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Inferring Pattern and Process: Maximum-Likelihood Implementation of a
Nonhomogeneous Model of DNA Sequence Evolution for Phylogenetic
Analysis

Nicolas Galtier1 and Manolo Gouy
Université Claude Bernard Lyon 1, Villeurbanne, France

A nonhomogeneous, nonstationary stochastic model of DNA sequence evolution allowing varying equilibrium G1C
contents among lineages is devised in order to deal with sequences of unequal base compositions. A maximum-
likelihood implementation of this model for phylogenetic analyses allows handling of a reasonable number of
sequences. The relevance of the model and the accuracy of parameter estimates are theoretically and empirically
assessed, using real or simulated data sets. Overall, a significant amount of information about past evolutionary
modes can be extracted from DNA sequences, suggesting that process (rates of distinct kinds of nucleotide substi-
tutions) and pattern (the evolutionary tree) can be simultaneously inferred. G1C contents at ancestral nodes are
quite accurately estimated. The new method appears to be useful for phylogenetic reconstruction when base com-
position varies among compared sequences. It may also be suitable for molecular evolution studies.

Introduction

Many features of molecular sequence data make
them suitable for statistical modeling. Characters are nu-
merous and of a similar nature, and their evolution is
partly constrained by global forces, applying at the gene
or genome level (e.g., Sueoka 1961; Wolfe, Li, and
Sharp 1987; Bernardi 1993; Jermiin et al. 1994). Mo-
lecular characters—i.e., sites in a multiple sequence
alignment—can therefore be considered individuals of a
population or outcomes of a random variable. Thus,
phylogenetic reconstruction is seen as a statistical esti-
mation problem, requiring models of DNA sequence
evolution (Felsenstein 1988; Goldman 1990; Yang
1996). It is no surprise that model-based maximum-like-
lihood (ML) methods for phylogenetics have become
increasingly popular as the use of molecular data has
increased (Felsenstein 1981; Saitou 1988; Kishino and
Hasegawa 1989; Goldman 1990; Yang 1993, 1996), al-
though such methods were developed earlier (Cavalli-
Sforza and Edwards 1967; Felsenstein 1973a, 1973b).

In stochastic Markov models of nucleotide substi-
tution, rates of each kind of substitution (A→C, A→G,
. . .) per time unit are given as functions of parameters
of the model. This rate matrix represents the substitution
process assumed. Usually, constancy of the rate matrix
over the tree is assumed—the so-called homogeneity hy-
pothesis. This means that in any lineage, DNA sequenc-
es converge toward a common equilibrium base com-
position (A, C, G, and T contents). Furthermore, con-
stancy of base composition over the whole tree—the
stationarity hypothesis—is also generally assumed: the
assumed base composition in the ancestral sequence is
equal to the equilibrium base composition of the as-

1 Present address: Laboratoire ‘‘Génomes et Populations,’’ Uni-
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sumed rate matrix and remains unchanged. If the ho-
mogeneity and stationarity assumptions were true, equal
nucleotide frequencies would be expected in present-day
sequences.

Actually, this quality of nucleotide frequencies is
not the case in many data sets (e.g., Lockhart et al. 1992,
1994; Galtier and Gouy 1995): compositional changes
are a major feature of genome evolution, making two
common assumptions of substitution models unrealistic.
Lockhart et al. (1994) and Galtier and Gouy (1995)
showed that this departure from the model assumptions
can mislead the standard tree-making methods: sequenc-
es of similar base composition are grouped, whatever
their actual phylogenetic relationships. Alternative dis-
tance-based methods were devised to take into account
unequal base compositions among sequences (Steel
1993; Lake 1994; Galtier and Gouy 1995). These new
methods outperformed the usual ones when composi-
tional biases were high.

Despite their practical success in phylogenetic anal-
yses, the new methods do not increase knowledge about
former evolutionary modes. They mainly extract the
phylogenetic signal from the data regardless of pecu-
liarities of base composition drift. Dealing with se-
quence pairs makes it difficult to recover information
about the circumstances of past compositional changes.
Yang and Roberts (1995) devised an ML implementa-
tion of a parameter-rich model accounting for both rate
heterogeneity among sites and process heterogeneity
among lineages, by assigning each branch in the tree its
own model of substitution. However, this method was
not tractable for more than four or five sequences. In
this paper, we present an ML method for phylogenetic
inference based on a new nonhomogeneous, nonstation-
ary model. A reasonable number of sequences can be
handled. The reliability of parameter estimates is as-
sessed. The new method may be useful for recovering
phylogenetic trees and/or studying molecular evolution-
ary processes.

Methods
The Model

The evolutionary stochastic model we used was
built to account for two of the major known forces gov-
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872 Galtier and Gouy

FIG. 1.—The evolutionary model used in this study in a six-spe-
cies case. n 5 number of species. a and b, Parameter identification. c,
Tamura’s (1992) substitution rate matrix. rA (respectively, rT, rC, rG) is
the sum of the substitution rates in the A (respectively, T, C, G) col-
umn: rA 5 rT 5 (1 1 k·u)/2, rC 5 rG 5 [1 1 k·(1 2 u)]/2.

erning DNA evolution, namely, unequal transition (Ts)
and transversion (Tv) rates and varying G1C content.
One length li is assigned to each branch of the unrooted
topology. Tamura’s (1992) model is used to represent
the substitution process in each branch (fig. 1); this is a
special case of the HKY model (Hasegawa, Kishino and
Yano 1985). Tamura’s model contains two parameters:
Ts/Tv ratio (k) and equilibrium G1C content (u). In the
present model, k is kept constant all over the tree, but
u is allowed to vary from branch to branch. The model
is neither homogeneous nor stationary, since equilibrium
G1C content and expected base composition can vary
among lineages. The assumed evolutionary process
therefore lacks reversibility. This makes the likelihood
dependent on the location of the root, which must be
stated by the model (Yang and Roberts 1995); Felsen-
stein’s (1981) ‘‘pulley principle’’ no longer applies. The
precise location of the root in its branch is specified by
a parameter, i.e., the fraction of the root branch length
lying on the left side of the root (f). The G1C content
of the ancestral sequence is also a parameter of the mod-
el (v), since the stationarity assumption does not apply.

The whole model includes five kinds of parameters
(fig. 1): (1) ancestral G1C content, (2) location of the
root in its branch, (3) Ts/Tv ratio, (4) branch lengths,
and (5) equilibrium G1C contents in each branch. The
assumed evolutionary process follows Tamura’s (1992)
model with variable u among branches. In previous ML
implementations of Tamura’s model, u was kept fixed
over the tree. This model expands Galtier and Gouy’s
(1995) two-sequence model. For n species, the total

number of parameters is 4n 2 2. Equal rates among sites
are assumed. The substitution probabilities along a
branch are given in the appendix.

Maximum-Likelihood Estimation
The likelihood L of a given tree is computed ac-

cording to Felsenstein (1981), multiplying substitution
probabilities along connected branches and summing
over all possible ancestral states. The estimation process
has two parts:

1. For a given (rooted) topology, find the ML estimates
of parameters and record the ML value.

2. Perform step 1 for all competing (rooted) topologies,
and pick up the one maximizing the ML value.

Step 1 is achieved by a modified Newton-Raphson
algorithm close to Felsenstein and Churchill’s (1996).
Two tree-searching algorithms were implemented (step
2 above): star-decomposition (Saitou 1988; Yang 1995),
and global rearrangements (pruning–regrafting) from
any starting tree (Felsenstein 1993). Our versions of
these algorithms are adapted to the rooted case.

Reliability of Estimates
Three approaches were used to investigate the re-

liability of the estimates of parameters, given a topology.
First, putative local maxima were sought by varying the
initial conditions of the iterative process for a given data
set. Second, the sampling variance-covariance matrix of
the parameter estimates was calculated, it is the opposite
of the inverse of the information matrix (i.e., the matrix
of second and cross second derivatives of the log-like-
lihood with respect to pairs of parameters) computed at
the ML point (Edwards 1972). Third, the reliability of
estimates was assessed by simulating DNA sequence
evolution according to model assumptions and then ap-
plying the inference algorithm to the simulated data sets.
Estimated parameters were then compared to actual
ones. This operation may appear unnecessary, since the
ML estimates of substitution parameters are known to
be consistent, given a phylogeny (Edwards 1996). How-
ever, asymptotic properties tell us nothing about the re-
liability of estimates when a limited amount of data is
used (Hillis and Huelsenbeck 1996). Furthermore, pa-
rameter estimation is achieved using an approximate it-
erative algorithm whose results are worth checking.

Results
Convergence

Contrasting with Yang and Roberts’ (1995) report,
few convergence problems were faced when Felsenstein
and Churchill’s (1996) modified Newton-Raphson al-
gorithm was used. A six-species data set was used to
search for putative local maxima. Small-subunit (SSU)
rRNA sequences of six bacterial species were aligned
(1,259 sites): Aquifex pyrophilus (Apy), Thermotoga
maritima (Tma), Thermus thermophilus (Tth), Deino-
coccus radiodurans (Dra), Bacillus subtilis (Bsu), and
Escherichia coli (Eco). The (Apy(Tma((Tth Dra)(Bsu
Eco)))) topology was assumed (Olsen, Woese, and Over-
beek 1994). The modified Newton-Raphson method was
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Nonhomogeneous Model of DNA Sequence Evolution 873

FIG. 2.—Branch length estimation from simulated S1 data sets. a,
Estimated versus actual branch lengths. b, Comparison between esti-
mations based on a homogeneous model (program FASTDNAML; Ol-
sen et al. 1994) and a nonhomogeneous model (this work), respective-
ly. Residuals (estimated minus actual branch lengths) were computed
in the homogeneous (rH) and nonhomogeneous (rNH) cases. abs 5 ab-
solute value. Ten S1 simulation repeats were randomly selected from
100 performed ones to make the figure clearer.

applied 25 times with varying initial parameter values.
The maximum log-likelihoods ranged from
25,476.1145 to 25,476.0966. This is two orders of
magnitude less than log-likelihood differences among
trees commonly considered significant. Parameter esti-
mates were very close between replicates: the highest
relative difference was found for parameter f and was
lower than 5%, while relative differences between esti-
mates of a given branch length never exceeded 0.5%.
Therefore, convergence artifacts seem unlikely to seri-
ously mislead phylogenetic inferences.

Simulations

Three distinct simulation processes were per-
formed. In the first one (S1), a 10-species rooted tree
topology (Kuhner and Felsenstein 1994), and a set of
branch lengths were randomly drawn. Branch lengths
were scaled so that their sum was 1.5; the length of the
pathway connecting the most distantly related sequence
pair on such trees averaged 0.75. No molecular clock
was assumed. An ancestral G1C content value and 18
branch-specific equilibrium G1C contents were ran-
domly drawn from a uniform distribution over [0,
100%]. The Ts/Tv ratio was set to 2. A 500-nt-long an-
cestral sequence was randomly drawn according to its
expected base composition (A 5 T and C 5 G were
assumed). The diverging evolution of 10 sequences was
simulated following the above model. This procedure
was repeated 100 times. Simulations S2 and S were9

2
built to assess the reliability of the v estimate. In S2,
the ancestral G1C content was drawn within [0, 25%].
Equilibrium G1C contents ui were set to 90%. A 10-
species topology with total length 1.5 was randomly
drawn assuming the molecular clock hypothesis, so that
all present-day sequences were equally distant from the
root. This procedure generated present-day sequences
with similar medium G1C contents (around 40%),
while the ancestor was GC-poor. An opposite S evo-9

2
lutionary process was also simulated: v was drawn with-
in [45%, 55%], and ui values were set to 10%, leading
to 10 GC-poor present-day sequences. Five S2 data sets
and five S data sets were generated.9

2
We examined the estimability of all five classes of

parameters. Residual standard deviations sf, sk, and sv

were computed for parameters f, k, and v:

1
2s 5 · (f 2 f ) ,Of est act!p

where p is the number of replicates, fest and fact are the
estimated and actual f values for a given replicate, and
the summation is over all p replicates (and similarly for
sk and sv). Residual standard deviations over 100 S1
simulations were sf 5 25.66%, sk 5 0.1789, and sv 5
1.24%. The location of the root on its branch appears to
be poorly estimated; absolute residuals higher than 0.25
are common. In contrast, the k estimate is reasonably
reliable, and the ancestral G1C content v is quite ac-
curately recovered. Estimated versus actual branch
lengths are plotted (fig. 2a). These estimates were com-
pared with those of program FASTDNAML, based on

a homogeneous stationary model. Residuals in both
analyses (absolute values) are subtracted and plotted
versus actual branch lengths (fig. 2b). For many branch-
es, the homogeneous residual is significantly higher than
the nonhomogeneous one, while the opposite effect is
weaker. Thus, branch length estimates can be biased by
unequal base compositions if the latter are not taken into
account. Estimated versus actual equilibrium G1C con-
tents are plotted (fig. 3a). A small part of these param-
eters lay on the boundaries of the relevance zone (0 or
1). Overall, a reliable global picture of past evolutionary
modes could be extracted by the above inference algo-
rithm from 500-nt-long sequences, although some ui val-
ues appear to be poorly estimated. ui residuals are plot-
ted versus the lengths of underlying branches (fig. 3b).
Equilibrium G1C contents in long branches appear to
be correctly estimated, while those of short branches are
not; when few substitutions happen, the evolutionary
process can hardly be recovered. Equilibrium G1C con-
tents in branches connected to the root are a special
case: they are dependent on knowledge about the loca-
tion of the root (see below). When the estimated f value
is very different from the actual one, ui values in the
root branch are poorly estimated, while they are reliably
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874 Galtier and Gouy

FIG. 3.—Equilibrium G1C content estimation from simulated S1

data sets. a, Estimated versus actual ui. b, ui residual versus actual
branch length. Ten simulation repeats are shown (see fig. 2 legend).

FIG. 4.—Ancestral G1C content estimation from five simulated
S2 data sets and five simulated S29 data sets. The actual value and three
estimates are shown. The maximum-parsimony estimate was computed
by first recovering putative ancestral states at each site according to
the maximum parsimony algorithm (Fitch 1971) and then calculating
the fraction of G1C, accounting for equally parsimonious scenarios.

estimated if the actual f value is given (not shown).
The above results were obtained from trees with a length
of 1.5 substitutions per site. Longer trees were also used
(10 species, total lengths 2.0 and 3.0, resulting in av-
erage maximum pairwise distances 1.0 and 1.5, respec-
tively), leading to similar results.

The accuracy of ancestral G1C content estimate is
striking. However, since equilibrium G1C contents ui

are randomly drawn, the mean G1C content in present-
day sequences may be similar to the ancestral one for
S1 data sets. To test whether the above inference algo-
rithm can actually extract information about ancestral
base composition, simulations S2 and S were per-9

2

formed, in which the G1C contents of present-day se-
quences are nearly constant, but distinct from that of the
ancestral one. Three ancestral G1C content estimates
were computed from five S2 data sets and five S data9

2

sets: the mean of G1C contents of present-day sequenc-
es, parsimony site-by-site reconstruction of ancestral
states, and our above algorithm. Results are shown in
figure 4. As expected, the mean of present-day G1C
contents is a poor estimate of v. The parsimony-based
estimate performs slightly better but is definitely not re-
liable. The nonhomogenous ML method gives quite ac-
curate estimates for v, even when G1C contents in
present-day sequences are similar to each other and dif-
ferent from that of the ancestral one. This valuable prop-
erty generalizes to the G1C content of any internal node
of the tree, which can be deduced from the parameters
of the model (not shown).

Six-species simulations were also conducted, and
the same results were found (not shown). G1C contents
at internal nodes were accurately recovered.

Sampling Variance and Covariance
The variance/covariance matrix was computed for

real data sets of 4, 6, 8, and 10 species (bacterial SSU
rRNA, 1,259 sites). A common pattern was found. Stan-
dard errors and correlation coefficients in the four-spe-
cies case are given (fig. 5). Most results of the simula-
tion process are confirmed: the standard error of param-
eter f is high, those of k, li, and ui are reasonable, and
that of v is quite low. Further information is provided
by the correlation coefficients of pairs of parameters.
First, the location of the root f and the equilibrium
G1C contents in the branches connected to the root (u1
and u6 in fig. 5) are strongly correlated. No reliable in-
formation about the evolutionary mode within the root
branch seems to be available from present-day sequenc-
es. Second, a systematic negative correlation between k
and branch lengths is found. In contrast, no significant
correlation is found between the ui and li values of a
given branch, which is a valuable point.

Application
The new method was compared with some com-

monly-used ones using real data. A data set DS1 was
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Nonhomogeneous Model of DNA Sequence Evolution 875

FIG. 5.—Sampling standard errors and pairwise correlations between parameters in a four-species case (eubacterial SSU rRNA, 1,259 sites).
a, Parameter identification. b, Parameter estimates and standard errors. c, Correlation coefficients for parameter pairs 3103. Values higher than
0.25 or lower than 20.25 are shown in boldface. Correlation coefficients between the l and u parameters of a given branch are underlined.

Table 1
Efficiencies of Six Tree-Making Methods in Recovering a
Known Phylogeny from Bacterial SSU rRNA Sequences
with Unequal (DS1) or Nearly Equal (DS2) G1C Contents

MP

DISTANCE METHODS

NJ-K2 NJ-LD NJ-GG

LIKELIHOOD

METHODS

ML-H ML-NH

DS1 . . .
DS2 . . .

1
7

0
7

3
7

5
7

3
7

5
7

NOTE.—See text for discussion of the methods used.

built to check the accuracy of tree-making methods in
the case of unequal base compositions. Small-subunit
rRNA sequences of 16 bacterial species were selected
from the rRNA database (Van de Peer et al. 1994). The
species sampling was conducted this way: in seven bac-
terial phyla, two sequences were selected, namely, those
with the highest and the lowest G1C contents. Phyla
were defined according to Van de Peer et al. (1994). The
monophyly of these groups is likely, since it is sup-
ported by many data sets (Woese 1987; Lloyd and Sharp
1993; Galtier and Gouy 1994; Eisen 1995). Two out-
group sequences (Aquifex pyrophilus and Thermotoga
maritima) were added. Van de Peer et al.’s (1994) align-

ment was used. Ambiguously aligned regions were dis-
carded (1,194 analyzed sites). Six tree-making methods
were used: neighbor-joining (Saitou and Nei 1987) with
Kimura’s (1980) distance (NJ-K2), maximum parsimony
(MP; Fitch 1971; Felsenstein 1993), ML based on a ho-
mogeneous model (ML-H; Olsen et al. 1994), NJ with
the logdet distance (NJ-LD; Steel 1993; Lake 1994), NJ
with Galtier and Gouy’s (1995) distance (NJ-GG), and
the new ML method based on a nonhomogeneous model
(ML-NH). The latter three methods were devised to
cope with unequal base compositions. For ML-NH, star
decomposition was performed, and further rearrange-
ments were tried manually. A limited number of trees
could be examined due to extensive running time (star
decomposition required 8 h on a Sun Sparc 1000). The
number of correctly recovered phyla—i.e., the number
of pairs of sequences of a given phylum actually
grouped as neighbors—for each tree-making method are
given in table 1. To assess the effect of unequal base
compositions, a similar data set, DS2, was constructed
selecting sequences of nearly equal G1C contents with-
in each phylum. Care was taken to ensure similar ge-
netic distances between sequence pairs of a given phy-
lum in both data sets. Table 1 shows that compositional
biases are likely to mislead usual tree-making methods.
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876 Galtier and Gouy

FIG. 6.—Neighbor-joining tree (Kimura’s 1980 distance) for data
set DS1 (see text). Genus names, G1C contents, and phyla are given
for 16 SSU rRNA eubacterial sequences. One genus per phylum (the
G1C-rich one) is shown in boldface. Outgroups are underlined. Ab-
breviations: a, alpha proteobacteria; g, gamma proteobacteria; d, delta
proteobacteria; FLA, Flavobacterium and relatives; G1H, high-GC
Gram-positive bacteria; G1L, low-GC Gram-positive bacteria; SPI,
Spirochetes.

This effect is striking for the NJ-K2 and MP methods:
they recover all seven eubacterial phyla when sequences
of nearly equal within-phylum base compositions are
used, but zero or one when within-phylum G1C content
variability is high. The NJ-K2 tree is given in figure 6:
most G1C-rich sequences are ‘‘attracted’’ by the G1C-
rich outgroups. The ML-H method looks more robust to
the violation of the homogeneity assumption (see Galtier
and Gouy 1995). Among distance-based methods, the
NJ-LD and, especially, the NJ-GG methods appear more
reliable than NJ-K2 when base compositions vary
among sequences. Similarly, the new ML-NH method is
more efficient than ML-H when the DS1 data set is used.

Discussion

A new ML algorithm for phylogenetic inference is
presented. It is based on a nonhomogeneous model of
DNA evolution, allowing varying base compositions
among sequences. Contrasting with Yang and Roberts’
(1995) model, this model appears to be theoretically
tractable for a large number of sequences, since no con-
vergence problem was faced when the number of com-
pared sequences increased. Much information about for-
mer evolutionary processes can be extracted from pres-
ent-day sequences.

Relevance of the Model

The model implemented is parameter-rich, but most
parameters are reliably estimated. Interestingly, the
length li and equilibrium G1C content ui of a given
branch are not correlated. Representing equilibrium base
frequencies in each branch by a single parameter (vs.
three parameters in Yang and Roberts 1995) may be an
improvement, since G and C contents (respectively, A
and T contents) are nearly equal for long genomic frag-
ments (Lobry 1995), except in mitochondrial genomes.
Since the number of required parameters in a nonhomo-
geneous model is high, using Tamura’s (1992) model
rather than the more complex HKY one (in Yang and
Roberts 1995) may be a valuable compromise, ensuring
applicability. Some parameters, however, are poorly es-
timated. Among them, the location of the root on its
branch and the equilibrium G1C contents in the root
branch are highly correlated; little information about the
evolutionary process in the root branch can be recov-
ered. This may explain why the two-sequence approach
failed in recovering former evolutionary processes (Gal-
tier and Gouy 1995). Inaccurate estimates of G1C con-
tents in short branches and negative correlations be-
tween the Ts/Tv ratio and branch lengths are two addi-
tional limitations of the present inference process. Both
suggest the need to improve the parameterization of the
model.

Regarding G1C contents in small branches, an ex-
cess of parameters is likely. In order to reduce this num-
ber, some ui’s may be considered constant, or set to the
mean of the ui’s of connected branches. However, au-
tomatically choosing which ui’s should be fixed this way
is a difficult problem, because an equal number of pa-
rameters must be kept for all competing topologies if
likelihoods are to be compared. Yang and Roberts
(1995) suggested assuming a common ui value for a
whole monophyletic group with similar base composi-
tions, which is an interesting idea. However, the mono-
phyly of the relevant group must be unchallenged
throughout the analysis.

The negative correlation between the Ts/Tv ratio
and branch lengths is probably the consequence of the
implemented parameterization: equations (1) to (4) in
the appendix show that parameter k always multiplies
li. Using li9 5 k·li as a new parameter is natural. How-
ever, this reparameterization does not work under the
assumption of a common Ts/Tv ratio for all branches.
Rejecting this assumption would probably remove the
correlation between Ts/Tv ratios and branch lengths, but
at a high cost, namely, n 2 3 additional parameters,
where n is the number of species. Since the correlation
has no clear impact on the inference process, we favor
our above model. An alternative solution would be an a
priori estimation of the Ts/Tv ratio, possibly using a
model allowing unequal rates among sites.

The present method correctly recovers the ancestral
G1C content v, while little information is extracted
about the location of the root f (and also the evolution-
ary process in the root branch), which may appear in-
consistent. An interpretation of these results is as fol-
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Nonhomogeneous Model of DNA Sequence Evolution 877

lows. Let r1 and r2 be the nodes connected to the root
of the tree, and let v1 and v2 be the actual G1C contents
at nodes r1 and r2. Estimation of v1 and v2 from the
data is not dependent on knowledge about the location
of the root. Indeed, our results show that these values
are correctly estimated from usual data sets. When the
f parameter varies from 0 to 1, the optimal v estimate
should vary from v1 to v2. For a reasonably short root
branch, v1 and v2 cannot differ much; so v is correctly
recovered even if f is not known. If the root branch is
very long, i.e., if the direction of evolution is not known
in a large part of the tree, v estimation may become less
accurate.

Our main objective in this study was to check the
relevance of a nonhomogeneous model; simplifying as-
sumptions were made to focus on that point. Especially,
equal rates among sites were assumed. This assumption
has been found to be unacceptable for many data sets
(Yang, Goldman, and Friday 1994; Tourasse and Gouy
1997). The Ts/Tv ratio becomes underestimated when
unequal rates are not taken into account (Wakeley 1996).
Since the above model appears tractable, generalizing it
by removing the equal-rate assumption may be worth-
while.

Usefulness of the New Method

The present nonhomogeneous ML method may be
useful for two distinct goals: (1) phylogenetic recon-
struction and (2) study of the molecular evolution pro-
cess.

Point 1 was exemplified by a 16-species study: the
new method performed better than the usual ones, in-
cluding ML implementations of homogeneous models
and MP. Existing methods can become inconsistent
when base composition varies among lineages—quite a
common feature. Compositional biases have significant
effects on phylogenetic reconstruction, as exemplified
by data sets DS1 and DS2. Taking these effects into ac-
count greatly improves phylogenetic inferences.

The nonhomogeneous model may also be fitted to
a data set, given a tree topology, to focus on former
evolutionary processes. The sampling variances and co-
variances of inferred parameters can be used to assess
their reliability. Ancestral G1C contents seem to be ac-
curately estimated. This property may allow one to ad-
dress a few long-standing questions of molecular evo-
lution, including the evolution of isochores in vertebrate
genomes (Mouchiroud, Gautier, and Bernardi 1988;
Mouchiroud et al. 1991; Bernardi 1993) or the hypoth-
esized G1C-richness of the ancestral genome of all liv-
ing organisms (Woese 1987).

A major practical limitation of the new algorithm
is running time. When the number of compared se-
quences is higher than seven or eight, only a small frac-
tion of the tree space can be examined. Further, a priori
knowledge about the root location is required, since
rooted topologies are used. In view of this, the new
method should be used to compare a reasonable number
of phylogenetic hypotheses, possibly after an exhaustive
preliminary analysis has been performed using faster
methods. This strategy may be more efficient and faster

than star decomposition, as suggested by empirical com-
parisons of several tree-searching algorithms (Z. Yang,
personal communication).

Statistics and Systematics

The distribution of character states among species
is the result of both evolutionary pattern (tree topology)
and process (substitution rates). In our opinion, there is
no reason why the process should be forgotten when
inferring the pattern, as soon as a reasonable amount of
information about it is available. Statistical modeling ap-
pears to be a suitable tool for inferring the history of
molecular data. This is no surprise, since molecular
characters are numerous and are undergoing global con-
straints: their states can be seen as outcomes of a ran-
dom variable whose distribution derives from a sto-
chastic process. A common criticism of model-based
phylogenetic inferences is that models are not realistic.
We would like to emphasize that even wrong or un-
realistic models can lead to correct inferences, depend-
ing on the robustness of the estimates. Remarkably
enough, the classical ML method based on a homoge-
neous model performed better than the MP method
when base composition varied among sequences in our
above example (see also Galtier and Gouy 1995); ML
outperforms MP even when its underlying model is
wrong. Presumably, this is because the MP method is
not assumption free and is less robust than ML to de-
partures from these assumptions (Yang 1996).

A computer program implementing the above
method is available by anonymous ftp to: pbil.univ-
lyon1.fr (pub/molpphylogeny/nhml).
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APPENDIX

Substitution Probabilities Under Tamura’s 1992
Model

Let R be Tamura’s (1992) matrix of instantaneous
substitution rates (fig. 1), with parameters u and k. Sup-
pose that such a process is undergone by a sequence
evolving along a given branch of length l. The matrix
of substitution probabilities along the branch, P, is given
by P 5 el·R. Explicitly:

1 2 u
2l 2[(k11)/2]·lp 5 p 5 · (1 1 e ) 1 u ·e (1)AA TT 2

u
2l 2[(k11)/2]·lp 5 p 5 · (1 1 e ) 1 (1 2 u) ·e (2)CC GG 2

1 2 u
2l 2[(k11)/2]·lp 5 p 5 · (1 1 e ) 2 (1 2 u) ·e (3)GA CT 2
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u
2l 2[(k11)/2]·lp 5 p 5 · (1 1 e ) 2 u ·e (4)AG TC 2

1 2 u
2lp 5 p 5 p 5 p 5 · (1 2 e ) (5)AT TA GT CA 2

u
2lp 5 p 5 p 5 p 5 · (1 2 e ), (6)CG GC TG AC 2

where pIJ is the probability of state J at the bottom of
the branch given state I at the top of the branch.
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