
HAL Id: hal-00428663
https://hal.science/hal-00428663

Submitted on 29 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Maximum A Posteriori Estimation for
Multi-robot Cooperative Localization

Esha Nerurkar, Stergios Roumeliotis, Agostino Martinelli

To cite this version:
Esha Nerurkar, Stergios Roumeliotis, Agostino Martinelli. Distributed Maximum A Posteriori Es-
timation for Multi-robot Cooperative Localization. IEEE International Conference on Robotics and
Automation, 2009. ICRA ’09., May 2009, Kobe, Japan. pp.1402 - 1409. �hal-00428663�

https://hal.science/hal-00428663
https://hal.archives-ouvertes.fr

Distributed Maximum A Posteriori Estimation for Multi-robot

Cooperative Localization

Esha D. Nerurkar, Stergios I. Roumeliotis, and Agostino Martinelli

Abstract— This paper presents a distributed Maximum A
Posteriori (MAP) estimator for multi-robot Cooperative Lo-
calization (CL). As opposed to centralized MAP-based CL, the
proposed algorithm reduces memory requirements and com-
putational complexity by distributing data and computations
amongst the robots. Specifically, a distributed data-allocation
scheme is presented that enables robots to simultaneously
process and update their local data. Additionally, a distributed
Conjugate Gradient algorithm is employed that reduces the cost
of computing the MAP estimates while utilizing all available
resources in the team, and increasing robustness to single-
point failures. Finally, a computationally efficient distributed
marginalization of past robot poses is introduced for limiting the
size of the optimization problem. The communication and com-
putational complexity of the proposed algorithm is described
in detail, while extensive simulations studies are presented for
validating the performance of the distributed MAP estimator
and comparing its accuracy to that of existing approaches.

I. INTRODUCTION

Autonomous mobile robot teams have the potential to

be used for space and underwater exploration [1], surveil-

lance [2], and search and rescue missions [3]. Accurate local-

ization (i.e., estimating the position and orientation) of these

robots is a prerequisite for the successful execution of higher-

level tasks. GPS measurements, which ensure bounded un-

certainty in the robots’ pose estimates, are often unreliable

(e.g., in urban canyons) or unavailable (e.g., in space, under-

water, caves, etc). An alternative approach for multi-robot

applications is Cooperative Localization (CL), where groups

of communicating robots use relative measurements (such

as distance, bearing and orientation) to jointly estimate their

poses, resulting in increased accuracy for the entire team.

Recently, estimation algorithms such as the Extended

Kalman Filter (EKF) [4], Maximum Likelihood Estimation

(MLE) [5], and Particle Filters [6], have been used to solve

the CL problem. In most cases, however, these algorithms

require that all robot measurements are communicated to a

fusion center (FC), which makes them susceptible to single-

point failures. Additionally, the communication and compu-

tation cost, for large teams of robots, becomes prohibitive

for real-time implementations. Moreover, distributed versions

of these approaches are often based on approximations that

provide no guarantees for their convergence (cf. Section II).

This work was supported by the University of Minnesota (DTC), and the
National Science Foundation (EIA-0324864, IIS-0643680, IIS-0811946)

E. D. Nerurkar, and S. I. Roumeliotis are with the
Department of Computer Science, University of Minnesota, USA
{nerurkar,stergios}@cs.umn.edu

A. Martinelli is with INRIA Rhone Alpes, Grenoble, France
agostino.martinelli@inrialpes.fr

In this paper, we introduce a distributed MAP-based

CL algorithm that, in contrast to centralized approaches,

harnesses the computational and storage resources of all

robots in the team to reduce the computational complexity

and achieve real-time performance. Since the robots’ motion

and measurement models are non-linear, the MAP estimator

improves the accuracy of their pose estimates over the entire

trajectory by acting as a smoother and reducing linearization

errors. Specifically, MAP-based CL is formulated as a

non-linear least-squares (LS) problem (Section III) and

solved iteratively using the Levenberg-Marquardt (LM)

minimization algorithm (Section IV).

The distributed MAP-based CL algorithm’s storage, com-

putation, and communication efficiency stems from: (i) The

distributed data-storage scheme which allows for parallel

processing of information locally available to each robot

(Section V-A). (ii) The Distributed Conjugate Gradient

(DCG) algorithm employed at each iteration of the LM min-

imization process with cost at most quadratic in the number

of robots (Section V-B). (iii) The distributed marginalization

of past robots’ poses that limits the size of the optimization

problem and whose computational complexity is quadratic

in the number of robots (Section V-C).

II. RELATED WORK

In this section, we briefly review centralized and dis-

tributed algorithms for CL when no map of the environment

is available to the robots (as is the case in e.g., [6]).

A. Centralized Cooperative Localization

Early work on CL considered robots operating as “portable

beacons” [7], [8], [9]. Specifically, the robot team is divided

into two sub-teams, one of which is moving while the other

remains stationary acting as beacons. This process is alter-

nated till all the robots reach their final destination. The main

drawback of this approach is that it constraints the motion

of the robots. Additionally, no information is provided about

the computational and communication complexity of CL.

An EKF-based algorithm for CL was introduced in [10].

This approach allows the robots to propagate their state

and covariance estimates independently by decomposing the

centralized EKF-based CL into N communicating filters [4].

However, during each update step, all robots need to com-

municate with each other and update the covariance matrix

for all pose estimates. This induces a computation cost of

O(N2), where N is the number of robots in the team, for

processing each relative position measurement. Considering

that the total number of robot-to-robot measurements per

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

time step can be as high as N(N−1), the overall processing

cost becomes O(N4). Even if the computations are equally

distributed among the N robots, the cost is still prohibitively

high (O(N3)) for real-time operation of large teams.

A centralized MLE-based approach to CL is presented

in [5], where the resulting non-linear optimization problem

is solved directly using the CG algorithm with a cost of

O(K2N3), where K is the number of time steps considered.

Similar in spirit is the centralized MAP-based CL algorithm

of [11] which employs a sparse QR solver at each iteration of

the LM method used for solving the non-linear minimization

problem. The main drawback of both previous approaches is

that all computations are performed centrally, rendering them

susceptible to single-point failures. Additionally, application

of these methods is limited to small robot teams due to their

high processing cost.

B. Decentralized Cooperative Localization

In order to reduce the computational complexity of CL,

various decentralized sub-optimal EKF-based algorithms

have been proposed. Approximations that do not require un-

interrupted inter-robot communication are presented in [12],

where the Interlaced Kalman filter [13] is applied, and in [14]

where state-estimates exchange is employed. Martinelli [15]

proposes an approach based on a hierarchy of EKFs. In this

case, the robot group is divided into sub-teams. The states

of the robots in a sub-team are estimated by its leader using

an EKF. Depending on the number of leaders, the leaders

themselves can also form sub-teams and the same division of

processing is repeated in a hierarchical manner ensuring that

the size of each sub-team is bounded. The main drawback of

these approaches is that in order to reduce the computational

complexity of EKF-based CL some (or even all in the case

of [12]) correlations are ignored, which may lead to overly

optimistic and inconsistent estimates.

A decentralized version of the ML-based CL algorithm

of [5] is presented in [16]. In this case, the non-linear

optimization problem is divided into N sub-problems, one for

each robot. In this approximation, every robot independently

minimizes the part of the cost function that contains terms

corresponding to: (i) its proprioceptive (odometry) measure-

ments and (ii) exteroceptive (robot-to-robot relative pose)

measurements involving the robot. During this process, the

pose estimates of the other robots are considered constant.

All robots periodically broadcast their updated pose estimates

and the same process is repeated. The main drawback of this

algorithm is that there exists no proof that it will converge

even to a local minimum. Additionally, the authors provide

no information about the processing requirements of their

approach.

C. Proposed approach

In this paper, multi-robot CL is formulated as a MAP

estimation problem. Its solution is found by employing the

LM non-linear minimization algorithm that guarantees fast

convergence to at least a local minimum.1 During each

iteration of LM, the resulting linearized system of equations

is solved in parallel by all robots using the distributed CG

(DCG) algorithm. This in effect, reduces the computational

complexity of CL by a factor of N. A key advantage of DCG

(iterative) over direct algorithms (e.g., distributed Gauss-

Elimination) is that it provides an intermediate solution

at every iteration. Furthermore, contrary to other iterative

methods (such as the Jacobi algorithm) that converge only

asymptotically, DCG converges within a bounded number

of iterations. These key features of DCG allow the robots

to trade processing for accuracy when computing resources

are scarce (e.g., during time-critical tasks). This approach

to CL along with the distributed marginalization of past

robot poses, enables the team to perform real-time CL using

limited computation and communication resources.

III. PROBLEM FORMULATION

Consider a team of N communicating robots navigating in

2D while performing CL. In this case, the state vector xk =

[x1
k

T
,x2

k

T
, . . . ,xN

k

T
]T , i = 1, . . . ,N, where xi

k = [xi
k,y

i
k,φ

i
k]

T ,

contains the position and orientation of all robots at time-

step k. Each robot carries proprioceptive (odometric) sensors

that provide linear, vi
mk

, and rotational, ω i
mk

, velocity mea-

surements. The motion model for robot i is given by

xi
k = f(xi

k−1,u
i
k−1,w

i
k−1) (1)

where f is in general a non-linear function, and ui
k−1 =

[vi
mk−1

,ω i
mk−1

]T . The noise in the linear and rotational velocity

measurements is represented by wi
k−1 = [wv

i
k−1,wω

i
k−1]

T ,

assumed to be additive zero-mean white Gaussian with

covariance Qi
k−1.

Additionally, all robots carry exteroceptive sensors that

allow them to uniquely identify other robots in the team

and measure their relative distance and bearing. The mea-

surement model for robot i measuring robot j is

z
i, j

k = h(xi
k,x

j

k)+ n
i, j

k (2)

with h = [d
i, j

k ,θ
i, j

k]T , where d
i, j

k and θ
i, j

k are the true distance

and bearing respectively, from robot i to robot j at time-step

k and n
i, j
k = [nd

i, j
k ,nθ

i, j
k]T is the additive zero-mean white

Gaussian measurement noise with covariance R
i, j
k .

Our objective is to find the MAP estimate of the robots’

poses, x0:K−1, up to time-step K−1 given the measurements

z0:K−1 and u0:K−2. The MAP-estimator is formulated as

x̂0:K−1 =argmax p(x0:K−1|z0:K−1,u0:K−2) (3)

=argmax
1

p(z0:K−1)
p(z0:K−1|x0:K−1)p(x0:K−1|u0:K−2)

=argmax
1

p(z0:K−1)

K−1

∏
k=0

p(zk|xk)
K−2

∏
k=0

p(xk+1|xk ,uk) · p(x0)

=argmin

(

−
K−1

∑
k=0

log p(zk |xk)−
K−2

∑
k=0

log p(xk+1|xk ,uk)− log p(x0)

)

1Note that LM is optimal up to linearization errors. However, as is the
case for all non-linear minimization algorithms, convergence to the global
minimum is guaranteed only when the initial estimate is within the region
of attraction of the optimum point.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

where p(x0) is a prior on the robots’ initial poses. Using

the Markov and the Gaussian noise assumptions, the mono-

tonicity of the logarithmic function, and the independence of

the process and measurement noises, (3) simplifies into the

following non-linear least-squares problem

x̂0:K−1 = argmin

(

N

∑
i=1

N

∑
j=1
j 6=i

K−1

∑
k=0

||h(xi
k,x

j

k)− z
i, j

k ||
2

R
i, j
k

+

N

∑
i=1

K−2

∑
k=0

||f(xi
k,u

i
k,w

i
k)−xi

k+1||
2

Qi
k
+

N

∑
i=1

||xi
0−xi

init||
2

Pi
0

)

(4)

where xi
init is the mean of the prior for the pose of robot i

and ||e||2W = eT W−1e is the weighted squared L2-norm for

a given covariance W. Since the process (cf. (1)) and the

measurement (cf. (2)) models are non-linear, the minimiza-

tion problem in (4) is solved by iteratively linearizing about

the latest estimates for the robots’ poses. Each iteration of

the non-linear minimization problem has the form

δx∗ = argmin
(

N

∑
i=1

K−2

∑
k=0

||(G
i
k)
−1δxi

k+1−F
i
kδxi

k− (G
i
k)
−1(f(x̂i

k,u
i
k,0)− x̂i

k+1)||
2

2

+
N

∑
i=1

N

∑
j=1
j 6=i

K−1

∑
k=0

||(R
i, j

k
)−1/2(z

i, j

k
−h(x̂i

k, x̂
j

k
))− iH

i, j

k δxi
k−

jH
i, j

k δx
j

k
||

2

2

+
N

∑
i=1

||(Pi
0)
−1/2

δxi
0 +(Pi

0)
−1/2

(x̂i
0−xi

init)||
2

2

)

(5)

where F
i

k, G
i

k, and iH
i, j

k are the pre-whitened Jacobians

of the motion model with respect to the state and the

odometry measurements, and of the measurement model with

respect to the state. These are obtained by transforming the

weighted squared L2-norm into the regular squared L2-norm

as ||e||2W = (W−1/2e)
T
(W−1/2e) = ||W−1/2e||

2

2.

By stacking the different terms from (5) in a matrix A

and a vector b, the pth iteration of the iterative minimization

process is represented as

δx
∗ = argmin ||A(x̂

(p)
0:K−1)δx−b(x̂

(p)
0:K−1)||

2

2
(6)

x̂
(p+1)
0:K−1 = x̂

(p)
0:K−1 + δx

∗
(7)

where A and b depend on the current iterate x̂
(p)
0:K−1. Details

of this derivation and examples illustrating the structure of

A and b are presented in [17].

IV. CENTRALIZED COOPERATIVE LOCALIZATION

We hereafter discuss the main drawbacks of a centralized

approach to the minimization problem (5). In this case, all

robots in the team periodically send their proprioceptive and

exteroceptive measurements to a leader robot, or a Fusion

Center (FC), that solves (5) and provides updated estimates

for the robots’ poses. Typically, algorithms such as the LM

(cf. Alg. 1, [18]), that combines the Gauss-Newton and the

Gradient Descent methods [18], are used.

The main drawback of a centralized approach is that it

is susceptible to failures of the FC. Additionally, there is

Algorithm 1 LM Algorithm

Require: Initial guess x̂
(p)
0:K−1

Ensure: χ2(x̂
(p)
0:K−1 +δx)− χ2(x̂

(p)
0:K−1)≤ 0.01χ2(x̂

(p)
0:K−1) {Stopping Crite-

rion}

1: Compute χ2(x̂
(p)
0:K−1) = (AT b)

T
AT b

2: Initialize λ ← 0.001 {Typical}

3: Solve (AT A+λI)δx = AT b and Evaluate χ2(x̂
(p)
0:K−1 +δx) {I: Identity

matrix}

4: if χ2(x̂
(p)
0:K−1 +δx)≥ χ2(x̂

(p)
0:K−1) then

5: λ ← λ ×10, Goto 3
6: end if
7: if χ2(x̂

(p)
0:K−1 +δx) < χ2(x̂

(p)
0:K−1) then

8: λ ← λ/10, x̂
(p)
0:K−1← x̂

(p)
0:K−1 +δx, Goto 3

9: end if
10: return x̂0:K−1← x̂

(p)
0:K−1

significant loss in terms of efficiency and speed due to

the fact that a centralized algorithm does not utilize the

available computation and storage resources in the robot

team, i.e., while the FC is burdened with all the necessary

computations, the other robots in the team remain idle after

communicating their measurements. At each iteration of

the LM algorithm, the FC must solve the modified normal

equations

(AT A+ λ I)δx = AT b (8)

Since H = AT A and e = AT b have dimensions, KN×KN and

KN× 1 respectively, where K is the number of time-steps

considered, this process requires O(KN3) operations [19,

Section 4.3]. Moreover, once δx is computed, the FC must

calculate the new estimates (x̂
(p)
0:K−1 +δx) and update H and

e. As K grows, the FC will have increasing difficulty not

only in generating real-time solutions but also in handling

the memory requirements for reevaluating and storing A, b

and other intermediate results.

In the next section, in order to address the limitations of

the centralized approach, we present our distributed algo-

rithm that leverages the memory and processing capabilities

of all the robot team members and reduces the computational

complexity of the CL problem.

V. DISTRIBUTED COOPERATIVE LOCALIZATION

A. Distributed Data Storage and Updating

In contrast to the centralized formulation that requires

communication of all proprioceptive and exteroceptive mea-

surements to the FC, in the proposed algorithm, each robot i

constructs and updates rows/columns i, i+ N, . . . , i+(K−
1)N of H and the corresponding elements of e. As an

example,2 in Fig. 1, robot 1 is responsible for rows/columns

1, 4 and 7, robot 2 for rows/columns 2, 5 and 8, and robot 3

for rows/columns 3, 6 and 9 of H, and each of them is

responsible for the corresponding elements of e.

Consider the fifth row of H stored by robot 2 which con-

tains the following 3 types of terms:3 (i) Off-diagonal terms

2In order to simplify the presentation of the computation and communi-
cation complexity, we will consider the 1D case where each block of H (cf.
Fig. 1) reduces to a scalar. Note that the ensuing analysis also holds for the
case of robots navigating in 2D and 3D.

3For further details the interested reader is referred to [17].

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

Fig. 1. Distribution of matrix H and vector e amongst the robots for
an example of 3 robots navigating over 3 time-steps with a complete
measurement graph (i.e., all robots measure the relative position of all other
robots). TS: Time-step. Hi jk denotes off-diagonal terms corresponding to
robot-to-robot measurements between robots i and j at time-step k. Pi jk

denotes off-diagonal terms due to the motion model of robot i from time
step j to time-step k. Ri j denotes the diagonal terms corresponding to both
motion and robot-to-robot measurements involving robot i at time-step j.

(green), H231 and H121, involving relative position measure-

ment Jacobians evaluated at the robot pose estimates (x̂2
1, x̂3

1)
and (x̂1

1, x̂2
1), respectively. (ii) Off-diagonal terms (blue), P201

and P212, involving motion Jacobians between time-steps 0

and 1, and time-steps 1 and 2, evaluated at x̂2
0 and x̂2

1, respec-

tively. (iii) Diagonal term (red), R21, which contains informa-

tion from the robot-to-robot measurements involving robot 2

at time-step 1 and from the motion model of robot 2 between

time-steps 0 and 1, and time-steps 1 and 2. Additionally,

computing the fifth element, e5, of e requires estimates, x̂2
0,

x̂2
1 and x̂2

2 of robot 2, estimates x̂
j
1 of robot j (j = 1 or 3) and

the measurements, z
2, j
1 and z

j,2
1 , between robots 2 and j.

While the estimates x̂2
0, x̂2

1 and x̂2
2 and measurements

z
2, j
1 are locally available to robot 2, measurements z

j,2
1 and

estimates x̂
j
1 of robot j are necessary in order to construct

the fifth row of H and e5. These quantities can be easily

obtained if at time-step 1, when robots 2 and j observe each

other, robot j communicates its measurement and current

state estimate to robot 2. By ensuring that these quantities are

communicated by every robot when relative measurements

are recorded, each robot can construct its assigned rows of H

and elements of e with a minimal communication overhead

of O(N−1) per robot.

Note also, that by employing this distributed storage

scheme, every time a new state estimate becomes available,

the elements of the Hessian H and the residual e can

be updated in parallel by the corresponding robots. Based

on this distributed storing and updating approach, in the

next section we present the distributed conjugate gradient

algorithm for computing the updated state estimates during

each iteration of the LM minimization.

B. Distributed Conjugate Gradient

As mentioned in Section IV, each iteration of the LM

minimization process requires solving a system of normal

equations (cf. (8)). Two types of algorithms can be used

in this process: direct or iterative [20]. Direct algorithms,

which have computational complexity of O(KN3) for banded

systems [19], include methods such as Gauss-Elimination

and its variants, Odd-Even Reduction, and Givens Rotations.

Although the computational complexity of distributed imple-

mentations of these algorithms is O(KN2) [20], they have

several disadvantages. The Odd-Even Reduction requires the

inversion of N ×N matrices at each time-step, making it

numerically unstable, while Givens Rotations incur exces-

sive communication overhead. Moreover, direct algorithms

provide no intermediate solution. This is a major drawback

especially when considering robots communicating via wire-

less connections susceptible to intermittent failures. If for any

reason, the communication between the robots is interrupted

before the direct algorithm has completed all its steps, the

robots will have no new solution. In this case, they will

have to revert to their previous estimates after having wasted

valuable computation and communication resources.

In contrast, iterative algorithms, also referred to as any-

time algorithms, generate an approximate solution at every

iteration with increasing accuracy [20]. However, most of the

commonly used iterative algorithms such as Jacobi, Gauss-

Seidel, Jacobi overrelaxation, and Successive overrelaxation,

converge only asymptotically (i.e., after infinite number

of steps) [20]. Alternatively, the Conjugate Gradient (CG)

algorithm is guaranteed to converge in at most KN iterations.

Moreover, and for the special class of large systems of

equations considered here, where H is a symmetric positive

definite KN×KN matrix, the CG yields sufficiently accurate

solutions with significantly fewer iterations [20].

In this section, we analyze the computational and com-

munication complexity of the CG algorithm for complete

measurement graphs, i.e., when each robot observes all other

robots at every time step, leading to a total of N(N − 1)
relative position measurements per time step. The details

of a similar analysis for αN measurements per time-step,

where α ∈ [1, (N−1)], can be found in [17]. Additionally,

we compare and contrast the centralized CG (CCG), (single

processor implementation) with the distributed CG (DCG)

(multi-processor implementation). Table I lists the steps

required during each iteration of the CG along with their

computational and communication complexity. Specifically,

each iteration m, where m ∈ {0, . . . ,KN − 1}, of the CG

consists of the following steps:

Step 1: gm = Hδxm− e

Here gm = [gm(1) . . .gm(KN)]T is a KN × 1 vector. All

robots initialize δx0 to a vector of zeros.

Due to the special block tri-diagonal structure of H,

computing each element gm(j) of gm, where j = 1, . . . ,KN,

requires O(N) operations.

1) CCG: Calculating KN elements of gm requires

O(KN2) operations.

2) DCG: Given the distribution of the rows of H and e

among the robots (cf. Section V-A), robot i calculates

gm(j), where j ∈ Si = {i, i + N, i + 2N, . . . , i +(K−
1)N}, locally, i.e., each robot calculates K terms of gm,

requiring O(KN) operations per robot (cf. Fig. 2).

For this step, the communication cost is zero, as all compu-

tations are carried out locally by the robots.

Step 2: βm = gm
T gm/gm−1

T gm−1

For initialization, β0 = 0. Also, gm is generally a dense

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

TABLE I

COMPLEXITY ANALYSIS OF THE CONJUGATE GRADIENT METHOD

Computation Communication

Algorithm Centralized Distributed Distributed

Number of Measurements N(N−1) αN N(N−1) αN N(N−1) αN

Step 1 gm = Hδxm− e O(KN2) O(αKN) O(KN) O(αK) 0 0

Step 2 βm = gm
T gm/gm−1

T gm−1 O(KN) O(KN) O(K + log(N)) O(K + log(N)) O(1) O(1)
Step 3 sm =−gm +βmsm−1 O(KN) O(KN) O(K) O(K) 0 0

Step 4a sm
T gm O(KN) O(KN) O(K + log(N)) O(K + log(N)) O(1) O(1)

Step 4b hm = Hsm O(KN2) O(αKN) O(KN) O(αK) O(K) O(K)
Step 4c γm =−sm

T gm/sT
mhm O(KN) O(KN) O(K + log(N)) O(K + log(N)) O(1) O(1)

Step 5 δxm+1 = δxm + γmsm O(KN) O(KN) O(KN) O(KN) 0 0

Fig. 2. Example of Robot 2 calculating element gm(5) of gm.

KN×1 vector.

1) CCG: The computational complexity of computing the

inner-product, gm
T gm, is O(KN).

2) DCG: Each robot i calculates the dot-product bi =

∑ j∈Si
gm(j)2, i = 1, . . . ,N, of its K local elements of

gm at a cost of O(K). As is well known, adding

these N scalars in a distributed way requires O(logN)
steps4 with communication cost of O(1) per robot [20,

Sec.1.2.3]. At the end of this process, one of the robots

acquires the final result for gm
T gm and calculates

βm using the value of gm−1
T gm−1 from the previous

iteration, at a cost of O(1). Once βm is available, it

is broadcasted to all other robots at a communication

cost of O(1). Thus, for this step, the computation and

communication cost per robot is O(K + logN) and

O(1), respectively.

Step 3: sm =−gm + βmsm−1

For m = 1, s0 is initialized to g0. This step incurs no

communication overhead since all computations are local.

1) CCG: Since gm and sm−1 are vectors of dimension

KN × 1 and βm is a scalar, the computational com-

plexity for calculating sm is O(KN).
2) DCG: Due to the distribution of gm (cf. Step 1), robot

i calculates sm(j), where j ∈ Si, locally, i.e., each

robot evaluates K terms of sm, which requires O(K)
operations per robot.

Step 4: γm =−sm
T gm/sm

T Hsm

We analyze the cost of calculating sm
T gm and dm =

sm
T Hsm separately.

• Calculate sm
T gm:

1) CCG: The computational complexity is O(KN).
2) DCG: As in Step 2, robot i has K elements each

of sm(j) and gm(j), j ∈ Si, locally available. The

partial dot-product ∑ j∈Si
= sm(j)gm(j) computed

by robot i requires O(K) operations, resulting into

4Note that the computation cost per robot is constant, O(1). However, we
are primarily interested in the time required for performing these additions
and thus we adopt O(logN) as the computation cost of these operations.

N scalars. The rest of the analysis is identical to

Step 2.

• Calculate dm:

1) CCG: Similar to Step 1, calculating hm = Hsm

requires O(KN2) operations, while computing

sm
T hm has cost O(KN).

2) DCG: For calculating hm, all robots must acquire

sm. Thus, each robot broadcasts its K elements

of sm, with total communication cost of O(KN),
or O(K) per robot. Subsequently, each robot i

calculates hm(j), j ∈ Si, locally with cost O(KN)
per robot (cf. Step 1). Computation of the dot-

product sm
T hm is similar to Step 2, and has com-

putation and communication cost of O(K + logN)
and O(1), respectively.

Once dm and sm
T gm are available, γm is calculated for

the computational cost of O(1) and broadcasted.

Step 5: δxm+1 = δxm + γmsm

Since γm, sm and δxm are locally available, each robot

calculates δxm+1 at the computational cost of O(KN).
Steps 1 to 5 are repeated until convergence, i.e. gm = 0. For

each iteration of the CCG, the computational complexity is

O(KN2), while for the DCG it is O(KN). Theoretically, KN

such iterations are necessary, which makes the complexity of

the CCG O(K2N3), while O(K2N2) operations per robot are

required by the DCG, thus reducing the computational com-

plexity of CL by a factor of N. Moreover, since H and e are

stored distributively, the time required for updating them is

also reduced by a factor of N. Additionally, since processing

is distributed, the system is more robust to failures. If robot

i fails, the team simply discards the rows, columns of H and

elements of e corresponding to robot i and carries out CL

on the remaining data.

Given the solution δx from the DCG, the robots compute

the new estimates for x and update H and e. This constitutes

a single iteration of the LM algorithm (cf. Step 3 of Alg. 1).

Note that the performance of the DCG, is identical to that

of the centralized MAP-based CL since no approximations

have been introduced in the distributed algorithm.

A limitation of the MAP-based CL is that as the number

of time steps, K, increases, so does the computational and

storage requirement. Typically, this problem is addressed by

marginalizing past robot poses and maintaining a constant

length time window. In the next section, we demonstrate how

marginalization is efficiently implemented in our distributed

framework at reduced computation cost.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

C. Marginalization of Past Robot Poses

In this section, we first discuss marginalization in the

context of CL and then present its distributed implemen-

tation along with the complexity analysis. Depending on

the computational and communication resources, we restrict

the dimension of the minimization problem to J. Therefore,

when KN = J, we need to marginalize at least the robot poses

from time-step 0 in order to reduce the size of the problem to

(K−1)N. This ensures that there will be sufficient resources

for processing the measurements corresponding to the next

time step.

Consider the case of 3 robots over 4 time steps (k =
0, . . . ,3) with a complete measurement graph and let J = 12.

In order to process measurements from time-step 4, we

need to marginalize the robot poses from time-step 0. The

corresponding cost function, linearized about the current

estimates, x̂0:3, is

η =
3

∑
i=1

2

∑
k=0

||(G
i

k)
−1δxi

k+1−F
i
kδxi

k− (G
i

k)
−1(f(x̂i

k,u
i
k ,0)− x̂i

k+1)||
2

2

+
3

∑
i=1

3

∑
j=1
j 6=i

3

∑
k=0

||(Ri, j
k)−1/2(zi, j

k −h(x̂i
k, x̂

i
k))−

iH
i, j
k δxi

k−
jH

i, j
k δx

j
k||

2

2

+
3

∑
i=1

||(Pi
0)
−1/2

δxi
0 +(Pi

0)
−1/2

(x̂i
0−xi

init)||
2

2 (9)

The Hessian matrix H and vector e in the normal equations

corresponding to (9) can be split into sub-matrices and sub-

vectors as shown in Fig. 3. Here A and B are N×N diagonal

and N×(K−1)N off-diagonal blocks of H respectively, that

depend on x0. Note that B is a sparse matrix with only N

elements along the diagonal. This N×N non-zero sub-matrix

of B is denoted as Btrunc. Also, cm is a N× 1 vector of e

that depends on x0.

Before proceeding with the marginalization process, we

examine the structure of the elements of H and e that will be

affected. Specifically, the block diagonal N×N sub-matrix,

D1 = D1c + D1m, of H comprises of D1c that depends on

x1 and will continue to be updated as new estimates are

computed, and D1m, which depends on x0 and will remain

constant after the marginalization. Similarly, c1 = c1c + c1m,

where c1c depends on x1 and c1m depends on x0.

Fig. 3. H and e before marginalization.

Marginalization of robot poses from time-step 0 (i.e., x0)

requires that we fix a value for the corresponding variable

δx0 in (9), treat it as a constant, and do not estimate it in

the future. This value is determined by differentiating the

Fig. 4. Hnew and enew after marginalization.

linearized cost function with respect to δx0 and setting it

equal to zero, which gives us:

δx0 = A−1cm−A−1Btruncδx1 (10)

Substituting δx0 in the linearized cost function (9) yields the

marginalized cost function, which will no longer contains

terms involving δx0 [17].

The system of normal equations corresponding to the

marginalized cost function is Hnew[δx1 . . .δx3]
T = enew. The

structure of Hnew and enew is shown in Fig. 4. Note that as a

result of marginalization, the correlation between robot poses

x0 and x1 (due to propagation) introduces additional terms

in the new D1 and c1, denoted as [17]:

D∗1 = D1c + Dmod , Dmod = D1m−BT AB

c∗1 = c1c−Dmod

(

x̂1− x̂1margin

)

+ cmod, cmod = c1m−BT A−1cm

In the above expressions Dmod remains constant and needs

to be stored and added to the new Hessian matrix Hnew at

every iteration of the minimization algorithm (note that A,

B, and D1m involve Jacobians evaluated at the estimate of

x0 at the time of the marginalization, denoted by x̂0margin
; in

contrast, D1c, consists of Jacobians evaluated at the estimate

of x1, which changes as new measurements are obtained).

Similarly, out of the terms comprising c∗1, only c1c that

depends on the estimate of x1 will be updated in future

time steps (note that c1m and cm are evaluated at x̂0margin

and x̂1margin
. Here, x̂1margin

denotes the stored estimate for x1

at the time of the marginalization).

In summary, after each marginalization three terms have

to be stored: (i) Dmod , (ii) cmod , and (iii) x̂1margin
. Note that

the dimensions of the above 3 quantities remain the same,

irrespective of the number of time steps being marginalized

simultaneously. If the first p time steps are marginalized,

only x̂p+1margin
, of dimension N×1 will have to be stored as

a result of the correlations between time-steps p and p + 1.

Also, the dimensions of Dmod and cmod remain N×N and

N×1, respectively.

The 2nd column of Table II lists the steps involved in

marginalization. Step 1 requires the inversion of the lN ×
lN matrix A, where l is the number of time-steps being

marginalized. Thus, when the number of robots N and/or

steps l is large, computation of this dense inverse can be a

bottleneck (O(l3N3)) [19].

To address this problem, we use the distributed Gauss-

Jordan method [20]. Instead of inverting A separately, we

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

TABLE II

COMPLEXITY ANALYSIS OF MARGINALIZATION (l = 1)

Computation Comm.

Algorithm Centralized Distributed Distributed

Step 1 A−1B and A−1cm O(N3) O(N2) O(N)
Step 2a BT A−1B O(N2) O(N) 0

Step 2b BT A−1cm O(N) O(1) 0

Step 3a D1m−BT A−1B O(N) O(1) 0

Step 3b c1m−BT A−1cm O(N) O(1) 0

Algorithm 2 Distributed Gauss-Jordan

for i = 1 to N−1 do
• Divide Row i by aii

Computation cost = N +2 {N− i+1 elements in the Row i of

matrix A, i elements in Row i of matrix Btrunc and ith element
of cm}
Communication cost = 0
• Broadcast Row i of robot i to all other robots
Computation cost = 0
Communication cost = N + 1 {N − i elements in Row i
of matrix A as all elements until aii do not need to be
communicated, i elements in Row i of matrix Btrunc and the
ith element of cm}
for j = 1 to N ; j 6= i do
• Compute Row j = Row j − pivot × Rowi {No need to
compute the pivot as the pivot element will be the same
as a ji}
Computation cost = 2N +3.
Communication cost = 0.

end for{This operation is simultaneously carried out by all j
robots}

end for

calculate the quantities A−1B =
[

A−1Btrunc 0
]

and A−1cm

directly. Specifically, a new augmented matrix M = [A B cm]
is considered and using the Gauss-Jordan algorithm, it is

reduced to [I B∗ c∗m], where I is the identity matrix of

the same dimensions as A. The resulting terms B∗ and c∗m
are equal to A−1B and A−1cm, respectively. Algorithm 2

presents the distributed Gauss-Jordan method (for l = 1)

which requires O(N2) operations and has communication

cost O(N) per robot. Here, it is interesting to note that Gauss-

Jordan for the positive definite matrix A is numerically stable

and hence does not require pivoting [19]. This further reduces

its communication requirements.

Once Step 1 of the marginalization process is complete (cf.

Table II), each robot has a row of A−1B and an element of

A−1cm stored locally. In Steps 2 and 3, each robot calculates

a row of BT A−1B and then Dmod = D1m−BT AB (note that

D1m is diagonal), and an element of BT A−1cm, followed

by cmod = c1m−BT A−1cm locally with computation cost of

O(N) per robot. Thus, the computational complexity of the

distributed implementation of marginalization is reduced by

an order of magnitude to O(N2) (or O(l2N2) for l > 1).

VI. SIMULATION RESULTS

The performance of the proposed distributed MAP-based

localization algorithm was tested in simulation. We consider

a team of 18 robots moving in 2D following phase-shifted

sinusoidal trajectories. The robots move in an area of ap-

proximately 25 m × 90 m for 450 time steps (each time

step has duration 0.05 sec). Each robot measures its linear,

v, and rotational, ω , velocity, as well as its distance d and

bearing θ to all other robots in the team. The noise in all

measurements is modeled as zero-mean, white Gaussian and

has standard deviation: σv = 2%v, σω = 1 deg/sec for the

linear and rotational velocity measurements, respectively, and

σd = 2%d and σθ = 1 deg for the corresponding distance and

bearing measurements.

The minimization problem is solved every 5 time steps,

over a sliding time window of K = 10 time steps, while

marginalization is carried out every 5 time steps (i.e., the

number of time steps considered in the estimated state vector

varies between 5 and 10). We compare the performances of

the following approaches for CL:

1) Centralized5 EKF (computational complexity O(N4)).
2) Distributed MAP-based estimator using the DCG algo-

rithm and marginalization (computational complexity

O(K2N2)).
3) Distributed MAP-based estimator using an approxi-

mate DCG algorithm and marginalization (computa-

tional complexity O(KN2)). In this case, we allow the

DCG algorithm to perform N iterations only.

As compared to the centralized EKF (approach 1), our

proposed algorithm (approach 2) has reduced computational

complexity when a small (compared to the size of the

team) number of time steps K is considered, i.e., when

K≪N, O(K2N2)≪O(N4). However, when the robots need

to consider a large number of time steps, in order to reduce

the effect of linearization errors, the approximate version of

the DCG algorithm is used (approach 3). In this case, the

DCG is allowed to run for N iterations only, for a total cost of

O(KN2). In general, the number of time steps K considered

and the number of DCG iterations are design parameters

that can be adjusted so as to trade processing for increased

accuracy.

We employ the RMS error criterion to test the accuracy

of these 3 approaches. Fig. 5 shows the RMS error in the

robots’ position estimates for every 20 time-steps for clarity

(averaged over 30 runs). As evident, the distributed MAP-

based estimator (approach 1) outperforms the centralized

EKF in terms of accuracy. This is due to the fact that the

MAP estimator reduces the linearization errors over all K

time steps considered (sliding window smoothing), and thus

improves the accuracy of the robots’ pose estimates. Further-

more, we see that approach 3, which is an approximation of

the distributed MAP-based estimator, is also more accurate

than the EKF-based approach. This can be attributed to the

fast convergence of the DCG for positive definite matrices (in

this case the Hessian H), resulting in accuracy comparable

to approach 2, even when the DCG is allowed to run for

only N iterations.

Fig. 6, that depicts the RMS error in the robots’ orientation

estimates at every 10 time-steps, corroborates the results of

Fig 5. In this figure, the improvement in the accuracy of the

robots’ orientation estimates for the MAP-based algorithms,

5While we are not aware of any existing distributed implementation of
EKF-based CL, we believe that by distributing the processing among N
robots, this cost may be reduced from O(N4) to O(N3).

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

as compared to the centralized EKF, is more pronounced. Ap-

proach 2 is the most accurate, followed closely by approach

3, whose performance is almost indistinguishable from that

of approach 2. As evident, both MAP estimators outperform

the EKF in terms of accuracy, while they require fewer

operations.

40 80 120 160 200 240 280 320 360 400 440
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time−steps

R
M

S
 e

rr
o
r

(m
)

RMS error in robots’ position estimates

280 320 360 400

0.012

0.013

0.014

0.015

0.016

MAP using DCG
with marginalization

MAP using approx.
DCG with marginalization

EKF

Fig. 5. RMS error in the robots’ position estimates

0 50 100 150 200 250 300 350 400 450
1

1.5

2

2.5

3

3.5

x 10
−3

Time−steps

R
M

S
 e

rr
o
r

(r
a
d
)

RMS error in the robots’ orientation estimates

MAP using DCG with marginalization

MAP using approx. DCG with marginalization

EKF

Fig. 6. RMS error in the robots’ orientation estimates

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel distributed algorithm

for MAP-based cooperative localization (CL) that utilizes

all the available computational resources of a robot team

to achieve real-time operation. The proposed algorithm, uses

distributed data storage, the distributed conjugate gradient

(DCG) algorithm, and distributed marginalization of past

robot poses in order to spread the computations amongst

the robots, and hence reduce the overall computational

complexity of CL. Additionally, we have shown that by

limiting the number of iterations of the DCG algorithm, the

resulting approximate MAP estimator has accuracy almost

indistinguishable of that of the MAP algorithm using the

exact DCG, while significantly reducing the required number

of operations. Simulation results demonstrate that the MAP-

based CL algorithms (using the exact and the approximate

DCG) outperform the Extended Kalman filter in terms of

accuracy while having lower computational requirements.

A limitation of DCG is that it requires synchronous

communication amongst the robots. This, however, may

not be possible when robot teams operate under extreme

environments with frequent communication failures. In order

to address this issue, we will direct our future work towards

developing algorithms that can tolerate asynchronous com-

munication.

REFERENCES

[1] T. L. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, P. S. Schenker,
P. Pirjanian, and H. D. Nayar, “Distributed control of multi-robot sys-
tems engaged in tightly coupled tasks,” Autonomous Robots, vol. 17,
no. 1, pp. 79–92, 2004.

[2] A. D. Tews, G. S. Sukhatme, and M. J. Mataric, “A multi-robot
approach to stealthy navigation in the presence of an observer,”
in Proc. of the IEEE International Conference on Robotics and
Automation, New Orleans, LA, Apr. 26–May 1, 2004, pp. 2379–2385.

[3] Y. Feng, Z. Zhu, and J. Xiao, “Heterogeneous multi-robot localization
in unknown 3D space,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing, China, Oct.
9-15, 2006, pp. 4533–4538.

[4] S. Roumeliotis and G. Bekey, “Distributed multirobot localization,”
IEEE Transactions on Robotics and Automation, vol. 18, no. 5, pp.
781–795, Oct 2002.

[5] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Localization for
mobile robot teams using maximum likelihood estimation,” in Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, EPFL, Switzerland, Sept. 30–Oct. 5, 2002, pp. 434–439.

[6] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325–344, 2000.

[7] R. Kurazume, S. Nagata, and S. Hirose, “Cooperative positioning with
multiple robots,” in Proc. of the IEEE International Conference on
Robotics and Automation, San Diego, CA, May 8-13, 1994, pp. 1250–
1257.

[8] R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis, and P. K.
Khosla, “Heterogeneous teams of modular robots for mapping and
exploration,” Autonomous Robots, vol. 8, no. 3, pp. 293–308, 2000.

[9] I. M. Rekleitis, G. Dudek, and E. E. Milios, “Multi-robot collaboration
for robust exploration,” in Proc. of the IEEE International Conference
on Robotics and Automation, San Francisco, CA, Apr. 24-28, 2000,
pp. 3164–3169.

[10] S. I. Roumeliotis, “Robust mobile robot localization: from single-robot
uncertainties to multi-robot interdependencies,” Ph.D. dissertation, Los
Angeles, CA, 2000.

[11] F. Dellaert, F. Alegre, and E. B. Martinson, “Intrinsic localization
and mapping with 2 applications: Diffusion mapping and marco
polo localization,” in Proc. of the IEEE International Conference
on Robotics and Automation, Taipei, Taiwan, Sept. 14-19, 2003, pp.
2344–2349.

[12] S. Panzieri, F. Pascucci, and R. Setola, “Multirobot localization
using interlaced extended kalman filter,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Beijing,
China, Oct. 9-15, 2006, pp. 2816–2821.

[13] L. Glielmo, R. Setola, and F. Vasca, “An interlaced extended kalman
filter,” IEEE Transactions on Automatic Control, vol. 44, no. 8, pp.
1546–1549, Aug. 1999.

[14] N. Karam, F. Chausse, R. Aufrere, and R. Chapuis, “Localization of a
group of communicating vehicles by state exchange,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing, China, Oct. 9-15, 2006, pp. 519–524.

[15] A. Martinelli, “Improving the precision on multi robot localization
by using a series of filters hierarchically distributed,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
San Diego, CA, Oct. 9–Nov. 2, 2007, pp. 1053–1058.

[16] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Localization for
mobile robot teams: A distributed MLE approach,” in Experimental
Robotics VIII. Springer-Verlag, 2003, pp. 146–155.

[17] E. D. Nerurkar and S. I. Roumeliotis, “Distributed MAP estimation
algorithm for cooperative localization,” Dept. of Comp. Sci. & Eng.,
University of Minnesota, Tech. Rep., 2008. [Online]. Available:
http://www-users.cs.umn.edu/∼nerurkar/Nerurkar DstrbMAP.pdf

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes in C : the art of scientific computing. Cambridge
University Press, 1992.

[19] G. H. Golub and C. F. V. Loan, Matrix Computations. Johns Hopkins
University Press, 1983.

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed compu-
tation: numerical methods. Prentice-Hall, Inc., 1989.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 IEEE International Conference on
Robotics and Automation. Received September 15, 2008.

