
consecutive image, with the minimum distance. However, if a
feature is no longer present in the next image, there will be a
C. Building the Feature Descriptor closest feature anyway. For this reason, we defined three tes
From the computed orientation histograms, we build tHe decide whether a feature correspondent exists and which
final feature descriptor by stacking all three histogranrgaione the correspondent is. Before describing these testss le
as follows: introduce some definitions.
H= [Hla H27H3] (4)
Let {A1,As,..., AN, } and{B;,B,,...,Bn,} be two
To have slight illumination invariance, we pre-normalizgets of feature descriptors extracted at timeandt ; respec-

each histogramH; to have unit area. This choice reliesjyely, where N4, N are the number of features in the first
on the hypothesis that the image intensity changes lineagh{d second image.

with illumination. Although this is not true in nature, thisThen, let
approximation proved to work properly.
D; = {d(A;,B;),j =1,2,...,Np)} @)

To resume, our descriptor is @hrelement vector containing
the gradient orientation histograms of the circular argasur ;. — 1,2, Np)
setup, we extract 3 circular areas from each vertical feaugina”y’ iet n’%.nBDi — min; (D;) be the minimum of the
and use 30 bins for each histogram; thus the length of the, ”’ o AT
descriptor is

be the set of all distances between a givkn and all B;

IStances between giveA; and all B;.

N = 3areas - 2parts - 30bins = 180 5) A First test

Observe that all feature descriptors are the same length.  The first test checks that the distance from the closest
descriptor is smaller than a given threshold. As the threlsho
IV. FEATURE MATCHING depends on the length of the descriptor, we set

As every vertical feature has its own descriptor, its minD; = Fy - N (8)
correspondent in consecutive images can be searched among
the features with the closest descriptor. To this end, wel ne&hereN is the descriptor length. By this criterion, we actually
to define a dissimilarity measure (i.e. distance) betweem t&et a bound on the maximum acceptable distance to the closest

descriptors. descriptor.

In the literature, several measures have been proposed g0rg-ond test
the dissimilarity between two histogranld = {h;} and _
K = {k;}. These measures can be divided into two categories.]n® Second test checks that the distance from the closest
The bin-by-bin dissimilarity measures only compare contentdescriptor is smaIIe_r enough than the mean of the distances
of corresponding histogram bins, that is, they compaye from all other descriptors, that is:
and k; for all 4, but n_ot h; and k; for i # j. The cross-bin . minD; = Fy- < D; > 9)
measures also contain terms that compare non-corresgpndin
bins. Among the bin-by-bin dissimilarity measures, fall where < D; > is the mean value ofD; and F; clearly
the Minkoski-form distance, the Jeffrey divergence, tie ranges from 0 to 1. This criterion comes out of experimental
statistics, and the Bhattacharya distance. Amongtbss-bin  results. In Table I, we show an example of real comparison
measures, one of the most used is the Quadratic-foamong the distances between descripdor at time ¢, and
distance. An exhaustive review of all these methods can &k descriptorsB; at time ¢z. Observe that descriptd8, is
found in [34]-[36]. the correct correspondent @&f;. Also note that its distance is

smaller than the mean of all other distances.
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TABLE | L . : N :
THE DISTANCES BETWEEN THE DESCRIPTORA 1 AT TIME 4 AND ALL The_tWO similarity matrices for the image in Fig. 7 is shown
DESCRIPTORSB; , j = 1,2, .., Np AT TIME tp in Fig. 12 and 13. Concerning the siz&n of the patterns
for computing SSD and NCC, we chosgn = 2r,. Observe
Bl | B2 | B3 | B4 | BS | B6 | BY that this choice is reasonable &s, is also the size (diameter)
238 | 542 | 455 | 579 | 5.66 | 6.17 | 5.43 . ) .
of the three circular areas used to build our descriptor.
TABLE II Furthermore observe that, for SSD, maximum similarity
THE PARAMETERS USED BY OUR ALGORITHM WITH THEIR EMPIRICAL between two patterns occurs when SSD=0; conversely, for
VALUES NNC, maximum similarity (correlation) occurs when NCC=1

(this explains why the diagonal axis in Fig. 13 is white

F1=0.0075 F2=055 F3=0.85 .
instead of black.

; To interpret the similarity matrix, consider points along
C. Third test . R A S
, , ) the diagonal axis in Fig. 11. Each point is perfectly similar
Finally, the third test checks that the distance from thg jiself, so all the points on the diagonal are dark. Stgrtin
closest descriptor is smaller than the distance from thersec ¢, 4 given point on the diagonal, you can compare how its
closest descriptor: correspondent descriptor relates to its neighbors forveaad
minD; = Fy - SecondSmallest Distance, (10) backward by tracing horizontally or vertically on the muatri
To compare given descript®l; with descriptorH,;.,,, Simply

where ;3 clearly ranges from 0 to 1. As in the previous teskart at point(i, i) on the matrix and trace horizontally to the
the third test raises from the observation that, if the @rreyght to (4,7 + n)

correspondence exists, then there must be a big gap between

the closest and the second closest descriptor. In the similarity matrix for SSD, you can see large blocks
. ) of dark which indicate that there are repeating patterngién t
FactorsF, I, I'; are to be determined experimentally. Theyage or that the patterns are poorly textured. Rectangular
empirical values used in our experiments are shown in Talg)cks of dark that occur off the diagonal axis indicate
II. reoccurring patterns. This can be better understood by

observing Fig. 10. As you can see, there are poorly textured
V. COMPARISON WITH OTHERIMAGE SIMILARITY objects and repeating structure.

MEASURES

A good method to evaluate the distinctiveness of the descrip Similar comments can be done regarding the similarity
tors in the observed image is to compute a similarity matriwatrix for NCC, but we have to invert word “dark” with
S where each elemerfi(i,j) contains the distance betweerilight”, due to the inverse definition of NCC. However,
the ith andjth descriptor. That is, observe that the behavior of NCC is much better than SSD:
. first, the size of the blocks along or off the diagonal axis
S(i,5) = d(H;, Hy), (1) is smaller; then, points on the diagonal are much lighter
where H; is the descriptor of theith radial line and than points off the diagonal, meaning that NNC captures the
distanced is defined as in (6). Observe that to build thiglistinctiveness of the pattern better than SSD.
matrix we compute the the radial line’s descriptor for every
6 € [0°,360°]. We used af increment of 1° and thus  When compared with SSD and NCC, the similarity matrix
i=1,2,...,360. Furthermore, note th& is symmetric and of our descriptor outperforms SSD and NCC. This can be
that S(i,j) = 0 for ¢ = j. The similarity matrix computed seen by observing that the diagonal axis is well demarcated,
for the image of Fig. 7 is shown in Fig. 11. in fact points on the diagonal are much darker than those off
the diagonal; the contrast with the regions off the diagasal
In this section, we want to compare our descriptor witAven higher than NCC. Finally, observe that blocks along or
other two image similarity measures that are very used @ff the diagonal axis are much smaller or lighter than SSD
image registration but are also commonly used for matchiagd NCC; this indicates that even on poorly textured susface
individual lines, that is, Sum of Squared Differences (S8mJ our descriptor is more distinctive than SSD and NCC. The
Normalized Cross-Correlation (NCC) (their definitions dsn distinctiveness of the descriptor is due to the use of gradie
found in [21]). When using SSD and NCC for comparingrientation histograms. In the concept, our method is simil
two patterns, the pattern descriptor can be seen as therpatte SIFT [37], which also uses gradient histograms to build
intensity. In our case, we take as a pattern the rectangutlistinctive descriptors of image keypoints.
region around the observed radial line as shown in Fig. 10.
As we did to _build the similz_irity matrix for our o_Iescriptors, VI. EXPERIMENTAL RESULTS
we compare given patted?; with patternP; using either SSD

or NCC and build the respective similarity matrices, that is N our experiments, we adopted a mobile robot with a
differential drive system endowed of encoder sensors on

Sssp(i,j) = SSD(P;,Pj), (12) the wheels. Furthermore, we equipped the robot with an
Sncc(i,j) = NNC(P;,P;), (13) omnidirectional camera consisting of a KAIDAN 360 One VR
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Fig. 10. This is the same image of Fig. 7 after unwrapping intgliadrical
panorama. The rectangular region used to compute SSD and N@{Sas

shown.

Fig. 11.

Fig. 12.
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Fig. 13.  Similarity matrix for NCC.

hyperbolic mirror and a SONY CCD camera the resolution
of 640 x 480 pixels. A picture of the all settings is depicted
in Fig. 1.

In this section, we present some experimental results
obtained moving our robot in a real indoor environment.
We show the performance of our feature tracker during the
motion of the robot. In these experiments, the robot was
moving at aboub.15 m/s and was acquiring frames atH z,
meaning that the traveled distance between two consecutive
frames was cm.

We guided our robot through an office-like environment for
about 40 meters. The results of feature tracking are shown
in Fig. 15. Observe that these results were obtained using
only the three matching rules described in Sections IV-A,
IV-B, IV-C. No other criterion as mutual and topological
relations has been used. The plot refers to a short path of the
whole trajectory while the robot was coping with an L-shaped
trajectory. As the reader may observe, there many features
that are detected and correctly tracked over the time. thdee
most of the lines appear smooth and homogeneous. The lines
are used to connect features that belong to the same track.
When a new feature is detected, this feature is given a label
with progressive numbering and a new line starts from it. A
few false matches are also present at the time where two lines
intersect. Observe, that the three huge jumps in the plot are
not false matches; they are only due to the angle transition
from —x to .

Observe that our algorithm is able to match features even
when their correspondents are not found in previous frames.
This can be seen by observing that sometimes circles are
missing on the tracks (look for instance at track no. 52).
When correspondence is not found in the previous frame, we
start looking into all previous frames (actually up to twent
frames back) and stop when the correspondence is found.
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If you examine the graph, you can see that some tracks areblem becomes a two-dimensional problem.
suddenly given different numbers. For instance, obseraé th
feature no. 1 - that is the fist detected feature and starts aOur first goal is the estimation of the three parametgrs
frame no. O - is correctly tracked until frame no. 120 and ig, ¥ which characterize the rigid transformation between the
then labeled as feature no. 75. This is because at this frametwo references frames attached respectively to the robabt an
correspondence was found and then the feature was labdfethe camera (see Fig. 14).
as a new entry (but in fact is a false new entry). Anothdrhe second goal is to perform calibration automatically and
example is feature no. 15 that is then labeled as no. 18 amtile the robot is moving.
no. 26. By a careful visual inspection, you can find only &he available data are the robot wheels displacemépis
few other examples of false new entries. Indeed, tracks thatd dp;, (see later) delivered by the encoder sensors and the
at a first glance seem to be given different numbers, belohgaring angle observatiorsof several features in the camera
in fact to other features that are very close to the obsermed oreference frame (Fig. 14).

After visually inspecting every single frame of the whole ,
video sequence, we found 8 false matches and 26 false new /
entries. Comparing these errors to the 2758 corresponding 4 v/
pairs detected by the algorithm over the whole video 13 ’Cmra P
sequence, we had.23% of mismatches. Furthermore, we
found that false matches occurred every time the camera was
facing objects with repetitive texture (as in Fig 10). Thus,
ambiguity was caused by the presence of vertical elements 0 _6
which repeat almost identical in the same image. On the ~
other hand, a few false new entries occurred whenever thevq —-—-—-—-_ AN Y — -—
displacement of the robot between two successive images was

[}
too large. However, observe that when a feature matches with 0/{ o !
no other feature in previous frames, it is better to belidis t X |
feature to be new rather than commit a false matching. \ i

Feature Reference

As we already mentioned above, the results reported in
this sect|or_1 were Obta_med using only the thre.e matCh'mQ;. 14. The two reference frames respectively attached ¢ordbot and
rules described in Sections IV-A, IV-B, IV-C. Obviously,eth to the camera. The five parameters estimated by the EK®(¢, p, ¢) are
performance of tracking could be further improved by addirfg§s© indicated.
other constraints like mutual and topological relationsoam

As we consider the case of a mobile robot moving i/a
features.

environment, its configuration is described through theesta
Xr = [zRr,yr,0r]" containing its position and orientation
VII. CAMERA-ROBOT SELF-CALIBRATION : THE PROBLEM  (as indicated in Fig. 14). Furthermore, we consider the oése
Accurate extrinsic calibration of a camera with th& robot equipped with a differential drive system. The robot
odometry system of a mobile robot is a very importarﬁonfigurationXR can then be estimated by integrating the
step towards precise robot localization. This stage is llysua€ncoder data. In particular, we have:
poorly documented and is commonly carried out by manually

. o : _ 50,
measuring the position of the camera with respect to the TRy, = TR, T 5Pi0f’3 (aRi + _

robot frame. In this section, we describe a new method that YRiyn = YR, + Opisin (913, + 21) ) (14)
uses an EKF to extrinsically and automatically calibrate th Or.,, = Or, + 06;

camera while the robot is moving. The approach is similar

to that we presented in [16] where just a single landmahere quantitiesip and 56 are related to the displacements

(we used a source of light) was tracked during the motion §0, . andsp,, (respectively of the right and left wheel) directly
perform calibration. In this section, we extend the method |rovided by the encoders through:

[16] by providing the EKF equations to cope with multiple
features. The features in use are vertical features whieh ar
extracted and tracked as described in the previous sections S5p = Opr + 0pL 50 — Opr — 0pL (15)
2 ’ e
In order to simplify the problem, we do the following
assumptions; we assume that the robot is moving in a flaheree is the distance between the wheels.
environment and that it is equipped with an omnidirectional
camera whose-axis is parallel to the-axis of the robot, that  For a particular bearing angle observatignwe obtain the
is, the mirror axis is perpendicular to the floor. Accordindollowing analytical expression (see Fig. 14):
to this, the three-dimensional camera-odometry calibnati
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Evolution of the bearing angle for each features

Bearing angle [rad]

0 50 100 150
Frame

Fig. 15. Feature tracking during the motion of the robotyhaxis is the angle of sight of each feature and in i#hexis the frame number. Each circle
represents a feature detected in the observed frame. Lipessent tracked features. Numbers appear only when a newddatdetected.

on the estimation ofp, p, ¢ is limited. Furthermore, the
p=m—tp—0p—0¢+a (16) initial robot configuration has to be known with high accyrac
with One way to overcome these problems is to integrate the
encoder data with the bearing angle measurements to estimat
_ {(yr + psin(0r + ¢) the robot configuration. This can be done by introducing an
o = tan (m T pcos(On + ¢)> (17)  augmented stafi, containing the robot configuration and the
REP B calibration parameters, p, v:

Xa = [xRayRaeR7¢ap7 MT (18)
VIIl. EKF BASED CALIBRATION
An intuitive procedure to determine parametefs p, ¥

is to use the data from the encoders to estimate the robofAn EKF can be adopted to estimate the sidte The inputs
configuration (provided that the initial robot configuratio u of the dynamics of this state are directly provided by the
is known). Then, by measuring the bearing angleat encoder data and the observatiansre the bearing angles
several different robot configurations (at least three)isit provided by the vision sensor. However, as it was pointed out
possible to obtain parametets p, v by solving a non linear in [16], by considering the system staXg, as defined in (18),
system in three unknowns. However, the drawback of thike system is not observable, that is, it does not contaidevho
method is that, when the robot configuration is estimatdkde necessary information to perform the estimation with an
by using only the encoder data, the error integrates owaror which is bounded. Conversely, in [16] it was proved tha
the path. This means that this procedure can be applidg system becomes observable if, instead of considéing
only for short paths and therefore the achievable accuramg introduce a new stat¥ defined as follows:
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D} + 6p;icosf}
0} + 66, — ‘;pf sinf}
D? + §p;cost?

0? + 50, — %’5 sinf?

X =[D,6,¢,p, 9", (19)

with D = /a% +y% and 6 = 0 — tan~ (1) (see Fig.
14). Note also thabD is the distance from the observed feature.

Observe that, without loss of generality, we can use X,,; = f(X;,u;)= : (23)
X instead of X,. In fact, X, contains the whole robot DZ + 6picosf?
_conflguratlon w_hose estimation is not our goal, indeed we 07 & 60 — 305 sing?
just want to estimate parametets p, 1. v Dy v

bi
By using D, 6 and Equation (14), we obtain the following _
dynamics for the statX: pi
¥
with u = [6pg,dpr]T.
Dit1 = D+ dpicost; Regarding the observation functién from (21) we have:
bit1 = bi (20) g
pPit1 = Pi i
Yiy1 = P 2
h(X;) = 5} -
8
where, from now on, subscriptwill be used to indicate the ) o )
time. tan! (st ) — 0 = 6 —
;sin (62 i

Similarly, the bearing angle observatiofis(16) can be read _ tan—! <_D_2T;1 C(f;(;?_‘:(ﬁ)) — 02 — ¢ — U,

as: SR
— —pisin(0Z L
L tan ! (—Dflipi iols(-g:zb-:@)) - ezZ - ¢z - wz p

(24)

o ()

—D; — p; cos(8; + d%)) — 0= o (21)

The previous equations, along with a statistical error rhode
of the odometry (we used the one by Chong and Kleeman

Observe that so far we have taken into account only the/]). allow us to implement an EKF to estima. In order
observation of a single feature. Because we want to cope withimplement the standard equations of the EKF, we need to

multiple features, we need to extend the definitiorXo{19) Compute the Jacobiars, andF,, of the dynamics (23) with

as follows: respect to the statX and with respect to encoder readings
(6pr and 6pr). Finally, we need to compute the Jacobian
H of the observation function (24) with respectXa These
matrices are required to implement the EKF [39] and are given
1 2 p2 Z nZ T

X=[D ’017D ,0°,...,D%,07,¢,p,7]", (22) in the Appendix.

IX. CALIBRATION RESULTS
In our experiments, we adopted the same mobile robot and
where the superscript identifies the observed featurear®l ompdirectional camera described in Section VI. Furtheeno
the number of features. two laser range finders (model SICK LMS 200) were also
installed on the robot. Observe that these laser scanners
Before implementing the EKF, we need to compute there used in our experiments just for comparison and are
the dynamics functiorf and the observation functioi, both considered already calibrated with the odometry system
depending on the statX. From (20) and using (22), theaccording to the specifications provided by the manufacture
dynamicsf of the system can be written as: A picture of the all settings is depicted in Fig. 1.
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For our experiments, we positioned an omnidirectional X. CONCLUSION

camera on our robot as in Fig. 1 and we measured manuallyn this paper, we presented a robust method for matching
its position relative to the robot. We measured the follaywinygrtical lines among omnidirectional images and a method

values:¢ ~ 0 rad, p = 0.2 m, ¢ ~ 0 rad. The scenario for automatically calibrating an omnidirectional camerahw
is shown in Fig. 17. In this figure, the features used for thge rohot system.

calibration are highlighted. A 2D scan of the test environme

is also shown; as we mentioned above, the laser scan is use@oncerning the first part, the basic idea to achieve robust
only as a ground truth. The robot reference system (in blagghture matching consists in creating a descriptor which is
and the camera reference system (in red) are also indicaiggique and distinctive for each feature. The distinctisnef
The rays departing from the camera origin show the bearifge descriptor in comparison to other image similarity fstr
angle of the features. was also pointed out. Furthermore, this descriptor is invar
to rotation and slight changes of illumination. To evalutite

In Fig. 17, the position of the camera relative to the robgterformance of our approach, we performed real experiments
before calibration is shown. Note that, since the calibrati where we evaluated the quality of matching. The performance
was initially done by hand, the rays of bearing do not prgperpf tracking was very good as many features were correctly
intersect the expected corners of the scan. However, we usletected and tracked over long time. Furthermore, because
these rough values to initialize our EKF. The trajectorthe results were obtained using only the three matchingrule
chosen for the experiments consisted of a straight paggscribed in Section IV, we expect that the performance
approximately2.3 m long, and al80° rotation about the would be notably improved by adding other constraints like
center of the wheels. The trajectory is depicted in fig. 16. mutual and topological relations among features.

The values of¢, p, ¢ estimated during the motion are Concerning the second part, we adopted the visual track-

plotted as a function of the frame number in Fig. 19. Th&Y method to implement our strategy of camera-robot self-

covariancess,, o,, o, are also plotted. Observe that aftePalibration. The novelty of the method is the use of an
¢ Upy O . . . .

. L extended Kalman filter that automatically estimates the cal
about 60 frames (corresponding to abowtm of navigation) ibration parameters while the robot is rrx:oving The present
the parameters start suddenly to converge to a stable va uté. . .

The resulting estimated parameters afe = —0.34rad strategy had been already proposed in our previous work [16]
: " _In [16], we provided the equations and performed several

p = 0.23m and = 0.33rad. The sudden jump starting at . . .
frame no. 60 actually occurs when the robot starts to rotafae)gperlments on both simulated and real data by tracking

As it was already pointed out in [16], the convergence is ve nly a S'T‘g'e fe_ature. In_ that _work, we a_Iso shoyved that
fast when the robot performs trajectories alternating tsh P choosing s_wtable_ _trajecto_nes (alter_natmg stra|g_h thp
straight paths and pure rotations. with pure rotayons), it is possible to esnmate the calibra
parameters with high accuracy by moving the robot along
very short paths (few meters). In this paper, we extended our
In Fig. 18, the scenario after calibration is shown and cgjtevious work to cope with multiple features and showed that
be compared with that before calibration (Fig. 17). Observey tracking multiple features the convergence is fasten tha
that the calibration parameters are well estimated. Indéed ysing a single feature. Furthermore, the calibration patars
rays of bearing intersect very well the expected corners &fart to converge when the robot undergoes a pure rotation
the laser scan. after straight path. Although experiments have been cdeduc
using an omnidirectional camera, more in general the pegbos
method can be adopted to calibrate any robot bearing sensor.
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XII. APPENDIX

The Jacobian¥, andF, of the dynamics are:

and

with

The JacobiarH of the observations is:

with

A 0 -« 0 0 0 0]
0 A2 -« 0 0 0 O
0 0 AZ 0 0 0 |-
0 0 0O 1 0 0
0 0 0O 0 1 0
| 0 0 0 0 0 1|
- g
B2
F,= | pz
0
0
. O -
A= 1 —dp sind’
o ng sindt 1 — g’icosei ’
) cosh? cosh?
B'=11 %ot 1 °sine
e 2D? e 2D*
H2' 0 0o --- 0 0 H3' H4' -1
H1? H22 .. 0 0 H3? H4?> -1
0 0 --- H14 H2Z H3? H4% -1

—psin(0' + ¢)

Hl'= —; : : ;
D + 2pDicos(6* + ¢) + p?
HY — —Dip cos(9' + ¢) — DP*
Di? + 2pDicos(0 + ¢) + p?’
H3i — —Dip cos(9' + ¢) — DP*
D* +2pDicos(0 + ¢) + p?’
b — D'sin(0" + ¢)

Di® 4 2pDicos(0 + ¢) + p*

(25)

(26)

(27)

(28)

(29)

(30)

(1)

(32)

(33)
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