Poincaré type inequality for Dirichlet spaces and application to the uniqueness set
Karim Kellay

To cite this version:
Karim Kellay. Poincaré type inequality for Dirichlet spaces and application to the uniqueness set. Mathematica Scandinavica, 2011, 108 ((1)), pp.103-114. hal-00428630

HAL Id: hal-00428630
https://hal.science/hal-00428630
Submitted on 29 Oct 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
POINCARE TYPE INEQUALITY FOR DIRICHLET SPACES AND APPLICATION TO THE UNIQUENESS SET

KARIM KELAY

Abstract. We give an extension of Poincaré’s type capacitary inequality for Dirichlet spaces and provide an application to study the uniqueness sets on the unit circle for these spaces.

1. Introduction

Let \(\mathbb{D} \) be the open unit disk in the complex plane and let \(T = \partial \mathbb{D} \) be the unit circle. For \(0 < \alpha \leq 1 \), the Dirichlet space \(\mathcal{D}_\alpha \) consists of all analytic functions \(f \) defined on \(\mathbb{D} \) such that

\[
\mathcal{D}_\alpha(f) := \int_T \int_T \left| \frac{f(z) - f(w)}{|z - w|^{1+\alpha}} \right|^2 \frac{|dz| |dw|}{2 \pi} < \infty.
\]

The space \(\mathcal{D}_\alpha \) is endowed with the norm

\[
\|f\|_\alpha^2 := |f(0)|^2 + \mathcal{D}_\alpha(f).
\]

By [7], this norm is comparable to

\[
\sum_{n \geq 0} |\hat{f}(n)|^2 (1 + n)^\alpha.
\]

The classical Dirichlet space \(\mathcal{D}_1 \) is a subspace of the Sobolev space \(W^{1,2}(\mathbb{D}) \), defined as the completion of \(C^1(\mathbb{D}) \) under the norm

\[
\|f\|^2 = \left| \int_{\mathbb{D}} f(z)dA(z) \right|^2 + \int_{\mathbb{D}} |\nabla f(z)|^2 dA(z),
\]

where \(dA(z) \) is a normalized Lebesgue measure. Note that the restriction of this norm to \(\mathcal{D}_1 \), becomes

\[
\|f\|^2 = |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 dA(z), \quad f \in \mathcal{D}_1,
\]

which is equivalent to the norm of \(\mathcal{D}_1 \).

Given \(f \in W^{1,2}(\mathbb{D}) \), we write \(Z(f) = \{ z \in \mathbb{D}; f(z) = 0 \} \), the zero set of \(f \) in \(\mathbb{D} \). The Poincaré capacitary inequality in \(W^{1,2}(\mathbb{D}) \) gives the precise asymptotic behavior of the constant in Poincaré’s inequality [4, 11, 19].

\[\text{Mathematics Subject Classification. primary 30H05; secondary 31A25, 31C15.} \]
\[\text{Key words and phrases. Poincaré’s inequality, Dirichlet spaces, uniqueness set.} \]
\[\text{This work was partially supported by ANR Dynop.} \]
(see also the paper [12] by Maz’ya and the references there). More precisely there exists a constant $c > 0$ such that
\[
\int_{D} |f(z)|^2 dA(z) \leq \frac{c \text{cap}_2(Z(f))}{\text{cap}_2(\mathbb{T})} \int_{\mathbb{T}} |\nabla f(z)|^2 dA(z),
\]
for all $f \in W^{1,2}(D)$, $\|\nabla f\|_2 \neq 0$, where
\[
\text{cap}_2(E) = \inf \left\{ \int_{D} |\nabla \varphi|^2 : \varphi \in C^\infty_0(D), \varphi \geq 1 \text{ on } E \right\}
\]
and $C^\infty_0(D)$ is the set of all infinitely differentiable functions of compact support in D. Our main result in this paper is to establish a Poincaré capacitary inequality for functions in the Dirichlet spaces with the zero set is contained in \mathbb{T} (see Theorem 2.2). We provide a sufficient condition for a set to be uniqueness set for Dirichlet spaces (see Theorem 3.1).

Let X be some class of analytic functions in D and let E be a subset of \mathbb{T}. The set E is said to be a uniqueness set for X if, for each $f \in X$ such that $f^*(\zeta) := \lim_{r \to 1^-} f(r\zeta) = 0$ for all $\zeta \in E$, we have $f = 0$.

It is clear that D_α is contained in the Hardy space H^2. So each function $f \in D_\alpha$ has non-tangential limits a.e on \mathbb{T}. It is known that every set $E \subset \mathbb{T}$ of positive Lebesgue measure is a uniqueness set for all functions of bounded type in D (and therefore, for H^2). Carleson [5] proved that a closed set of Lebesgue measure zero $E \subset \mathbb{T}$ is a uniqueness set for the Lipschitz class if and only if E is not a Carleson set (log dist(\cdot, E) $\notin L^1(\mathbb{T}$)). He also proved in the same paper that if E is not a Carleson set under capacitary condition (in particular E has a positive C_s–capacity for some $s > 0$), then E is a uniqueness set for the classical Dirichlet space. Khavin and Maz’ya [9] have proved that there exists a set of uniqueness of C_s–capacity zero for any $s > 0$ for the classical Dirichlet space. The proof of Khavin and Maz’ya is based on Poincaré’s inequality in the Sobolev space [5]. However, the Khavin–Maz’ya Theorem does not allow to deduce the Carleson Theorem. Here, we give a generalization of Khavin–Mazya’s result which works for D_α spaces, $0 < \alpha \leq 1$, and from it we deduce Carleson’s result. Our proof is based on a local Poincaré type capacitary inequality in Dirichlet spaces (see Theorem 2.2).

2. POINCARÉ’S CAPACITARY INEQUALITY

2.1. Capacity. We begin with the definition of the classical capacity [3, 8]. We define the kernel on \mathbb{T} by
\[
k_\alpha(\xi) = \begin{cases}
|1 - \zeta|^{-\alpha}, & 0 < \alpha < 1, \\
|\log |1 - \zeta||, & \alpha = 0.
\end{cases}
\]
Given a probability measure μ on \mathbb{T}, for $0 \leq \alpha < 1$, we define its α–energy by
\[
I_\alpha(\mu) = \int \int k_\alpha(\xi \bar{\xi})d\mu(\xi)d\mu(\xi).
\]
Given a Borel subset E of \mathbb{T}, we denote by $\mathcal{P}(E)$ the set of all probability measures supported on a compact subset of E. We define its C_α-capacity by

$$C_\alpha(E) = 1/\inf\{I_\alpha(\mu) : \mu \in \mathcal{P}(E)\}.$$

If $\alpha = 0$, C_0 is called the logarithmic capacity. Note that for a set $E \subset \mathbb{T}$, $C_\alpha(E) > 0$ means that there exists a Borel positive finite measure μ supported by E with finite energy

$$\sum_{n \geq 1} |\hat{\mu}(n)|^2 n^{1-\alpha} < \infty.$$

Now we define the L^2–capacity introduced by Meyers [13] see also [1, 2]. For $0 < \alpha \leq 1$, the harmonic Dirichlet space $D_\alpha(\mathbb{T})$ consists of all functions $f \in L^2(\mathbb{T})$ such that

$$D_\alpha(f) < \infty$$

with the norm

$$\|f\|^2_{D_\alpha(\mathbb{T})} = \|f\|^2_{L^2(\mathbb{T})} + D_\alpha(f).$$

This norm is comparable to

$$\sum_{n \geq 0} |\hat{f}(n)|^2 (1 + |n|)^\alpha.$$

We have $\hat{k_{1-\alpha}}(n) \sim |n|^{-\frac{\alpha}{2}}$ as $n \to \pm\infty$ and so $\|k_{1-\alpha} * f\|_{\alpha}$ is comparable to $\|f\|_{L^2(\mathbb{T})}$ for all $f \in L^2(\mathbb{T})$. Hence

$$D_\alpha(\mathbb{T}) = \left\{k_{1-\alpha} * f : f \in L^2(\mathbb{T})\right\}.$$

For any set $E \subset \mathbb{T}$ we define the $C_{\alpha,2}$ capacity by

$$C_{\alpha,2}(E) := \inf \left\{\|f\|^2_{L^2(\mathbb{T})} : f \in L^2(\mathbb{T}) , f \geq 0 , k_{1-\alpha} * f \geq 1 \text{ on } E\right\}.$$

This capacity is comparable to

$$\inf \left\{\|f\|^2_{D_\alpha(\mathbb{T})} : f \in D_\alpha(\mathbb{T}) , f \geq 0 , f \geq 1 \text{ on } E\right\}.$$

Furthermore $C_{\alpha,2}(E)$ is comparable to the classical capacity $C_{1-\alpha}$, where the implied constants depend only on α, see [13] Theorem 14, [3] Theorem 2.5.5. We finally mention the results of Beurling [3] and Salem Zygmund [8, 5, 4] about the boundary behavior for the functions of the Dirichlet spaces: if $f \in D_\alpha$, we write $f^*(\xi) = \lim_{r \to 1-} f(r\xi)$, then f^* exists $C_{1-\alpha}$-q.e on \mathbb{T}, that is

$$C_{1-\alpha}(\{\zeta \in \mathbb{T} : f^*(\zeta) \text{ does not exist}\}) = 0.$$

Note that if E is a closed set such that $C_{1-\alpha}(E) = 0$, then there exists a function $f \in D_\alpha$ with $f^*(\zeta) = 0$ on E (see [13]).
2.2. **Poincaré’s capacitary inequality for the Dirichlet spaces.** Let I, J be two open arcs of T and f be a function. We set

$$D_{I,J,\alpha}(f) = \int_I \int_J |f(z) - f(w)|^2 \frac{|dz| |dw|}{|z - w|^{1+\alpha}} 2\pi,$$

and

$$D_{I,\alpha}(f) = D_{I,I,\alpha}(f).$$

We begin with a simple extension lemma.

Lemma 2.1. Let $0 < \gamma < 1$ and let $I = (e^{-i\theta}, e^{i\theta})$ with $\theta < \gamma \pi/2$. Let $f \in D_\alpha$, then there exists a function \tilde{f} coincide with f in I and such that

$$D_{J,\alpha}(\tilde{f}) \leq c D_{I,\alpha}(f),$$

where $J = (e^{-2i\theta/(1+\gamma)}, e^{2i\theta/(1+\gamma)})$ and c an absolute constant.

Proof. Let \tilde{f} be such that

$$\tilde{f}(e^{it}) = \begin{cases} f(e^{it}) & e^{it} \in I, \\ f(e^{2\theta/3}) & e^{it} \in L := (e^{i\theta}, e^{2i\theta/(1+\gamma)}), \\ f(e^{-2\theta/3}) & e^{it} \in R := (e^{-2i\theta/(1+\gamma)}, e^{-i\theta}). \end{cases}$$

We write

$$D_{I,\alpha}(\tilde{f}) = D_{I,\alpha}(f) + D_{L,\alpha}(\tilde{f}) + D_{R,\alpha}(\tilde{f})$$

$$+ 2 D_{I,L,\alpha}(\tilde{f}) + 2 D_{I,R,\alpha}(\tilde{f}) + 2 D_{L,R,\alpha}(\tilde{f}).$$

If $u, v \in (\frac{1+3\gamma}{2(1+\gamma)}, \theta, \theta)$, then $\pi > |2u - 2v| \geq |u - v|$. By change of variable, we get

$$D_{L,\alpha}(\tilde{f}) = 4 \int_{\frac{1+3\gamma}{2(1+\gamma)}}^{\theta} \int_{\frac{1+3\gamma}{2(1+\gamma)}}^{\theta} \frac{|f(e^{iu}) - f(e^{iv})|^2}{e^{i(3\gamma - 2u)} - e^{i(3\gamma - 2v)}} \frac{du}{2\pi} \frac{dv}{2\pi} \leq 4 D_{I,\alpha}(f).$$

The same inequality holds for $D_{R,\alpha}(\tilde{f})$.

If $u \in (\frac{1+3\gamma}{2(1+\gamma)}, \theta, \theta)$ and $t \in (-\theta, \theta)$, then $\pi > 3\theta - 2u - t \geq |u - t|$ and

$$D_{I,L,\alpha}(\tilde{f}) = 2 \int_{-\theta}^{\theta} \int_{\frac{1+3\gamma}{2(1+\gamma)}}^{\theta} \frac{|f(e^{it}) - f(e^{iu})|^2}{|e^{i(3\gamma - 2u)} - e^{i(3\gamma - 2v)}|^{1+\alpha}} \frac{dv}{2\pi} \frac{dt}{2\pi} \leq 2 D_{I,\alpha}(f).$$

The same inequality holds also for $D_{I,R,\alpha}(\tilde{f})$.

If $u \in (\frac{1+3\gamma}{2(1+\gamma)}, \theta, \theta)$ and $v \in (-\theta, -\frac{1+3\gamma}{2(1+\gamma)}\theta)$, then $\pi > (3\theta - 2u) + (3\theta + 2v) \geq u - v$ and

$$D_{L,R,\alpha}(\tilde{f}) = 4 \int_{\frac{1+3\gamma}{2(1+\gamma)}}^{\theta} \int_{-\theta}^{\frac{1+3\gamma}{2(1+\gamma)}} \frac{|f(e^{iu}) - f(e^{iv})|^2}{|e^{i(3\gamma - 2u)} - e^{i(2\theta + 2v)}|^{1+\alpha}} \frac{dv}{2\pi} \frac{du}{2\pi} \leq 4 D_{I,\alpha}(f).$$

Hence (2) is proved. \qed
Given $E \subset \mathbb{T}$, we write $|E|$ for the Lebesgue measure of E. We can now state the main result of this section.

Theorem 2.2. Suppose that $0 < \gamma < 1$. Let $E \subset \mathbb{T}$ and $f \in \mathcal{D}_\alpha$ be such that $f^*|E = 0$. Then, for any open arc $I \subset \mathbb{T}$ with $|I| \leq \gamma \pi$ and any $0 < \beta \leq \alpha$,\[\left[\frac{1}{|I|} \int_I |f(\xi)||d\xi| \right]^2 \leq \frac{c}{C_{\beta,2}(E \cap I)} \mathcal{D}_{1,\alpha}(f), \]
where c is a constant depending only on β and γ.

Proof. For simplicity, we will assume that $I = (e^{-i\theta}, e^{i\theta})$ with $\theta < \gamma \pi / 2$. Let $J = (e^{-2\theta/(1+\gamma)}, e^{2\theta/(1+\gamma)})$, $\theta_\gamma = \frac{3\pi}{2(1+\gamma)}$ the midpoint of $(\theta, 2\theta/(1+\gamma))$ and $I_\gamma = (e^{-i\theta_\gamma}, e^{i\theta_\gamma})$. Let ϕ be a positive function on \mathbb{T} such that supp $\phi = I_\gamma$, $\phi = 1$ on I and \[|\phi(z) - \phi(w)| \leq \frac{c_\gamma}{|J|}|z - w|, \quad z, w \in \mathbb{T}. \]
where c_γ is a constant depending only on γ.

Now let \tilde{f} be the function given in Lemma 2.1 and set \[F(z) = \phi(z)\left|1 - \frac{\tilde{f}(z)}{m}\right|, \quad z \in \mathbb{T}, \]
with \[m := \frac{1}{|J|} \int_J |\tilde{f}(\xi)||d\xi|. \]
Hence $F \geq 0$, $F_{|E \cap I} = 1 \quad C_{1-\alpha}$ and thus $F_{|E \cap I} = 1 \quad C_{1-\beta}$, since if $C_{1-\alpha}(A) = 0$, we have $C_{1-\beta}(A) = 0$. Therefore, \[C_{\beta,2}(E \cap I) \simeq \inf \left\{ \|g\|^2_{L_2(\mathbb{T})} : g \geq 0, \quad g \geq 1 \quad C_{\beta,2} \text{ on } E \cap I \right\} \]
\[\leq c_\beta \|F\|^2_{L_2(\mathbb{T})}, \quad (3) \]
where c_β is a constant depending only on β.

In order to conclude, we estimate $\|F\|^2_{L_2(\mathbb{T})}$. First, \[
\|F\|^2_{L_2(\mathbb{T})} = \int_\mathbb{T} |F(z)|^2 |dz| / 2\pi + \int_\mathbb{T} \int_\mathbb{T} \frac{|F(z) - F(w)|^2 |dz| |dw|}{2\pi^2} \]
\[\leq \frac{1}{m^2} \int_J |m - \tilde{f}(z)|^2 |dz| / 2\pi + \int_J \int_J \frac{|F(z) - F(w)|^2 |dz| |dw|}{2\pi^2} \]
\[\quad + \frac{2}{m^2} \int_{z \in \mathbb{T} \setminus J} \int_{w \in I} \frac{|m - \tilde{f}(w)|^2 |dz| |dw|}{|z - w|^{1+\beta}} / 2\pi \]
\[= \frac{A}{2\pi m^2} + \frac{B}{4\pi^2} + \frac{C}{2\pi^2 m^2}. \quad (4) \]
By (2),

\[A := \int_J |m - |\tilde{f}(z)||^2|dz| \]
\[= \frac{1}{|J|^2} \int_J |\int_J (|\tilde{f}(\zeta)| - |\tilde{f}(z)||) d\zeta||^2|dz| \]
\[\leq \frac{1}{|J|} \int_J \int_J |\tilde{f}(\zeta) - \tilde{f}(z)||^2|d\zeta||dz| \]
\[\leq c_1 \int_J \int_J |\tilde{f}(\zeta) - \tilde{f}(z)||^2 \frac{1}{|\zeta - z|^{1+\beta}}|dz||d\zeta| \]
\[\leq c_1 |J|^{\alpha-\beta} D_{J,\alpha}(\tilde{f}) \]
\[\leq c_2 |I|^{\alpha-\beta} D_{I,\alpha}(f), \quad (5) \]

for some constants \(c_1, c_2 \) independent of \(\beta \) and \(\gamma \).

If \((z, w) \in J \times J\), then

\[|F(z) - F(w)| =
\]
\[\left| \phi(z) \left(1 - \frac{|\tilde{f}(z)|}{m} \right) - \left(1 - \frac{|\tilde{f}(w)|}{m} \right) \right| + (\phi(z) - \phi(w)) \left| 1 - \frac{|\tilde{f}(w)|}{m} \right| \]
\[\leq \frac{1}{m} |\tilde{f}(z) - \tilde{f}(w)| + \frac{c_\gamma |z - w|}{m} |m - |\tilde{f}(w)|| \]
\[\leq \frac{1}{m} |\tilde{f}(z) - \tilde{f}(w)| + \frac{c_\gamma |z - w|}{|J|^2} \int_J |\tilde{f}(\zeta) - \tilde{f}(w)||d\zeta|. \]

So, by (3) again,

\[B := \int_J \int_J \frac{|F(z) - F(w)|^2}{|z - w|^{1+\beta}}|dz||dw| \]
\[\leq \frac{2}{m^2} \int_J \int_J \frac{|\tilde{f}(z) - \tilde{f}(w)|^2}{|z - w|^{1+\beta}}|dz||dw| + \frac{2c_2}{m^2 |J|^4} \int_J \int_J \left(\int_J |\tilde{f}(\zeta) - \tilde{f}(w)||d\zeta| \right)^2 |z - w|^{1-\beta}|dw||dz| \]
\[\leq \frac{2 + 2c_2}{m^2} \int_J \int_J \frac{|\tilde{f}(\zeta) - \tilde{f}(w)|^2}{|\zeta - w|^{1+\beta}}|d\zeta||dw| \]
\[\leq \frac{c_3}{m^2} |I|^{\alpha-\beta} D_{I,\alpha}(f), \quad (6) \]

with \(c_3 \) is a constant depending only on \(\gamma \).
Finally,

\[C := \int_{z \in \mathbb{T} \setminus J} \int_{w \in I} \frac{|m - |\tilde{f}(w)||^2}{|z - w|^{1+\beta}} |dz| |dw| \]
\[\leq \frac{c_4}{|J|^{1+\beta}} \int_{I} |m - |\tilde{f}(w)||^2 |dw| \]
\[\leq \frac{c_4}{|J|^{2+\beta}} \int_{I} \left(\int_{J} |\tilde{f}(\zeta) - \tilde{f}(w)||d\zeta| \right)^2 |dw| \]
\[\leq \frac{c_4}{|J|^{1+\beta}} \int_{I} \left(\int_{J} |\tilde{f}(\zeta) - \tilde{f}(w)||d\zeta| \right)^2 |dw| \]
\[\leq c_4 \int_{J \times J} \frac{|\tilde{f}(\zeta) - \tilde{f}(w)|^2}{|\zeta - w|^{1+\beta}} |d\zeta||dw| \]
\[\leq c_5 |I|^{\alpha-\beta} D_{I,\alpha}(f), \tag{7} \]

with \(c_4, c_5 \) independent of \(\gamma, \beta \).

By (6), (8) and (7), we see that

\[\|F\|_{D_{\beta}(\mathbb{T})}^2 \leq \frac{c_6}{m^2} |I|^{\alpha-\beta} D_{I,\alpha}(f), \tag{8} \]

with \(c_6 \) depending only on \(\gamma \). Since

\[m \geq \frac{1}{|I|} \int_{I} |f(\xi)||d\xi|, \]

combining (8) and (8), we get

\[C_{\beta,2}(E \cap I) \leq c \left[\frac{1}{|I|} \int_{I} |f(\xi)||d\xi| \right]^{-2} |I|^{\alpha-\beta} D_{I,\alpha}(f), \]

where \(c \) depending only on \(\beta \) and \(\gamma \), and the proof is complete. \qed

3. set of uniqueness for Dirichlet spaces

A special case of the theorem (\(\beta = 1 \) in Theorem 3.1) was obtained by Khavin and Maz’ya [9] for the classical Dirichlet space (\(\alpha = 1 \)). Here we give the generalization of their result in the Dirichlet spaces, including the classical case.

Theorem 3.1. Let \(E \) be a Borel subset of \(\mathbb{T} \) of Lebesgue measure zero. We assume that there exists a family of pairwise disjoint open arcs \((I_n) \) of \(\mathbb{T} \) such that \(E \subset \bigcup_n I_n \). Suppose that there exists \(0 < \beta \leq \alpha \) such that

\[\sum_n |I_n| \log \frac{|I_n|^{1+\alpha-\beta}}{C_{1-\beta}(E \cap I_n)} = -\infty, \]

then \(E \) is a uniqueness set for \(D_{\alpha} \).
Proof. Since $|E| = 0$, we can assume that there is $\gamma \in (0, 1)$ such that
$\sup_n |I_n| \leq \gamma \pi$. Let $f \in D_\alpha$ be such that $f^*|E| = 0$. We set $I = \sum_n |I_n|$.
Since (I_n) are disjoint, $C_{1-\beta}$ is comparable to $C_{\beta,2}$. Then Theorem 2.2 and Jensen inequality give

$$2 \int_{\bigcup I_n} \log |f(\xi)| d\xi \leq \sum_n |I_n| \log \left(\frac{1}{|I_n|} \int_{I_n} |f(\xi)| d\xi \right)^2$$

$$\leq \sum_n |I_n| \log \left(\frac{c|I_n|^{\alpha-\beta}}{C_{1-\beta}(E \cap I_n)} D_{I_n,\alpha}(f) \right)$$

$$= \sum_n |I_n| \log \frac{|I_n|^{1+\alpha-\beta}}{C_{1-\beta}(E \cap I_n)} + \mathcal{I} \sum_n \frac{|I_n|}{I} \log(cD_{I_n,\alpha}(f))$$

$$\leq \sum_n |I_n| \log \frac{|I_n|^{1+\alpha-\beta}}{C_{1-\beta}(E \cap I_n)} + \mathcal{I} \log \left(\frac{c}{I} \sum_n D_{I_n,\alpha}(f) \right)$$

$$\leq \sum_n |I_n| \log \frac{|I_n|^{1+\alpha-\beta}}{C_{1-\beta}(E \cap I_n)} + \mathcal{I} \log \left(\frac{c}{I} \|f\|_2^2 \right) = -\infty.$$

By Fatou Theorem we obtain $f = 0$, which finishes the proof. □

The following result was obtained by Carleson [4] for the classical Dirichlet space. A generalization of this Theorem was given by Preobrazhenskii in [16] and by Pau and Pelaez in [17] for the Dirichlet spaces D_α with $0 < \alpha < 1$. Here we give another proof of this generalization.

Corollary 3.2. Let E be a closed subset of \mathbb{T} of Lebesgue measure zero.
Let $0 < \beta < \alpha \leq 1$. Assume that there exists $m > 0$ such that for each interval $I \subset \mathbb{T}$ centered at a point of E,

$$C_{1-\beta}(E \cap I) \geq m|I|. \quad (9)$$

Then E is a uniqueness set for D_α if and only if

$$\sum_n |I_n| \log |I_n| = -\infty, \quad (10)$$

where $(I_n)_n$ are the complementary intervals of E.

Proof. Note that $A^1(\mathbb{D}) := \text{Hol}(\mathbb{D}) \cap C^1(\mathbb{D}) \subset D_\alpha$. If E is a uniqueness set for D_α, then E is a uniqueness set for $A^1(\mathbb{D})$ and thus E is not a Carleson set \mathbb{R}, i.e. E has Lebesgue measure zero and satisfies (10).

Conversely, we write $\mathbb{T}\backslash E = \bigcup_k I_k$ with $I_k = (e^{i\theta_{2k}}, e^{i\theta_{2k+1}})$. Let J_{2k} (resp. J_{2k+1}) be the open arc of length $|I_k|$ with midpoint $e^{i\theta_{2k}}$ (resp. $e^{i\theta_{2k+1}}$). By Vitali covering lemma, there exists a sub-collection $(J_{k'})_{k'}$ of $(J_k)_k$ which is disjoint and satisfies $\bigcup_k J_k \subset \bigcup_{k'} J_{k'}$. Hence,

$$\sum_{k'} |J_{k'}| \log |J_{k'}| = -\infty.$$
Let $F = E \cap (\bigcup J_{k'})$ be the subset of E contained in $\bigcup J_{k'}$. The set F is a Borel set and, since $F \cap J_{k'} = E \cap J_{k'}$, by (3),

$$C_{1-\beta}(F \cap J_{k'}) \geq m|J_{k'}|.$$

Then for $0 < \beta < \alpha \leq 1$, we obtain

$$\sum_{k'} |J_{k'}| \log \frac{|J_{k'}|^{1+\alpha-\beta}}{C_{1-\beta}(F \cap J_{k'})} \leq (\alpha-\beta) \sum_{k'} |J_{k'}| \log |J_{k'}| - \log m \sum_{k'} |J_{k'}| = -\infty.$$

By Theorem 3.1, the set F is a set of uniqueness for D_{α} and so does E, which finishes the proof. □

Remarks. 1. A function $\varphi \in D_{\alpha}$ is called multiplier of D_{α} if $\varphi D_{\alpha} \subset D_{\alpha}$ and we denote the set of multipliers by $M_{D_{\alpha}}$. Richter and Sundberg in [17] proved that a set E is a zero set of Dirichlet space D_{1} if and only if it is a zero set of $M_{D_{1}}$. On the other hand if $\varphi \in M_{D_{1}}$, then by Steganga result [18] Theorem 2.7.c, we have $D_{1,1}(\varphi) = O(C_{0}(I))$, note that $C_{0}(I) \asymp |\log |I||^{-1}$.

2. Khavin and Maz’ya in [8] have constructed a set of uniqueness E for the classical Dirichlet space such that $C_{1-\beta}(E) = 0$ for every $0 < \beta < 1$. On the other hand, Carleson in [2] has constructed a zero set E which satisfies (11) and $E \cap I$ has a positive logarithmic capacity for all arcs such that $E \cap I \neq \emptyset$. As in [8], we can construct a closed set E which is a set of uniqueness for D_{α} and such that $C_{1-\beta}(E) = 0$ for all $0 < \beta < \alpha < 1$. Let $(l_{n})_{n \geq 0}$ be a sequence in $(0,2\pi)$ and let C be the associated generalized Cantor set. Then for $0 \leq s < 1$,

$$C_{s}(C) = 0 \iff \sum_{n} 2^{-n}l_{n}^{-s} = +\infty,$$

see for example [2, 3].

Choose $l_{n} = (2^{-n}n)^{1-\beta}$. Then $C_{1-\beta}(C) = 0$ and for $0 < \beta < \alpha$,

$$\sum_{n} 2^{-n}l_{n}^{-(1-\alpha)} = \sum_{n} 2^{-n}n^{-\frac{\alpha-\beta}{1-\beta}} < \infty.$$

Therefore, $C_{1-\alpha}(C) > 0$. Now, consider a family of pairwise disjoint open arcs $(I_{n})_{n}$ of \mathbb{T} be such that

$$\sum_{n} |I_{n}| \log |I_{n}| = -\infty.$$

A possible example, $I_{n} = (e^{i(\log(n+1))^{-1}}, e^{i(\log(n))^{-1}})$, $n \geq 2$. We reproduce the generalized Cantor set C in each I_{n}, which will be denoted by C_{n}. Therefore,

$$C_{1-\alpha}(C \cap I_{n}) \simeq C_{1-\alpha}(C)|I_{n}|^{\alpha}.$$

We set $E = \{1\} \cup \bigcup C_{n}$. It is clear that $C_{1-\beta}(E) = 0$, for all $0 < \beta < \alpha$. Now Theorem 3.3 with $\beta = \alpha$ gives

$$\sum_{n} |I_{n}| \log \frac{|I_{n}|}{C_{1-\alpha}(E \cap I_{n})} \simeq -\log C_{1-\alpha}(C) \sum_{n} |I_{n}|^{1+(1-\alpha)} \sum_{n} |I_{n}| \log |I_{n}| = -\infty.$$
So E is a set of uniqueness for D_α with $\alpha < 1$.

3. Malliavin in [11] gives a complete characterization of the sets of uniqueness for the Dirichlet spaces involving a new notion of capacity, but it appears difficult to apply his result to particular situations (see also [10]).

Acknowledgment. I would like to thank the referee for his helpful remarks specially for those regarding the proof of Theorem 2.2

References