
HAL Id: hal-00428150
https://hal.science/hal-00428150

Submitted on 27 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reactive Stochastic Local Search Algorithms for the
Genomic Median Problem

R. Lenne, Christine Solnon, T. Stützle, Eric Tannier, M. Birattari

To cite this version:
R. Lenne, Christine Solnon, T. Stützle, Eric Tannier, M. Birattari. Reactive Stochastic Local Search
Algorithms for the Genomic Median Problem. European Conference on Evolutionary Computation
in Combinatorial Optimization (EvoCOP), Mar 2008, Naples, Italy. pp.266-276, �10.1007/978-3-540-
78604-7_23�. �hal-00428150�

https://hal.science/hal-00428150
https://hal.archives-ouvertes.fr

Reactive Stochastic Local Search Algorithms for
the Genomic Median Problem

Renaud Lenne1,2, Christine Solnon1, Thomas Stützle2, Eric Tannier3, and
Mauro Birattari2

1 LIRIS, UMR CNRS 5205, Université de Lyon 1, Lyon, France
{renaud.lenne,christine.solnon}@liris.cnrs.fr

2 IRIDIA-CoDE, Université Libre de Bruxelles, Brussels, Belgium
{stuetzle,mbiro}@ulb.ac.be

3 INRIA Rhône-Alpes, LBBE, UMR CNRS 5558, Université de Lyon 1, France
eric.tannier@inria.fr

Abstract. The genomic median problem is an optimization problem in-
spired by a biological issue: it aims at finding the chromosome organiza-
tion of the common ancestor to multiple living species. It is formulated
as the search for a genome that minimizes a rearrangement distance
measure among given genomes. Several attempts have been reported for
solving this problem. These range from simple heuristic methods to a
stochastic local search algorithm inspired by WalkSAT, a well-known lo-
cal search algorithm for the satisfiability problem in propositional logic.
The main objective of our research is to develop improved algorithmic
techniques for tackling the genomic median problem. In particular, we
have developed an algorithm that is based on tabu search and iterated
local search. To alleviate the dependence of the algorithm performance
on a single fixed parameter setting, we have included a reactive scheme
that automatically adapts the tabu list length of the tabu search part
and the perturbation strength of the iterated local search part. In fact,
computational results show that our final algorithm reaches very high
performance for the genomic median problem and we have found a new
best solution for a real-world case.

1 Introduction

Genome rearrangements are large-scale evolutionary events that modify the or-
ganization of genomes. Chromosomes may be fissioned, fusioned, large segments
can be translocated or inverted. Given the genome of living species, the recon-
struction of rearrangement scenarios has been the subject of a large amount
of literature these last years. It aims to understand what rearrangement events
took place and when they occurred in evolution, and it is a promising way for
phylogenetic inference [1, 2].

The Genomic Median Problem (GMP) is a crucial step in genome rearrange-
ment problems. While for only two genomes, a scenario with a minimum number
of rearrangements can be reconstructed by the way of polynomial methods for

many variants of rearrangements (see for example [3, 4]), the problem is NP-
hard for already three genomes [5]: it consists in searching for a fourth genome
that minimizes the distance to three given genomes, in terms of the number of
rearrangements.

The classical phylogenetics methods to construct an ancestral genome are
based on pieces of sequences, thus making the reconstruction of the organisation
of the genome impossible. One of the objectives of the GMP is to find this
organisation, making a better construction of ancestral genomes. It could also
be used as a hint for phylogeny, for example by using the found median as an
entry-point for a phylogenetic algorithm (like in [2]).

There have been various attempts at solving the problem algorithmically.
Exact solutions exist for the special case where there is only one chromosome
and a rather small instance [5, 6]. Incomplete approaches, ranging from rather
simple heuristics [6, 7] to more complex local search algorithms [8, 9] have been
proposed. These approaches produce solutions that are often of good quality but
that are not necessarily optimal and for larger instances there may be signifi-
cant gaps to optimal solutions. In addition, compared to the currently available
local search techniques, the approaches are rather simple and therefore one can
conjecture that there is room for finding better quality solutions.

Motivated by these observations, we propose a new stochastic local search
algorithm for the GMP, based on tabu search [10] and iterated local search [11].
A first goal is to improve upon the performance of current state-of-the-art algo-
rithms in terms of run-times required to reach specific bounds on the solution
quality and to find better quality solutions, thus providing new state-of-the-art
solutions that may be of biological relevance. A second goal is to study the
influence of the parameters on the solution process with respect to different in-
stances; based on preliminary experiments, we have added a reactive scheme to
automatically adapt crucial parameters during search; for our algorithm these
are the tabu list length and the perturbation size.

The paper is organized as follows. Section 2 describes the GMP and existing
approaches to solve this problem. Section 3 introduces our new stochastic local
search approach, based on a combination of tabu search and iterated local search.
Section 4 studies the influence of the parameters on the solution process, showing
that the best parameter setting varies from one instance to another. Section
5 introduces a reactive scheme for automatically adapting parameters during
search. Section 6 experimentally compares static and reactive versions of our
algorithm, and also compares our algorithm with state-of-the-art approaches.

2 Problem definition and existing work

A genome will be defined as a graph, in which some edges are directed (the
orthologous markers), and some not (the links between the genes).

Representation of genomes by graphs. A genome is seen as a group of chromo-
somes. A chromosome is seen as a list of oriented genes or markers. A genome

composed of k chromosomes defined on a set of n markers is represented by a
graph G = (V,E).

– V associates two vertices i− and i+ with every marker i ∈ [1; n] and two
anonymous vertices with every chromosome j ∈ [1; k];

– E is composed of two parts Em and Ec:
• for every marker i, Em contains a directed edge (i−, i+)
• for every chromosome cj containing |cj | markers, Ec contains |cj |+1 non

directed edges
The edges are defined in such a way that each chromosome corresponds to
a path in G whose endpoints are anonymous vertices and which alternates
directed edges —corresponding to oriented markers— and non directed edges
—linking markers.

Let us consider for example a genome composed of 6 markers and the 3
following chromosomes: c1 =<

→
1 ,
←
5>, c2 =<

→
2 ,
→
4>, and c3 =<

→
3 ,
←
6>. This

genome is represented by the following graph.

!!"! "# !# $! $#%! %#&!&# '!'#

1 5 2 4 3 6

Note that chromosomes have no directions so that paths are not directed.
For example, the first chromosome c1 is equivalent to <

→
5 ,
←
1>.

Genomic distance. A rearrangement in a genome is an operation that deletes
two non directed edges (a, b) and (c, d), and replaces them by (a, c) and (b, d).
It is the “double-cut-and-join” operation described in [4, 12], or the “2-break
rearrangement” of [13]. It simulates chromosome fissions, fusions, translocations,
inversions and transpositions.

Let us consider the genome of our previous example. An example of a rear-
rangement consists in replacing edges (2+, 4−) and (3+, 6+) by edges (2+, 3+)
and (4−, 6+), thus changing chromosomes c2 to <

→
2 ,
←
3>, and c3 to <

←
4 ,
←
6>, as

displayed in the following graph.

!!"! "# $!%! %#&!&# '!'#

1 5 2 4 3 6
!# $#

A rearrangement transforms one genome into another. Given two genomes
G1 and G2 defined on the same set of markers, there is always a way to trans-
form G1 into G2 by a sequence of rearrangements. The minimum number of
rearrangements can be computed in linear time [4, 12]. This number is called the
genomic distance between G1 and G2, and it is denoted d(G1, G2).

The genomic distance d(G1, G2) is computed with respect to a non directed
graph G1,2 = (V1,2, E1,2) which is obtained by merging the two graphs G1 =
(V1, E1) and G2 = (V2, E2) as follows:

– V1,2 = V1 ∪ V2. Note that vertices associated with markers are shared by
both G1 and G2 as they are defined on a same set of markers. However,
anonymous vertices corresponding to chromosome endpoints are different in
G1 and G2.

– E1,2 is the union of all non directed edges of G1 and G2.

The genomic distance is defined, as in [4, 12], by d(G1, G2) = n+p−c(G1,2)+
#(G1,2)/2, where n is the number of markers, p is the number of chromosomes
in both genomes, c(G1,2) is the number of different paths and cycles in G1,2,
and #(G1,2) the number of paths whose endpoints are anonymous vertices that
come from the same genome.

The Genomic Median Problem (GMP). Given three genomes G1, G2, G3 on the
same set of markers, the goal of the GMP is to determine a genome GM that
minimizes the sum d(G1, GM) + d(G2, GM) + d(G3, GM).

The reversal median problem, which uses the number of reversal as a distance,
was proven to be NP-hard [5] for the special case when the genomes are composed
of one unique chromosome. The problem which we handle here uses a different
distance measure, as defined in [4, 12] but most of the time the solution coincide.
Also, the proof of NP-completeness is sill valid for our distance definition of the
distance, which results in a problem called Cycle Median Problem in [5] and
which is also proven, already for unichromosomal genomes, to be NP-complete.

Various methods for solving the GMP have been proposed. These com-
prise exact solvers or simple heuristics that work on the particular case of uni-
chromosomal genomes like GRAPPA [5, 6] and some more recent heuristic improve-
ments [7]. For the general problem case with multiple chromosomes, there is a
rather simplistic search method in MGR-MEDIAN [8], which uses a greedy con-
structive algorithm. The best performance results so far have been reported for
an algorithm called MedRByLS [9]; this is a local search algorithm inspired by
WalkSAT [14], a well-known local search algorithm for the satisfiability problem
in propositional logic. We based our algorithm on the same neighborhood and
the same data structures as used in MedRByLS.

Neighborhood considered in MedRByLS. To find a genome GM that minimizes
the sum of the distances to three given genomes G1, G2 and G3, MedRByLS iter-
ately modifies a genome GM by performing local moves. Each move corresponds
to a rearrangement in GM , that is, the exchange of two non directed edges of
GM , and is evaluated with respect to the three graphs GM,1, GM,2, and GM,3.

At each step, the size of the neighborhood is in O(n2), where n is the number
of markers. As genomes may have several hundreds of markers, the neighbor-
hood is reduced in [9] with respect to the following principle: a rearrangement
is considered only if, in one of the three graphs GM,1, GM,2, and GM,3 it breaks
a cycle or a path into two cycles or paths such that one of these two cycles or
paths is elementary, that is, a cycle of length 2 or a path of length 3. Therefore,
moves can only increase the number of elementary cycles or paths.

Basic principle of the local search algorithm of MedRByLS. MedRByLS follows
the random walk framework initially introduced in WalkSAT [14]. It starts local
search from an initial genome G which may either be provided by the user or
randomly chosen within the set {G1, G2, G3}. Then, it iteratively chooses a move
uniformly at random from the neighborhood defined above; the move is applied
if it decreases the sum of the distances; otherwise it is accepted with a small
probability p.

3 Tabu Search and Iterated Local Search for the GMP

The random walk framework considered by MedRByLS is a rather basic technique
for directing the search process. Here, we consider more advanced local search
approaches.

We have first re-implemented MedRByLS, using the same data structures based
on graphs and the same neighborhood definition. This allows a direct comparison
of our new algorithm to the original MedRByLS using a same implementation of
the data structures. For comparisons that are done in Section 6, we verified that
our re-implementation of MedRByLS matches the performance of the original
version.

As a next step, we enhanced the local search by a simple tabu search scheme.
For the search diversification of the resulting tabu search algorithm, we inte-
grated it into the iterated local search framework by adding appropriate per-
turbations and acceptance criteria. This resulted in an algorithm that we called
MedITaS (for Median solver by Iterated Tabu Search). More precisely, it consists
of the two following main algorithmic components.

3.1 Tabu Search (TS) algorithm

First, we have implemented a simple tabu search (TS) algorithm. This algorithm
forbids the reversal of the last t local search moves (where t is the tabu tenure),
that is, the last changed markers. In order to do this, we use an array of n
integers representing the n markers and, for each node, we put in this array the
iteration when it was last changed. This simplifies the task of guessing if a move
is tabu or not (that is, if it has been changed in the last cycles). Different from
many other simple tabu search algorithms, ours is based on a first-improvement
pivoting rule because the neighbourhood is very large and, thus, a full scan of it
would be too time-consuming. In our experiments we have used a default initial
tabu list length of 50.

3.2 Iterated Local Search (ILS) algorithm

After some preliminary tests, TS seemed to stagnate frequently in poor qual-
ity solutions. To overcome this problem, we integrated TS into an iterated lo-
cal search (ILS) algorithm. ILS uses solution perturbations when the search is
deemed to be stuck in plateau-moves or in a basin of attraction to generate new

starting solutions for the local search. To know if the search is stuck, we con-
sider the resampling ratio [15], which is computed in constant time thanks to a
double hash-table, and which corresponds to the percentage of solutions that are
revisited with respect to the number of computed solutions. If this ratio is too
high, it means that the search keeps visiting the same few solutions and it needs
to escape from this search space are by a significant perturbation. We also keep
track of the solution value. If this value keeps being constant for a long time, we
consider being stuck in plateau-moves. In this case a perturbation could lead to
avoid looking for non-interesting solutions.

The perturbation uses a rearrangement of k edges instead of 2. This means
that k edges are deleted and replaced by k other edges sharing the same extrem-
ities. Finally, an acceptance criterion decides whether either the solution before
the perturbation or the one after is kept for the next iteration of the ILS algo-
rithm; in the latter case, the tabu list is emptied. The implemented acceptance
criterion accepts a new solution if it is better than the previous one; otherwise,
the previous solution has a user-defined probability of beeing kept (in our test,
we used a default probability of 0.2, which resulted in good performance in some
preliminary experimental tests).

4 Tuning of MedITaS parameters

In order to test the influence of parameters on the solution process, we con-
ducted a simple experiment. First, we randomly generated 20 instances equally
split on two different levels of hardness (with respect to the definition of the
phase transition by [9]) but with the same size of 500 markers. The first set of
10 instances, labeled as easy, has a ratio of number of markers to number of re-
arrangements of 0.5. The second set of 10 instances, labeled as hard, has a value
of 1.0 for the same ratio. Each of these sets has been used to off-line tune the
algorithm through F-Race [16, 17], a tool for the automatic tuning of algorithm
parameters.

For the tabu tenure of TS, the best settings resulting from these experiments
were of 76 for the easy instances and of 86 for the hard instances. For the strength
k of the perturbation of ILS, the best setting was 17 for the easy instances and
it was 2 for the hard instances. Hence, the best settings strongly differ between
the two benchmark sets, especially for the perturbation.

5 Reactive search

Experiments reported in the previous section showed that both ILS and TS are
sensitive to parameter settings and that the best parameter settings are very
different from one instance class to another. In addition, in further experiments
we have noted that within one instance class, the best parameter settings de-
pend further on the individual instance. Hence, we decided to extend the basic
version of MedITaS using a reactive version of TS (adapting the tabu tenure) and
ILS (adapting the perturbation strength). This reactive scheme is inspired from

reactive search [18]. It uses the resampling ratio, which is explained in Section
3.2, to determine if one of the parameters needs to be changed.

The reaction mechanism works as follows. If there is too much resampling
(by default, after 3 recalculated solutions), the tabu list length is increased (by
default, the size is increased by 10). At the opposite, if there is no resampling for
a long time (the default value is 500 moves) the tabu list length is shortened by
a parameterized number (by default, the tabu list is shortened by 1). A similar
mechanism is used for tuning the ILS part. If the solution that is returned after
the perturbation and the subsequent local search is an already visited solution,
the reactive algorithm increases the strength k of the perturbation, because
it seems that the perturbation did not succeed in escaping from the basin of
attraction. Again, the size of the increase and the decrease can be parameterized;
as default, we use the value 1. Finally, we should remark that the settings of the
parameters that direct the reaction mechanism, at least in principle, should also
be tuned. However, here we essentially stick to the default values used, assuming
that, as also argued in [18], the parameters steering the reaction mechanism are
more robust that the parameters tuned by the reaction mechanism.

6 Results

In order to test the efficiency of our algorithms, we ran multiple comparisons. All
runs were made on the same machine having a Dual-Core AMD Opteron2216
HE (2 processors at 2.4GHz) and 4GB of RAM; only one core is used for each
execution since our algorithm is implemented as a fully sequential one.

6.1 Comparison between off-line tuned and reactive algorithms

At first, we generated randomly 20 instances with a ratio of number of markers
to number of rearrangements of 1.0 (which seems, according to the results from
[9], to be in the phase transition) of 500 markers. This set has been split in two:
10 instances have been used to off-line tune the algorithm through F-Race [16,
17]; 10 other instances have been used as a test set. The algorithm to tune is
the non-reactive version of MedITaS. We have then compared the results of the
off-line tuned version to the reactive version of our MedITaS algorithm starting
either with the default initial parameter values or with the parameter values
that have been determined by the automatic tuning. For the comparison, we
have run those three algorithms for 20 independent trials on each of the 10 test
instances and 60 seconds per trial.

Figure 1 plots the cumulative frequency distribution of finding a bound on
the median to be reached on the 10 test instances. The plot shows that, when
comparing the fine-tuned version to the pure reactive version with initial default
parameter values, the former gets its first high-quality solutions quicker than
the latter. However, after approximately 40 seconds, the reactive version reaches
higher empirical frequencies. Also, better trade-offs are obtained by initializing
the reactive algorithm with the fine-tuned parameter settings: doing so gives

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

Pr
ob

ab
ilit

y
of

 s
ol

vin
g

th
e

pr
ob

le
m

Seconds

Comparaison of MedITaS algorithms

Tuned Non-Reactive MedITaS
Reactive MedITaS initialized with default value

Tuned Reactive MedITaS

Fig. 1. Comparison between off-line tuned and reactive algorithms

good results as quickly as the non-reactive version, and, for higher computation
times, it performs similar to the default reactive algorithm.

To check for the statistical significance of the results, we did pairwise com-
parisons of the solution quality reached using the Wilcoxon rank sum test,
where the p-values were adjusted using the holm method on each of the 10 in-
stances separately for correcting for the effect of multiple comparisons. We then
counted how often the differences between two algorithms are significant (where
the p-value is lower than 0.1). We run those comparison at 15, 30 and 60 seconds
run-time.

From Table 1, we can clearly see that the fine-tuned reactive search performs
frequently significantly better than the non-reactive version and that after 60
seconds, the non-reactive version never gets significantly better than any other
method. We can also see that for a short run-time, neither of the fine-tuned
reactive or non-reactive version is significantly better than the other and that
the reactive method initialized with default parameters is never significantly
better than any other method until 60 seconds.

after 15 seconds after 30 seconds after 60 seconds
NR tuned R default R tuned NR tuned R default R tuned NR tuned R default R tuned

NR tuned - 10 0 - 2 0 - 0 0

R default 0 - 0 0 - 0 1 - 1

R tuned 0 10 - 3 5 - 1 1 -

Table 1. Number of time a method x (given by the line) has been significantly better
than a method y (given by the column) among the ten instances from pairwise com-
parisons using the Wilcoxon rank sum test. NR and R, respectively, stand for Non
Reactive and Reactive variants of MedITas; R either starts from fine-tuned or default
parameter settings whereas NR always uses fine-tuned parameter settings.

Instance MedITas MedRByLS Instance MedITas MedRByLS
avg min max (sdv) avg min max (sdv) avg min max (sdv) avg min max (sdv)

1 541.0 539 543 (1.0) 543.0 538 568 (6.9) 2 540.4 539 542 (1.0) 542.7 539 569 (6.9)

3 563.7 561 566 (1.5) 565.8 561 590 (6.9) 4 566.9 565 568 (0.8) 570.2 566 600 (8.6)

5 588.9 587 591 (1.3) 593.3 587 624 (8.7) 6 593.9 591 597 (1.7) 597.6 592 631 (9.4)

7 609.8 609 613 (1.1) 613.9 608 642 (8.2) 8 610.2 608 612 (1.1) 614.4 608 648 (9.3)

9 635.1 634 637 (1.0) 639.1 634 674 (9.7) 10 637.1 635 639 (1.2) 641.2 635 676 (10.1)

11 658.5 656 661 (1.4) 662.8 656 697 (10.1) 12 653.4 651 655 (1.1) 658.8 652 692 (9.6)

13 669.1 668 672 (1.0) 674.7 668 710 (10.6) 14 669.3 667 671 (1.2) 674.1 667 709 (10.7)

15 675.2 674 677 (1.0) 679.8 673 716 (10.7) 16 684.5 682 688 (1.6) 690.8 683 724 (10.7)

17 693.1 691 695 (1.1) 698.9 692 737 (11.5) 18 692.5 690 695 (1.4) 698.8 691 735 (11.2)

19 707.2 706 709 (0.9) 713.0 705 753 (11.6) 20 705.7 703 709 (1.4) 712.1 703 751 (11.6)

21 722.3 720 725 (1.1) 728.6 720 770 (12.6) 22 716.2 714 718 (1.0) 722.9 715 764 (12.4)

.

Table 2. Comparison between MedITaS and MedRByLS on randomly generated in-
stances.

6.2 Comparison to MedRByLS

In another experiment, we compared the performance of our reactive MedITaS
algorithm (starting with default parameters) to MedRByLS, which from a solution
quality point of view is currently the state-of-the-art algorithm [9]. For this
comparison, we used 22 randomly generated instances of different difficulties
(with respect to the definition of the phase transition by [9]) but with the same
size of 500 markers. The set has 11 levels of hardness and 2 instances per level. On
this set we run our MedITaS algorithm and our implementation of the basic local
search algorithm MedRByLS from [9] for 20 independent trials on each instance
and 40 seconds per trial. The comparison of the best solution qualities reached
by both algorithms on each instance is given in Table 2. From this table, we
can see that average results computed by MedITaS are always better than those
of MedRByLS (often the differences are also statistically significant) and that the
gap between the two algorithms tends to increase as instances become harder.
Also, the standard deviation of MedITaS is very low and remain constant as the
instances become harder, as opposite to MedRByLS which has an higher deviation
on harder instances. Note however that, if the worse solution found by MedITaS
is always better than the worse solution found by MedRByLS, on four instances
the best solution found by MedRByLS is better by a distance value of one than
the best found by MedITaS.

Fig. 2. Comparison between MedITaS and MedRByLS on a real-world instance (the
human-mouse-rat comparison)

6.3 Real World Instance

In another experiment we used a real-world instance: the human-mouse-rat com-
parison, which was also used in [9]. This instance is made of 424 markers and
the best median so far had a value of 346. We ran each algorithm 35 times for a
computation time limit of 60 seconds. From these runs, we generated the graph
in Figure 2, which represents the histogram of the frequency of finding certain
solution qualities with the two main algorithms (MedITaS, in its reactive and
fine-tuned version, and MedRByLS).

Figure 2 shows that MedITaS finds solutions that are at least as good as those
found by MedRByLS and always of a very good quality (of 347 or better), while
MedRByLS sometimes fails to find good ones: on some runs it returned a solution
of value 351. We should also notice that MedRByLS has a quite low probability
(less than 20%) of finding a solution of 347 or better. Finally, it should be also
mentioned that in another set of experiments MedITaS found a new best solution
for this instance with an evaluation function value of 345.

7 Discussion

Our MedITaS algorithm for the Genomic Median Problem gave very promising
results. First, we have seen that the reactive version of our algorithm can handle
relatively well a wide range of different instances without having the need to
be off-line tuned. But we have also shown that a reactive search starting with
fine-tuned parameters reaches a better tradeoff between solution quality and
computation time than when the reactive version starts from default values. In
our experimental comparison, we also have shown that MedITaS reaches often,

in the same computation time, better quality solutions that the MedRByLS algo-
rithm, which was previously shown to be a top-performer for the same problem.
Finally, it is noteworthy to be mentioned that we also found a new best solution
for the human-mouse-rat common ancestor.

The developped algorithmic techniques perform very well from a solution
quality point of view. However, from a biological point of view, the distance
used here (as the one used in most previous attempts at solving the problem)
do not seem to reflect the biological reality of the evolution process, as it is also
explained in [19]). Thus, a research on a biologically more relevant operator for
computing the distances has to be envisaged. We also noted in our experiments
that there were a lot of medians with the exactly same value. It could be a
good idea to do some comparison between them trying to extract some valuable
information on the most probable characteristics of the real ancestor.

Acknowledgements.

This article is an extension of a short abstract by the same authors [20]. The
authors would like to thank Yannet Interian for her kind help in any questions
regarding the implementation of her algorithm. Renaud Lenne acknowledges
support from the F.R.S.-FNRS through a FRIA fellowship. Thomas Stützle and
Mauro Birattari acknowledge support from the Belgian F.R.S.–FNRS of which
they are Research Associates. Eric Tannier is funded by the Agence Nationale
pour la Recherche (ANR), projects REGLIS and GENOMICRO.

References

1. Moret, B., Tang, J., Warnow, T.: Reconstructing phylogenies from gene content
and gene-order data. In Gascuel, O., ed.: Mathematics of Evolution and Phylogeny.
Oxford Univ. Press (2005) 321–352

2. Bernt, M., Merkle, D., Middendorf, M.: Using median sets for inferring phyloge-
netic trees. Bioinformatics 23 (2007) e129–e135

3. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: Polynomial
algorithm for sorting signed permutations by reversals. Journal of the ACM 46(1)
(January 1999) 1–27

4. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16) (2005)
3340–3346

5. Caprara, A.: The reversal median problem. INFORMS Journal on Computing 15
(2003) 93 – 113

6. Moret, B., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint
medians in phylogeny reconstruction from gene-order data. In: Proceedings of the
Second International Workshop on Algorithms in Bioinformatics. Volume 2452 of
Lecture Notes In Computer Science., Springer-Verlag (2002) 521–536

7. Arndt, W., Tang, J.: Improving inversion median computation using commut-
ing reversals and cycle information. In: Comparative Genomics. Volume 4751 of
Lecture Notes in Computer Science., Springer Verlag (2007) 30–44

8. Bourque, G., Pevzner, P.: Genome-scale evolution: Reconstructing gene orders in
the ancestral species. Genome Research 12(1) (2002) 26–36

9. Interian, Y., Durrett, R.: Genomic midpoints: Computation and evolutionary im-
plications (2007) Submitted.

10. Glover, F., Laguna, F.: Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA (1997)

11. Stützle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3) (2006) 1519–1539

12. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Proceedings of WABI 2006. Volume 4175 of Lecture Notes in Bioinformatics.
(2006) 163–173

13. Alekseyev, M.A., Pevzner, P.A.: Multi-break rearrangements and chromosomal
evolution. Theoretical Computer Science (2007) To appear.

14. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the 12th National Conference on Artificial Intelligence, AAAI Press
/ The MIT Press, Menlo Park, CA, USA (1994) 337–343

15. van Hemert, J., Bäck, T.: Measuring the searched space to guide efficiency: The
principle and evidence on constraint satisfaction. In: Proceedings of the 7th In-
ternational Conference on Parallel Problem Solving from Nature. Volume 2439 of
Lecture Notes in Computer Science., Springer Verlag (2002) 23–32

16. Birattari, M.: F-race: Racing methods for the selection of the best. (2005) R
package version 0.1.56.

17. Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine
Learning Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium
(2004)

18. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem.
Algorithmica 29(4) (2001) 610–637

19. Eriksen, N.: Reversal and transposition medians. Theoretical Computer Science
374(1-3) (2007)

20. Lenne, R., Solnon, C., Stützle, T., Tannier, E., Birattari, M.: Effective Stochastic
Local Search Algorithms for the Genomic Median Problem. In: Doctoral Sym-
posium on Engineering Stochastic Local Search Algorithms (SLS-DS), Brussels,
Belgium (2007) 1–5

