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Dual Quantization for random walks with
application to credit derivatives”

GILLES PAGES T and BENEDIKT WILBERTZ!

October 29, 2009

Abstract

We propose a new Quantization algorithm for the approximation of
inhomogeneous random walks, which are the key terms for the valuation
of CDO-tranches in latent factor models. This approach is based on a dual
quantization operator which posses an intrinsic stationarity and therefore
automatically leads to a second order error bound for the weak approxi-
mation. We illustrate the numerical performance of our methods in case of
the approximation of the conditional tranche function of synthetic CDO
products and draw comparisons to the approximations achieved by the
saddlepoint method and Stein’s method.

Keywords: Quantization, Backward Dynamic programming, Random Walks.

1 Introduction

In this paper we focus on the numerical approximation of inhomogeneous Ber-
noulli random walks.

Therefore, let (Q,F,(F;),P) be a filtered probability space on which we
define the inhomogeneous random walk

X = En:OéiZi, (1)
i=1

for some independent {0, 1}-valued Bernoulli random variables Z; ~ B(p;), p; €
(0,1) and a5 > 0.

The distribution of X plays a crucial role for the valuation of basket credit
derivatives like CDO-tranches in latent factor models (see e.g. [l or [{]). These
are credit products, whose payoff is determined by the loss in large portfolios
of defaultable credit underlyings.

*This work has been supported by the CRIS project from the French pole de compétitivité
“Finance Innovation”

fLaboratoire de Probabilités et Modeles aléatoires, UMR 7599, Université Paris 6, case
188, 4, pl. Jussieu, F-75252 Paris Cedex 5. E-mail: gilles.pages@upmc.fr

HLaboratoire de Probabilités et Modeles aléatoires, UMR 7599, Université Paris 6, case
188, 4, pl. Jussieu, F-75252 Paris Cedex 5. E-mail: benedikt.wilbertz@upmc.fr



Therefore assume that we have a portfolio of n defaultable credit names
with notional amounts N; and whose default times 7; are (F;) stopping times,
i =1,...,n. Here, (F;) stands for the observable filtration of the credit names.
Moreover, we denote the fractional recovery of the i-th credit by R;.

Hence, the fractional loss of the portfolio up to time ¢ is given by

"~ (1 — R;)N;
ly := Z (T)]l{n<t}, (2)
i=1

where N = 3" | N; is the total notional.

Following the ideas of [fl] and [fJ], the distributions of the default events
{7 < t} up to a fixed time ¢ are driven under the risk-neutral probability
measure by a common factor U (which we may assume w.l.o.g. as U([0,1])
distributed) and some idiosyncratic noise &;.

That means, that we assume that the events {r; < t},i = 1,...,n are
conditionally independent given o(U).

Furthermore, we require the existence of a copula function F : [0,1]? —
[0,1], such that p — F(p,u) is a non-decreasing, right continuous function for
every u € [0,1] and

1
/ F(p,u)du=p, pel0,1].
0

Since it holds
1
P({r < t}) =E(P({n < t}|U)) = /0 P({r < U = u) du
1
= /0 F<IP>({7'Z- < t}) ,u) du,

we may interpret F (]P)({TZ‘ < t}) ,u) as the conditional default probability
P({r; <t}|U = u).
Typical choices for the function F' are the standard Gaussian copula

o' (p) — p®~ ' (u)
V1= p?

with common correlation parameter p, or the Clayton copula (cf. [f]).

Thus, for a fixed time ¢, the risk-neutral conditional distributions of the
portfolio losses [; given the event {U = u} are driven by a random walk of type
() with o; :== (1 — R;)N;/N and conditionally independent Bernoulli random
variables Z; := 1, <; with parameters p; := F(P({Ti < t}) ,u).

The cash flows of a (synthetic) CDO single tranche [a,b] with attachment
points 0 < a < b < 1 read as follows:

The protections seller of the tranche [a, b] has to pay at each default time
which satisfies I, € [a,b] the notional of the defaulted name minus its recovery,
ie.

F(p,u)z@{

(1 — R;)N;. (default leg)



On the other hand he continuously receives a coupon payment of
/iNl[a’b} (t)dt, (premium leg)

where k is the fair spread of the tranche, which is to be determined by arbitrage
arguments. We denote by Nl[a’b] (t) the outstanding notional of the tranche at
time ¢, that is the notional amount of the tranche [a,b] which has not defaulted
up to time ¢ .
Assuming a deterministic risk-free interest rate r and continuously com-
pounding, we note that
Ny (1) = H¥ () — o),

[a,b]

where the tranche losses F) are defined as

0 if I;<a
F%0 =@ —a)t =l -0 ={l,—a if a<l<bh.
b—a if lt>b

Hence, the discounted default payments accumulated up to maturity 7" maybe
written as

Z e—rn 1— N ]l @ b] - N Z —7"7'1 fl b] ) F[a b}( )} ]lTiST

- N / e F M dt).
0

Concerning the premium leg, the outstanding notional NV, l[a’b] (t) of the tranche
[a, b] is given by
N-(b—a) if l;<a,
Nty =N-[b—a) = F )] ={N-(b—1,) if a<l <b,
0 if lt >b

so that the discounted coupon payments e "' N, l[a’b} (t) dt accumulate between
0 and T to

[ et gy Fle
K N/o e (b —a) — F*7(t)]dt.

Under the risk-neutral probability measure both legs have to produce an
equal present value, i.e.

T , T b
N / e N dt) = k- N / e [(b—a) = K" (1)) dt,
0 0

so that taking (risk-neutral) expectation and processing an integration by parts
yield the fair spread value k, namely

eEFNT) + 1 [T e EE () dt
b=a [1 — e—rT] _ f(]T e—rtEF‘l[avb] (t) dt ’

T
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Here, the mathematical challenge consists in the computation of the expecta-
tions IEFl[a’b} (t). This leads, within the latent factor models, to the approxima-
tion of the conditional expectations

E(FY (8)|U = w) = E((ls — a) |U = w) — E((l; — b)* U = u),

since we have

BRI () = / BEIOIU = ) du (3)
0

As already announced, the conditional distribution of [; is given by an inhomo-
geneous random walk as defined in ([I)).

We therefore focus in this paper on the approximation of the distribution
of this type of random walks, the outer integral with respect to U in (fJ) can
afterwards be approximated by standard quadrature formulae.

For the usual applications n has a size of about 100, which is by far too large
for an exact computation of the distribution of the random walk X, but still
too small to get accurate approximations based on the asymptotics provided
by limit theorems as n goes to oo.

Moreover, we have to deal in this general setting with arbitrary coefficients
«;, which destroy in general any recombining property of the random walk. As
a consequence, no (recombining) tree approach can be implemented.

So far, most approaches developed in the literature for the approximation
of the conditional tranche expectation E(Fl[a’b}]U ) rely upon the saddle point
method (cf. [f]) or an application of Stein’s methods for both Gaussian and
Poisson approximation (cf. [B]).

Although based on completely different mathematical tools, both approaches
suffer from the same lack of accuracy in the computation of

" +
E(Z 0 Z; — K)
=1

when the strike parameter K is “at-the-mean”, i.e. when Y ;" | a;p; is close to
K. From a theoretical point of view no control of the induced error is available.
Finally, even if their numerical performances can be considered as satisfactory
in most situations, these approximations methods are “static”: the “design” of
the method cannot be modified to improve the accuracy if a higher complexity
is allowed.

The structure is as follows. In section 2 we introduce a new Dual Quantiza-
tion scheme for the approximation of the inhomogeneous random walk ([).
Moreover we establish error bounds for this approximation and discuss its
asymptotic behaviour. Section 3 is devoted to the numerical implementation of
this quantization scheme and its numerical performance. Finally, in section 4,
we give a slight modification of this scheme to also capture the computation of
sensitivities with respect to the probabilities p; and the coefficients «;.



2 Approximation of inhomogeneous Random Walks

We will focus in this section on the numerical approximation of the inhomoge-

neous random walk .
X = E OéiZZ'
i=1

for independent Z; ~ B(p;), p; € (0,1) and «; > 0.

An exact computation of the distribution of X is still not possible with
nowadays computers, since in our cases of interest we have n ~ 100 and X has
up to 2™ states. Hence we aim at constructing a random variable X with at
most N < 2" states and which is close to X, e.g. E|X — X|? is small.

Due to the fact that there is no way to generate X directly, we have to
construct approximations along the raondom walk

X% =0,
Xk =Xty oz, k=1,...,n

where the increment Zj is an ordinary Bernoulli random variable which is easy
to handle. Clearly we have
X=X"

and of course this would work similarly in full generality, if X is a function of
a Markov chain.

Now suppose that we are equipped at each layer k with some grid I'y, =
{ak ... ,:E’ka} of size Nj and a (possibly random) projection operator Ilp, :
R — T}, which maps the r.v.’s X* into T.

We then may state a recursive approximation scheme for X = X™ as follows

X%:=0
Xk = Hpk()?k_l—kaka), k=1,...,n.
This will be the main principle for constructing the approximation of X".
It remains to choose appropriate grids I'j, and projection operators Ilr, . Here,

it will turn out that the obvious choice of Ilr, as a nearest neighbor projection
is not sufficient in this setting and we will have to develop a new approach.

2.1 Quantization and Dual Quantization

Regular Quantization In view of minimizing E|X — X | for a general r.v.
X € L%*(P), the above problem directly leads to the well known quadratic
quantization problem (cf. [H])

inf{E|X — X X r.v. with card{X(Q)} < N} (4)

at some level N € N. We will from now on call any discrete r.v. X Quantization
and in particular if card{X (Q)} < N we call it N-Quantization.



In fact one easily shows that ([l) is equivalent to solving
inf{Emilgl]X —2*: T C R,card{T} < N},
re

which means that IIr would be chosen as a nearest neighbor projection operator
onI'; i.e.

§ Yz Lo, m)(€),

zel

where (Cy(I'))zer denotes a Borel-partition of R satisfying
Cull)  {g € R Jg — o] < minlé — ).

Such a partition is called Voronoi-Partition (of R related to I').

In the one dimensional setting the Voronoi cell Cy,(I") generated by the
ordered grid I' = {x1,...,zxN} consists simply of the interval [%%Jm, mlgﬂ]
Nevertheless we will use in this paper the more general notion of a Voronoi cell
to emphasize the underlying geometrical structure and the fact that this can
also be defined in a higher dimensional setting.

One shows (see [fl]) that the infimum in (f]) actually holds as an minimum:
there exists an optimal quantization XN (which takes exactly N values if X
has infinite support).

Concerning the approximation of an expectation, first note that for I' :=
X () we get

EF(X) =Y F(z) P(X =), (5)

so that X in fact induces a cubature formula with weights IP’(X' =ux),z el
This may provide a good approximation of EF(X), if X is close to the optimal
solution of the quantization problem (ff).
For a Lipschitz functional F' € Cpi,(R,R) we immediately derive the error
bound R R
[EF(X) = EF(X)| < [Flup E[X — X].

If moreover F exhibits further smoothness properties, i.e. F € C'(R) with
Lipschitz derivative, we may establish for a quantization X satisfying the sta-
tionarity property

~

E(X|X) = X, (6)
a second order estimate (cf. [§])
EF(X) - EF(X)| < [F]Lp E[X — X|2

Note that this stationarity property is always fulfilled if X is a solution to the
optimal quantization problem (f).

In view of the Zador Theorem (Thm 6.2 in [{]), which describes the sharp
asymptotics of the quantization problem (f]) as N goes to infinity, this leads to
a quadratic error bound for an optimal quantization XN of size N

IEF(X) —EF(X*M)| < Cx - [F'lLip - N2



Unfortunately, in practice this stationarity property ([]) is only satisfied if X
is in some way optimized to “fit” the given distribution of X. This optimization
is time-consuming and due to the complicated structure of X™ not feasible in
our case of interest.

Hence we propose a (new) reverse interpolation operator to replace the
nearest neighbor projection, which offers an intrinsic stationarity and therefore
leads to a second order error bound without the need of adapting X to the
exact distribution of X.

Dual Quantization This alternative quantization approach for compactly
supported random variables is based on the Delaunay representation of a grid
I', which is the dual to its Voronoi diagram. Hence we will call this approach
Dual Quantization.

Suppose now to have an ordered grid I

for a r.v. X with compact support included in [a,b] (Typically, [a,b] is the
convex hull of the support of X). Moreover we introduce for convenience two
auxiliary points zg := a and zy41 := b.

The Delaunay tessellation induced by I' then simply consists of the line
segments T;Z;y1, J = 0,..., N + 1, where we arbitrarily choose Z;Z;;71 to be
the half-open intervals [z, xj41) for j = 0,...,N and Ty Ty as the closed
interval [z, xn+1]. This way we arrive at a true partition of the whole support
of X.

To define a projection from X () C [a,b] onto T', we will not just map any
realization X (w) to its nearest neighbor, but consider the two endpoints of the
line segment Z;>x ;11 into which it falls.

We then perform a reverse random interpolation between these two points
Zj+,Tj+41 in proportion to the “barycentric coordinate”

Tjer1 — X(w)

A=
':Uj*‘l'l — ':Uj*

i.e. we map X (w) with probability A to x;+ and with probability (1 — A) to
zj+41 (see Figure [).

Figure 1: Reverse random Interpolation Operator J*

A formal definition of this operator is given as follows.



Definition 1. Let A ~ 2/([0.1]) be a r.v. on some probability space (Q,F,P)
and let I' = (z1,...,2N), o := a, xy41 := b be an ordered of [a,b]. The Dual
Quantization operator JFA is defined by

N

€ TN = D (5 zpart ) () F 51T st 1 (A)) Trrer(©)

=0 41 Tj+1—25]

Remark. Note that we can always enlarge the original probability space (2, F, P)
to ensure that A is defined on this space and is independent of any r.v. defined
on the original space. Therefore we may assume w.l.o.g. that A is defined on

(Q, F,P).

For ¢ € [a,b] and T;+7;+11 denoting the line segment into which ¢ falls, we
get
Ay — _ i1 —§ Ajen - Tjpr — &
P(JE(§) = zj) = —————— and P(Jp(§) = xjop1) =1 — —————,
Tj*p1 — Ly Ljrpl — Lyj*
(7)
so that jli\ satisfies the desired reverse interpolation property.
As already announced, this Dual Quantization operator fulfills naturally a
stationarity property:

Proposition 1 (Stationarity). For any grid I' = (z1,...,2zn) it holds
E(JH(X)|X) = X.

Proof. Let & € [a,b] and denote by ZT;+Z;+11 the line segment in which ¢ falls.
Then note that

N
E(JE)) = E(Z <$i]1 [0, Z3172 )(A) + xj+1]1[ R (A)) HW(£)>
§=0 Tj+17) Tir1=25]
= aje - P(JR(E) = 250) + 2ot - PITL(E) = 2j11)
1
T <($j*+1 = 52 )(§ = Tjep1) + Ty (Tjepn — xj*))

= é‘ .
The conclusion now follows from the independence of X and A which implies
E(FH(X)X) = E(F(E))je=x = X.
O

Similar to the primal Quantization setting we then derive by means of the
stationarity a second order estimate for the weak approximation of smoother
integrands.

Proposition 2. Let F € CY(R) with Lipschitz derivative. Then every grid T
yields
[EF(X) — EF(TAX))| < [F']nip BIX — FHX)*.



Proof. From a Taylor expansion we derive
|F(T7 (X)) = F(X) = F'(X)(J(X) = X)| < [Fluip [X = TNX)[?
so that the stationarity property (Proposition []) implies
E(F(J (X))|X) = F(X)| < [Flup E(IX - TP(X)PIX).

Taking expectations then yields the assertion. O

2.2 Application to the approximation of the inhomogeneous
random walk

2.2.1 The algorithm

We are now in the position to design an approximation scheme based on Dual
quantization in which the general projection operator Il is replaced by the
dual quantization operator jlﬁxk k. Let I'1,...,I'), be some ordered grids. We set

X0.=0

. . 8
Xk .= jFA:(X’“‘l + apZi), k=1,...,n (®)

for Ay ~ U([0,1]) i.i.d and independent of (Zj)o<k<n-
We wish to approximate EF'(X™) by its dually quantized counterpart EF(X™).

2.2.2 Error bound for the approximation of EF(X")

Concerning the approximation power of the dual quantization scheme (E) for
EF(X™) with F € Ciip(R), we immediately derive from Proposition J the fol-
lowing local error bound for any grid I'g

IEF(X* ! 4+ a1 Z) — EF(XF)| < [F'|up Bl(X5 + ar Z) — XF)2,

since X% = jlf\:()?k_l + apZy).
As a matter of fact, the global error then consists of all the local insertion
errors of the quantization operator along the random walk (X k)lgkgn.

Theorem 1 (Global Error Bound). Let F € C'(R) with Lipschitz derivative.
Then the Dual Quantization scheme (§) related to the grids Ty,1 < k < n,
satisfies

[EF(X™) — EF(X™)| < [F']1i f: E[(X" !+ a,2;) — X*
k=1

‘ 2

n

Sk— Sk— 2

= [F'|p Y E[(XFapZy) — FENX o Zi)|”
k=1



Proof. First note that it follows from Proposition [ that for any o € R
[EF(X + a) - EF(FA(X) + )| < [FpE|X — FAX)[°.
Consequently, we get for any r.v. Z independent of X
‘E[F(X+Z)|Z - z] - E[FUFA(X) +2)|Z = z} ‘
= [EF(X+2) — EF(FA(X) + 2)| < [FupE|X — (X))
and thus
[EF(X + Z) — EF(FNX) + 2)| < [FpE| X — F2 (X))

This finally yields

[EF(X™) - EF(X")] < f:(EF()?k n zn: 7)) —EF(XF1 4+ En:qul)‘

k=1 I=k+1 1=k
n n

) :‘EF(jlf:’“(Xk_1+aka) + Y wz)
k=1 I=k+1

n
_ EF(}?k_l—l—aka + Z Olel)‘
I=k+1

< [Flup Y E[(XF M arnZy) — TPHX M anZy) |
k=1

n
= [Fup O E|(XF + az) — XF2.
k=1

2.3 Optimal choice of the grid I

Let us temporarily come back to a static problem for an abstract random vari-
able X with P(X € [a,b]) = 1. In view of the second order estimate from
Proposition fl, we arrive for a fixed number N € N at the optimization problem

EX - F&X)> -  inf . 9
| S I )

It is established in [[[J] that this infimum actually stands as a minimum.
Hence optimal dual quantizers exists. Moreover the mean dual quantization
error achieved by such an optimal grid differs from mean optimal quantization
error of the primal quantization problem (f]) asymptotically only by a constant.

Theorem 2 (Optimal rate ([{1], {])). Let X be a r.v. with P(X € [a,b]) = 1
and continuous density . Then it holds

L/ b 4/3
lim N? inf E[X-J2(X)?>=2 lim N? inf Emin|X—z> = —(/ |g0(z)|3/2dz> .
N—oo I'Cla,b] N—oo I'Cla,b] =€l 6 a

IT|<N ITI<N
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Remark. This theorem about the asymptotics of the Dual Quantization problem
can also be generalized to non compactly supported r.v.’s. and to non quadratic
mean error (see [[L1]]).

Given the formula of the gradient and the hessian of the optimization prob-
lem (f]) with regard to I' a Newton algorithm similar to the one described in
can be employed to construct numerically optimal dual quantization grids.

Nevertheless, a straightforward alternative is to derive an (only asymptoti-
cally optimal) dual grid from a grid which is optimal for the primal quantization
problem (f]). Such grids are precomputed (cf. [[(]) and online available at

www.quantization.math-fi.com

To transform these regular quantization grids into dual ones, we consider its
midpoints, i.e. if y1,...,yn denote an optimal grid for the primal quantization
problem (f]), we simply define its dual grid

Yij T Yj+1 .
:cj::%, j=1,....N -1 (10)
This choice is motivated by the asymptotic formula of Theorem [ and its proof
in [[L1]], where exactly this midpoint rule establishes a connection between dual
and regular quantization. Moreover, this connection allows to deduce the opti-
mal rate for the dual quantizers from that for regular quantizers.

Coming back to the problem of interest in this paper, the construction of
optimal (primal or dual) grids for each X*, k = 1,...,n is clearly out of reach
so that we have to make a “slightly” sub-optimal decision: we will choose grids
which are optimal for a normal distribution matching the first two moments
of X*, since such a N (ug,o7) distribution is close to X* for large values of k.
Additionally we can restrict these grids to the convex hull of the support of X*
ie. [0, ).

Moreover, our numerical observations even tend to confirm an optimal N ~2-
rate for these sub-optimal grids. This emphazises again the importance of
the intrinsic stationarity provided by the dual quantization operator jli\ in
contrast to its primal counterpart, the nearest neighbor projection, where the
stationarity only holds for grids specially optimized for the true underlying
distribution, i.e. the r.v. X* in our case.

3 Numerical implementation and results

3.1 Numerical Implementation

We now present numerical results and notes on the implementation of the Dual
Quantization scheme (f) for the approximation of

E(z: i Zi —K)+, (11)

11



by means of R
E(X" - K)4. (12)

Concerning the second order estimate of Theorem [I], the call function z —
x4y clearly does not satisfy the assumptions of a continuously differentiable
function with Lipschitz derivative. Nevertheless we can replace z by p.(z) :=
E(z +€Y)4, where Y ~ N (0,1) and € > 0 to overcome this shortcoming. This
function satisfies |¢.(x) — 4| < e, pe € C*®(R) and 0 < ¢, < 1. Furthermore

@ writes @ (x) =z - ®(Z) + \/%—We_if, where @ is the distribution function of

the standard normal distribution.

We could imagine to compute E(X' " — K)4 using a backward dynamic pro-
gramming formula based on (). However such an approach is “payoff” depen-
dent and consequently time-consuming since the computation needs to be done
for many values of K as emphasized in the introduction.

An alternative is to directly rely on the cubature formula

Np+1
E(X"—K)y = Y (af — K)¢ - P(X" = a})

i=0
to approximate ([I). Here I, = {z7,..., 2% } is a dual grid of a normal
distribution as described by ([l0) in section P.d and we set z§ := 0, TN 4 =
D i Q- R

The main task is then to compute the weights P(X" = 27) for 1 < j < N,

which are given by the following forward recursive formula.

Proposition 3. In the dual quantization scheme (§) the weights ]P’()z"l‘C = af)
satisfy

Ni+1
P(R* =af) = D [(1=po) - M (b ™) - PR =2l
=0
+ Pr - )\f(azf_l—i- ag) - ]P’()Z'k_1 = x?‘l)],
where
Lt b =gk,
k Aj k A kx]* ek ?c
N (&) = P(jrk €)= 2171) =91 =N (8), ifz)= Ty
0 otherwise

and j* := 7%(&) denoting the line segment, which satisfies £ € :Ef* x;?“rl.
Proof. We clearly have
Ni+1

P(XF=af)= Y PXF=af|XF" =2 . P(XM =2b)
=0

Ny +1
= )" P(IENXFT 4 0 2y) = af [ XE T = 2h ) P(XR T = k),
=0

12



Since Ay, Z; are independent of X k=1 we derive
P(IAH (X! + 0 Zy) = of | XP = 2h ) = PR (257 + nZy) = af)
Ay k=1 k
= (1 =px) - P(Ip,) (257) = 7))
A _
+pr - P(TEH (27 + an) = a7)
so that finally (f]) yields the assertion. O
Practical implementation From an implementational point of view we
process the quantization scheme (§) and we start with
X0 =0,

http://mathema.tician.de/dl/pub/pycuda-mit.pdf i.e. a grid I'y = {2} = {0}
and weight R
wd =P(X° =29) = 1.

To pass from time k& — 1 to k, we suppose to have grids I'y = {xlf, . ,x?vk}
as described above. Additionally, we add the endpoints xlg =0 and x?vk 1=
Zle a; and define T, = 'y U {:Elg,a:’f\,kJrl}. Moreover we assume that the
weights

Wt =X =2h T =0, Ny + 1

have already been computed.

We then could compute P()?k = :Ef), 1=0,...,N+ 1 directly by means of
Proposition . However, this approach requires 2( Ny, +2)(Ng_1 +2) evaluations
of the barycentric coordinate )\f, which are not cheap operations, since each

evaluation involves a nearest neighbor search to find the matching line segment
zk, ok
Therefore it is more efficient to first iterate through the state space

1 U (fk—1 + Oék)

of the r.v. Xk ¢ aZy,. While computing for each &€ € T'j,_1 UT)_1 + ay its
matching line segment a:;i a:;i 41 in the grid Ty, we directly update the weight
vector (wF)o<i<n,+1 at positions I = j*(¢) and I = 5*(&) + 1.

This approach is given by Algorithm [I| and needs only 2(Ng_1 + 2) nearest
neighbor searches per layer k.

3.2 Speeding up the procedure
3.2.1 Aggregation of insertion steps

In view of the global error bound from Theorem [l| it is useful to reduce the
number of grid insertion steps jlka k. A natural way to do so, is to aggregate ng

r.v. Z; into
k-no

Z;C: Z aiZi, k‘:l,...,n/no
i=(k—1)no+1

13



=
A
}
:U?_l :Uf_l + o

Figure 2: Weight-updating

Algorithm 1 Weight-Computation for the Dual Quantization scheme ()

# Initialization
[y < {0}

0
wi «— 1

for k=1,...,ndo

wh—0, j=0,...,Ny+1
for j=0,...,Ny+1do
# Case: 7, =0
Find line segment w;ﬂw;ﬁ 1 in which l'?_l falls

x’?* —x’?fl
b\ Jr+1 J
E E
" —x
i S

Set
w;?*—i-: A (1—pg) - wf‘l .
whe b (1= X) - (1= py) - wh™

# Case: 7, =1
Find line segment wéﬁwéﬂ 41 in which ac;?_l + ay, falls
k k—1
wl — (@] +ag)

A= zF ]—xk

1T

Set
w;?*—i-:)\'pk-w !

k—
k g k—1
WHs = (I —=X) - p-w'

J
end for

end for
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and then set R R
Xk = jlf\lf(Xk_l +2Z;), k=1,...,n/ne.

E.g. with a choice of ng = 2 we would insert a binomial r.v. with 4 states
at every grid-point, but performing only 1/2 of the insertions.

However, for this choice of ng = 2 the overall number of nearest neighbor
searches for the matching line segment T;~Z ;{1 remains the same as for ng = 1.

3.2.2 Romberg extrapolation

An additional improvement of this method is based on the heuristic guess that
the approximation of EF(X) by EF(X"™) (see Proposition ) admits a higher
order expansion

EF(X)=EF(X") 4+ kN2 +o(N"2). (13)

We then may use quantization grids of two different sizes N1 < Ns to cancel
the second order term xN 2 in the above representation.
This leads to the Romberg extrapolation formula

_ NPEF(Xp,) - NEF(X3,)
NZ_ N7

EF(X) + o( Ny ?). (14)

Although assumption ([[J) is only of a heuristic nature, numerical results
seem to confirm this conjecture (like for “regular”optimal quantization).

3.3 Numerical experiments

For the numerical results we implemented the above dual quantization scheme
for grids of constant size 500 and 1000 in all layers k = 1,...,n. Regarding the
Romberg extrapolation approach we applied the extrapolation formula ([[4) for
sizes 100 and 500.

As concerns methods to compare our approach to, we implemented a saddlepoint-
point method (cf. [fjj) and the Stein approach for a Poisson and Normal ap-
proximation developed in [g].

We tested two typical situations: homogeneous and truly inhomogeneous
Bernoulli random walks.

Homogeneous random walk. Let us start with a homogeneous Test-
Scenario, i.e. all «; are chosen equal to 1. Moreover we assume the p; to be
a n sample of a log-normal distribution, which corresponds to the case of a
Gaussian copula. Hence the parameters read as follows:

o 1 = 100,

¢ a;=1,

e p; = po exp(c&; — 0?/2), & ~N(0,1)iid.,
with po € {0.05,0.1,0.2}, o = 0.5,
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Figure 3: Absolute Errors for the call of various strikes (po = 0.05,0 = 0.5).

Since this setting yields a recombining binomial tree, we can compute the

exact reference values of .
J’_
E (Z 7 — K)
i=1

for K € [0,50] and plot the absolute errors as a function of the strike K to
illustrate the numerical performances of the methods. This has been reported
in Figures [ to .

Inhomogeneous random walk I. To discuss a more realistic scenario,
we present an inhomogeneous setting with «; uniform distributed on the integers
{1,2,--- ,10}, so that it is still possible to compute some reference values by
means of a recombining binomial tree. The parameters read as follows

e n = 100,

o a; ~U{1,2,---,10},

o pi=po exp(ob; — 0?/2), & ~N(0,1) iid.,
po € {0.05,0.2}, o = 0.5,

The numerical results are depicted in Figures [l and []. Note that we have
excluded the Stein-Poisson approach since this setting is already out of the
Poisson-limit domain for pg = 0.05 and consequently yield bad results.

Inhomogeneous random walk II. Finally, we present a non-trivial case,
where the «; are non-integer valued any more, i.e. we have chosen them to
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Figure 4: Absolute Errors for the call of various strikes (pg = 0.10,0 = 0.5).
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Figure 5: Absolute Errors for the call of various strikes (pg = 0.20,0 = 0.5).
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Figure 6: Absolute Errors for the call of various strikes (pg = 0.05,0 = 0.5).
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Figure 7: Absolute Errors for the call of various strikes (pg = 0.20,0 = 0.5).
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Figure 8: Absolute Errors for the call of various strikes (pg = 0.05,0 = 0.5).

be U([0,1]) distributed. Since in this setting the recombining property of a
binomial tree is destroyed, we cannot compute the exact reference value any
more. Therefore, we have chosen a grid of size N = 10000 to compute a reference
value, since such a large grid size yields in all former examples an absolute error
less than 1078, To be more precise, the parameters has been chosen as follows:

e n = 100,
o a; ~U([0,1]),

o pi=po exp(ot; — 02/2), & ~N(0,1) iid.,
po € {0.05,0.2}, o = 0.5.

Since the Figures § and [ are quite similar to those obtained in the first
inhomogeneous setting (except a lower resolution), it seems very likely, that
the former inhomogeneous setting is a very generic case to illustrate the general
performance of the three tested methods.

In all the above cases the quantization method remains very stable and
outperforms even for a grid size of N = 500 in nearly all cases the other tested
methods. Only in the homogeneous setting and for very small probabilities p;, it
cannot achieve the performance of the Stein-Poisson approximation. However,
this excellence of the Stein-Poisson method in that particular setting is mainly
caused by the fact, that the target distribution is an integer-valued one, as
the Possion approximation is. Hence, these result are nontransferable to the
inhomogeneous case.

In the more complex inhomogeneous setting (Figures f] and []), we still ob-
serve a strong domination of the quantization methods for small and moderate
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Figure 9: Absolute Errors for the call of various strikes (po = 0.20,0 = 0.5).

probabilities. Furthermore, in the case pg = 0.2, we even get an error for the
Romberg extrapolation with grid sizes 500 and 100, which is close to that of a
1000-point quantization.

Concerning the computational time for the processing of our Dual Quanti-
zation algorithm, this approach is of course not as fast as the Stein’s method,
where one only needs to compute the two first moments of X and then evaluates
the CDF-function of the standard normal distribution. To apply our scheme,
we have to process at each layer k,0 < k < n at full grid I'y similar to recom-
bining tree methods. Nevertheless, the execution of Algorithm 1 implemented
in C# on a Intel Xeon CPUQ3GHz took for a grid size of N = 500 only a few
milliseconds. Moreover, once the distribution of X" is established, we compute
E(X™—K)4 for several strikes K (as needed in practical applications) in nearly
no time.

Finally, we want to emphasize, that this approach gives, through the free-
dom to choose a larger grid size, a control on the acceptable error for the
approximation.

4 Approximation of the Greeks

Concerning the computation of sensitivities with respect to the parameters o
and p;,1 <1 < n, we consider f:R" x (0,1)" — R, defined by

" +
(o, p) = fla,p) = E(Z ;i Zi — K) :
i=1
We are now interested in the computation of g—;:l and g—o’jl.
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Some elementary calculations reveal that for every [ € {0,...,n}

g_; :E(%;%Zi _ (K—al))+ ~E(YaiZ —K)+

i#l
and of
EI =D 'P<Z%Zi > K — Oél)7
1#£l
so that our task consists of approximating the distribution of
alX = Z OZZZZ
i#l

This can be achieved using a straightfoward adaption of the previous dual quan-
tization tree, where we simply skip the [-th layer.
To be more precise, we set

OTJF] =0
C g xkt k=1

Remark. This scheme can be processed simultaneously for all [, 1 < [ < n
without increasing the number of nearest neighbor searches.

Numerical experiments, which are not reproduced here, also confirm the
good numerical performance of the dual quantization in this specific setting.
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