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Surface-Phonon Polariton Contribution to Nanoscale Radiative Heat Transfer.

Emmanuel Rousseau∗, Marine Laroche, and Jean-Jacques Greffet
Laboratoire Charles Fabry, Institut d’Optique

CNRS, Univ Paris-sud
Campus Polytechnique RD 128
91127 Palaiseau cedex, France

Heat transfer between two plates of polar materials at nanoscale distance is known to be enhanced
by several orders of magnitude as compared with its far-field value. In this article, we show that
nanoscale heat transfer is dominated by the coupling between surface phonon-polaritons located
on each interface. Furthermore, we derive an asymptotic closed-form expression of the radiative
heat transfer between two polar materials in the near-field regime. We study the temperature
dependence of the heat transfer coefficient and we find that it differs markedly from the blackbody
T 3 law. We show that the Surface-Phonon Polariton dominates the heat transfer for distances
smaller than 50 nm. We extend asymptotic expressions up to 400 nm by taking into account other
modes contributions. For temperatures smaller than 1500 K, the asymptotic expression yields the
correct value of the heat transfer with an accuracy better than 20%.

I. INTRODUCTION

The heat flux between two bodies in a vacuum is only
due to radiative heat transfer. This transfer can be en-
hanced by many orders of magnitude when the distance
separating the bodies becomes smaller than the thermal
wavelength λT = h̄c

kBT where h̄ is Planck’s constant, kB is
Boltzman’s constant, c is the light velocity and T is the
temperature. This is due to energy tunneling mediated
by evanescent waves with parallel wavevector to the in-
terface larger than ω/c where ω is the circular frequency.
Cravalho et al.1 were the first to point out this role of the
evanescent waves. However they considered only the case
where evanescent waves in the gap result from frustrated
total reflection of propagating waves in the material. Us-
ing the framework of fluctuational electrodynamics2 the
contribution of evanescent waves in the gap which results
from electromagnetic modes with parallel wavevectors
larger than nω/c where n is the real part of the refrac-
tive index has been shown to play an important role3–9.
These modes are called surface modes due to their con-
finement close to the interface. A quantum-mechanical
derivation10 has confirmed these results. Different ge-
ometries have been studied. The heat transfer between
a particle and a surface has been investigated by several
authors11,12. In the case of a metallic nanoparticle and a
metallic surface it has been shown that magnetic energy
plays a key role19 leading to a saturation of the radiative
heat transfer for distances smaller than the skin depth.
More sophisticated geometries have also been studied in
Ref.15–17 and Ref.18. They are respectively devoted to
the case of heat transfer between thin films or spheres.
They mainly deal with surface modes contribution in the-
ses geometries. The role of non-local effects in nanoscale
thermal radiation has been studied in Ref.13,14. It was
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concluded that non-local effects have to be taken into ac-
counts for distances smaller than 1 nm. Recent reviews
can be found in Ref.20–23.

Experimental investigations of this phenomenon
started in the late 70’s at cryogenic temperatures24 and
micrometric gaps25. Further attempts to measure a
heat flux between metallic surfaces have proved to be
inconclusive26,27. Recent experiments based on scan-
ning microscopy techniques have reached the nanometric
regime thereby enhancing the conductance. The effect
was clearly observed although the lack of good control of
the tip geometry did not allow quantitative comparison
with theory28,29. The more recent experiments are per-
formed using glass. It had been predicted theoretically
that the heat flux between polar materials supporting
surface phonon polaritons (SPP) should be enhanced by
roughly an order of magnitude8,12. This is the case for
polar materials such as silicon carbide SiC, quartz, silica,
alumina. In the case of polar materials, the energy flux is
important because the material resonance is close to the
maximum of the Planck’s spectrum i.e. in the infrared
range. Surface phonon-polaritons are then thermally ac-
tivated on the contrary to surface plasmon-polariton in
metals whose resonant frequency lies in the U.V. Tak-
ing advantage of the large enhancement due to surface
phonon-polariton, new data have been reported30–32 for
the flux between a sphere and a plane. Using the Der-
jaguin approximation and a numerically computed form
of the heat transfer coefficient, it has been shown that
the Polder theory can reproduce with great accuracy the
experimental results32. Near-field heat transfer may be
important for applications such as thermophotovoltaic
devices23,33 magnetic recording34, local heating or heat
assisted lithography.

In this paper, we report a detailed theoretical analy-
sis of the heat transfer due to surface phonon polaritons
between two semi-infinite bodies. We identify the con-
tributions of the different electromagnetic modes and we
find that the heat transfer is dominated by the surface-
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phonon polariton contribution for gaps smaller than 50
nm. We are then able to derive a closed-form expression
of the heat transfer coefficient with a distance depen-
dence that varies as l−2 where l is the gap between the
bodies. We also investigate its temperature dependence.
We find that the T 3 blackbody law is no longer valid. In-
stead, the heat transfer coefficient decreases for temper-
atures above 1500 K. We extend the range of application
of the analytical formula in including the contribution
of other modes. We give an analytical formula which is
valid for separation up to 400 nm.

II. DESCRIPTION AND MODELLING

A. Description of the system

The system under study consists in two infinite media
separated by a vacuum gap l (see Fig:1). Their tem-
peratures are supposed to be uniform and noted T and
T + δT . We assume that the temperature difference is
small so that we can linearize the flux and introduce a
heat transfer coefficient htot(l, T ) defined as:

ϕ(l, T ) = htot(l, T )δT (1)

where ϕ(l, T ) is the radiative flux, T the temperature
of the first plate, T + δT the temperature of the second
plate (see Fig. 1).

l 

T  T + T 

Vacuum 2 1 

FIG. 1: Two semi-infinite half-spaces separated by a vacuum
gap (distance l).

As previously seen, optical properties affect heat
transfer8,37. We will use silicon carbide to illustrate our
results because its optical properties are well-known and
well-described by a simple model. Only four parame-
ters are needed: the dielectric function at high frequency
ε∞, the longitudinal and the transverse optical-phonon
frequency (ωLO and ωTO respectively) and a damping
factor Γ.

ε(ω) = ε∞(
ω2

LO − ω2 − iΓω

ω2
TO − ω2 − iΓω

)

Moreover, these four parameters have been measured35

at five different temperatures in the range [300-800K].

The high-frequency dielectric function ε∞ and the
optical-phonon frequencies ωTO and ωLO change by less
than 2% and will be taken to be constant. On the other
hand, the damping factor increases linearly with tem-
perature. The fit parameters are: Γ(T ) = 4.8329 +
0.0183(T − 300) cm−2. Note that this linear fit yields
a value at 300K Γ(300K) = 4.8329 cm−2 that differs by
1.5% from the tabulated value (4.76 cm−2) in Ref.36.

B. Theory

Computing radiative heat transfer in the presence
of evanescent waves requires a complete electromag-
netic treatment3,5 in the framework of fluctuational
electrodynamics4 introduced by Rytov. The flux is ob-
tained by calculating the Poynting vector across the gap
separating the two bodies as shown in refs7,8,21,22:

htot(l, T ) =
∑

i=s,p

∫ ∞

0

dω[hi
prop(l, T, ω) + hi

evan(l, T, ω)]

(2)

where the sum over i = s (TE), p (TM) accounts for the
two polarizations. We have introduced the contribution
of the propagating modes:

hs,p
prop(l, T, ω) = h0(ω, T )×∫ k0

0

κdκ

k2
0

(1− |rs,p
31 |2)(1− |r

s,p
32 |2)

|1− rs,p
31 rs,p

32 e−2iγl|2

and the contribution of the evanescent modes:

hs,p
evan(l, T, ω) = h0(ω, T )×∫ ∞

k0

κdκ

k2
0

4Im(rs,p
31 )Im(rs,p

32 )
|1− rs,p

31 rs,p
32 e−2γ′′l|2

e−2γ′′l, (3)

where h0(ω, T ) is the derivative of the blackbody in-
tensity:

h0(ω, T ) = π
∂L0

∂T
(ω, T ) =

1
T

h̄ω

kbT

h̄ω3

4π2c2

1
[2 sinh( h̄ω0

2kbT )]2
.

rs,p
31 and rs,p

32 are the Fresnel coefficient of each interface
(3 denotes the vacuum) and are given in the appendix.
The Fresnel coefficients depend on the polarisation s or
p of the incident wave.

γ′′ = Im[γ] is the imaginary part of the z-component
of the wave vector in the vacuum gap γ =

√
(ω/c)2 − κ2

whereas κ is the component parallel to the interface.
They satisfy the relation: κ2 + γ2 = (ω/c)2 where ω
is the angular frequency and c the speed of light. We
also define k0 = ω/c.

The dependence of the heat transfer coefficient for two
slabs of SiC as a function of the gap distance is shown in
Fig. 2. It represents the total heat transfer coefficient, its
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FIG. 2: Evolution of the heat transfer coefficient with dis-
tance. Black dots curve: Total heat transfer coefficient
(htot). Red triangles curve: Evanescent s-polarized contri-
bution (hs

evan). Blue square curve: Evanescent p-polarized
(hp

evan). Black dashed line: Contribution of p-polarized
evanescent waves coming from frustrated reflections. The av-
erage temperature is the room temperature (T=300 K). Col-
ors are available online.

evanescent p- and s-polarized component versus the gap
distance l. We can distinguished three regimes: 1) For
gaps smaller than λT /50 (i.e. 100nm at room tempera-
ture), the heat transfer is mainly dominated by the p-
polarized evanescent waves contribution. 2)Between 100
nm and 400 nm there is an intermediate regime where
both s- and p-polarized contribution have to be taken into
account. 3) For a distance larger than λT ( i.e. 10 µm
at room temperature), the heat transfer coefficient is in-
dependent of the distance when the propagating part of
equation (2) dominates the heat transfer.

III. ASYMPTOTIC EXPRESSIONS FOR
EXTREME NEAR-FIELD REGIME

In this section we focus on the regime where the p-
polarization dominates the heat transfer i.e. for gaps
smaller than λT /50.

In this extreme near-field regime, the heat transfer co-
efficient reduces to:

hp
evan(l, T ) '

∫ ∞

0

dωhp
evan(l, T, ω) (4)

In order to compute the radiative heat transfer in the
asymptotic regime, one has to integrate over the (ω, κ)-
plane in order to account for all electromagnetic modes.
We plot in Fig.3 the logarithm of the integrand of equa-
tion (4). From curve Fig.3-a, it is seen that four regions
mainly contribute to the heat transfer. Note that the
x-axis of Fig.3-a is in linear scale whereas the y-axis is
in logarithm scale. Regions I and II correspond to waves

which are propagating in the material and evanescent in
the gap. Their contribution to the heat transfer coeffi-
cient is plotted Fig. 2 as the black dashed line. Regions
III and IV correspond to the SPP contribution. In the
extreme near-field regime, Fig.3-a and Fig.2 show that
the SPP gives the leading contribution.
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FIG. 3: Logarithm of the integrand of equation (4). Figure
a) shows all the relevant scale. Four regions dominate the
heat transfer coefficient. Region I and II render contribution
of frustrated total internal reflection. Region III and IV cor-
respond to the contribution of the surface-phonon polariton.
Figure b) is a zoom on the surface mode contribution. It focus
on a restrict frequency range but extend in a wider wave vec-
tor range. Note now that scales are linear. The region I and
II contribution is no more visible because they are restrict to
a narrow range of parallel wave vectors. The temperature is
T=300 K and the gap l=10 nm.

A. Contribution of the Coupled SPP modes.

We now analyse the origin of the two narrow lines III
and IV in Fig.3-a. A zoom on a narrow frequency region
is shown in Fig.3-b using a linear scale. Let us consider
the dispersion relation of the surface phonon-polaritons
in the double interface geometry38. It is given by the
solutions of equation (5):

rp(ω, κ)e−γ′′l = ±1 (5)
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In the electrostatic limit γ′′ ' κ, the reflection factor
takes the limiting form r̃p(ω) = (ε(ω)−1)/(ε(ω)+1). An
analytical solution of equation (5) can be derived:

ω−(κ) =

√
ωspp − aωche−κl

1− ae−κl
(6)

ω+(κ) =

√
ωspp + aωche−κl

1 + ae−κl

with a = ε∞−1
ε∞+1 , ωspp =

√
ε∞ωl+ωt

ε∞+1 the one-interface

surface-phonon frequency and ωch =
√

ε∞ωl−ωt

ε∞−1 the
Christiansen frequency. For κ larger than 1/l, ω+ and
ω− converge to the one-interface phonon-polariton fre-
quency ωspp which is the solution of Re[ε(ω)] = −1.

The dispersion relation is plotted in Fig.4. It repro-
duces the two narrow lines of the integrand of equation
(4-b). The dashed black line in Fig. 4 is the phonon-
polariton frequency in the one-interface geometry. The
asymptotic role of surface phonon-polariton has also been
shown in the case of Casimir force39. These authors
showed that the overlapping of the two surface phonon-
polaritons leads to a symmetric (solution + ) and an
antisymmetric mode (solution −). For parallel wave vec-
tors larger than κ >∼ 5/l, the overlapping and hence, the
interaction between the two surface modes decrease. The
frequency splitting is reduced so that the two lines merge.
As seen in Fig.3-b this low interaction results in a weak
contribution to the energy flux.
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FIG. 4: Dispersion relation in the two interface geometry.
This curve shows the phonon-polariton dispersion relation in
the double interface geometry. The blue curve is the disper-
sion relation for the symmetric case whereas the red curve
is the dispersion relation in the antisymmetric mode. They
converge to the one-interface dispersion relation (dashed black
line) for large parallel wave vectors. The gap between the two
slabs is l = 10nm

B. Closed-form expression of the heat transfer
coefficient

We now turn to the calculation of the surface-mode
contribution to the heat transfer coefficient in the near-
field regime. First, we rewrite equation (4) with new
units: u = h̄ω/kBT , κ̃ = κ/k0, γ̃ = k0

√
κ̃2 − 1, kT =

1/λT :

hp
evan(l, T ) =

∫ ∞

0

duhp
evan(l, T, u)

with

hp
evan(u, l, T ) = 4σT 3 15

4π4
h0(u)×∫ ∞

0

γ̃dγ̃
4Im(r31)Im(r32)e−2kT γ̃ul

|1− r31r32e−2kT γ̃ul|2
(7)

where σ is the Stefan-Boltzmann constant.
Note that Fresnel coefficients are now function of u

and κ̃ and h0(u) = u4eu/(eu − 1)2. One can note that
for evanescent waves:

Im(r31r32)
|1− r31r32e−2kT γ̃ul|2

e−2kT γ̃ul = Im[
r31r32e

−2kT γ̃ul

1− r31r32e−2kT γ̃ul
]

This allows to obtain an analytical form of (7) by
removing the modulus function. In the electrostatic
regime, the Fresnel coefficients are independent of the
parallel wave vector κ̃: r̃p = ε(u)−1

ε(u)+1 . A final change of
variable X = 2γ̃kT ul leads us to compute the surface-
phonon Polariton contribution noted hspp:

hspp(u, l, T ) =
4σT 3

(kT l)2
15
3π4

h0(u)
u2

×

Im(r̃31)Im(r̃32)
Im(r̃31r̃32)

∫ ∞

0

XdXIm[
r̃31r̃32e

−X

1− r̃31r̃32e−X
] (8)

The distance dependence (hspp(u, l, T ) ∝ 1/l2) is a
consequence of the electrostatic limit and equation (8)
can be integrated with the help of the polylogarithm
function of the second order40:

hspp(u, l, T ) =
4σT 3

(kT l)2
15
3π4

h0(u)
u2

×

Im(r̃31)Im(r̃32)
Im(r̃31r̃32)

Im[Li2(r̃31r̃32)] (9)

This is one of the key result of the paper. No assump-
tions have been made on the form of the Fresnel coeffi-
cients except that they are taken in the electrostatic limit
where they are independent of the parallel wave vector.

We now compare the surface mode contribution
hspp(ω, l, T ) (eq.9) and a numerical integration of the p-
polarisation heat transfer coefficient hp

evan(ω, l, T ) as a
function of the frequency ω.
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FIG. 5: Evolution of the monochromatic heat transfer co-
efficient for two different temperatures T=300 K (a) and
T=1000 K (b). The gap is l=10 nm. We represent only
the p-polarization component. The black curve is the exact
numerical result and the red line is the asymptotic expression
(equation 9). The dashed blue line is the derivative of the
Planck function h0(ω, T ).

The comparison is done for two temperatures in Fig.5
and three distances in Fig.6. The black curve is a nu-
merical integration of eq. (3). It describes only the
contribution of the p-polarization. The red curves de-
scribe the asymptotic expressions (Eq. (3)) and the blue
dashed curves are the derivative of the Planck function
h0(ω, T ). The surface mode contribution describes cor-
rectly the peak for a large range of distances (l ≤ 1µm)
and temperatures (T ≤ 1500K).

For distances smaller than 5 nm, the heat transfer is
completely dominated by the surface mode which con-
tributes for more than 99.5% to the total heat transfer
at 300K. On the contrary at 100 nm only 48 % of the to-
tal flux is due to the surface-phonon polariton coupling.
Actually, the closed-form expression fails to describe the
total curve and underestimates the contribution of the
low and high frequency modes. These modes follow the
Planck function as it can be seen on Fig. 5-a and 5-b by
considering the black and dashed blue curves at low and
high frequencies.

Fig.6 shows that the peak amplitude varies as l−2. On
the contrary to surface mode contribution, the shape of
the curve depends weakly on the distance l. The black
curve level remains almost the same whereas the distance
decreases. It will be shown that these modes result from
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FIG. 6: Evolution of the monochromatic heat transfer coef-
ficient for three different distances l = 1 µm,l = 100 nm,
l = 10 nm. We represent only the p-polarization component.
The black curve is the exact numerical result and the red line
is the surface phonon-polariton contribution (equation 9).The
temperature is T = 300 K.

frustrated reflection. Their contribution is analyzed in
section IV.
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FIG. 7: Evolution of the p-polarization of the monochromatic
heat transfer coefficient at T=300 K. The gap is l=10 nm.
Black curve: p-polarization contribution to the monochro-
matic heat transfer coefficient obtained by a numerical inte-
gration of hp

evan(ω, d, T ) (eq.3). This is the exact result. Red
curve: Contribution to the surface mode hspp(ω, d, T ). The
dashed blue line is a rough estimate from Ref.5,8.

We now focus (Fig.7) on the peak seen in Figures 5-a,
5-b, 6. The dashed blue line is a rough asymptotic es-
timate of the heat transfer coefficient derived in Ref.5,8.
While it reproduces correctly the distance dependance
(h ∝ 1/l2) and the order of magnitude of the heat trans-
fer, this expression does not yield the correct amplitude
and the correct width of the heat transfer coefficient.
This is due to the fact that the actual dispersion rela-
tion of SPP in a gap had not been taken into account.
Finally, let us emphasize that the closed-form expression
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applies for all polar materials in a plane-plane geometry
with similar or different materials.

C. Dependence of the near-field regime on the
temperature

0 500 1000 1500 2000
0
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5x10-12

 K
-1

 )

emperature  (K)T

G
  (

W

FIG. 8: Evolution of δG with temperature. The black dots re-
sult from the exact calculation whereas the blue line is the nu-
merical integration of the asymptotic expression (i.e. equation
(11)). Note that is crucial to use the temperature-dependent
optical properties to compute δG

In this section, we shall investigate the dependence of
the near-field heat transfer versus temperature. Since
we could not integrate equation (9) over the reduced fre-
quency u analytically, we performed a numerical integra-
tion and compared it with the exact results. To this aim,
we define δG(T ) as:

hspp(l, T ) =
δG(T )

l2
(10)

with

δG(T ) =
4σT 3

k2
T

15
3π4

×∫ ∞

0

du
h0(u)

u2

Im(r̃31)Im(r̃32)
Im(r̃31r̃32)

Im[Li2(r̃31r̃32)](11)

δG(T ) is shown in Fig. 8. The black dots are extracted
from the exact numerical results whereas the blue curve
results from the numerical integration of equation (11).
The two curves perfectly fit for temperatures lower than
1500 K. It is clearly seen that δG(T ) presents a maxi-
mum for T ' 1500K. This temperature behaviour dif-
fers drastically from the black body. For a blackbody,
the flux always increases with increasing T because the
number of modes thermally activated increases.

A small discrepancy appears at high temperature. It
can be attributed to the failure of the electrostatic limit.
High frequency modes are activated by the Planck func-
tion and condition κ ≥ ω/c cannot be satisfied anymore.

IV. ASYMPTOTIC EXPRESSIONS FOR THE
INTERMEDIATE NEAR-FIELD REGIME.

As already mentionned, at room temperature the
surface-phonon polariton dominates the heat transfer for
distances smaller than 50 nm. In order to describe the
heat transfer coefficient in a wider range of gaps one has
to include the other modes contribution. In this section,
we analyse the contribution of the evanescent waves com-
ing from total internal reflection and find an asymptotic
expression describing their contribution.

A. Contribution of Evanescent waves coming from
frustated total internal reflection.

Some of the other modes are p-polarized waves coming
from frustrated internal reflection at the interface. They
correspond to regions I and II in Fig.3. Other modes are
s-polarized evanescent waves which also come from total
reflection.

All those modes are characterized by a parallel wave
vector that satisfies: k0 ≤ κ ≤ n(ω)k0 where n(ω) is the
refractive index and k0 denotes ω/c. Note that the refrac-
tive index depends on the circular frequency. As already
noticed by Chapuis et al14, those modes are bound by a
maximal wave vector κmax(ω) =

√
|ε(ω)|k0 which gives

rise to a saturation of the heat transfer coefficient as the
distance decreases.

We plot in Fig.2 the contribution of total frustrated
reflection in p (dashed black line) and s-polarization (red
triangles). Both curves saturate and reach the same value
at small gap. Note that the s-component reaches its satu-
ration value for gaps larger than the p-component which
saturates at extremely small gaps l ' 1 nm. As a con-
sequence, the contribution due to s-polarization always
dominates the heat transfer due to frustrated total inter-
nal reflection.

B. Closed-form expression of the s-polarized
contribution to heat transfer in the saturation

regime

Let us estimate the value of the heat transfer coefficient
in the saturation regime. Following Pendry6, we can use
an upper bound given by:

As =
4Im(rs)2e−2γ′′d

|1− r2
se−2γ′′d|2

≤ 1

The saturation can thus be calculated by using the
upper bound of As and integrating over the whole spec-
trum:
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FIG. 9: Evolution of the total monochromatic heat transfer
coefficient with circular frequency. The gap is l=10 nm and
the temperature is T = 300 K. a) The black curve is the total
monochromatic heat transfer coefficient (polarization s+p). It
is the result obtained from a numerical integration of eq. (3).
The red line is the surface mode contribution hspp(ω, d, T )
(equation 9). The dashed green line is the contribution of the
s-polarization in the saturation regime given by eq. 13. b) is
a zoom in a narrow frequency range. The blue curve is the
sum of hsat(ω, d, T ) and hspp(ω, d, T ).

hs,p
sat(T ) =

∫ ∞

0

dωh0(ω)
∫ κmax=

√
|ε(ω)|k0

k0

κdκ

k2
0

hs,p
sat(T ) =

∫ ∞

0

dωh0(ω)
|ε(ω)| − 1

2
(12)

This estimate holds for evanescent s- and p-polarized
waves but as already noted the p-component is negligible
for distance larger than 1 nm so we will deal only with the
s-polarization in the following. We define the saturation
monochromatic heat transfer coefficient as:

hsat(ω, T ) = h0(ω)
|ε(ω)| − 1

2
(13)

We plot in Fig.9-a the monochromatic total heat trans-
fer coefficient (polarization s+p) htot(ω, d, T ) (eq.3) ob-
tained from exact numerical results versus the frequency.
We also plot the surface mode contribution hspp(ω, d, T )
(eq.9) and the saturation hsat(ω, T ) (eq.13). The sum
of hspp(ω, d, T ) and hsat(ω, T ) now completely describes

the exact numerical result. The shape and the peak are
perfectly reproduced.

We now focus on the peak in Fig.9-b. There are actu-
ally two peaks. One at ωspp due to the surface-phonon
polariton frequency and described by the surface mode
contribution hspp(ω, T ) as previously discussed. A small
peak appears at ωTO. It results from the resonant be-
haviour of the dielectric constant when frequencies ap-
proach ωTO. This resonance induces a peak in the total
monochromatic heat transfer. On the contrary to the
surface-phonon polariton peak, this peak amplitude de-
pends smoothly on the distance. Note nevertheless that
at one micrometer this peak is no longer visible but its
amplitude is independent on the distance for gap lower
than d ≤ 100 nm. The expression hsat(ω, T ) accounts
for this contribution.

The sum of hsat(ω, T ) and hspp(ω, T ) (blue curve Fig.9-
b) slightly overestimates the contribution of modes lying
in the window [ωTO, ωspp] but perfectly fit to the exact
result in the rest of the spectrum.

V. VALIDITY RANGE.
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FIG. 10: Evolution of the total heat transfer coefficient with
distance. Black dots curve: Total heat transfer coefficient
(htot). Blue dashed curve: Contribution of the coupled
surface-phonon polariton (hp

spp(d, T )). The green squares
curve is the approximate expression (happrox) i.e. the sum
of the dashed blue curve (hp

spp) and the saturation of the s-
polarization contribution (hs

sat). The insert is a zoom on a
restricted gap range. The average temperature is the room
temperature (T=300 K). Colors are available online.

We now investigate the accuracy of the different
asymptotic expressions and examine their validity range.
We define the approximate heat transfer coefficient as the
sum of the surface-phonon polariton contribution and the
s-polarized contribution in the saturation regime :
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happrox(d, T ) = hp
spp(d, T ) + hs

sat(T )

where hp
spp(d, T ) and hs

sat(d, T ) result from numerical
integration over the spectrum of the two closed-form ex-
pressions given by eq.(9) and eq.(12) respectively. The
approximate coefficient is compared with the exact nu-
merical results in the Fig.10 at room temperature for
different distances. The insert is a zoom on a narrow dis-
tance range. The dashed blue curve is the contribution
of the coupled surface-phonon polariton hspp(d, T ). We
added the saturation hs

sat as the contribution of the s-
polarization. The contribution of p-polarized evanescent
waves coming from frustrated reflection is not added be-
cause it only plays a role at very small distance (below
1nm) as it can be seen Fig.10. With this procedure, the
total heat transfer coefficient is well-described for dis-
tances up to 400 nm. As an example, the relative differ-
ence between the exact numerical result and the surface
phonon contribution is 52% at d = 100 nm whereas it is
only 2% with the approximate happrox(d, T ).

Fig. 11 shows the relative difference between the total
heat transfer htot and the approximation for temperature
varying between [200-900 K] and gaps varying between
[10−9, 10−6 m]. The relative difference (R) is in percent:
R = 100× |htot(l,T )−happrox(l,T )|

htot(l,T ) .
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FIG. 11: Relative difference between the total heat trans-
fer htot(d, T ) coefficient and the approximation happrox(d, T ).
Numbers indicate the relative difference (in percent).

VI. CONCLUSION

In this paper, we have shown that radiative heat trans-
fer mainly results from the coupling of surface phonon-
polariton for distances shorter than 50 nm. A careful
analysis of their contribution allowed to derive a closed-
form expression of the heat transfer coefficient. It can
be cast in the form ϕ(l, T ) = δG(T )

l2 SδT . We have inves-
tigated the temperature dependence of δG and we have
found a behaviour markedly different from the blackbody
radiation case. For distances larger than 50 nm, other
contributions must be included. We derived a closed-
form expression of the contribution of the s-polarized
waves. This yields an analytical formula valid for dis-
tances up to 400 nm at room temperature. In summary,
the results presented in this paper clarify the physical
origin of the different contributions to the nanoscale heat
transfer and provides closed-form expressions to compute
quantitatively nanoscale heat transfer between polar ma-
terials.

The authors acknowledge the support of Agence Na-
tionale de la Recherche through Monaco projects (ANR-
06-NANO-062) and Leti-Carnot Institute.

VII. APPENDIX

The optical properties of the interface is included in
the Fresnel reflection factors. Their explicit form is given
below:

for the s-polarization:

rs
31 =

γ − γ1

γ + γ1

with γ =
√

(ω/c)2 − κ2 the z-component of wave vec-
tor in the vacuum and γ1 =

√
ε1(ω/c)2 − κ2 the z-

component of the wave vector in the material 1.
and for the p-polarization:

rp
31 =

ε1γ − γ1

ε1γ + γ1
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