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Abstract—This paper introduces a simple and very efficient
strategy to extrinsically calibrate a bearing sensor (e.g. a camera)
mounted on a mobile robot and simultaneously estimate the
parameters describing the systematic error of the robot odometry
system. The paper provides two contributions. The first one is
the analytical computation to derive the part of the system which
is observable when the robot accomplishes circular trejectories.
This computation consists in performing a local decomposition of
the system, based on the theory of distributions. In this respect,
this paper represents the first application of the distribution
theory in the frame-work of mobile robotics. Then, starting from
this decomposition, a method to efficiently estimate the param-
eters describing both the extrinsic bearing sensor calibration
and the odometry calibration is derived (second contribution).
Simulations and experiments with the robot e-Puck equipped
with encoder sensors and a camera validate the approach.

I. INTRODUCTION

A sensor calibration technique is a method able to estimate
the parameters characterizing the systematic error of the sen-
sor. In the last decades, this problem has been considered with
special emphasis in the field of computer vision. The problem
of camera calibration consists in estimating the intrinsic and
extrinsic parameters based on a number of points whose
object coordinates in a global frame are known and whose
image coordinates are measured [19]. In robotics, when a
camera is adopted, the calibration only regards the estimation
of the extrinsic parameters, i.e. the parameters describing
the configuration of the camera in the robot frame. In the
case of robot wrists, very successful approaches are based
on the solution of a homogeneous transform equation of the
form AX = XB which is obtained by moving the robot
wrist and observing the resulting motion of the camera [15],
[18]. In particular, in the previous equation, A describes the
configuration change of the wrist, B the configuration change
of the camera and X the unknown camera configuration in
the wrist reference frame. A and B are assumed to be known
with high accuracy: A is obtained by using the encoder data
and B by using the camera observations of a known object
before and after the wrist movement [18]. In mobile robotics
the situation changes dramatically and the previous methods
cannot be applied. Unfortunately, the displacement of a mobile
robot obtained by using the encoder data is not precise as
in the case of a wrist. In other words, the previous matrix
A is roughly estimated by the encoders. A possible solution
to this inconvenient could be obtained by adopting other
sensors to estimate the robot movement (i.e. the matrix A).

However, most of times the objective is to estimate the camera
configuration in the reference frame attached on the robot
odometry system. Therefore, it is important to introduce a new
method able to perform simultaneously the extrinsic camera
calibration and the calibration of the robot odometry system.
So far, the two problems have been considered separately.

A. Previous Works

Regarding the odometry, a very successful strategy has been
introduced in 1996 by Borenstein and Feng [3]. This is the
UMBmark method. It is based on absolute robot position
measurements after the execution of several square trajectories.
In [10] the problem of also estimating the non-systematic
odometry errors was considered. More recently, a method
based on two successive least-squares estimations has been
introduced [2]. Finally, very few approaches calibrate the
odometry without the need of an a priori knowledge of the
environment and/or of the use of global position sensors (like
a GPS) [6], [17], [20].

Regarding the problem of sensor to sensor calibration,
several cases have recently been considered (e.g. IMU-camera
[16], laser scanner-camera [4], [21], [22] and odometry-camera
[12]). In [12], an observability analysis taking into account the
system nonlinearities was also provided to understand whether
the system contains the necessary information to perform the
self calibration. Indeed, a necessary condition to perform the
estimation of a state, is that the state is observable. In [12]
it was investigated whether the state containing the extrinsic
parameters of the vision sensor is or is not observable. The ob-
servability rank criterion introduced by Hermann and Krener
[8] was adopted to this scope. The same observability analysis
was later applied to the case of the odometry self-calibration
[13]. However, in these works, what it was determined is only
whether the state containing the parameters defining the sensor
systematic error is observable or not. On the other hand, when
a state is not observable, suitable functions of its components
could be observable and therefore could be estimated. The
derivation of these functions is very important in order to
properly exploit the information contained in the sensor data
to estimate a given set of parameters. This derivation requires
to perform a local decomposition [9]. While in the linear case
this decomposition is easy to be performed, in the non linear
case it is often troublesome and requires to apply the theory
of distributions developed in [9].



B. Paper Contributions

In this paper we consider simultaneously the problems of
odometry calibration and the extrinsic calibration of a bearing
sensor. Furthermore, the calibration is carried out by only
using a single point feature. To the best of our knowledge
this problem has never been investigated before. The paper
provides two contributions:

• A local decomposition of the considered system based on
the theory of distributions developed in [9];

• A new strategy to robustly, efficiently and accurately cal-
ibrate both the bearing sensor and the odometry system.

The first contribution was preliminary discussed in [14]
where the local decomposition has been performed only for
the special cases of straight trajectory and pure rotation. To
the best of our knowledge this contribution represents the first
application of the distribution theory in the field of mobile
robotics and the first non-trivial application of this theory
to face a real estimation problem. In the specific case, it
allows us to detect for circular trajectories which functions
of the original calibration parameters are observable. Then,
by performing at least three independent circular trajectories,
it is possible to evaluate all the parameters describing our
calibration problem.

Section II defines the calibration problem and provides the
basic equations to characterize the system dynamics and the
observation. In section III we remind some results from the
theory developed in [8] (III-A) and [9] (III-B). In section IV
we perform the decomposition for circular trajectories. This
allows us to detect the functions of the parameters which
are observable. Then, in section V, we summarize some
important analytical properties for the observation function
whose derivation is available in [11]. Based on these prop-
erties, we introduce the calibration strategy in section VI
whose validation is provided in VII through simulations and
experiments. Conclusions are provided in section VIII.

II. THE CONSIDERED SYSTEM

We consider a mobile robot moving in a 2D-environment.
The configuration of the robot in a global reference frame can
be characterized through the vector [xR, yR, θR]T where xR
and yR are the cartesian robot coordinates and θR is the robot
orientation. The dynamics of this vector are described by the
following non-linear differential equations: ẋR = v cos θR

ẏR = v sin θR
θ̇R = ω

(1)

where v and ω are the linear and the rotational robot speed,
respectively. The link between these velocities and the robot
controls (u) depends on the considered robot drive system.
We will consider the case of a differential drive. In order to
characterize the systematic odometry error we adopt the model
introduced in [3]. We have:

v =
δRvR + δLvL

2
ω =

δRvR − δLvL
δBB

(2)

where vR and vL are the control velocities (i.e. u = [vR, vL]T )
for the right and the left wheel, B is the nominal value for the
distance between the robot wheels and δR, δL and δB charac-
terize the systematic odometry error due to an uncertainty on
the wheels diameters and on the distance between the wheels.

Furthermore, a bearing sensor (e.g. a camera) is mounted
on the robot. We assume that its vertical axis is aligned
with the z−axis of the robot reference frame and therefore
the transformation between the frame attached to this sensor
and the one of the robot is characterized through the three
parameters φ, ρ and ψ (see fig. 1).

Fig. 1. The two frames attached to the robot and to the bearing sensor.

The available data are the control u = [vR, vL]T and the
bearing angle of a single feature (β in fig. 1) at several time
steps during the robot motion.

We introduce the following quantities:

µ ≡ ρ

D
≡ ρ√

x2
R + y2

R

;
θ ≡ θR − atan2(yR, xR);
γ ≡ θ + φ

(3)

By using simple trigonometry algebra we obtain (fig. 1):

β =


−atan

(
sin γ

µ+ cos γ

)
− ψ + π γ− ≤ γ ≤ γ+

−atan
(

sin γ
µ+ cos γ

)
− ψ otherwise

(4)

where γ− and γ+ are the two solutions (in [−π, π)) of the
equation cos γ = −µ with γ+ = −γ− and γ+ > 0. We made
the assumption 0 < µ < 1 since we want to avoid collisions
between the robot and the feature (D > ρ).

By using (1) and the definitions in (3) the dynamics of our
system are described by the following equations:



Original Calibration Parameters
Camera: φ, ρ, ψ Odometry: δR, δL, δB

Observable Parameters
φ, ψ, η ≡ δR

2ρ
, δ ≡ δL

δR
, ξ ≡ 1

B
δR
δB

Parameters observable in a single q-trajectory

Aq ≡ Ψ
q
1−Ψ3

1+Ψ
q
1Ψ3

, V q ≡ Ψq2
1+Ψ

q
1Ψ3

1+Ψ2
3
, Lq ≡ ψ − atanΨq1, ξq ≡ ξ(1− qδ)

where: Ψq1 ≡
ξq−ηq sinφ

ηq cosφ
, Ψq2 ≡

µηq cosφ

sin γ
,

Ψ3 ≡ µ+cos γ
sin γ

, ηq ≡ η(1 + qδ)

TABLE I
VARIABLES ADOPTED IN THIS PAPER


µ̇ = −µ2 v

ρ
cos(γ − φ)

γ̇ = ω − µv
ρ

sin(γ − φ)

φ̇ = ρ̇ = ψ̇ = δ̇R = δ̇L = δ̇B = 0

(5)

The goal is to simultaneously estimate the parameters φ, ρ,
ψ, δR, δL and δB using the available data (i.e. vR, vL and
β in a given time interval). Since these data consists of angle
measurements (the wheel diameters are not known and in fact
are to be estimated), the best we can hope is the possibility
to estimate these parameters up to a scale factor. In particular,
we will refer to the following parameters:

φ, ψ, η ≡ δR
2ρ
, δ ≡ δL

δR
, ξ ≡ 1

B

δR
δB

(6)

whose dynamics are:


µ̇ = −µ2η(vR + δvL) cos(γ − φ)
γ̇ = ξ(vR − δvL)− µη(vR + δvL) sin(γ − φ)

φ̇ = ψ̇ = η̇ = δ̇ = ξ̇ = 0

(7)

In section IV we derive for circular trajectories, which
functions of µ, γ, φ, ψ, η, δ and ξ are observable and hence
can be estimated. Then, in section VI we introduce a very
efficient strategy to estimate these parameters by considering
three independent circular trajectories. Finally, by adding a
simple metric measurement (e.g. the initial distance between
the robot and the feature) the original parameters φ, ρ, ψ, δR,
δL and δB can also be estimated.

For the sake of clarity we report all the variables appearing
in this paper in table I.

III. OBSERVABILITY PROPERTIES AND LOCAL
DECOMPOSITION

A general characterization for systems in the frame work of
autonomous navigation is provided by the following equations: Ṡ =

M∑
i=1

fi(S)ui

y = h(S)

(8)

where S ∈ Σ ⊆ <n is the state, ui are the system inputs,
y ∈ < is the output (we are considering a scalar output for
the sake of clarity, the extension to a multi dimensions output
is straightforward). The system defined by (4) and (7) can be
characterized by (8). We have: S = [µ, γ, φ, ψ, η, δ, ξ]T ,
M = 2, u1 = vR, u2 = vL, f1(S) = [−µ2η cos(γ − φ), ξ −
µη sin(γ−φ), 0, 0, 0, 0, 0]T , f2(S) = −[µ2ηδ cos(γ−φ), ξδ+
µηδ sin(γ − φ), 0, 0, 0, 0, 0]T and y = β.

A. Observability Rank Criterion

We want to remind some concepts in the theory by Hermann
and Krener in [8]. We will adopt the following notation.
We indicate the kth order Lie derivative of a scalar field Λ
along the vector fields vi1 , vi2 , ..., vik with Lkvi1 ,vi2 ,...,viK

Λ.
We remind the definition of the Lie derivative. It is provided
by the following two equations:

L0Λ = Λ, (9)

Lk+1
vi1 ,...,vik

,vik+1
Λ = ∇S

(
Lkvi1 ,...,vik

Λ
)
. vik+1

where the symbol ”.” denotes the scalar product. Now,
let us refer to the system in (8) and let us indicate with Ω
the space of all the Lie derivatives Lkfi1 ,...,fik

h, (i1, ..., ik =
1, ...,M ) where the functions fij (j = (1, ..., M)) are
the ones appearing in (8). Furthermore, we denote with
dLkfi1 ,...,fik

h the gradient of the corresponding Lie derivative
(i.e. dLkfi1 ,...,fik

h ≡ ∇SLkfi1 ,...,fik
h) and we denote with dΩ

the space spanned by all these gradients.
In this notation, the observability rank criterion can be

expressed in the following way: The dimension of the largest
observable sub-system at a given S0 is equal to the dimension
of dΩ. Therefore, the problem of understanding wheter a
system is observable or not can be solved by computing the
rank of the matrix whose lines are the gradients of the Lie
derivatives.

B. Local Decomposition

Let us suppose that the system in (8) is not observable and
that the dimension of the largest observable subsystem is nobs.
According with the theory of distributions developed in [9],
we can find nobs independent functions of the components
of the original state S which are observable and n − nobs
independent functions of the components of S which are not
observable. More precisely, if we include the nobs observable
functions in the vector Sb and the other n−nobs functions in
the vector Sa, we have the following decomposition for the
original system: 

Ṡa =
M∑
i=1

fai (Sa, Sb)ui

Ṡb =
M∑
i=1

f bi (Sb)ui

y = hb(Sb)

(10)



In particular, the subsystem defined by the last two equa-
tions in (10) is independent of the value of Sa and it is
observable. Therefore, by performing this decomposition, we
can use the information coming from the dynamics (i.e. the
knowledge of u(t)) and the observations (y(t)) in order to
estimate the observable quantities (Sb). This decomposition is
very important in every estimation problem when the state is
not observable. Indeed, estimating directly the original state S
results in an erroneous evaluation.

In section II, when we introduced µ and γ (defined in (3))
and the three parameters η, δ, ξ, we performed such a decom-
position for the state [xR, yR, θR, φ, ρ, ψ, δR, δL, δB ]T :
indeed, the new state [µ, γ, φ, ψ, η, δ, ξ]T is observable
as proven in [11] and its components are non linear func-
tions of the components of the original state (which is not
observable). On the other hand, in most of cases it is very
troublesome to perform such a decomposition. In the next
section we perform such a decomposition for the same state
(i.e. [µ, γ, φ, ψ, η, δ, ξ]T ) but when we only allow the robot
to move along circular trajectories. We apply the distributions
theory developed in [9].

IV. LOCAL DECOMPOSITION FOR CIRCULAR
TRAJECTORIES

We consider the one-degree of freedom motion obtained by
setting vR = ν, vL = qν. Let us define:

ηq ≡ η(1 + qδ) ξq ≡ ξ(1− qδ) (11)

From the dynamics in (7) we obtain the following dynamics:
µ̇ = −µ2ηqν cos(γ − φ)
γ̇ = ξqν − µηqν sin(γ − φ)

η̇q = ξ̇q = φ̇ = ψ̇ = 0

(12)

In the next we provide the steps necessary to perform the
decomposition of the system whose dynamics are given in (12)
and whose output is the observation in (4). We proceed in two
separate steps. We first consider the following simpler system:

µ̇ = −µ2ηqν cos(γ − φ)
γ̇ = ξqν − µηqν sin(γ − φ)

η̇q = ξ̇q = φ̇ = 0

y =
sin γ

µ+ cos γ

(13)

where we removed the variable ψ. We apply the method
developed in [9] in order to find the local decomposition for
this simplified system.

The associated partial differential equation is in this case:

µ cos γ + 1
sin γ

∂Ψ
∂µ

+
∂Ψ
∂γ

+
ξq cosφ
ηqµ sin γ

∂Ψ
∂φ

+
ξq sinφ− ηq
µ sin γ

∂Ψ
∂ηq

= 0

namely, every solution Ψ(µ, γ, φ, ηq, ξq) of the previous
partial differential equation is an observable quantity for the

system in (13). We found the following four independent
solutions:

Ψq
1 ≡

ξq − ηq sinφ
ηq cosφ

, Ψq
2 ≡

µηq cosφ
sin γ

,

Ψ3 ≡
µ+ cos γ

sin γ
, ξq (14)

The local decomposition of (13) is:

Ψ̇q
1 = 0

Ψ̇q
2 = νΨq

2(Ψq
1Ψq

2 − ξqΨ3)

Ψ̇3 = ν(Ψq
2 + Ψq

1Ψq
2Ψ3 − ξq − ξqΨ2

3)

ξ̇q = 0

y =
1

Ψ3

(15)

Let us proceed with the second step. We add to the system in
(15) the parameter ψ (with ψ̇ = 0) and we consider the output
y = β instead of y = 1

Ψ3
. We apply again the method in

[9] on the resulting system. The associated partial differential
equation is in this case:

(Ψq2

1 +1)
∂G

∂Ψq
1

+(Ψq
2(Ψ3−Ψq

1))
∂G

∂Ψq
2

+(Ψ2
3+1)

∂G

∂Ψ3
+
∂G

∂ψ
= 0

namely, every solution G(Ψq
1,Ψ

q
2,Ψ3, ξq, ψ) of the previous

partial differential equation is an observable quantity for this
system. We found the following four independent solutions:

Aq ≡ Ψq
1 −Ψ3

1 + Ψq
1Ψ3

, V q ≡ Ψq
2

1 + Ψq
1Ψ3

1 + Ψ2
3

,

Lq ≡ ψ − atanΨq
1, ξq (16)

and the local decomposition is:

Ȧq = ν(1 +Aq
2
)(ξq − V q)

V̇ q = νAqV q(2V q − ξq)
L̇q = ξ̇q = 0

β = −atanAq − Lq + Sp
π

2

(17)

where Sp can be ±1 depending on the values of the parame-
ters. We do not provide here this dependence. In [11] we derive
some important properties relating Sp to the robot motion.

Deriving this decomposition is very hard. As shown, it is
based on the solutions of two partial differential equations.
However, to check the validity of this decomposition is very
simple since it only requires to compute derivatives (e.g. this
can be done by using the matlab symbolic computation). Fur-
thermore, also the solution has a simple analytical expression.

This decomposition has a very practical importance. It tells
us that, when the robot accomplishes circular trajectories, the
information contained in the sensor data (i.e. the information
contained in the function ν(t) and β(t)) allows us to estimate
only the state Θ ≡ [Aq, V q, Lq, ξq]T and not the original



state [µ, γ, φ, ψ, ξ, δ, η]T . In the next sections we
will provide a powerful strategy to estimate the initial value
Θ0 ≡ [Aq0, V

q
0 , L

q, ξq]T for a given circular trajectory. We
remark that Θ0 depends on the calibration parameters and on
the initial values of µ and γ. Our goal is the estimation of
φ, ρ, ψ, η, δ, ξ, which are five parameters. By performing
the estimation of Θ0 we obtain four independent equations on
these parameters. On the other hand, we also add two new
unknowns (the values of the initial µ and γ). Therefore, in
order to have enough equations, we must combine at least
three independent circular trajectories (i.e. with a different q).

V. ANALYTICAL PROPERTIES OF THE OBSERVATION
FUNCTION

In this section we summarize some important properties of
the observation β obtained when the robot accomplishes circu-
lar trajectories. These properties are fundamental to introduce
our calibration strategy. For the sake of conciseness, we cannot
derive these properties here. However, a detailed derivation is
available in [11]. Furthermore, it is possible to directly verify
the validity of these properties with a simple substitution. For
the sake of simplicity in the next two sections we neglect the
suffix q on the three parameters A, V and L. On the other
hand, to distinguish ξq from ξ previously defined, we still
maintain q in ξq .

First of all, it is possible to directly integrate the dynamics
in (17) to get an analytical expression for β vs the time or vs
the curve length s defined by the following equation:

s = s(t) =
∫ t

0

ν(τ)dτ (18)

The expression of β vs s is given by the following equations:

w = ξq tan(c+ Swξqs) (19)

V =
ξqk(2k − ξq) + kw2 + SV w

√
k(k − ξq)(w2 + ξ2

q )

(2k − ξq)2 + w2

(20)

A = Sy

√
k(2V − ξq)− V 2

V 2
(21)

β = atan(A)− L+ Sp
π

2
(22)

where c and k are two time-independent parameters whose
value depends on the initial robot configuration with respect
to the feature and Sw, SV , and Sy are three sign variables,
namely, as for Sp, they can assume the value of +1 or −1. The
validity of this expression for β can be checked by directly
computing the time derivatives of V and A respectively in (20)
and (21) and by verifying that they satisfy (17).

The variables SV , Sy and Sp flip in correspondence of
special points whose value can be determined by imposing the
continuity of the expressions (19-22) and their first derivatives
(see [11] for a detailed discussion of this continuity analysis).

Among these points, there are the ones where the function w
in (19) diverges. We call them nodes. They are:

sn = −Sw
c

ξq
+ j

π

ξq
+ Sw

π

2ξq
(23)

j being an integer. In other words, there are infinite nodes
at the distance of π

|ξq| one each other.
For every point s we introduce an operation which asso-

ciates to s the point ŝ defined by the following equation:

ŝ ≡ 2sRn − s (24)

where sRn is the closest node to s on the right. In [11] we
derive the following fundamental theorem whose validity can
in any case be checked by a direct substitution:

Theorem 1 (Reflection of the Observation Function) The
observation function satisfies the following fundamental
equation ∀s:

β(s) + β(ŝ) = −2L ( mod π) (25)

This theorem is fundamental for estimating the parameters
ξq , L, k and c related to a given trajectory (see the algorithm 1
in the next section and the videos in [23]). The name reflection
comes from the fact that according with (24) ŝ is the reflection
of s with respect to the node between them (sRn ).

VI. THE STRATEGY TO ESTIMATE THE SYSTEM
PARAMETERS

It is possible to verify that the observation function is a
periodic function whose period is:

TS =
2π
|ξq|

(26)

Equation (26) allows us to estimate the parameter ξq by
evaluating the period of the observation function. Actually,
this equation does not provide the sign of ξq . However, this
sign is positive for all the values of q < 1

δ (i.e. when the robot
accomplishes counter clock-wise circular trajectories).

Once ξq is estimated, the next step consists in the evaluation
of the position of one node. Indeed, once we know the position
of one node, we can determine c (or better few candidates
of c) by using (23). On the other hand, the position of one
node can be evaluated by using the previous theorem (i.e.
the equation (25). The algorithm 1 describes the procedure
to perform this evaluation. In [23] it is possible to get some
videos which illustrate how this algorithm works in simulated
and real scenarios. The algorithm computes the left hand side
of equation (25), called θ(sc, s), for every possible node candi-
date (sc), which is in the interval [0, TS

2 ]. The function θ(sc, s)
is independent of the second argument s when sc = sn.
Indeed, θ(sn, s) = −2L ∀s. This means that the standard
deviation of θ(sc, s) respect to the second argument (s) is
zero when computed in sn (i.e. σ(sn) = 0). When the robot
sensors are affected by measurement errors, the function σ(sc)
attains its minimum on sn (see figure 4e).



Algorithm 1 (Returns one Node)
for sc = 0 to TS

2 do
for s = 0 to TS

2 do
ŝ = 2sc − s
θ(sc, s) = β(s) + β(ŝ)( mod π)

end for
end for
for sc = 0 to TS

2 do
σ(sc) = standard deviation of θ(sc, s)

end for
sn = argminsc

σ(sc)

Once sn is determined, equations (24) and (25) allow us to
immediately evaluate the parameter L. Furthermore, as said
before, equation (23) allows us to evaluate c. In both cases
few possible values for these parameters are actually provided.
The correct ones can be selected by combining more than one
circular trajectory. On the other hand, combining at least three
trajectories (with different q) is necessary also to estimate our
original parameters φ, ψ, η, δ and ξ once the parameters ξq
and L are evaluated for each trajectory.

Once the parameters ξq and L are estimated for at least three
independent trajectories (i.e. corresponding to three different
values of q), the calibration parameters φ, ψ, η, δ and ξ can
be found by using (11), the first equation in (14) and the third
equation in (16). The method to get this estimation is simple
and is explained in [11]. Finally, in [11], we also explain how
to estimate the original calibration parameters (i.e. φ, ρ, ψ,
δR, δL and δB) when it is available a supplementary metric
measurement consisting in the initial distance of the robot from
the feature for just one among the three considered trajectories.

VII. PERFORMANCE EVALUATION

We evaluate the performance of the proposed strategy by
carrying out both simulations and real experiments. In partic-
ular, since in the simulations the ground truth is available, we
compare our strategy with a method based on an Extended
Kalman Filter (EKF ). This method uses the EKF to inte-
grate the encoders data and the data provided by the camera.
The matrices defining this filter can be obtained starting from
the analytical expressions in (4) and (7). From now on we
will refer to this calibration method with CEKF (Calibration
based on the EKF ).

A. Simulations

We simulate a mobile robot equipped with encoder sensors
and an omnidirectional camera.

Regarding the encoders we simulate their data accord-
ing with the model introduced in [3]. In other words the
measurements are affected by zero mean Gaussian errors
independent among them. Furthermore, the variance of each
measurement is proportional to the value provided by the
sensor. Let us consider for instance the right wheel and let
us suppose that the true rotation occurred at a given time step
is equal to δαtrueR . We generate the following measurement:
δαR = N

(
δαtrueR , K

2

r |δα
true
R |

)
, where N(m,σ2) indicates

the normal distribution with mean value m and variance σ2, r
is the nominal value of the radius of the wheel and K charac-
terizes the non systematic odometry error. The precision of our
strategy is always excellent, even when we considered values
of K much larger (hundred times) than the values obtained
through real experiments (see [5] where K ' 5 10−4m

1
2 ). In

this section we provide a part of the results obtained with our
simulations. In particular, we set r = 0.3m, K = 0.001m

1
2

and the distance between the wheels B = 0.5m.
The simulated exteroceptive sensor provides the bearings

of a single feature at the origin. Furthermore, we assume
that these bearing measurements are affected by a zero mean
Gaussian error with a variance equal to (0.5deg)2. The small
value of this variance was necessary in order to guarantee the
convergence of the CEKF . However, in [11] we consider
larger values for this variance (up to (5deg)2) and the perfor-
mance of our strategy is always very good.

We also investigate the impact of having a path not
perfectly circular. To this goal we divide the circular path
in ten thousands segments. For each one we compute the
corresponding displacement for the right and the left wheel
(∆scR and ∆scL). Then, we generate the displacements of
the right and left wheel (∆sR and ∆sL) randomly with
a Gaussian distribution: ∆sR = N(∆scR, (ı × ∆scR)2) and
∆sL = N(∆scL, (ı×∆scL)2). We consider three cases: Model
1 where ı = 0 (i.e. perfect circular trajectory), model 2 where
ı = 0.02 and model 3 where ı = 0.04. In fig. 2 we plot the ratio
∆sL

∆sR
vs time when the robot accomplishes a circular trajectory

with q = 0.7. On the left it is displayed the real case obtain by
using the robot AMV-1 from the BlueBotics company (see [1]
for a description of the robot). On the right it is considered
the simulated robot when ı = 0.02. It is possible to realize
that the real case satisfies the circular hypothesis better than
the case when ı = 0.02.

Fig. 2. The ratio ∆sL
∆sR

vs time when the robot accomplishes a circular
trajectory (q = 0.7). On the left the result obtained with the real robot AMV-
1 and on the right our simulated robot when ı = 0.02.

In fig. 3 we display the precision on the parameters vs
the number of camera observations when the estimation is
performed by the CEKF . In contrast with our strategy, this
filter requires to initialize the parameters. We obtained that,
in order to have the convergence, the initial relative error on
the parameter η must be smaller than 10%. Regarding δ and ξ
the relative error must be smaller than 20%. Finally, regarding
φ and ψ the initial error must be smaller than 10deg. From
fig. 3 we remark that the convergence is very slow for the
parameters φ, ψ and η.



Fig. 3. The precision on the parameters estimated through CEKF vs the
number of exteroceptive observations

Mod #Obs. ∆φ deg ∆ψ deg ∆η
η

% ∆δ
δ

% ∆ξ
ξ

%

1 250 0.06 0.05 0.5 0.02 0.07
2 250 0.5 0.3 1.2 0.04 0.12
3 250 1.1 0.4 2.7 0.07 0.14

CEKF 250 7.8 7.6 10 3.2 3.6
1 500 0.06 0.05 0.4 0.02 0.05
2 500 0.4 0.3 1.1 0.04 0.1
3 500 0.8 0.3 1.9 0.06 0.1

CEKF 500 7.7 7.5 9.8 1.9 2.5
1 1000 0.06 0.05 0.3 0.02 0.05
2 1000 0.3 0.2 0.6 0.03 0.09
3 1000 0.6 0.3 1.5 0.04 0.09

CEKF 1000 7.5 7.3 9.2 1.0 1.2

TABLE II
THE ERRORS ON THE PARAMETERS AVERAGED ON 100 SIMULATIONS

ESTIMATED BY THE CEKF AND OUR STRATEGY.

Table II compares the performance of our approach with
respect to CEKF when the number of exteroceptive obser-
vations are 250, 500 and 1000. Even for model 3 (i.e. when
ı = 0.04) our method significantly outperforms CEKF .

B. Real Experiments

We used the mobile robot e-puck (see [7] for a detailed
description of this robot and its sensors). In our experiments
we only used the camera and the odometry sensors. Actually,
our strategy has been developed to calibrate an omnidirectional
bearing sensor. In contrast, the available camera, has a very
limited angle of view (' 38deg). In practice, it is in general
not possible to observe a single feature during the entire cir-
cular trajectory accomplished by the robot. The only situation
where this is possible occurs when the feature is inside the
circular trajectory and close to the center. Furthermore, the
camera must look towards the center of the circumference.
This is the case when the angle φ is close to 0deg and ψ
is close to 90deg). Since the available camera looks ahead,
we fixed in front of the robot a small mirror (see figure 4a).
Obviously, in these conditions our strategy cannot estimate
the extrinsic calibration parameters related to the real camera.
However, it estimates the parameters related to the virtual
camera, i.e. the one mirrored. We remark that the goal of this

Tape φ (deg) ψ (deg) η (m−1) δ ξ (m−1)
No −5.80 117.18 10.21 0.9987 18.99
Yes −5.67 116.91 10.40 0.9959 18.97

TABLE III
THE CALIBRATION PARAMETERS WITH AND WITHOUT TAPE ESTIMATED

IN OUR EXPERIMENTS.

experiment is not to estimate the configuration of the true
camera but to validate our strategy. Therefore, we never mind
whether the camera we are considering is the virtual camera.

An issue which arises when the feature is inside the tra-
jectory is the possibility to have collisions with the feature.
In order to avoid this, the circumference has to be large. In
practice we could not consider trajectories with values of q
smaller than 0.4.

The robot camera provides images with resolution 60× 60.
Figure 4b shows the robot e-puck together with the source of
light we adopted as a point feature in our experiments. Figure
4c is an image of the feature taken by the e-puck camera during
our experiments. The images were provided at a frequency in
the range [0.5, 3]Hz.

We carried out two complete experiments. In the latter we
increased the radius of the right wheel by 0.062mm with a
piece of tape. Each experiment consists of four independent
trajectories with the following values q: 0.9, 0.7, 0.6, 0.4.
Regarding the estimation of the parameters ξq , L, c and k we
show in figures 4d, 4e and 4f only the results for q = 0.6
without tape. In particular, we show the observation function
with the estimated nodes (4d), the function σ(sc) (4e) and
the observation functions as observed (blue points) and as
estimated by our strategy (red points) (4f ).

Fig. 4. The experiment performed with the robot e-puck. (a) displays the
robot e-puck with a small mirror in front of the camera. The robot together
with the source of light used as the feature (b) and the feature observed by the
robot camera (c). The images below refer to an experiment with q = 0.6 and
without tape. d displays the observation function with the estimated nodes,
e displays the function σ(sc) attaining its minima in correspondence of the
nodes and f displays the observation function as observed (blue points) and
as estimated by our strategy (red points).

The calibration parameters with and without tape are re-
ported in table III. Regarding the angles φ and ψ, we remark
that the difference between the case with tape and without
tape is smaller than 0.3deg, which is roughly the mean errors
obtained in our simulations. This is consistent with the fact that
the tape does not affect these angle parameters. Regarding η



the difference is ' 2% which is a bit larger than the mean error
obtained in our simulations. Also regarding δ the difference is
' 0.3% which is definitely larger than the mean error obtained
in our simulations. This is consistent with the increased radius
of the right wheel due to the tape (0.062mm). In particular,
since the wheel radius is ' 2cm, we obtain ' 0.06mm for the
radius change. The variation in the parameter ξ is very small
and not in the expected direction. In particular, it is ' 0.1%
which is roughly the mean error obtained in our simulations.
This parameter should be affected by the tape since it depends
on δR. We believe that the tape also increased the effective
distance between the wheels (i.e. the parameter δB) making
ξ = 1

B
δR

δB
unaffected by the tape.

VIII. CONCLUSIONS

In this paper we considered the problem of simultaneously
calibrating an odometry system and the extrinsic parameters
of a bearing sensor. The calibration only uses a single point
feature.

Two new contributions were provided:
• A local decomposition of the considered system based on

the theory of distributions developed in [9];
• A simple strategy to robustly, efficiently and accurately

estimate the parameters describing both the extrinsic
bearing sensor calibration and the odometry calibration.

The performance of the proposed strategy was carefully
evaluated by carrying out both simulations and real experi-
ments with the mobile robot e-puck. We found excellent results
in terms of precision, robustness and facility of implementa-
tion. We remark that the proposed strategy was able to detect
a variation in the wheel diameter of less than 0.1mm although
the robot moved along very short paths and by just observing
the bearing of a single feature. We consider this an excellent
result and we believe that this approach can have a huge impact
on the problem of self-calibration in mobile robotics especially
if it can be extended to the 3D case and hence it can be applied
in outdoor environment. At this regard, future works will focus
on the following topics:
• extend this strategy to the 3D case, i.e. remove the

hypothesis of a perfect alignment of the vertical axis of
the bearing sensor with the world frame vertical axis;

• extend this strategy in order to consider also range sensors
and other kind of features.

Finally, we believe that the theory of distributions is a
very powerful tool to face many estimation problems in the
frame-work of mobile robotics and this paper is the first very
successful application of this sophisticated theory.
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