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Abstract—This paper presents a robust descriptor for matching
vertical lines among omnidirectional images and a method for
automatically calibrating an omnidirectional camera with the
robot reference system. The first part of this paper describes
how to build the feature descriptor. We show that the descriptor
is unique and distinctive for each feature and is invariant to
rotation and slight changes of illumination. The robustness of
the descriptor is validated through real experiments on a wheeled
robot. The second part of the paper is devoted to the extrinsic
self-calibration of the camera with the robot reference system.
We show that by implementing an extended Kalman filter that
fuses the information of the visual features with the odometry, it
is possible to extrinsically and automatically calibrate the camera
while the robot is moving.

Index Terms—omnidirectional camera, visual tracking, feature
descriptor, extrinsic camera calibration.

I. I NTRODUCTION

A. Previous work

One of the most important problems in vision based
robot navigation systems is the search for correspondences
in images taken from different viewpoints. In the last
decades, the feature correspondence problem has been largely
investigated for standard perspective cameras. Furthermore,
several works have provided robust solutions for wide-
baseline stereo matching, structure from motion, ego-motion
estimation, and robot navigation (see [1]–[9]). Some of
these works normalize the region around each detected
feature using a local affine transformation, which attemptsto
compensate for the distortion introduced by the perspective
projection. However, such methods cannot be directly applied
to images taken by omnidirectional imaging devices because
of the non-linear distortions introduced by their large field of
view.

In order to apply those methods, one needs first to generate
a perspective view out of the omnidirectional image, provided
that the imaging model is known and that the omnidirectional
camera possesses a single effective viewpoint [10]. An
application of this approach can be found in [11]. There,
the authors generate perspective views from each region of
interest of the omnidirectional image. This image unwrapping
removes the distortions of the omnidirectional imaging

device and enables the use of state-of-the-art wide-baseline
algorithms designed for perspective cameras.
Nevertheless, other researchers have attempted to apply
to omnidirectional images standard feature detectors and
matching techniques which have been traditionally employed
for perspective images. In [14], for instance, the authors
check the candidate correspondences between two views
using RANSAC algorithm.

Finally, other works have been developed, which extract
one-dimensional features from new images called Epipolar
plane images, under the assumption that the camera is
moving on a flat surface [15]. These images are generated
by converting each omnidirectional picture into a 1D circular
image, which is obtained by averaging the scan lines of a
cylindrical panorama. Then, 1D features are extracted directly
from such kinds of images.

In this paper, we deal with real world vertical features
because they are predominant in structured environments.
In our experiments, we used a wheeled robot equipped
with an catadioptric omnidirectional camera with the mirror
axis perpendicular to the plane of motion (Fig. 1). If the
environment is flat, this implies that all world vertical lines
are mapped to radial lines on the camera image plane.

The use of vertical line tracking is not new in the
Robotics community. Since the beginning of machine vision,
roboticians have been using vertical lines or other sorts of
image measure for autonomous robot localization or place
recognition.
Several works dealing with automatic line matching have been
proposed for standard perspective cameras and can be divided
into two categories: those that match individual line segments;
and those that match groups of line segments. Individual line
segments are generally matched on their geometric attributes
(e.g. orientation, length, extent of overlap) [24]–[26]. Some
such as [27]–[29] use a nearest line strategy which is better
suited to image tracking where the images and extracted
segments are similar. Matching groups of line segments has
the advantage that more geometric information is availablefor
disambiguation. A number of methods have been developed
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around the idea of graph-matching [30]–[33]. The graph
captures relationships such as “left of”, “right of”, cycles,
“collinear with” etc, as well as topological connectedness.
Although such methods can cope with more significant
camera motion, they often have a high complexity and again
they are sensitive to error in the segmentation process.

Besides these methods, other approaches to individual line
matching exist, which use some similarity measure commonly
used in template matching and image registration (e.g. Sum
of Squared Differences (SSD), simple or Normalized Cross-
Correlation (NCC), image histograms [21]).
An interesting approach was proposed in [22]. Besides using
the topological information of the line, the authors also used
the photometric neighbourhood of the line for disambiguation.
Epipolar geometry was then used to provide a point to point
correspondence on putatively matched line segments over two
images and the similarity of the lines neighbourhoods was
then assessed by cross-correlation at the corresponding points.

A novel approach, using the intensity profile along the line
segment, was proposed in [23]. Although the application of
the method was to wide baseline point matching, the authors
used the intensity profile between two distinct points (i.e.a
line segment) to build a distinctive descriptor. The descriptor
is based on affine invariant Fourier coefficients that are
directly computed from the intensity profile.

The methods cited above were defined for perspective
images but the same concepts have been also used by
roboticians in omnidirectional images under certain
circumstances. The use of omnidirectional vision even
facilitated the task because of the360◦ field of view (see
[18]–[20]). However, to match vertical lines among different
frames only mutual and topological relations have been used
(e.g. neighborhood or ordering constraints) sometimes along
with some of the similarity measures cited above (e.g. SSD,
NCC).

B. Outline

The contributions of this paper are two. In the first part
of the paper, we describe how we built our robust descriptor
for vertical lines. We show that the descriptor is unique and
very distinctive for each feature and is invariant to rotation
and slight changes of illumination. The robustness of the
descriptor is validated through real experiments using our
robot.
In the second part of the paper, we show an application
of our visual tracking to the problem of robot-camera
self-calibration. In particular, we describe how to fuse the
visual information with the robot odometry to extrinsically
and automatically calibrate the camera while the robot is
moving.
This paper extends our two previous works [16], [38].

The present document is organized as follows. First, we
describe our procedure to extract vertical lines (Section II) and

build the feature descriptor (Section III). Then, we provide
our matching rules (Section IV) and present experimental
results (Section VI). In Section VII, we describe the calibration
problem and provide the equations to build the Extended
Kalman Filter (EKF) (Section VIII). In Section IX, we will
present the calibration results with our mobile robot.

Fig. 1. The robot used in our experimets equipped with encodersensors,
omnidirectional camera, and two laser range finders

II. V ERTICAL L INE EXTRACTION

Our platform consists of a wheeled robot equipped with
an omnidirectional camera looking upwards (see Fig. 1). The
main advantage of such kind of camera is that it provides
a 360◦ field of view of the scene, which gives a very rich
and sparse information. In our arrangement, we set the
camera-mirror system perpendicular to the floor where the
robot moves. This setting guarantees that all vertical lines are
mapped to radial lines on the camera image plane (Fig. 2)
In this section, we detail our procedure to extract prominent
vertical lines. Our procedure consists of five steps.

The first step towards vertical line extraction is the
detection of the image center (i.e. the point where all radial
lines intersect in). As the circular external boundary of the
mirror is visible in the image, we used a circle detector to
determine the coordinates of the center. Note that because
the diameter of the external boundary is known and does not
change dramatically during the motion, the detection of the
center can be done very efficiently and with high accuracy on
every frame (this guarantees to cope also with the vibrations
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of the platform).

The second step is the computation of the image gradients.
We compute the two componentsIx, Iy of the image gradient
by convolving the input imageI with the two Sobel masks.
From Ix, Iy, we can calculate the magnitudeM and the
phaseΦ of the gradients as

M =

√

Ix
2 + Iy

2, Φ = atan2(Iy, Ix). (1)

Then, we do a thresholding onM, Φ by retaining those
vectors whose orientation looks towards the image center up
to ±5◦. This 10◦ tolerance allows us to handle the effects of
floor irregularities on the appearance of vertical lines. After
this thresholding, we apply edge thinning and we obtain the
binary edge map depicted in Fig. 3.

The third step consists in detecting the most reliable
vertical lines. To this end, we divide the omnidirectional
image into 720 predefined uniform sectors, which give us an
angular resolution of 0.5◦. By summing up all binary pixels
that vote for the same sector, we obtain the histogram shown
in Fig. 4. Then, we apply non-maxima suppression to identify
all local peaks.

The final step is histogram thresholding. As observed in
Fig. 3, there are many potential vertical lines in structured
environments. In order to keep the most reliable and stable
lines, we put a threshold on the line length. As observed in
Fig. 4), we set our threshold equal to50% of the maximum
allowed line length, i.e.Rmax−Rmin. Obviously, this choice
is purely arbitrary and a different criterion could be used
depending on the purpose (for instance, one can decide to
have always a constant number of lines per each frame).
Another criterion is to have this threshold adaptive. This can
be done by computing the meanl̄ and the standard deviation
σl of all line lengths in the observed image and keeping only
those lines whose lengthl satisfiesl ≥ l̄ + 3σl.

III. B UILDING THE DESCRIPTOR

In Section IV, we will describe our method for matching
vertical lines between consecutive frames while the robot
is moving. To make the feature correspondence robust to
false positives, each vertical line is given a descriptor which
is unique and distinctive for each feature. Furthermore,
this descriptor is invariant to rotation and slight changes
of illumination. In this way, finding the correspondent of a
vertical line can be done by looking for the line with the
closest descriptor. In the next subsections, we describe how
we built our descriptor.

A. Rotation Invariance

Given a radial line, we divide the space around it into three
equal non-overlapping circular areas such that the radiusra
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Fig. 2. An image taken by our omnidirectional camera.
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Fig. 3. Edge image of Fig. 2.
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Fig. 4. Number of binary pixels voting for a given orientationangle.
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Fig. 5. Extraction of the most reliable vertical features from an omnidirec-
tional image.

of each area is equal to(Rmax −Rmin)/6 (see Fig. 7).
Then, we smooth each area with a Gaussian window (Fig. 6)
with σG = ra/3 and compute the image gradients (magnitude
M and phaseΦ) within each of these areas.
Concerning rotation invariance, this is achieved by redefining
the gradient phaseΦ of all points relatively to the radial
line’s angleθ (see Fig. 7).

B. Orientation Histograms

To make the descriptor robust to false matches, we split
each circular area into two parts and consider each one
individually (Fig. 8). In this way, we preserve the information
about what we have on the left and right sides of the feature.

For each side of each circular area, we compute the gradient
orientation histogram (Fig. 9). The whole orientation space
(from -π to π) is divided intoNb equally spaced bins. In
order to decide how much of a certain gradient magnitudem
belongs to the adjacent inferior binb and how much to the
adjacent superior bin, each magnitudem is weighted by the
factor (1 − w), where

w = Nb
ϕ− b

2π
, (2)

with ϕ being the observed gradient phase in radians. Thus,
m(1 − w) will vote for the adjacent inferior bin, whilemw
will vote for the adjacent superior bin.

According to what we mentioned so far, each bin contains
the sum of the weighted gradient magnitudes which belong to
the correspondent orientation interval. We observed that this
weighted sum made the orientation histogram more robust to
image noise. Finally, observe that the orientation histogram is
already rotation invariant because the gradient phase has been
redefined relatively to the radial line’s angle (Section III-A).

Fig. 6. Gaussian smoothing filter
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Fig. 7. Extraction of the circular areas. To achieve rotation invariance, the
gradient phaseΦ of all points is redefined relatively to the radial line’s angle
θ.

To resume, in the end we have three pairs of orientation
histograms:

H1 = [H1,L,H1,R]

H2 = [H2,L,H2,R]

H3 = [H3,L,H3,R]

(3)

where subscripts L, R identify respectively the left and right
section of each circular area.

Fig. 8. The two sections of a circular area.
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Fig. 9. An example of gradient orientation histograms for the left and right
sides of a circular area.

C. Building the Feature Descriptor

From the computed orientation histograms, we build the
final feature descriptor by stacking all three histogram pairs
as follows:

H = [H1,H2,H3] (4)

To have slight illumination invariance, we pre-normalize
each histogramHi to have unit area. This choice relies
on the hypothesis that the image intensity changes linearly
with illumination. Although this is not true in nature, this
approximation proved to work properly.

To resume, our descriptor is anN -element vector containing
the gradient orientation histograms of the circular areas.In our
setup, we extract 3 circular areas from each vertical feature
and use 30 bins for each histogram; thus the length of the
descriptor is

N = 3areas · 2parts · 30bins = 180 (5)

Observe that all feature descriptors are the same length.

IV. FEATURE MATCHING

As every vertical feature has its own descriptor, its
correspondent in consecutive images can be searched among
the features with the closest descriptor. To this end, we need
to define a dissimilarity measure (i.e. distance) between two
descriptors.

In the literature, several measures have been proposed for
the dissimilarity between two histogramsH = {hi} and
K = {ki}. These measures can be divided into two categories.
The bin-by-bin dissimilarity measures only compare contents
of corresponding histogram bins, that is, they comparehi
and ki for all i, but nothi and ki for i 6= j. The cross-bin
measures also contain terms that compare non-corresponding
bins. Among the bin-by-bin dissimilarity measures, fall
the Minkoski-form distance, the Jeffrey divergence, theχ2

statistics, and the Bhattacharya distance. Among thecross-bin
measures, one of the most used is the Quadratic-form
distance. An exhaustive review of all these methods can be
found in [34]–[36].

In our work, we tried the dissimilarity measures mentioned
above but the best results were obtained using theL2 dis-
tance (i.e. Euclidean distance) that is a particular case ofthe
Minkoski-form distance. Therefore, in our experiments we
used the Euclidean distance as a measure of the dissimilarity
between descriptors, which is defined as:

d(H,K) =

√

√

√

√

N
∑

i=1

|hi − ki|2 (6)

By definition of distance, the correspondent of a feature,
in the observed image, is expected to be the one, in the
consecutive image, with the minimum distance. However, if a
feature is no longer present in the next image, there will be a
closest feature anyway. For this reason, we defined three tests
to decide whether a feature correspondent exists and which
one the correspondent is. Before describing these tests, let us
introduce some definitions.

Let {A1,A2, . . . ,ANA
} and {B1,B2, . . . ,BNB

} be two
sets of feature descriptors extracted at timetA andtB respec-
tively, whereNA, NB are the number of features in the first
and second image.
Then, let

Di = {d(Ai,Bj), j = 1, 2, . . . , NB)} (7)

be the set of all distances between a givenAi and all Bj

(j = 1, 2, · · · , NB).
Finally, let minDi = mini (Di) be the minimum of the
distances between givenAi and allBj.

A. First test

The first test checks that the distance from the closest
descriptor is smaller than a given threshold. As the threshold
depends on the length of the descriptor, we set

minDi = F1 ·N (8)

whereN is the descriptor length. By this criterion, we actually
set a bound on the maximum acceptable distance to the closest
descriptor.

B. Second test

The second test checks that the distance from the closest
descriptor is smaller enough than the mean of the distances
from all other descriptors, that is:

minDi = F2· < Di > (9)

where < Di > is the mean value ofDi and F2 clearly
ranges from 0 to 1. This criterion comes out of experimental
results. In Table I, we show an example of real comparison
among the distances between descriptorA1 at time tA and
all descriptorsBj at time tB . Observe that descriptorB1 is
the correct correspondent ofA1. Also note that its distance is
smaller than the mean of all other distances.
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TABLE I
THE DISTANCES BETWEEN THE DESCRIPTORA1 AT TIME tA AND ALL

DESCRIPTORSBj , j = 1, 2, .., NB AT TIME tB

B1 B2 B3 B4 B5 B6 B7
2.38 5.42 4.55 5.79 5.66 6.17 5.43

TABLE II
THE PARAMETERS USED BY OUR ALGORITHM WITH THEIR EMPIRICAL

VALUES

F1 = 0.0075 F2 = 0.55 F3 = 0.85

C. Third test

Finally, the third test checks that the distance from the
closest descriptor is smaller than the distance from the second
closest descriptor:

minDi = F3 · SecondSmallestDistance, (10)

whereF3 clearly ranges from 0 to 1. As in the previous test,
the third test raises from the observation that, if the correct
correspondence exists, then there must be a big gap between
the closest and the second closest descriptor.

FactorsF1, F2, F3 are to be determined experimentally. The
empirical values used in our experiments are shown in Table
II.

V. COMPARISON WITH OTHERIMAGE SIMILARITY

MEASURES

A good method to evaluate the distinctiveness of the descrip-
tors in the observed image is to compute a similarity matrix
S where each elementS(i, j) contains the distance between
the ith andjth descriptor. That is,

S(i, j) = d(Hi,Hj), (11)

where Hi is the descriptor of theith radial line and
distanced is defined as in (6). Observe that to build this
matrix we compute the the radial line’s descriptor for every
θ ∈ [0◦, 360◦]. We used aθ increment of 1◦ and thus
i = 1, 2, . . . , 360. Furthermore, note thatS is symmetric and
that S(i, j) = 0 for i = j. The similarity matrix computed
for the image of Fig. 7 is shown in Fig. 11.

In this section, we want to compare our descriptor with
other two image similarity measures that are very used in
image registration but are also commonly used for matching
individual lines, that is, Sum of Squared Differences (SSD)and
Normalized Cross-Correlation (NCC) (their definitions canbe
found in [21]). When using SSD and NCC for comparing
two patterns, the pattern descriptor can be seen as the pattern
intensity. In our case, we take as a pattern the rectangular
region around the observed radial line as shown in Fig. 10.
As we did to build the similarity matrix for our descriptors,
we compare given patternPi with patternPj using either SSD
or NCC and build the respective similarity matrices, that is:

SSSD(i, j) = SSD(Pi,Pj), (12)

SNCC(i, j) = NNC(Pi,Pj), (13)

The two similarity matrices for the image in Fig. 7 is shown
in Fig. 12 and 13. Concerning the sizewin of the patterns
for computing SSD and NCC, we chosewin = 2ra. Observe
that this choice is reasonable as2ra is also the size (diameter)
of the three circular areas used to build our descriptor.
Furthermore observe that, for SSD, maximum similarity
between two patterns occurs when SSD=0; conversely, for
NNC, maximum similarity (correlation) occurs when NCC=1
(this explains why the diagonal axis in Fig. 13 is white
instead of black.

To interpret the similarity matrix, consider points along
the diagonal axis in Fig. 11. Each point is perfectly similar
to itself, so all the points on the diagonal are dark. Starting
from a given point on the diagonal, you can compare how its
correspondent descriptor relates to its neighbors forwardand
backward by tracing horizontally or vertically on the matrix.
To compare given descriptorHi with descriptorHi+n, simply
start at point(i, i) on the matrix and trace horizontally to the
right to (i, i+ n).

In the similarity matrix for SSD, you can see large blocks
of dark which indicate that there are repeating patterns in the
image or that the patterns are poorly textured. Rectangular
blocks of dark that occur off the diagonal axis indicate
reoccurring patterns. This can be better understood by
observing Fig. 10. As you can see, there are poorly textured
objects and repeating structure.

Similar comments can be done regarding the similarity
matrix for NCC, but we have to invert word “dark” with
“light”, due to the inverse definition of NCC. However,
observe that the behavior of NCC is much better than SSD:
first, the size of the blocks along or off the diagonal axis
is smaller; then, points on the diagonal are much lighter
than points off the diagonal, meaning that NNC captures the
distinctiveness of the pattern better than SSD.

When compared with SSD and NCC, the similarity matrix
of our descriptor outperforms SSD and NCC. This can be
seen by observing that the diagonal axis is well demarcated,
in fact points on the diagonal are much darker than those off
the diagonal; the contrast with the regions off the diagonalis
even higher than NCC. Finally, observe that blocks along or
off the diagonal axis are much smaller or lighter than SSD
and NCC; this indicates that even on poorly textured surfaces
our descriptor is more distinctive than SSD and NCC. The
distinctiveness of the descriptor is due to the use of gradient
orientation histograms. In the concept, our method is similar
to SIFT [37], which also uses gradient histograms to build
distinctive descriptors of image keypoints.

VI. EXPERIMENTAL RESULTS

In our experiments, we adopted a mobile robot with a
differential drive system endowed of encoder sensors on
the wheels. Furthermore, we equipped the robot with an
omnidirectional camera consisting of a KAIDAN 360 One VR
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Fig. 10. This is the same image of Fig. 7 after unwrapping into a cylindrical
panorama. The rectangular region used to compute SSD and NCC isalso
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Fig. 13. Similarity matrix for NCC.

hyperbolic mirror and a SONY CCD camera the resolution
of 640 × 480 pixels. A picture of the all settings is depicted
in Fig. 1.

In this section, we present some experimental results
obtained moving our robot in a real indoor environment.
We show the performance of our feature tracker during the
motion of the robot. In these experiments, the robot was
moving at about0.15 m/s and was acquiring frames at3 Hz,
meaning that the traveled distance between two consecutive
frames was5 cm.

We guided our robot through an office-like environment for
about 40 meters. The results of feature tracking are shown
in Fig. 15. Observe that these results were obtained using
only the three matching rules described in Sections IV-A,
IV-B, IV-C. No other criterion as mutual and topological
relations has been used. The plot refers to a short path of the
whole trajectory while the robot was coping with an L-shaped
trajectory. As the reader may observe, there many features
that are detected and correctly tracked over the time. Indeed,
most of the lines appear smooth and homogeneous. The lines
are used to connect features that belong to the same track.
When a new feature is detected, this feature is given a label
with progressive numbering and a new line starts from it. A
few false matches are also present at the time where two lines
intersect. Observe, that the three huge jumps in the plot are
not false matches; they are only due to the angle transition
from −π to π.

Observe that our algorithm is able to match features even
when their correspondents are not found in previous frames.
This can be seen by observing that sometimes circles are
missing on the tracks (look for instance at track no. 52).
When correspondence is not found in the previous frame, we
start looking into all previous frames (actually up to twenty
frames back) and stop when the correspondence is found.
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If you examine the graph, you can see that some tracks are
suddenly given different numbers. For instance, observe that
feature no. 1 - that is the fist detected feature and starts at
frame no. 0 - is correctly tracked until frame no. 120 and is
then labeled as feature no. 75. This is because at this frame no
correspondence was found and then the feature was labeled
as a new entry (but in fact is a false new entry). Another
example is feature no. 15 that is then labeled as no. 18 and
no. 26. By a careful visual inspection, you can find only a
few other examples of false new entries. Indeed, tracks that
at a first glance seem to be given different numbers, belong
in fact to other features that are very close to the observed one.

After visually inspecting every single frame of the whole
video sequence, we found 8 false matches and 26 false new
entries. Comparing these errors to the 2758 corresponding
pairs detected by the algorithm over the whole video
sequence, we had1.23% of mismatches. Furthermore, we
found that false matches occurred every time the camera was
facing objects with repetitive texture (as in Fig 10). Thus,
ambiguity was caused by the presence of vertical elements
which repeat almost identical in the same image. On the
other hand, a few false new entries occurred whenever the
displacement of the robot between two successive images was
too large. However, observe that when a feature matches with
no other feature in previous frames, it is better to believe this
feature to be new rather than commit a false matching.

As we already mentioned above, the results reported in
this section were obtained using only the three matching
rules described in Sections IV-A, IV-B, IV-C. Obviously, the
performance of tracking could be further improved by adding
other constraints like mutual and topological relations among
features.

VII. C AMERA-ROBOT SELF-CALIBRATION : THE PROBLEM

Accurate extrinsic calibration of a camera with the
odometry system of a mobile robot is a very important
step towards precise robot localization. This stage is usually
poorly documented and is commonly carried out by manually
measuring the position of the camera with respect to the
robot frame. In this section, we describe a new method that
uses an EKF to extrinsically and automatically calibrate the
camera while the robot is moving. The approach is similar
to that we presented in [16] where just a single landmark
(we used a source of light) was tracked during the motion to
perform calibration. In this section, we extend the method in
[16] by providing the EKF equations to cope with multiple
features. The features in use are vertical features which are
extracted and tracked as described in the previous sections.

In order to simplify the problem, we do the following
assumptions; we assume that the robot is moving in a flat
environment and that it is equipped with an omnidirectional
camera whosez-axis is parallel to thez-axis of the robot, that
is, the mirror axis is perpendicular to the floor. According
to this, the three-dimensional camera-odometry calibration

problem becomes a two-dimensional problem.

Our first goal is the estimation of the three parametersφ,
ρ, ψ which characterize the rigid transformation between the
two references frames attached respectively to the robot and
to the camera (see Fig. 14).
The second goal is to perform calibration automatically and
while the robot is moving.
The available data are the robot wheels displacementsδρR
and δρL (see later) delivered by the encoder sensors and the
bearing angle observationsβ of several features in the camera
reference frame (Fig. 14).

D

? ?R

Feature Reference

Robot Reference

XR

YR

?

F

?

ß
Camera Reference

Feature

a

χ

Rθ

ρ
θ

Φ

Ψ

α

Fig. 14. The two reference frames respectively attached to the robot and
to the camera. The five parameters estimated by the EKF (D, θ, φ, ρ, ψ) are
also indicated.

As we consider the case of a mobile robot moving in a2D
environment, its configuration is described through the state
XR = [xR, yR, θR]T containing its position and orientation
(as indicated in Fig. 14). Furthermore, we consider the caseof
a robot equipped with a differential drive system. The robot
configurationXR can then be estimated by integrating the
encoder data. In particular, we have:







xRi+1
= xRi

+ δρicos
(

θRi
+ δθi

2

)

yRi+1
= yRi

+ δρisin
(

θRi
+ δθi

2

)

θRi+1
= θRi

+ δθi

, (14)

where quantitiesδρ and δθ are related to the displacements
δρR andδρL (respectively of the right and left wheel) directly
provided by the encoders through:

δρ =
δρR + δρL

2
, δθ =

δρR − δρL
e

(15)

wheree is the distance between the wheels.

For a particular bearing angle observationβ, we obtain the
following analytical expression (see Fig. 14):
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β = π − ψ − θR − φ+ α (16)

with

α = tan−1

(

yR + ρsin(θR + φ)

xR + ρcos(θR + φ)

)

(17)

VIII. EKF BASED CALIBRATION

An intuitive procedure to determine parametersφ, ρ, ψ
is to use the data from the encoders to estimate the robot
configuration (provided that the initial robot configuration
is known). Then, by measuring the bearing angleβ at
several different robot configurations (at least three), itis
possible to obtain parametersφ, ρ, ψ by solving a non linear
system in three unknowns. However, the drawback of this
method is that, when the robot configuration is estimated
by using only the encoder data, the error integrates over
the path. This means that this procedure can be applied
only for short paths and therefore the achievable accuracy

on the estimation ofφ, ρ, ψ is limited. Furthermore, the
initial robot configuration has to be known with high accuracy.

One way to overcome these problems is to integrate the
encoder data with the bearing angle measurements to estimate
the robot configuration. This can be done by introducing an
augmented stateXa containing the robot configuration and the
calibration parametersφ, ρ, ψ:

Xa = [xR, yR, θR, φ, ρ, ψ]T (18)

An EKF can be adopted to estimate the stateXa. The inputs
u of the dynamics of this state are directly provided by the
encoder data and the observationsz are the bearing angles
provided by the vision sensor. However, as it was pointed out
in [16], by considering the system stateXa as defined in (18),
the system is not observable, that is, it does not contain whole
the necessary information to perform the estimation with an
error which is bounded. Conversely, in [16] it was proved that
the system becomes observable if, instead of consideringXa,
we introduce a new stateX defined as follows:
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X = [D, θ, φ, ρ, ψ]T , (19)

with D =
√

x2
R + y2

R and θ = θR − tan−1
(

yR

xR

)

(see Fig.
14). Note also thatD is the distance from the observed feature.

Observe that, without loss of generality, we can use
X instead of Xa. In fact, Xa contains the whole robot
configuration whose estimation is not our goal, indeed we
just want to estimate parametersφ, ρ, ψ.

By usingD, θ and Equation (14), we obtain the following
dynamics for the stateX:























Di+1 = Di + δρicosθi
θi+1 = θi + δθi −

δρi

Di

sinθi
φi+1 = φi
ρi+1 = ρi
ψi+1 = ψi

(20)

where, from now on, subscripti will be used to indicate the
time.

Similarly, the bearing angle observationsβi (16) can be read
as:

βi = tan−1

(

−ρisin(θi + φi)

−Di − ρi cos(θi + φi)

)

− θi − φi − ψi (21)

Observe that so far we have taken into account only the
observation of a single feature. Because we want to cope with
multiple features, we need to extend the definition ofX (19)
as follows:

X = [D1, θ1,D2, θ2, . . . ,DZ , θZ , φ, ρ, ψ]T , (22)

where the superscript identifies the observed feature andZ is
the number of features.

Before implementing the EKF, we need to compute the
the dynamics functionf and the observation functionh, both
depending on the stateX. From (20) and using (22), the
dynamicsf of the system can be written as:

Xi+1 = f (Xi,ui) =

























































D1
i + δρicosθ

1
i

θ1i + δθi −
δρi

D1
i

sinθ1i

D2
i + δρicosθ

2
i

θ2i + δθi −
δρi

D2
i

sinθ2i

...

DZ
i + δρicosθ

Z
i

θZi + δθi −
δρi

DZ

i

sinθZi

φi

ρi

ψi

























































(23)

with u = [δρR, δρL]T .
Regarding the observation functionh, from (21) we have:

h (Xi) =













β1
i

β2
i
...
βZi













=

=



















tan−1
(

−ρisin(θ1
i
+φi)

−D1
i
−ρi cos(θ1i +φi)

)

− θ1i − φi − ψi

tan−1
(

−ρisin(θ2
i
+φi)

−D2
i
−ρi cos(θ2i +φi)

)

− θ2i − φi − ψi
...

tan−1
(

−ρisin(θZ

i
+φi)

−DZ

i
−ρi cos(θZ

i
+φi)

)

− θZi − φi − ψi



















(24)

The previous equations, along with a statistical error model
of the odometry (we used the one by Chong and Kleeman
[17]), allow us to implement an EKF to estimateX. In order
to implement the standard equations of the EKF, we need to
compute the JacobiansFx andFu of the dynamics (23) with
respect to the stateX and with respect to encoder readings
(δρR and δρL). Finally, we need to compute the Jacobian
H of the observation function (24) with respect toX. These
matrices are required to implement the EKF [39] and are given
in the Appendix.

IX. CALIBRATION RESULTS

In our experiments, we adopted the same mobile robot and
omnidirectional camera described in Section VI. Furthermore,
two laser range finders (model SICK LMS 200) were also
installed on the robot. Observe that these laser scanners
are used in our experiments just for comparison and are
considered already calibrated with the odometry system
according to the specifications provided by the manufacturer.
A picture of the all settings is depicted in Fig. 1.



SUBMITTED TO THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, SPECIAL ISSUE, PRESELECTED FROM FSR 2007 11

For our experiments, we positioned an omnidirectional
camera on our robot as in Fig. 1 and we measured manually
its position relative to the robot. We measured the following
values:φ ≃ 0 rad, ρ ≃ 0.2 m, ψ ≃ 0 rad. The scenario
is shown in Fig. 17. In this figure, the features used for the
calibration are highlighted. A 2D scan of the test environment
is also shown; as we mentioned above, the laser scan is used
only as a ground truth. The robot reference system (in black)
and the camera reference system (in red) are also indicated.
The rays departing from the camera origin show the bearing
angle of the features.

In Fig. 17, the position of the camera relative to the robot
before calibration is shown. Note that, since the calibration
was initially done by hand, the rays of bearing do not properly
intersect the expected corners of the scan. However, we used
these rough values to initialize our EKF. The trajectory
chosen for the experiments consisted of a straight path,
approximately2.3 m long, and a180◦ rotation about the
center of the wheels. The trajectory is depicted in fig. 16.

The values ofφ, ρ, ψ estimated during the motion are
plotted as a function of the frame number in Fig. 19. The
covariancesσφ, σρ, σψ are also plotted. Observe that after
about 60 frames (corresponding to about1.5 m of navigation)
the parameters start suddenly to converge to a stable value.
The resulting estimated parameters areφ = −0.34rad,
ρ = 0.23m and ψ = 0.33rad. The sudden jump starting at
frame no. 60 actually occurs when the robot starts to rotate.
As it was already pointed out in [16], the convergence is very
fast when the robot performs trajectories alternating short
straight paths and pure rotations.

In Fig. 18, the scenario after calibration is shown and can
be compared with that before calibration (Fig. 17). Observe,
that the calibration parameters are well estimated. Indeed, the
rays of bearing intersect very well the expected corners of
the laser scan.

-3 -2 -1 0 1 2 3 4 5
-2

-1

0

1

2

x (m)

y
 (

m
)

Robot space - Laser data

Fig. 16. The path performed by the robot during self-calibration, i.e. straight
path followed by a rotation.

X. CONCLUSION

In this paper, we presented a robust method for matching
vertical lines among omnidirectional images and a method
for automatically calibrating an omnidirectional camera with
the robot system.

Concerning the first part, the basic idea to achieve robust
feature matching consists in creating a descriptor which is
unique and distinctive for each feature. The distinctiveness of
the descriptor in comparison to other image similarity metrics
was also pointed out. Furthermore, this descriptor is invariant
to rotation and slight changes of illumination. To evaluatethe
performance of our approach, we performed real experiments
where we evaluated the quality of matching. The performance
of tracking was very good as many features were correctly
detected and tracked over long time. Furthermore, because
the results were obtained using only the three matching rules
described in Section IV, we expect that the performance
would be notably improved by adding other constraints like
mutual and topological relations among features.

Concerning the second part, we adopted the visual track-
ing method to implement our strategy of camera-robot self-
calibration. The novelty of the method is the use of an
extended Kalman filter that automatically estimates the cal-
ibration parameters while the robot is moving. The present
strategy had been already proposed in our previous work [16].
In [16], we provided the equations and performed several
experiments on both simulated and real data by tracking
only a single feature. In that work, we also showed that
by choosing suitable trajectories (alternating straight path
with pure rotations), it is possible to estimate the calibration
parameters with high accuracy by moving the robot along
very short paths (few meters). In this paper, we extended our
previous work to cope with multiple features and showed that
by tracking multiple features the convergence is faster than
using a single feature. Furthermore, the calibration parameters
start to converge when the robot undergoes a pure rotation
after straight path. Although experiments have been conducted
using an omnidirectional camera, more in general the proposed
method can be adopted to calibrate any robot bearing sensor.
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Fig. 19. φ, ρ, ψ, σφ2, σρ2, σψ2 as a function of the frame number. The distance traveled between two frames is about 2.5 cm.
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XII. A PPENDIX

The JacobiansFx andFu of the dynamics are:

Fx =























A1 0 · · · 0 0 0 0
0 A2 · · · 0 0 0 0
...

... · · ·
...

...
...

...
0 0 · · · AZ 0 0 0
0 0 · · · 0 1 0 0
0 0 · · · 0 0 1 0
0 0 · · · 0 0 0 1























, (25)

and

Fu =























B1

B2

...
BZ

0
0
0























(26)

with

Ai =

[

1 −δρ sinθi
δρ

Di2
sinθi 1 − δρ

Di cosθ
i

]

, (27)

Bi =

[

cosθi

2
cosθi

2
1
e
− sinθi

2Di − 1
e
− sinθ

2Di

]

(28)

The JacobianH of the observations is:

H =











H11 H21 0 0 · · · 0 0 H31 H41 −1
0 0 H12 H22 · · · 0 0 H32 H42 −1
...

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · H1Z H2Z H3Z H4Z −1











(29)

with

H1i =
−ρsin(θi + φ)

Di2 + 2ρDicos(θi + φ) + ρ2
, (30)

H2i =
−Diρ cos(θi + φ) −Di2

Di2 + 2ρDicos(θi + φ) + ρ2
, (31)

H3i =
−Diρ cos(θi + φ) −Di2

Di2 + 2ρDicos(θi + φ) + ρ2
, (32)

H4i =
Disin(θi + φ)

Di2 + 2ρDicos(θi + φ) + ρ2
. (33)


