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, the comparison of colored objects and comfort situations are proposed.

Introduction

In many applications, especially in fuzzy control, triangular or trapezoidal membership functions are used.

Moreover, these membership functions define a fuzzy partition in the sense of Ruspini [START_REF] Ruspini | A new approach to clustering[END_REF] as shown in figure 1. It is often recognized that this type of membership functions are simple to handle and to compute with. Only a
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E-mail address: Laurent.Foulloy@univ-savoie.fr few papers have tried to bring sound motivations for what can be considered as the simplest possible form for membership functions. Pedrycz proposed two main interpretations: one is based on equalization, like entropy equalization, while the second one relies on the error-free reconstruction of a fuzzified signal by means of a defuzzification interface [START_REF] Pedricz | Why triangular membership functions?[END_REF], [START_REF] Pedrycz | Fuzzy equalization in construction of fuzzy sets[END_REF]. In [START_REF] Soto | Modelling a linguistic variable as a hierarchical family of partitions induced by an indistinguishability operator[END_REF], de Soto and Recasens, showed that fuzzy partitions based on triangular fuzzy numbers are obtained as compatible partitions associated with indistinguishability operators associated with the Lukasiewicz triangular norm. Dubois et al. also showed that triangular fuzzy numbers can be interpreted as the optimal probability-to-possibility transformation of a uniform probability distribution in a bounded interval [START_REF] Dubois | Probability-possibility transformations, triangular fuzzy sets and probabilistic inequalities[END_REF].

It is also quite conventional to use sum-product inference in fuzzy systems, like in Mizumoto fuzzy controllers for instance. It is worth noticing that the sum operator is not a t-conorm. However, when a triangular based fuzzy partition is used, the bounded sum, that is Lukasiewicz t-conorm, reduces to the sum operator and the output of the fuzzy system also satisfies Ruspini's condition on the cartesian product [START_REF] Benoit | Fuzzy sensor aggregation: application to comfort measurement[END_REF].

In this paper, we introduce a class of fuzzy equivalence relations whose reflexivity condition generalises Ruspini's condition. Compatible fuzzy partitions enable to obtain various types of membership functions, including the triangular ones. In section 2, basic definitions are provided. In section 3, it is shown in which conditions the class of relations which is studied in this paper becomes fuzzy equivalence relations. General properties are given, including the comparison between relations, their transitivity and the construction of fuzzy equivalence relations on cartesian products. A short discussion concludes this section. The links between fuzzy partitions and a linguistic approach are presented in section 4. Finally, several examples are proposed in section 5.

The first one concerns the comparison between colored objects. The second one deals with the fairy-tale example proposed by De Cock and Kerre [START_REF] Cock | On (un)suitable fuzzy relations to model approximate equality[END_REF]. Then, fairy-tale characters with colored clothes are used to illustrate an equivalence relation on a cartesian product. Finally, the analysis of comfort situations is proposed to emphasize the construction of fuzzy partitions associated with fuzzy equivalence relations.

Basic definitions

Definition 1: Let E be a set of vectors in [0, 1] n . Let T be a t-norm. Let be the mapping from to the positive real line, defined from the pair (E, T), as :

(1)

R T E E × a b , ( ) ∀ E 2 ∈ R T , a b , ( ) T a i b i , (
). 

v) a T # -transitive fuzzy relation on E if it is a fuzzy relation on E and vi) a T # -equivalence on E if it is a fuzzy relation on E, reflexive, symmetric and T # -transitive.

Definition 3: The mapping , defined by , is called the diagonal section of the tnorm T [START_REF] Klement | Triangular Norms[END_REF].

Remark 1: Let be the t-norm defined by . The reflexivity condition for the mapping becomes:

(

This condition corresponds to Ruspini's definition of a fuzzy partition [START_REF] Ruspini | A new approach to clustering[END_REF].

Definition 4: Let be a finite family of fuzzy sets of X, such that , and φ be a [0, 1]automorphism. The family P is a φ-partition on X [START_REF] Baets | Fuzzy Partitions and their Entropy[END_REF], if it verifies:

. Remark 2: Thus, the reflexivity condition of the relations can be related to De Baets's and Mesiar's definition of φ-partitions, using as the [0, 1]-automorphism with T a strict t-norm. Let us recall that a t-norm

T is strict if it is continuous and strictly monotone, i.e. T(u, v) < T(u, w) whenever u > 0 and v < w (see [START_REF] Klement | Triangular Norms[END_REF] for a large covering on t-norms).

R T a E R , ∈ ∀ T a a , ( ) 1. = a b , ( ) ∀ E 2 ∈ R T a b , ( ) , 1. ≤ a b , ( ) ∀ E 2 ∈ R T a b , ( ) , R T b a , ( ). = a b c , , ( ) ∀ E 3 T # R T a b , ( ) R T b c , ( ) , ( ) R T a c , ( ). ≤ , ∈ φ: 0 1 , [ ] 0 1 , [ ] → φ u ( ) T u u , ( ) = T M : 0 1 , [ ] 2 0 1 , [ ] → T M u v , ( ) min u v , ( ) = R T M a E ∈ R T M a a , ( ) φ a i ( ) i 1 = n ∑ = , ∀
min a i a i , (

)

i 1 = n ∑ a i i 1 = n ∑ 1. = = = P A i { } i I ∈ = i I A i ∅ ≠ , ∈ ∀ x X φ A i x ( ) ( ) i I ∈ ∑ , ∈ ∀ 1 = R T φ u ( ) T u u , ( ) =

Properties of R T mappings

Generalities

Let T be a strict t-norm. It is well-known that strict t-norms are isomorphic to the product, that is there exists a strictly increasing bijection , such that, for all :

(3) Thus, we have for all :

(4)

As the bijection θ is strictly increasing, the function φ is also a strictly increasing bijection. The inverse function is defined, for all , by: . ( 5)

Remark 3: The bijection φ can also be defined from the additive generator of the strict t-norm T. If T is a strict tnorm, it has an additive generator which is a strictly continuous decreasing function such that t(0) = ∞, t(1) = 0 and:

Therefore, it can easily be deduced, for all : ,

.

Remark 4: It is always simple to build a set E of vectors in [0, 1] n such that the mapping is reflexive on E.

Equation ( 5) provides a simple means to define a set F such that, given a strict t-norm T with a diagonal section φ, the mapping is reflexive on F. Indeed, it can be defined as follows:

Obviously, we have:

θ: 0 1 , [ ] 0 1 , [ ] → u v , ( ) 0 1 , [ ] 2 ∈ T u v , ( ) θ 1 -θ u ( ) θ v ( ) ⋅ ( ) . = u 0 1 , [ ] ∈ φ u ( ) T u u , ( ) θ 1 -θ 2 u ( ) ( ). = = φ 1 - u 0 1 , [ ] ∈ φ 1 -u ( ) θ 1 - θ u ( ) ( ) = t: 0 1 , [ ] 0 ∞ , [ ] → u v , ( ) 0 1 , [ ] 2 T u v , ( ) , ∈ ∀ t 1 -t u ( ) t v ( ) + ( ) . = u 0 1 , [ ] ∈ φ u ( ) t 1 -2t u ( ) ( ) = φ 1 -u ( ) t 1 -t u ( ) 2 --------- ⎝ ⎠ ⎛ ⎞ = R T M R T F b 0 1 , [ ] n ∈ a ∃ E such that b ∈ i φ 1 -a i ( ), for all i 1, … n , { } ∈ = ; { } . = (10)
This property will be used in section 4 to define fuzzy partitions on ℜ. 

F ∈ R T b b , ( ) φ b i ( ) i 1 = n ∑ = , ∀ φ φ 1 -a i ( ) ( ) i 1 = n ∑ a i i 1 = n ∑ 1. = = = R T M R T M T P : 0 1 , [ ] 2 0 1 , [ ] → R T P R T P T u v , ( ) φ , ( ) ( 
).

= =

Proposition 2: Let T be a strict t-norm. Let E be a set of vectors in [0, 1] n . Let be the mapping reflexive on E.

If the additive generator t of the t-norm T is strictly convex, then the following are equivalent for all :

(i) ,

(ii) , and, therefore, the relation is a reflexive fuzzy relation.

Proof. (ii) implies (i) from the fuzzy reflexivity condition of .

To prove that (i) implies (ii), let us remark that if the additive generator t of the t-norm T is strictly convex then, as it is decreasing by definition, its inverse t -1 is also strictly convex. Therefore, for all : [START_REF] Cook | Why T-equivalence relations do not resolve the Poincaré paradox, and related issues[END_REF] Due to the fuzzy reflexivity condition of , we have and , leading to: [START_REF] Soto | Modelling a linguistic variable as a hierarchical family of partitions induced by an indistinguishability operator[END_REF] Remark 5: This property is satisfied for the following families because their additive generators are strictly convex for the given parameter ranges:

• of Frank t-norms when λ ∈ ]0, ∞[, • of Schweizer-Sklar t-norms when λ ∈ ]-∞, 1[, • of Aczél-Alsina t-norms when λ ∈ [1, ∞[, • of Dombi t-norms when λ ∈ [1, ∞[, • of Hamacher t-norms when λ ∈ [0, 2[.
The family of Frank t-norms is continuous with respect to the parameter λ and we have where

T M R T a b , ( ) E 2 ∈ i 1, … n , { } a i b i ≠ , ∈ ∃ R T a b , ( ) 1 < R T R T a i b i ≠ 2t 1 -t a i ( ) t b i ( ) + ( ) t 1 -2t a i ( ) ( ) t 1 -2t b i ( ) ( ) + < 2T a i b i , ( ) T a i a i , ( ) T + b i b i , ( ). < ⇔ R T R T a a , ( ) 1 = R T b b , ( ) 1 = 

2

T a i b i , (

) (  ) (  )

i 1 = n ∑ T a i a i ,
i 1 = n ∑ T b i b i ,
i 1 = n ∑ + < 2R T a b , ( ) R T a a , ( ) R T b b , ( ) + < ⇔ R T a b , ( ) 1. < ⇔ T λ F T λ SS T λ AA T λ D T λ H T 0 F T M =
is the minimum. Although T M is not a strict t-norm, proposition 2 holds true for this t-norm (Let us note that the proof without using the continuity of a family of t-norms is quite obvious). It can also easily be shown that all tnorms built as the ordinal sum [START_REF] Klement | Triangular Norms[END_REF] of strict t-norms with convex additive generators also satisfy the equivalence in proposition 2.

Comparison of R T fuzzy relations

In this section, after a general proposition, it will be shown that fuzzy relations can be compared with relations. Then, given two strict t-norms T 1 and T 2 , the condition under which the relation can be compared with is given. ------------------------------

R T R T M R T 1 R T 2 u v , ( ) 0 1 , [ ] 2 ∈ u′ φ 1 -u ( ) = v′ φ 1 -v ( ) = T u′ v′ , ( ) t 1 -t u ( ) t v ( ) + 2 ------------------------- ⎝ ⎠ ⎛ ⎞ . = T u′ v′ , ( ) t 1 -t u′ ( ) t v′ ( ) + ( ) = φ 1 -u ( ) t 1 -t u ( ) 2 --------- ⎝ ⎠ ⎛ ⎞ = T u′ v′ , ( ) t 1 -t t 1 -t u ( ) 2 --------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ t t 1 -t v ( ) 2 --------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ + ⎝ ⎠ ⎛ ⎞ t 1 -t u ( ) t v ( ) + 2 ------------------------- ⎝ ⎠ ⎛ ⎞ . = = φ R T a b , ( ) E 2 ∈ R T a b , ( ) R T M a′ b′ , ( ) ≥ a′ i φ a i ( ) = b′ i φ b i ( ) = i 1, … n , { } ∈ a′ i b′ i ≤ a′ i t 1 -t a′ i ( ) t b′ i ( ) + 2 -
- ⎝ ⎠ ⎛ ⎞ b′ i ≤ ≤ min a′ i b′ i , (
) ------------------------------ 

t 1 -t a′ i ( ) t b′ i ( ) + 2 -
- ⎝ ⎠ ⎛ ⎞ ≤ u φ a i ( ) = v φ b i ( ) =
Because t 2 is bijective, there exists such that and . Replacing in equation ( 16) leads to:

. (

Composing by and taking into account that is strictly decreasing gives:

Now, using proposition 3 with and , it comes:

. ( 19 
)
Finally, since [START_REF] Janis | Resemblance in a nearness[END_REF] holds for all , we get:

and, therefore, .

Corollary 1: If is concave then and . ---------------------------------------------------- ---------------------------- -----------------------------

min a′ i b′ i , ( ) T a i b i , ( ) ≤ i 1, … n , { } ∈ R T a b , ( ) R T M a′ b′ , ( ) ≥ φ 1 φ 2 R T 1 R T 2 t 1 o t 2 1 - a b , ( ) E 2 ∈ R T 1 a b , ( ) R T 2 a′ b′ , ( ) ≥ a′ b′ , ( ) 
F 2 ∈ a′ i φ 2 1 -φ 1 a i ( ) ( ) = b′ i φ 2 1 -φ 1 b i ( ) ( ) = i 1, … n , { } ∈ t 1 o t 2 1 - x y , ( ) 0 ∞ , [ ] 2 ∈ t 1 o t 2 1 -x y + 2 ----------- ⎝ ⎠ ⎛ ⎞ t 1 o t 2 1 -x ( ) t 1 o t 2 1 -y ( ) + 2 -
≥ u v , ( ) 0 1 , [ ] 2 ∈ x t 2 u ( ) = y t 2 v ( ) = t 1 o t 2 1 -t 2 u ( ) t 2 v ( ) + 2 -
- ⎝ ⎠ ⎛ ⎞ t 1 u ( ) t 1 v ( ) + 2 -
≥ t 1 1 - t 1 1 - t 2 1 -t 2 u ( ) t 2 v ( ) + 2 ------------------------------ ⎝ ⎠ ⎛ ⎞ t 1 1 -t 1 u ( ) t 1 v ( ) + 2 ------------------------------ ⎝ ⎠ ⎛ ⎞ . ≤ u φ 1 a i ( ) φ 2 a′ i ( ) = = v φ 1 b i ( ) φ 2 b′ i ( ) = = T 2 a′ i b′ i , (
)

T 1 a i b i , ( ) ≤ i 1, … n , ( ) ∈ T 1 a i b i , (
)

i 1 = n ∑ T 2 a′ i b′ i , (
)

i 1 = n ∑ ≥ R T 1 a b , ( ) R T 2 a′ b′ , ( ) ≥ t 1 o t 2 1 - T 1 T 2 ≤ R T 2 a′ b′ , ( ) R T 1 a b , ( ) ≤
Proof. From the work of Schweizer and Sklar, it is known that, for continuous Archimedian t-norms, is subadditive and are equivalent [START_REF] Klement | Triangular Norms[END_REF]. As a corollary, if is concave then it is subadditive [START_REF] Klement | Triangular Norms[END_REF]. Thus, if is concave then and, according to proposition 5,

Transitivity of R T fuzzy relations

In this section, we first demonstrate that all fuzzy relations are T D -transitive, where 

Three cases must be considered: i) and . In this case, according to proposition 2 and the reflexivity of , we have , therefore equation ( 21) holds true.

ii) or . According to the symmetry of T D , we will only consider the case where . The left hand side part of equation ( 21) is equal to . According to proposition 2 and the -------------------------------

t 1 o t 2 1 - T 1 T 2 ≤ t 1 o t 2 1 - t 1 o t 2 1 - T 1 T 2 ≤ R T 2 a′ b′ , ( ) R T 1 a b , ( ). ≤ R T R T M min u v , ( ) u v u v - - + 2 -
= R T P R T R T T D : 0 1 , [ ] 2 0 1 , [ ] → R T a b c , , ( ) ∀ E 3 T D R T a b , ( ) R T b c , ( ) , ( ) R T a c , ( ). ≤ , ∈ R T a b , ( ) 1 = R T b c , ( ) 1 = R T a b c = = R T a b , ( ) 1 = R T b c , ( ) 1 = R T a b , ( ) 1 = R T b c , ( )
reflexivity of , we have . Thus, equation ( 21) holds true.

iii) and . In this case equation ( 21) is always satisfied since the left hand side part is equal to 0. Proof. We have to show:

. ( 2 2 ) 
Let us replace by its definition:

If , Eq. ( 23) always holds true.

In the other case, the reflexivity of the relation gives which can be replaced in Eq. ( 23) leading to:

Using the distributivity of the addition with respect to the minimum, we have: [START_REF] Ruspini | A new approach to clustering[END_REF] which is always true.

R T a b = R T a b , ( ) 1 ≠ R T b c , ( ) 1 ≠ R T R T M R T M T L : 0 1 , [ ] 2 0 1 , [ ] → T L u v , ( ) max u v 1 - + 0 , ( ) = a b c , , ( ) ∀ E 3 max R T M a b , ( ) R T M b c , ( ) 1 0 , - + ( ) , ∈ R T M a c , ( ) ≤ R T M max T M a i b i , (
)

T M b i c i , ( ) + ( ) i 1 = n ∑ 1 -0 , ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ T M a i c i , (
).

i 1 = n ∑ ≤ T M a i b i , (
)

T M b i c i , ( ) + ( ) i 1 = n ∑ 1 - 0 ≤ b i i 1 = n ∑ 1 = T M a i b i , (
)

T M b i c i , ( ) + ( ) i 1 = n ∑ b i T M a i c i , ( ) + ( ) i 1 = n ∑ . ≤ T M a i b i , (
) 

T M b i c i , ( ) + ( ) i 1 = n ∑ T M a i b i + c i b i + , ( ) i 1 = n ∑ , ≤ Proposition 
If , Eq. ( 26) always holds true.

In the other case, according to equation ( 1), is the dot product of the vectors a and b. Thus, we have to show:

Let us note that the vectors in E are unit vectors due to the reflexivity condition of the fuzzy relation . Let us denote respectively the three vectors a, b, and c. The norm of the vector is given by: (

According to the triangular inequality, we have and therefore [START_REF] Valverde | On the Structure of F-indistinguishability Operators[END_REF] 

R T P R T P T 0.5 Y T λ Y : 0 1 , [ ] 2 0 1 , [ ] → T D u v , ( ) if λ 0, = , max 1 1 u - ( ) λ 1 v - ( ) λ + ( ) 1 λ --- - 0 , ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ otherwise. , ⎩ ⎪ ⎨ ⎪ ⎧ a b c , , ( ) ∀ E 3 max 1 1 R T P a b , ( ) - 1 R T P b c , ( ) - + ( ) 2 - 0 , ( ) , ∈ R T P a c , ( ) ≤ 1 R T P a b , ( ) - 1 R T P b c , ( ) - + ( ) 2 1 > R T P a b , ( ) 
1 a b ⋅ - 1 b c ⋅ - + 1 a c ⋅ - . ≥ R T P OA OB OC , , AB AB b i a i - ( ) 2 i 1 = n ∑ a i 2 b i 2 2a i b i - + ( ) i 1 = n ∑ 2 1 a b ⋅ - . = = = AB BC + AC ≥ T L T λ Y a ]0 1[ , ∈ n ℵ ∈ a T n ( ) T # a a … a , , , ( ) 0 = = n times T D T 0 Y = ϕ: 0 1 , [ ] 0 1 , [ ] → : (29)
This remark opens an interesting question. Given a set E of vectors in [0, 1] n and a t-norm T with a strictly convex additive generator, can we find the greatest T # nilpotent t-norm such that the relation reflexive on E is a T # equivalence on E ?

As a first step towards an answer, figure 2 represents the highest λ, obtained by numerical computations, for which the relation associated with the family of Frank t-norms is -transitive on E. The x-axis is the base 10 logarithm of Frank's t-norm parameter α.

Fig. 2 -transitivity of the family of Frank t-norms.

Fuzzy equivalence on E 1 ×E 2

Equivalence relations are closely related to pseudo-metrics. In particular, if Q is a T # -equivalence on E then

d Q : E 2 →[0, ∞] defined by d Q = t #
oQ, with t # the additive generator of T # , is a pseudo-metric on E [START_REF] Baets | T-partitions, T-equivalences and pseudo-metrics[END_REF]. In this section, we show how to build a T # -equivalence on E 1 ×E 2 , given two T # -equivalences respectively on E 1 and E 2 .

Thus, it makes it possible to keep the same pseudo-metric on the cartesian product.

Proposition 9: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let E 1 and E 2 be two sets of vectors respectively in [0, 1] n and [0, 1] m . Let and be the two T # -equivalences respectively on E 1 and E 2 . Let be the strict t-norm defined by: . Then, for all and , the mapping defined by: 

u v , ( ) 0 1 , [ ] 2 ∈ T # u v , ( ) ϕ 1 -T L ϕ u ( ) ϕ v ( ) , ( ) ( ) ϕ 1 -max ϕ u ( ) ϕ v ( ) 1 - + 0 , ( ) ( ) . = = R T R T α F T λ Y 10 - 6 10 
T λ Y R T 1 R T 2 T*: 0 1 , [ ] 2 0 1 , [ ] → T* u v , ( ) φ 1 -φ u ( ) φ v ( ) ⋅ ( ) = a a′ , ( ) E 1 2 ∈ b b′ , ( ) E 2 2 ∈ R T , is a T # -equivalence on the cartesian product E=E 1 ×E 2 .
Proof. First of all, let us note that T* is a strict t-norm because, as shown in section 3, φ is a strictly increasing bijection from [0, 1] to [0, 1], which can therefore be used as a multiplicative generator. Now, to prove the proposition, as the additive generator of the t-norm T is strictly convex, it is sufficient to prove that the fuzzy relation is reflexive on E. The reflexivity of the relation is given, for all (a, b) ∈ E 2 , by: (

Replacing T* by its definition, then using the distributivity of the sum with respect to the product and, finally, the reflexivity of the relations and respectively on E 1 and E 2 , we have: 

Discussion

It is well known that, given a crisp partition P of a crisp set X, there exists a unique equivalence relation Q such that P is the quotient set of X by this relation which is defined by:

(32) R T a b , ( ) a′ b′ , ( ) , ( ) T T* a i b j , (
) T* a′ i b′ j , ( ) ,( ) (  ) 

j 1 = m ∑ i 1 = n ∑ = R T R T R T a b , ( ) a b , ( ) , ( ) φT* a i b j , ( ) 
j 1 = m ∑ i 1 = n ∑ = R T 1 R T 2 R T a b , ( ) a b , ( ) , ( ) φ a i ( ) φ b j ( ) ⋅ j 1 = m ∑ i 1 = n ∑ φ a i ( ) i 1 = n ∑ φ b j ( ) j 1 = m ∑ ⋅ 1. = = = R T P 1 R T P 2 a
R T P xQy A P x A ∈ y A. ∈ ∧ , ∈ ∃ ⇔ Now, let
and let us assume that the partition P is a finite family of non-empty fuzzy sets, that is and , the fuzzy version of Eq. ( 32) is given by: (33)

Since I is finite, the supremum can be replaced by the maximum which itself can be replaced by a t-conorm S, leading to Q S-T fuzzy relations defined by: (

Given , let us denote the vector in [0, 1] n and , its component defined by:

(35)
Thus, under the condition of proposition 2, we can link the fuzzy relations with the fuzzy equivalence relations , where is Lukasiewicz triangular conorm, i.e. , as follows:

(36)

This approach, which provides a restrictive class of equivalence relations (see [START_REF] Boixader | Fuzzy Equivalence Relations: advanced material[END_REF] for a survey on fuzzy equivalence relations), relies on the same trends as the pioneering works of Bezdek and Harris on likeness relations [3] or Ovchinnikov's on proximity relations [START_REF] Ovchinnikov | An introduction to fuzzy relations[END_REF], which emphasize the definition of fuzzy partitions and study the properties of the associated relations. For example, a fuzzy relation is given in [3] for the Fuzzy C-Means clustering algorithm, where the T L -transitivity is shown from the triangle inequality. Indeed, the reflexivity condition gives the constraint where c is the number of classes and u i (x) the class membership function of the data set X.

As already mentioned, it is also closely related to φ-partitions obtained from an algebraic (or strict) fuzzy partition, as proposed by De Baets and Mesiar [START_REF] Baets | Fuzzy Partitions and their Entropy[END_REF]. Links between a linguistic variable and indistinguishability relations, introduced by Valverde and Trillas [START_REF] Trillas | An inquiry on indistinguishability operators[END_REF], [START_REF] Valverde | On the Structure of F-indistinguishability Operators[END_REF], have been studied by De Soto and Recasens [START_REF] Soto | Modelling a linguistic variable as a hierarchical family of partitions induced by an indistinguishability operator[END_REF].

Finally, let us also remark that fuzzy relations are a particular case of the parametrized family

I 1, … n , { } = P A i { } i I ∈ = i I A i ∅ ≠ , ∈ ∀ x y , ( ) X X × ∈ Q x y , ( ) , ∀ sup i I ∈ T A i x ( ) A i y ( ) , ( ) . = x y , ( ) X X × ∈ Q S-T x y , ( ) , ∀ S i I ∈ T A i x ( ) A i y ( ) , ( ) . = x X ∈ D x D x i ( ) i I ∈ ∀ x X ∈ ∀ D x i ( ) A i x ( ). = , , Q S L -T R T S L : 0 1 , [ ] 2 0 1 , [ ] → S L u v , ( ) min u v 1 , + ( ) = x y , ( ) X X × ∈ Q S L -T x y , ( ) S L i I ∈ T A i x ( ) A i y ( ) , ( ) = , ∀ S L i I ∈ T D x i ( ) D y i ( ) , ( ) min T D x i ( ) D y i ( ) , ( ) i I ∈ ∑ 1 , ⎝ ⎠ ⎛ ⎞ = = min R T D x D y , ( ) 1 , ( ) R T D x D y , ( ). = = R T M u i x ( ) i 1 = c ∑ 1 = Q S L -T Q S λ Y -T
where is Yager's t-conorm family, that is , obtained when λ=1. They provide an interesting means to define fuzzy equivalence relations when using linguistic hedges as proposed by De Cock and Kerre [START_REF] Cock | A context-based approach to linguistic hedges[END_REF] (see an example in section 5.3 on the fairy-tale problem). Proof. Let us write the condition for P' to be a φ-partition on X:

Fuzzy partitions

(37

)
Since P is φ-partition on X, we have and, therefore, because J is a partition on I, we have:

(38) S λ Y : 0 1 , [ ] 2 0 1 , [ ] → S λ Y u v , ( ) min u λ v λ + ( ) 1/λ 1 , ( ) = X ℜ ⊂ P A i { } i 1, … n , { } ∈ = X ℜ ⊂ D x i ( ) A i x ( ) = D y i ( ) A i y ( ) = i 1, … n , { } ∈ x y , ( ) X 2 ∈ R T D x D y , ( ) 
R T I 1, … n , { } = P A i { } i I ∈ = X ℜ ⊂ J J k { } k K ∈ = S*: 0 1 , [ ] 2 0 1 , [ ] → S* u v , ( ) φ 1 -S L φ u ( ) φ v ( ) , ( ) ( ) = S L u v , ( ) min u v 1 , + ( ) = P′ B k { } k K ∈ = B k x ( ) S* i J k ∈ A i x ( ) ( ) = X ℜ ⊂ φ B k x ( ) ( ) k K ∈ ∑ φ S* i J k ∈ A i x ( ) ( ) ( ) k K ∈ ∑ S L i J k ∈ φ A i x ( ) ( ) k K ∈ ∑ min φ A i x ( ) ( ) i J k ∈ ∑ 1 , ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ . k K ∈ ∑ = = = φ A i x ( ) ( ) i J k ∈ ∑ 1 ≤ φ B k x ( ) ( ) k K ∈ ∑ φ A i x ( ) ( ) i J k ∈ ∑ k K ∈ ∑ 1. = =
Remark 8: This proposition will be very useful to build fuzzy partition, on cartesian products, for rule-based agregation as described in section 5.5. [START_REF] Dubois | Fuzzy numbers: an overview[END_REF] (see figure 3) is defined by the following membership function:

Definition 5: An (L-R) fuzzy interval

where , and and L, R two non-increasing left-continuous functions from ]0, 1] to [0, 1[, with and for all . 

Proposition 12:

Let T be a strict t-norm with a diagonal section φ. Let be a family of (L-R) fuzzy intervals defined on , with for all , and such that:

Then, for all and all , we have Proof. For all , we have . Now, for all and all we have:

(39) ----------------- -----------------------------

A x ( ) L a x - α ----------- ⎝ ⎠ ⎛ ⎞ if x ]a α -a[, , ∈ 1 i f x a b , [ ], ∈ R x b - β ----------- ⎝ ⎠ ⎛ ⎞ if x ]b b β + [, , ∈ 0 o t h e r w i s e , ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ = a b ℜ ∈ , a b ≤ α β 0 ∞[ , [ ∈ , L x ( ) 0 > R x ( ) 0 > x ]0 1[ , ∈ a-α b+β 1 a b x P A i { } i 1, … n , { } ∈ a i b i α i β i , , , ( ) LR { } i 1, … n , { } ∈ = = a 1 b n , [ ] ℜ ⊂ L u ( ) R u ( ) φ 1 -1 u - ( ) = = u ]0 1] , ∈ b i a i 1 + α i 1 + , - = b i β i + a i 1 + . = i 1, … n 1 - , { } ∈ x ]b i a i 1 + [ , ∈ L a i 1 + x - α i 1 + -
- ⎝ ⎠ ⎛ ⎞ φ 1 -1 φ R x b i - β i ------------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ - ⎝ ⎠ ⎛ ⎞ . = i 1, … n , { } ∈ α i 1 + β i = i 1, … n 1 - , { } ∈ x ]b i a i 1 + [ , ∈ φ 1 -1 φ R x b i - β i ------------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ - ⎝ ⎠ ⎛ ⎞ φ 1 -1 φ φ 1 -1 x b i - β i ------------- - ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ - ⎝ ⎠ ⎛ ⎞ φ 1 -x b i - β i ------------- ⎝ ⎠ ⎛ ⎞ φ 1 -1 α i 1 + b i x - + α i 1 + -
- - ⎝ ⎠ ⎛ ⎞ = = = φ 1 -1 a i 1 + x - α i 1 + ------------------- - ⎝ ⎠ ⎛ ⎞ L a i 1 + x - α i 1 + ------------------- ⎝ ⎠ ⎛ ⎞ . = =
Corollary 2: P is a φ-partition on .

Proof. For all

and for all , . Now, for all and all we have:

(40)

Remark 9: This generic method to build the fuzzy partitions associated with relations is a straightforward consequence of the definition of a φ-partition from an algebraic (or strict) fuzzy partition [START_REF] Baets | Fuzzy Partitions and their Entropy[END_REF]. For the same reason, it can be generalized by using a mapping where h: [0, 1] → [0, 1], is a strictly increasing function with h(0) = 0 and h(1) = 1, such that:

(41)

Fuzzy partition on

Proposition 13: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let and . Let and be two -partitions respectively on X 1 and X 2 . Let be the strict t-norm defined by . Then, such that for all , , is a -partition on Proof. According to proposition 10, for all and , and are, at least, -equivalences. Now, from proposition 9 we know that the relation defined by: (  ) (  )

a 1 b n , [ ] ℜ ⊂ i 1, … n , { } ∈ x a i b i , [ ] ∈ φA j x ( )
j 1 = n ∑ 1 = i 1, … n 1 - , { } ∈ x ]b i a i 1 + [ , ∈ φ j x ( )
j 1 = n ∑ φ R x b i - β i ------------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ φ L a i 1 + x - α i 1 + ------------------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ + φ R x b i - β i ------------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ φ φ 1 -1 φ R x b i - β i ------------- ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ - ⎝ ⎠ ⎛ ⎞ ⎝ ⎠ ⎛ ⎞ + 1 . = = = R T φ' 1 -u ( ) φ 1 -h u ( ) ( ) = h u ( ) h 1 u - ( ) + 1 . = X 1 X 2 × ℜ 2 ⊂ I 1, … n , { } = J 1, … m , { } = P 1 A i { } i I ∈ = P 2 B j { } j J ∈ = φ T*: 0 1 , [ ] 2 0 1 , [ ] → T* u v , ( ) φ 1 -φ u ( ) φ v ( ) ⋅ ( ) = P C i j , ( ) { } i j , ( ) I J × ∈ = x 1 x 2 , ( ) X 1 X 2 × ∈ C i j , ( ) x 1 x 2 , ( ) T* A i x 1 ( ) B j x 2 ( ) , ( ) = φ X 1 X 2 × . x 1 y 1 , ( ) X 1 2 ℜ 2 ⊂ ∈ x 2 y 2 , ( ) X 2 2 ℜ 2 ⊂ ∈ R T 1 D x 1 D y 1 , ( ) R T 2 D x 2 D y 2 , ( ) T D
A few years after his seminal paper on fuzzy set theory, Zadeh introduced the concept of fuzzy meaning [START_REF] Zadeh | Quantitative fuzzy semantics[END_REF].

It can be represented by a mapping M: L→F(X), where F(X) is the set of fuzzy subsets of X, given a relation between terms and numbers. The grade of membership to which x belongs to the meaning of the term l will be denoted .

In [START_REF] Zadeh | Quantitative fuzzy semantics[END_REF], Zadeh introduced also the concept of descriptor set that are extensively used in fuzzy sensors [1][21].

It provides a simple means of representing measurement results by a fuzzy subset of linguistic terms. The conversion from numerical to linguistic representation is called fuzzy linguistic (or symbolic) description or, more simply, fuzzy description and is defined by a mapping D: X→F(L), where F(L) is the set of fuzzy subsets of L,

given the same relation between terms and numbers as the one used for the fuzzy meaning. The grade of membership to which l belongs to the description of the number x will be denoted . Fuzzy description is very close to the representation defined in the scale formalism [START_REF] Finkelstein | Representation by symbol systems as an extension of the concept of measurement[END_REF] and allows the introduction of graduality in the conversion of physical states into fuzzy subsets of terms. Then, using the conventional additive notation for discrete fuzzy subsets, we have: 

M Small =
D x l ( ) l L ∈ x X ∈ M l x ( ) D x l ( ). = Remark 12:
The fuzzy description of number x is an element of F(L) and, therefore a vector in [0, 1] n if card(L) = n. Thus, the fuzzy description provides a simple means to build fuzzy equivalence relations on set of numbers. The partitions associated with these equivalence relations are given by the fuzzy meaning of the terms. Indeed, given a set of membership functions with , we can always define a bijection such that, for all , . The use of a set linguistic terms l ∈ L and their fuzzy meaning M l is nothing more than a re-labeling of the membership function which will be more convenient to develop applications.

Definition 6: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let L 1 and L 2 be two sets of linguistic terms whose fuzzy meanings are defined respectively on X 1 and X 2 and denoted , for all and . Let be the strict t-norm defined by .

For all , we will say that T* defines the meaning of a new term «l 1 and l 2 » on as follows:

Definition 7: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let L be a set of linguistic terms whose fuzzy meanings are defined on X and denoted , for all . Let be the t-conorm, isomorphic to Lukasiewicz t-conorm, defined by , where . For all , we will say that S* defines the meaning of a new term «l 1 or l 2 » on as follows:

Definition 8: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let L be a set of linguistic terms. Let be a -partition on X, with the fuzzy meanings of the term l, such that, for all all , there exists and Let defined by

. For all , we will say that N* defines the meaning of a new term «not l» on as follows:

P A i { } i I ∈ = I 1, … n , { } = f:I L → i I ∈ M l A f i ( ) = A i M l l 1 L 1 ∈ l 2 L 2 ∈ T*: 0 1 , [ ] 2 0 1 , [ ] → T* u v , ( ) φ 1 -φ u ( ) φ v ( ) ⋅ ( ) = l 1 l 2 , (
)

L 1 L 2 × ∈ L 1 L 2 × x 1 x 2 , ( ) X 1 X 2 × M l 1 and l 2 , ∈ ∀ x 1 x 2 , ( ) T* M l 1 x 1 ( ) M l 2 x 2 ( ) , ( ) . = M l l L ∈ S*: 0 1 , [ ] 2 0 1 , [ ] → S* u v , ( ) φ 1 -S L φ u ( ) φ v ( ) , ( ) ( ) = S L u v , ( ) min u v 1 , + ( ) = l 1 l 2 , ( ) L 2 ∈ L x X M l 1 or l 2 , ∈ ∀ x ( ) S* M l 1 x ( ) M l 2 x ( ) , ( ) . = M l { } l L ∈ φ M l l 1 L ∈ l 2 L ∈ x X φ M l 1 x ( ) ( ) φ M l 2 x ( ) ( ) + 1 . = , ∈ ∀ N*: 0 1 , [ ] 0 1 , [ ] → N* u ( ) φ 1 -1 φ u ( ) - ( ) = l L ∈ L x X M not l , ∈ ∀ x ( ) N* M l x ( ) (
). = Remark 13: The negation N* can be used with -partitions defined by means of (L-R) intervals as shown in section 4.1. Let us note also that the triplet (S*, T*, N*) obtained by means of the bijection φ satisfies the functional equation of Alsina [START_REF] Calvo | The functional equations of Frank and Alsina for uninorms and nullnorms[END_REF], that is S*(T*(u, v), T*(u, N(v)) = u, for all and , with and two -partitions respectively on X 1 and X 2 . The proof is obvious using proposition 14.

Examples

Fuzzy partitions on ℜ

Figure 4 represents three fuzzy partitions and their associated fuzzy equivalence relations generated according to the principle given in section 4.1. They are respectively obtained with the t-norm T M , with h(x) = x and T M with .

Fig. 4 Examples of fuzzy partitions and their associated equivalence relations.

Comparing colors

Let us analyze a more complex example where colored objects have to be compared. It will be assumed that the color information comes from a sensor based on three photo-detectors recreating the effects of the red, green, blue cones of the human eyes. When the sensor information is normalized, the color space is simply defined as the unit cube (R, G, B). In order to allow a simple description of colors, the luminosity will be separated from the 

φ u A i = v B j = A i { } i I ∈ B j { } j J ∈ φ T 500 F h x ( ) π 2 ---x ⎝ ⎠ ⎛ ⎞ 2 sin = -2 -1 0 1 2 -2
T M with h x ( ) π 2 ---x ⎝ ⎠ ⎛ ⎞ 2 sin =
chrominance information by a non linear mapping as shown in figure 5. Fig. 5 From the (R, G, B) cube to the Chrominance-Luminance representation Now let us assume that the Delaunay triangulation of the chrominance plane is used to perform a multi-linear interpolation that defines the 2D-fuzzy meanings of the linguistic terms, as shown in figure 6 for the two terms Red and Grey [START_REF] Benoit | A fuzzy colour sensor[END_REF]. The origin of the chrominance plane is labelled with the term Grey and the luminance information should be used to distinguish grey levels from Black to White. Fig. 6 The 2D-Fuzzy meaning of the terms Red and Grey. This representation verifies the property:

, ( 4 9 ) 
where L= {Red, Yellow, Grey, Magenta, Cyan, Blue, Green}. ------

- luminance chrominance x 1 x 2 1 1 2 --- - 1 2 --- - 0 3 2 ------- - 3 2 ------- r Y' ----- v Y' ----- b Y' ----- = Y' max r v b , , ( ) = 1 M Red x 1 x 2 1 M Grey x 1 x 2 x 1 x 2 , ( ) X ℜ 2 D x 1 x 2 , ( ) l ( ) l L ∈ ∑ , ⊂ ∈ ∀ M l x 1 x 2 , ( ) l L ∈ ∑ 1 = = x 1 o x 2 o , ( ) x 1 o x 2 o , ( ) 
o O D Color o ( ) , ∈ ∀ D x 1 o x 2 o , ( )

=

The position of each object in the chrominance plane is represented in figure 7.

Fig. 7 Objects in the chrominance plane

The fuzzy description of the pair (x 1 , x 2 ) associated with each object is given in table 6. For example, we have: Thanks to the property given by Eq. ( 49), a T L -equivalence can be obtained from the following fuzzy relation:

D Color(A) = D (0.
(51

)
When there is no ambiguity, it can be expedient to abbreviate Attribute(o) to o, relying on the context for the determination of whether o stands for an object or for its attribute. Thus, for the sake of readibility, the results

given in table 7 are labelled with the objects instead of their color (e.g. A is used in place of Color(A)). 

Grey

F 0 0 R T M o 1 o 2 , ( ) O 2 , ∈ ∀ R T M D Color o 1 ( ) D Color o 2 ( ) , ( ) min D Color o 1 ( ) l ( ) D Color o 2 ( ) l ( ) , ( ) l L ∈ ∑ = min D x 1 o 1 x 2 o 1 , ⎝ ⎠ ⎛ ⎞ l ( ) D x 1 o 2 x 2 o 2 , ⎝ ⎠ ⎛ ⎞ l ( ) , ⎝ ⎠ ⎜ ⎟ ⎛ ⎞ l L ∈ ∑ = This
fuzzy relation is a T L -equality, therefore d = t L o is a metric on the set X, where t L is the additive generator of the t-norm T L , that is t L (u) = 1 -u (see [START_REF] Klement | Triangular Norms[END_REF] for example). Thus, it makes it possible to compare objects in terms of distance in the color space: 

Comparing beauty

In [START_REF] Cock | On (un)suitable fuzzy relations to model approximate equality[END_REF], De Cock and Kerre have proposed an interesting example where fairy-tale characters, belonging to the set O = {Snowwhite, Witch, Wolf, Dwarf, Prince, Little-Red-Riding-Hood}, have their beauty compared (see also comments on this paper [START_REF] Bodenhofer | A note on approximate equality versus Poincaré paradox[END_REF], [START_REF] Boixader | On the relationship between T-transistivity and approximate equality[END_REF], [START_REF] Cook | Why T-equivalence relations do not resolve the Poincaré paradox, and related issues[END_REF], [START_REF] Klawonn | Should fuzzy equality and similarity satisfy transitivity? Comments on the paper by M[END_REF], [START_REF] Janis | Resemblance in a nearness[END_REF]). Available information is given by the following table :   Rather than interpreting this table as «the fuzzy sets beautiful, average and ugly in O», as suggested in [START_REF] Cock | On (un)suitable fuzzy relations to model approximate equality[END_REF], we will consider it as the fuzzy linguistic descriptions of the characters' beauty (Let us note that in [START_REF] Cock | On (un)suitable fuzzy relations to model approximate equality[END_REF] the set of the fairy-tale characters is denoted X which has another meaning in this paper 

R T M R T M R T M R T M o 1 o 2 , ( ) O 2 , ∈ ∀ d Color o 1 ( ) Color o 2 ( ) , ( ) 1-R T M D Color o 1 ( ) D Color o 2 ( ) , ( ) =
we have a horizontal reading of the table instead of a vertical one. For example, let us write the beauty of the Dwarf as Beauty(Dwarf). It is assumed that Beauty(Dwarf) is an unknown piece of information but whose fuzzy description is known and given by: D Beauty(Dwarf) = 0.10/Beautiful + 0.70/Average + 0.20/Ugly.

(

Since the linguistic description of beauty is given by a human being, it will be supposed that he/she uses fuzzy meanings of Beautiful, Average and Ugly resulting from a non-explicit aggregation of several criteria of beauty and it will be assumed that he/she provides coherent information.

As can be observed, the sum of the grades of memberships for each line of table 8 is equal to one. Therefore, a T L -equivalence is obtained from the following fuzzy relation:

.

(

The resulting table for the fairy-tale characters is given in Table 9 which is exactly the same as the one given in [START_REF] Cock | On (un)suitable fuzzy relations to model approximate equality[END_REF].

As for the color example, a distance can be associated with this equivalence relation in order to compare the beauty of the fairy-tale characters:

. (

As mentioned in section 3. ,( )

l L ∈ ∑ = R T M R T M o 1 o 2 , ( ) O 2 , ∈ ∀ d Beauty o 1 ( ) Beauty o 2 ( ) , ( ) 1-R T M D Beauty o 1 ( ) D Beauty o 2 ( ) , ( ) = R T R S λ Y -T S λ Y
, where h is a linguistic hedge [START_REF] Zadeh | Outline of a new approach to the analysis of complex systems and decision processes[END_REF].

(56) Indeed, under the conditions for proposition 2, we have:

(57)

The fuzzy relation built using the membership functions modified by powering hedges is the fuzzy relation raised to the power of the hedge as represented in figure 8.

Fig. 8 Links between powering hedges and fuzzy relations.

Table 10 illustrates the equivalence relation generated when using the membership functions obtained with the linguistic hedges very defined as P 2 . It means that the fuzzy descriptions of the characters' beauty are defined on the set L' = {Very_Beautiful, Very_Average, Very_Ugly} as for example:

D Beauty(Dwarf) = 0.01/Very_Beautiful + 0.49/Very_Average + 0.04/Very_Ugly.

Fairy-tale characters with colored clothes

In order to illustrate a fuzzy equivalence relation on a cartesian product, we will compare fairy tale 

) P = α M l x ( ) ( ) M l x ( ) ( ) α = λ 0 R S λ Y -T D x D y , ( ) , > ∀ min T M h l ( ) x ( ) ( ) λ M h l ( ) y ( ) ( ) , λ ( ) l L ∈ ∑ ⎝ ⎠ ⎛ ⎞ 1/λ 1 , ⎝ ⎠ ⎛ ⎞ = min T P 1/λ M l x ( ) ( ) λ P 1/λ M l y ( ) ( ) , ( ) λ l L ∈ ∑ ⎝ ⎠ ⎛ ⎞ 1/λ 1 , ⎝ ⎠ ⎛ ⎞ = P 1/λ R T x y , ( ) ( ) = R S λ Y -T R T µ S α Y -T µ Σ-T P α P α M l x ( ) l L ∈ , M h l ( ) x ( ) l L ∈ , R T D x D y , ( ) R S α Y -T D x D y , ( ) P α R T D x D y , ( ) ( ) = R S α Y -T R S 2 Y -T M R T
characters with regard to their beauty and the color of their clothes. The objects whose color were described in section 5. 

Comparing comfort

In this section, the aggregation of temperature and humidity to build comfort information [START_REF] Benoit | Fuzzy sensor aggregation: application to comfort measurement[END_REF] is proposed to illustrate fuzzy partitions on a cartesian product X 1 ×X 2 where X 1 and X 2 are respectively associated with the temperature and the humidity. Let L 1 ={Cold, Cool, Mild, Warm, Hot}, L 2 = {Very_Low, Low, Medium, High} and L = {Comfortable, Acceptable, Uncomfortable} be the sets of linguistic terms associated respectively with the temperature, the humidity and the comfort. As explained in section 4.2, the fuzzy meanings are obtained by the union of cartesian products of membership functions X 1 and X 2 . It can be interpreted as a set of linguistic rules represented in figure 9. The black cell corresponds to the term Comfortable, while the grey and white ones are respectively associated with Acceptable and Uncomfortable. The definition of the term Uncomfortable could be obtained similarly. However, it is simpler to use the negation connective and write: Uncomfortable = not(Comfortable or Acceptable).

The fuzzy meanings of the linguistic terms on X 1 , X 2 and X 1 ×X 2 for T = T P are represented in figure 10 

Conclusion

In this paper, fuzzy relations have been introduced. It was shown that fuzzy relations are at least T Dequivalences when T is a strict t-norm with a convex additive generator. Finding the greatest T # t-norm such that fuzzy relations are T # -equivalences is still an open question.

Several examples as close as possible to real problems were proposed to illustrate the interest of this work. For example, it justifies the choice of the operators «sum» and «product» in many rule-based applications. Indeed, when the membership functions define a strict partitioning, the sum and the product are respectively the S* and T* operators when T = T M since . Therefore, it makes it possible to have relations on the cartesian product and therefore, to preserve the associated pseudo-metric.

Fig. 1

 1 Fig. 1 Fuzzy partition in the sense of Ruspini.

Example 1 :

 1 Let E = {a, a'} with a = [0.3 0.2 0.5] and a' = [0.1 0.7 0.2]. The mapping , defined from the pair (E, T M ), is a fuzzy reflexive relation on E. Example 2: Let be the t-norm defined by T P (u, v) = u.v. According to equation (10), we get F = {b, b'} with b = [0.5477 0.4472 0.7071] and b' = [0.3162 0.8367 0.4472]. The mapping , defined from the pair (E, T P ), is also a fuzzy reflexive relation on F.

Remark 6 :Proposition 7 :

 67 Under the assumptions of proposition 6, all relations on E are T D -equivalences on E. Let T = T M where T M is the minimum. Let E be a set of vectors in [0, 1] n . Let be the reflexive fuzzy relation on E. Then, is T L -transitive on E where is the Lukasiewicz t-norm, that is .

Example 3 :

 3 Let E 1 = {a, a'} with a = [0.36 0.48 0.80] and a' = [0.48 0.60 0.64] and be the relation on E 1 . Let E 2 = {b, b'} with b = [0.28 0.96] and b' = [0.60 0.80] and be the relation on E 2 . The resulting relations are: ,

  b) (a', b) (a, b') (a', b') (a, b) 1.0000 0.9360 0.9728 0.9105 (a', b) 0.9360 1.0000 0.9105 0.9728 (a, b') 0.9728 0.9105 1.0000 0.9360 (a', b') 0.9105 0.9728 0.9360 1.0000

Fig. 3 A

 3 Fig. 3 A (L-R) fuzzy interval.

Example 4 :

 4 Let us assume that a very simple sensor returns the size of a human being. Let the linguistic set be L = {Small, Medium, Tall} and the measurement set X = {1.4, 1.5, 1.6, 1.7, 1.8} where the sizes are given in meters. A possible relation linking the size attributes to the measurements is given in table .

Now, let us

  assume that O = {A, B, C, D, E, F} is a set of six objects to be analyzed by a fuzzy color sensor. Let be the chrominance information associated with an object o ∈ O, that is Color(o) = . The fuzzy sensor provides the fuzzy description of the chrominance information associated with each object,

( 52 )

 52 For example, the color of B is closer to the color of A than that of C because we have d(Color(B), Color(A)) = 0.6887 and d(Color(B), Color(C)) = 0.7485.

Fig. 9

 9 Fig. 9 Linguistic terms associated with comfort.

  Fig. 11

Table 1 :

 1 Fuzzy reflexive relation on E.

	(11)

Proposition 1: All strict t-norms T satisfy:

Proof. Let us write the t-norm using its multiplicative generator.

Table 2 :

 2 Fuzzy reflexive relation on F.

	b

Proposition 5 :

 5 Let T 1 and T 2 be two strict t-norms whose respective additive generators t 1 and t 2 are strictly con-

	vex and diagonal sections are respectively denoted	and . Let E and F be two sets of vectors in [0, 1] n . Let
	and	be two mappings respectively reflexive on E and F. If the additive generators t 1 and t 2 are such that
	is concave then, for all	,	where	,	and
		for all	.		
	Proof. If	is concave, then for all		,	
		.			

  T D is the smallest tnorm. Although this theorem is general, it also quite weak since many reflexive relations are T D -transitive. Then, a second proposition shows that relations are T L -transitive, where T L is the Lukasiewicz t-norm. Another

proof, based on the equality , was proposed in by Bezdek and Harris [3]. A third proposition concerning the transitivity of relations is given. Finally, simulation results are proposed for the family of Frank t-norms. Proposition 6: Let T be a strict t-norm. Let E be a set of vectors in [0, 1] n . Let be the relation reflexive on E. If the additive generator of the t-norm T is strictly convex, then is a fuzzy relation T D -transitive on E where is the smallest t-norm, that is: T D (x, y) = 0 if x≠1 and y≠1, T D (x, y) = min(x, y) otherwise. Proof. According to proposition 2, is a fuzzy relation. Now, we have to show:

8 :

 8 Let T = T P where T P is the product. Let E be a set of vectors in [0, 1] n . Let

				be the reflexive
	fuzzy relation on E. Then,	is	-transitive on E where	is Yager's t-norm, that is
	Proof. We have to show:			
			.	(

  holds true.

	Remark 7: The t-norm	and the family	belong to the family of nilpotent t-norms. A t-norm T # is nilpotent
	if it is continuous and each	is a nilpotent element, i.e. there exists	such that
		. Let us also note that	because the family of Yager t-norms is continuous
	with respect to its parameter and strictly increasing. It is known that any nilpotent t-norm T

# is isomorphic to Lukasiewicz t-norm, i.e. there exists a strictly increasing bijection such that for all

Table 3 :

 3 Fuzzy relations on E 1 , E 2 and E 1 ×E 2 .

Table 4 :

 4 Fuzzy relation between the linguistic set L and the measurement set X.

				Small	Medium	Tall
			1.4	1	0	0
			1.5	0.7	0.4	0
			1.6	0.3	0.8	0
			1.7	0.1	1	0.3
			1.8	0	0.8	0.7
	1/1.4 + 0.7/1.5 + 0.3/1.6 + 0.1/1.7 + 0/1.8 and D 1.7 = 0.1/Small + 1/Medium + 0.3/Tall.	( 4 8 )
	Remark 11: The fuzzy meaning and the fuzzy description are two different projections of the same relation. There-
	fore, for all	and all	, we have	

  1, 0.8) = 0.1423/Grey + 0.7423/Red + 0.1154/Magenta.

Table 6 :

 6 Fuzzy descriptions of the colors of the six objects

			Red	Magenta	Blue	Cyan	Green	Yellow
	A	0.1423	0.7423	0.1154	0	0	0	0
	B	0.2536	0.0536	0.6928	0	0	0	0
	C	0.1979	0.3979	0	0	0	0	0.4042
	D	0.0381	0.0381	0	0	0	0	0.9238
	E	0.1916	0	0.1042	0.7042	0	0	0
	F	1	0	0	0	0	0	0

Table 8 :

 8 ). More formally, this means that the beauty of one character in O is a fuzzy subset defined on the set L = {Beautiful, Average, Ugly}. In other words, the fairy-tale characters.

		A	B	C	D	E	F
	A	1.0000	0.3113	0.5402	0.0762	0.2465	0.1423
	B	0.3113	1.0000	0.2515	0.0762	0.2958	0.2536
	C	0.5402	0.2515	1.0000	0.4804	0.1916	0.1979
	D	0.0762	0.0762	0.4804	1.0000	0.0381	0.0381
	E	0.2465	0.2958	0.1916	0.0381	1.0000	0.1916
	F	0.1423	0.2536	0.1979	0.0381	0.1916	1.0000
			Table 7:	fuzzy relation for the color example.		

Table 9 :

 9 The fairy-tale fuzzy relation.

								R T M
	∀	(	o 1 o 2 ,	) O ∈	2 ,	R T M D Beauty o 1 ( ) D Beauty o 2 ( ) , (	)	min D Beauty o 1 ( ) l ( ) D Beauty o 2 ( ) l ( )
						Snowwhite	Witch		Wolf	Dwarf	Prince	Red-Riding-
									Hood
	Snowwhite		1.00	0.00		0.00	0.10	0.80	0.50
	Witch			0.00	1.00		0.70	0.50	0.20	0.30
	Wolf			0.00	0.70		1.00	0.20	0.00	0.00
	Dwarf			0.10	0.50		0.20	1.00	0.30	0.60
	Prince			0.80	0.20		0.00	0.30	1.00	0.70
	Red-Riding-		0.50	0.30		0.00	0.60	0.70	1.00
	Hood					
						5,	fuzzy relations are a particular case of the parametrized family	where

is Yager's t-conorm family. It provides an interesting feature to deal with linguistic hedges based on the powering of the membership functions

[START_REF] Cock | A context-based approach to linguistic hedges[END_REF]

:

Table 10 :

 10 The fairy-tale fuzzy equivalence relation using the linguistic hedge very.

		Snowwhite	Witch	Wolf	Dwarf	Prince	Red-Riding-
							Hood
	Snowwhite	1.00	0.00	0.00	0.01	0.64	0.25
	Witch	0.00	1.00	0.49	0.25	0.04	0.09
	Wolf	0.00	0.49	1.00	0.04	0.00	0.00
	Dwarf	0.01	0.25	0.04	1.00	0.09	0.36
	Prince	0.64	0.04	0.00	0.09	1.00	0.49
	Red-Riding-	0.25	0.09	0.00	0.36	0.49	1.00
	Hood						

Table 11 :

 11 2 are considered as fairy-tale characters' clothes according to table 11.As can be noticed, the Prince's beauty was quite similar to Snowwhite's in table 9 but their respective clothes have different colors leading to a low similarity in the cartesian product. Fairy-tale characters' clothes.

	Clothes	Object
	Snowwhite	D
	Witch	F
	Wolf	C
	Dwarf	B
	Prince	E
	Red-riding-Hood	A

Let O = {Snowwhite, Witch, Wolf, Dwarf, Prince, Little-red-riding-Hood}, L 1 = {Beautiful, Average, Ugly} and L 2 = {Red, Yellow, Grey, Magenta, Cyan, Blue, Green}, the fuzzy relation is given by: (58)

When using the t-norm T = T M , we have and, therefore, T* = T P , which leads to the following table.

Let us note that, for the sake of simplicity, the table is labeled with the character's name instead of the pair (Beauty(o), Color(Clothes(o)) where o would be the character's name.

Table 12 :

 12 The fairy-tale fuzzy equivalence relation on the cartesian product.

Table 13 :

 13 . Now, let S 1 , S 2 , S 3 , S 4 be four comfort situations characterized by the following measurements: Fuzzy meanings on X 1 , X 2 and X 1 ×X 2 for T= T P .The fuzzy meanings on X 1 ×X 2 can be used to compute the fuzzy descriptions of the four situations. It leads to the table 14. Comfort situations.

	Very_Low	Low	Medium	High
	Hot			
	Warm			
	Mild			
	Cool			
	Cold			

Table 14 :

 14 Fuzzy descriptions of the four comfort situations.
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is a fuzzy equivalence relation on

The reflexivity condition leads to:

(43) Proposition 14: Let T be a strict t-norm with a strictly convex additive generator and a diagonal section φ. Let and . Let and be two φ-partitions respectively on X 1 and X 2 . Then, , we have for all :

(44)

Proof. For the sake of simplicity, let us denote Replacing T* and S* by their respective definitions on the left hand side part leads to:

(45)

Similarly, replacing S* and T* on the right hand side part gives:

(46)

Because P 2 is a φ-partition, we have and, thus:

(47)

Remark 10: It should be noted that equation (45) is not the conventional distributivity between T* and S* which is known to hold true only if T*=T M . Indeed, and are not independant since they belong to the same φ-partition. However, it will be very interesting in applications because it allows to define a «linguistic distributivity» between connectives, which makes it possible to aggregate linguistic terms indifferently on the cartesian product X=X 1 ×X 2 or on the sets X 1 or X 2 , as shown in the next sections. ,( ) (  )

) .

i j , ( )