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POINCARE TYPE INEQUALITY FOR DIRICHLET
SPACES AND APPLICATION TO THE UNIQUENESS SET

KARIM KELLAY

ABSTRACT. We give an extension of Poincaré’s type capacitary inequal-
ity for Dirichlet spaces and provide an application to study the unique-
ness sets on the unit circle for these spaces.

1. INTRODUCTION

Let I be the open unit disk in the complex plane and let T = 9D be the
unit circle. For 0 < « < 1, the Dirichlet space D, consists of all analytic
functions f defined on D such that

Py RN O T
|z—w|1+°‘ 27 2w

The space D,, is endowed with the norm

11l = £ (0)]* + Da(f).
By [fi], this norm is comparable to

Z]f 2(14n)°.

n>0

The classical Dirichlet space D; is a subspace of the Sobolev space W!2(DD),
defined as the completion of C!(D) under the norm

1117 = | [ s@aac| + [ [wreraace).

where dA(z) is a normalized Lebesgue measure. Note that the restriction of
this norm to D, becomes

IF12 = 1FO) + / F(2)2dA),  feDy,
D

which is equivalent to the norm of D;.

Given f € WH2(D), we write Z(f) = {z € D: f(z) = 0}, the zero set
of f in D. The Poincaré capacitary inequality in W'2(ID) gives the precise
asymptotic behavior of the constant in Poincaré’s inequality [[4, [[9, [, ]
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(see also the paper [[J] by Maz’ya and the references there). More precisely
there exists a constant ¢ > 0 such that

[ r@raae) < o [ 1vre)Pae). (1)
for all f € WH2(D), ||V f|2 # 0, Where

capy(FE) = inf{/ [Vel? : e CP(D), ¢ > 1on E}
D

and C°(D) is the set of all infinitely differentiable functions of compact
support in ID. Our main result in this paper is to establish a Poincaré
capacitary inequality for functions in the Dirichlet spaces with the zero set
is contained in T (see Theorem P.4). We provide a sufficient condition for a
set to be uniqueness set for Dirichlet spaces (see Theorem B.1]).

Let X be some class of analytic functions in D and let £ be a subset of
T. The set FE is said to be a uniqueness set for X if, for each f € X such
that f*(¢) := Tl_l)l{l f(r¢) =0 for all ¢ € E, we have f = 0.

It is clear that D, is contained in the Hardy space H?. So each function
f € D, has non-tangential limits a.e on T. It is known that every set £ C T
of positive Lebesgue measure is a uniqueness set for all functions of bounded
type in D (and therefore, for H2). Carleson [H proved that a closed set of
Lebesgue measure zero FF C T is a uniqueness set for the Lipschitz class if
and only if F is not a Carleson set (logdist(-, E) ¢ L!(T)). He also proved
in the same paper that if F is not a Carleson set under capacitary condition
(in particular E has a positive Cs—capacity for some s > 0), then E is a
uniqueness set for the classical Dirichlet space. Khavin and Maz’ya [[] have
proved that there exists a set of uniqueness of C's—capacity zero for any s > 0
for the classical Dirichlet space. The proof of Khavin and Maz’ya is based
on Poincaré’s inequality in the Sobolev space ([l[). However, the Khavin—
Maz’ya Theorem does not allow to deduce the Carleson Theorem. Here, we
give a generalization of Khavin-Mazya’s result which works for D, spaces,
0 < a <1, and from it we deduce Carleson’s result. Our proof is based on a
local Poincaré type capacitary inequality in Dirichlet spaces (see Theorem

2. POINCARE’S CAPACITARY INEQUALITY

2.1. Capacity. We begin with the definition of the classical capacity [B, H].
We define the kernel on T by

I 0<a<l,
k“<5)‘{ log |1 —Cl, a=0.

Given a probability measure g on T, for 0 < o < 1, we define its a—energy
by

_ / o (CE)(€)dp(C).



POINCARE’S INEQUALITY AND UNIQUENESS SET 3

Given a Borel subset F of T, we denote by P(FE) the set of all probability
measures supported on a compact subset of E. We define its C,—capacity
by

Ca(E) = 1/ nf{ () : € P(E)}.

If a = 0, Cp is called the logarithmic capacity. Note that for a set F C
T, Co(E) > 0 means that there exists a Borel positive finite measure g
supported by F with finite energy

Now we define the L2-capacity introduced by Meyers [[J] see also [fl, f.
For 0 < a < 1, the harmonic Dirichlet space D, (T) consists of all functions
f € L3(T) such that

Do(f) < o0
with the norm
11 r) = 112202 + D ():

This norm is comparable to

Y F@)PE |y

n>0

We have ]g_\%(n) ~ |n|_% as n — £oo and so Hk‘l_% * f||o is comparable to
1fllL2(r) for all f € L*(T). Hence

Do(T) = {kl_% wf:fe L2(T)} .
For any set £ C T we define the C, 2 capacity by
Con(E) = inf{HfH%z(T) L FELAT), >0, k_sxf>1on E} .
This capacity is comparable to

inf £l r) : £ € Da(T) . f 20, f=1on E}.

Furthermore C, 2(F) is comparable to the classical capacity C_q, where the
implied constants depend only on «, see [[J] Theorem 14, [f]] Theorem 2.5.5.
We finally mention the results of Beurling [f] and Salem Zygmund [§, [, ]
about the boundary behavior for the functions of the Dirichlet spaces: if
f € Dy, we write f*(§) = Tlil{l f(rg), then f* exists C1_qo—q.e on T, that is

Ci—a({C €T : f*(¢) does not exist}) = 0.

Note that if F is a closed set such that Cj_,(E) = 0, then there exists a
function f € D, with f*(¢) =0 on E (see [H]).
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2.2. Poincaré’s capacitary inequality for the Dirichlet spaces. Let
1, J be two open arcs of T and f be a function. We set

Dyath = [ [ MOS0 41
170l \z—w\”a 2 27’

Dro(f) = Dr1.al(f)

We begin with a simple extension lemma.

and

Lemma 2.1. Let 0 < v < 1 and let I = (e e) with § < yn/2. Let
f € D, then there exists a function f coincide with f in I and such that

Dyalf) < ¢ Dralf), (2)

where J = (e=20/(+7) ¢20/(040)) and ¢ an absolute constant.

Proof. Let fbe such that
f( eit) eit c I7

f(eit) _ f(ei”;t) et ¢ [ = (ew,ezie/(lﬂ)),
_ 30+t

f(e 5 ) et ¢ R .= (6—22‘0/(14-“/)76—@'9).

We write

DJ,a(f) = Dl,a(f) + ,DL,a(f) + DR,a(f)
+2D11.0(f) +2 D1 ralf) +2 Drralf).

If u,v € (21;—-::;/)9 0), then m > |2u — 2v| > |u — v|. By change of variable,
we get

[f(e™) = f(e®)*  du dv
Dro(f _4/1“7 Q/MW ) T3] G214 27 o7 < 4D; o (f).

2(1+7) 2(1+7)

The same inequality holds for DR,a(f)-

If u € (552%50,0) and ¢ € (=0,0), then 7 > 30 — 2u — ¢ > |u — #| and

zt ) |2
DILa —2/ /1+3’Y |f ( )| dv dt ZDI,a(f)'

Eea 0 |ezt _ 62(39 2u) |1+a 271' Qﬂ- -

The same inequality holds also for Dr g a(f)
Ifu Eé Hf%@ 0) and v € (—0, —21(1:(37)9) then 7 > (360 —2u)+(30+2v) >
U — v an

Drra(f) = /1+3w

2(1+7)

S 4 DI a(f
Hence () is proved. O

2047 [f(e™) = f(e™)]? dv du
0/ |

ei(20—2u) _ o—i(20+2v) |1+a 271' 271'
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Given E C T, we write |E| for the Lebesgue measure of E. We can now
state the main result of this section.

Theorem 2.2. Suppose that 0 <y < 1. Let E C T and f € D, be such that
f*|E =0. Then, for any open arc I C T with |I| <~y and any 0 < 5 < «,

e |1~
(7 1] < 2P,

where ¢ is a constant depending only on B and ~y.

Proof. For simplicity, we will assume that I = (¢=%, ) with § < y7/2. Let
J = (e720/047) [ 2i0/(147)) g — %9 the midpoint of (¢,260/(1++)) and
I, = (e_ww, ei(’v). Let ¢ be a positive function on T such that supp¢ = I,
¢ =1on I and

|p(2) — p(w)| < ‘J‘\Z wl, z,w e T.

where ¢, is a constant depending only on 7.
Now let f be the function given in Lemma P.1 and set

/(2)]

m

F(z):gb(z)‘l— , z €T,

with

m:ﬁﬁmmm

Hence F' > 0, Fign; = 1 Ci1—o—q.p and thus Fjgn; = 1 C1-3-q.p, since if
Ci—a(A) =0, we have C1_g(A) = 0. Therefore,

Cpo(ENI) =~ inf{HgH?DB(T) :9>0,9>1Cg2qpon EN I}
lIF I3, ) 3)

where cg is a constant depending only on 3.
In order to conclude, we estimate ||F' H?DB 1)+ First,

, 2 ldz| |[F(2) = F(w)[? |dz| |dw]

HFH’DB(T) - /|F(Z)| // |z—w|1+5 2r 27

_/| |2|dz| // |F(2) = F(w)]? |dz| |dwl|
|Z_ |1+ﬁ 2m 2

/ / (w)||* |dz] |dw]
zeT\J wel7 \Z—w\l‘w 2 2w

27Tm2 47r 2772 m2’

IN

IN
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= m — NZ 22’
A = /J\ F)IPldz]

= #/W? |—|fz>|>|d<|2|dz|

dclld
< 17 [ [1f0 - Foracas
I f(2))?
< C1/J/Jw|dd|dz|
< alJ*PDra(f)
< all*PDra(f), (5)

for some constants c¢q, co independent of 8 and ~.
If (z,w) € J x J, then

F(2) — F(w)] =
o) (j1 = LEU) - LY — guppa - L0y
< Lif) - Fw) + % 'Z|‘J|‘“' m | Fw)|
< i) - F+ 252 170 - Fulil.

So, by (@) again,
o [F(2) = F(w)[?
FOoN — Fla)I2
< %/ %Wz”dﬂ—l—
m2|J|4// /’f wc1) = = wf!~du

2—1—26 ‘f )‘2

WIII‘” ﬁDI,a(f)7 (6)

IN

IN

with c3 is a constant depending only on +.
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Ry 2
C = / / %ydmdwy
zeT\J Jwel, ’Z — w|

Finally,

< Lﬂl+ﬁj/ m | Fw) |l
< JW /] / 7€) = Fwlidc]|laul
< s, 1FQ - FePaciia

_ 2
< aff mecndw
< &lIPDralf), 7)

with ¢4, c5 independent of ~, 3.
By (H), (A) and (@), we see that

11, ) < ST 0D f), (®)

with cg depending only on ~. Since

1
mﬁmlmmm,

combining (§) and (§), we get

a—p3
CanEN1) < el [ 1H©ONasl] 11" Dya(),

where ¢ depending only on 3 and «, and the proof is complete. O

3. SET OF UNIQUENESS FOR DIRICHLET SPACES

A special case of the theorem (3 = 1 in Theorem B.1) was obtained by
Khavin and Maz’ya [[] for the classical Dirichlet space (o = 1). Here we
give the generalization of their result in the Dirichlet spaces, including the
classical case.

Theorem 3.1. Let E be a Borel subset of T of Lebesque measure zero. We
assume that there exists a family of pairwise disjoint open arcs (I,) of T
such that E C |J I,. Suppose that there exists 0 < [ < a such that

n

|| _
Z‘I [og == (Em) >

then E is a uniqueness set for D,.
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Proof. Since |E| = 0, we can assume that there is v € (0,1) such that
sup,, [In| < ym. Let f € D, be such that f*|E = 0. Weset Z = ) |I,].
Since (I,,) are disjoint, C_g is comparable to Cz 5 . Then Theorem P.9 and
Jensen inequality give

1 2
2 [, tosls@al < it (57 [ 1@

e[ In|*~?
< I, 1 Dr,.a
= Z' | g(o (Em) 1af)
_ §:|1 [log - ——— B I§ :' Il g (D, a(F)
Eﬁ[ e
a—p
<
< g ]I\log Eﬂ[ +Zlog( E Dy, of >
‘ n‘H—a_ € 2
< I,|1 Tlog | = =—
< X lhllos g gy + 71w (7112)
By Fatou Theorem we obtain f = 0, which finishes the proof. (]

The following result was obtained by Carleson [d] for the classical Dirichlet
space. A generalization of his Theorem was given by Preobrazhenskii in L]
and by Pau and Pelaez in [[[§] for the Dirichlet spaces D, with 0 < o < 1.
Here we give another proof of this generalization.

Corollary 3.2. . Let E be a closed subset of T of Lebesgue measure zero.
Let 0 < 0 < a < 1. Assume that there exists m > 0 such that for each
interval I C T centered at a point of F,

Ci—g(ENI)>m|I|. (9)
Then E is a uniqueness set for D, if and only if
> | log 1| = —oo, (10)

n

where (I,)y are the complementary intervals of E.

Proof. Note that A'(D) := Hol(D) N C(D) C D,. If E is a uniqueness set
for D,,, then E is a uniqueness set for A!(D) and thus E is not a Carleson
set [fl], i.e. E has Lebesgue measure zero and satisfies ([[0]).
Conversely, we write T\E = |J I, with I}, = (e%2*, e?2k+1). Let Joy (resp.
k

Jor+1) be the open arc of length |I;;| with midpoint €2+ (resp. e?2++1). By
Vitali covering lemma, there exists a sub-collection (Ji/)x of (Jx ) which is
disjoint and satisfies | Ji C 3|J Jir. Hence,

k k!

> 1w llog | Ju| = —
k/
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Let F = E(\ (U Jx) be the subset of E contained in |JJi. The set F'is a
K’ k'
Borel set and, since F'NJy = E N Jy, by (),
Cl_ﬁ(F N ka) > m]Jk/\
Then for 0 < § < a < 1, we obtain

T | TP
> ilios | k('Fan/) 3108 i —logm 3 ] = —o0

By Theorem B.1], the set F is a set of uniqueness for D,, and so does F,
which finishes the proof. O

Remarks. 1. A function ¢ € D, is called multiplier of D, if oD, C D,
and we denote the set of multipliers by Mp, . Richter and Sundberg in [[7]
proved that a set E is a zero set of Dirichlet space Dy if and only if it is a zero
set of Mp,. On the other hand if ¢ € Mp,, then by Steganga result [I§]
Theorem 2.7.c, we have Dy 1(p) = O(Co(I)), note that Co(I) =< |log I|~1

2. Khavin and Maz’ya in [f] have constructed a set of uniqueness E for
the classical Dirichlet space such that C;_g(£) = 0 for every 0 < § < 1. On
the other hand, Carleson in [[f] has constructed a zero set E which satisfies
(ld) and E N I has a positive logarithmic capacity for all arcs such that
ENI # (. Asin [f], we can construct a closed set F which is a set of
uniqueness for D, and such that Ci_g(E) = 0 for all 0 < 8 < a < 1.
Let (I5)n>0 be a sequence in (0, 27) and let C be the associated generalized
Cantor set. Then for 0 < s < 1,

Co(C) =0 = > 27",° = foo,

see for example [f, .
1
Choose I, = (27"n)T=F. Then C1_3(C) =0 and for 0 < § < a,

a—F 1—a
B < 0.

S oy Um0 =N oy TS

Therefore, C1_,(C) > 0. Now, consider a family of pairwise disjoint open
arcs (I,,)n of T be such that

Z |In| log |In| = -
n

A possible example, I, = (ei(log("ﬂ))A,ei(log")il), n > 2. We reproduce the
generalized Cantor set C in each [I,,, which will be denoted by C,,. Therefore,

C’l_a(Cn N In) ~ Cl_a(C)|In|a.
We set £ = {1} U|JC,. It is clear that C1_g(E) = 0, for all 0 < 8 < a
Now Theorem B.J] with B = « gives

[In| _ _ _
Z\f ollog — By = 1ogcl_a<0>;unr+<1 a)?fnuoguny—
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So F is a set of uniqueness for D, with a < 1.

3. Malliavin in [[(1]] gives a complete characterization of the sets of unique-
ness for the Dirichlet spaces involving a new notion of capacity, but it ap-
pears difficult to apply his result to particular situations (see also [[L0]).

Acknowledgment. I would like to thank the referee for his helpful remarks
specially for those regarding the proof of Theorem P.3
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