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Introduction

In this large-scale genome sequencing era, the main bottleneck to the progress in molecular biology is data analysis. The aim of this analysis is the extraction of biological information from genome sequence data. An important task in this context consists in the detection of regulatory signatures in DNA sequences as well as the prediction of the corresponding promoter. An important part of gene regulation is mediated by specific proteins, called the transcription factors (TF), which influence the transcription of a particular gene by binding to sequence specific sites on the DNA sequence, called transcription factor binding sites. Such binding sites are located in promoter regions. In prokaryotic organisms, the binding sites are predominantly in the immediate vicinity of the gene. However, in higher eukaryotes, the binding sites of cooperating TFs are organized into short sequence units called cis-regulatory modules (CRM). We refer the reader to [START_REF] Werner | Models for prediction and recognition of eukaryotic promoters[END_REF] for additional details.

The first methods for detecting promoter regions in DNA sequences [START_REF] Sagot | Spelling approximate repeated or common motifs using a suffix tree[END_REF][START_REF] Van Helden | Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies[END_REF] looked only for a unique binding sitesingle motif. In the search for more complex promoter models methods have appeared that extract promoter regions composed by two binding sites [START_REF] Cardon | Expectation Maximization algorithm for identifying proteinbinding sites with variable length from unaligned DNA fragments[END_REF][START_REF] Van Helden | Discovering regulatory elements in non-coding sequences by analysis of spaced dyads[END_REF]. The first attempts to identify several binding sitesmultiple motif -consisted on crossing compatible single motifs [START_REF] Bailey | The value of prior knowledge in discovering motifs with MEME[END_REF][START_REF] Eskin | Finding composite regulatory patterns in DNA sequences[END_REF][START_REF] Eskin | Genome-wide analysis of bacterial promoter regions[END_REF], which takes time at least quadratic in the number of single motifs and their occurrences. To address this problem, the lists for single motifs were trimmed by statistical significance before the crossing operation. However, a motif composed by several binding sites may be statistically significant even though none of the sites taken individually are. Indeed, one of the main interests in seeking for multiple motifs directly lies in this fact.

There are few realistic methods in the literature which attempt to find a modular organization of binding sites for TFs that cooperate in the regulation of genes. Some probabilistic methods were proposed to identify CRMs and their component TFs using only the raw sequence data as input [START_REF] Sharan | Creme: a framework for identifying cis-regulatory modules in human-mouse conserved segments[END_REF][START_REF] Segal | A discriminative model for identifying spatial cis-regulatory modules[END_REF]. The main problem of these methods is that in the attempt to reduce false positives they also eliminate true positive motifs. Moreover, an exact algorithm [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF] was also proposed to flexibly identify motifs composed of any number of binding sites, possibly distributed over different CRMs. The main drawback of this method is its incapacity to deal with large genomic data since it explodes both in time and in space. The prime objective of this paper is to attack the explosion problem of this approach.

The main contribution of this work is a new algorithm to identify cis-regulatory modules from a set of promoter regions of co-regulated genes. The new method achieves an exponential time and space gain, in the worst case analysis, relatively to [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF]. Clearly, time and space savings of this magnitude are of the utmost importance when searching through genomic data. In practice, the exponential gain reflects that the extraction remains independent of the distances between the binding sites that build up the multiple motif. This improvement is very important to find eukaryotic TFs since the promoter model can be very complex with consensus sequences observed over very large and variable distances. The most important acceleration element of the proposed algorithm is a new data structure, called box-link, which stores the information about how to jump within the DNA sequences from site to site in the multiple motif. The algorithm uses a factor tree [START_REF] Allali | The at most k-deep factor tree[END_REF], which is a suffix tree [START_REF] Ukkonen | On-line construction of suffix trees[END_REF] built only up to a certain level, leading to an important space saving.

We demonstrate our results on simulated and real data. In the first case, the goal was to test the ability of the algorithm to deal with large amounts of human simulated data. In the second case, we wanted to verify the accuracy of the algorithm in recovering known single and multiple motifs in yeast, and to apply it to discover novel motifs.

Model overview

A single model, or simply a model, is a non-empty string over the alphabet Σ={A,C,T,G}. From this point on, we denote the length of a single model m by k. A model m is said to have an e-occurrence in the input sequences if there is one word u of length k in the input sequences such that the Hamming distance between u and m is less than or equal to e. Recall that the Hamming distance between two sequences of the same length is the minimum number of substitutions needed to transform one sequence into another. A model is said to be a valid model, or simply a motif, if it has an occurrence in at least q input sequences, where q is called the quorum. Motifs are used to describe highly conserved strings in a set of DNA sequences which, in the case of sequences from co-regulated genes, are candidates for binding sites.

A structured model is a pair (m, d) where m is a p-tuple (m i ) 1≤i≤p of single models and d is a (p -1)-tuple of pairs (d min i ,d max i ) 1≤i<p , denoting p -1 intervals of distance between the p single models. Each element m i of the structured model (m, d) is called a box and we denote its length by k i .G i v e nap-tuple (e i ) 1≤i≤p of allowed substitutions, a structured model (m, d) is said to have an (e i ) 1≤i≤p -occurrence in the input sequences if, for all 1 ≤ i ≤ p, there is an e i -occurrence u i of m i such that: (i) u 1 ,...,u p are in the same input sequence; (ii) the end position of u i and the start position of u i+1 in the sequence is in [d min i ,d max i ], for all 1 ≤ i<p . A structured model is said to be a valid structured model,orastructured motif,ifithasan(e i ) 1≤i≤p -occurrence in at least q input sequences. As expected, structured motifs try to capture highly conserved complex regions in a set of DNA sequences which, in the case of sequences from co-regulated genes, simulate functional combinations of TF binding sites.

Factor tree

In this section we restrict our attention to a basic data structure upon which our algorithm is based. A factor tree is a data structure used to index strings, proposed by Allali and Sagot [START_REF] Allali | The at most k-deep factor tree[END_REF], which is very similar to suffix trees [START_REF] Ukkonen | On-line construction of suffix trees[END_REF]. A factor tree, also called the k-factor tree, indexes the substrings of a string whose length does not exceed k. As for suffix trees, the time complexity for constructing a factor tree is linear in the length of the string. However, compared with a suffix tree, the k-factor tree offers a substantial gain in terms of space complexity for small values of k.

As an example, consider the 5-factor tree for a string s=AGACAGGAGGC$ presented in Figure 1 ($ is commonly used as a termination character to guarantee that all substrings of s which match a prefix of a substring of s have a path from the root that ends at a leaf, e.g., the substring C of s matches a prefix of the substring CAGGA). All substrings up to size 5 are depicted in the factor tree (e.g. AGACA, GACAG, etc.) and the corresponding leaf contains the positions where the substring occurs in the input string (the first position in the string is position 1). Note that the 5-deep factor tree does not have any leaf with a collapsed position, since there is no common substring of size 5 in the string s.H o w e v e r , with k =3 , the substring AGG occurs twice in s, at positions 5 and 8, and we obtain a 3-factor tree with collapsed positions, as depicted in Figure 1.
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The factor tree construction for a set of N strings, called a generalized factor tree, can be easily obtained by consecutively building the factor tree for each string of the set. The resulting factor tree is built in time proportional to the sum of all the string lengths. An usual way to distinguish the input strings is by storing at each tree node v a Boolean array, called the Colors v array [START_REF] Sagot | Spelling approximate repeated or common motifs using a suffix tree[END_REF] (usually implemented as a bit vector with dimension N ). This array indicates the strings in the input set that contain the substring labeling the path from the root to the tree node v.

Structured motif extraction

In this section we introduce the main contribution of this paper. A new data structure, called box-link, is proposed and used in a new algorithm for structured motif extraction. For the sake of exposition, we consider only structured motifs with p boxes of the same size k, same distance d between boxes, and a fixed number of allowed substitutions e for each box. The general case was studied and implemented. Furthermore, all complexity results lift naturally, but the full details are out of the scope of this paper.

Box-link

A box-link stores the information needed to jump from box to box in a structured model. Its name comes from the fact that it links all p boxes of a structured model. Formally, a box-link can be defined as follows. Let L be the set of leaves at depth k of a k-factor tree T for a string s and L i k denote all possible i-tuples over L.Abox-link of size i, with 1 ≤ i<p ,i sa(i +1)-tuple in L i+1 such that there is a substring s ′ of s where: (i) the length of s ′ is ik +(i-1)d; (ii) the k-length substring of s ′ ending at position jk+(j -1)d, with 1 ≤ j ≤ i, is the path in T spelled from the root to the j-th leaf of the box-link tuple.

As an example, consider the 3-factor tree for AGACAGGAGGC$ presented in Figure 2 with box-links depicted for 2 boxes distanced by a spacer of 4 nucleotides. When considering a generalized factor tree for a set of N strings, a box-link b has to be endowed with a Boolean array of dimension N , similar to the one associated with factor tree nodes, defined as: Colors b [i]=1 ,i fb links boxes of the i-th input sequence, and
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Colors b [i]=0, otherwise, with 1 ≤ i ≤ N .

Box-links construction

In this section we present an algorithm to build box-links. The algorithm makes use of two variables. First, the variable list leaf has the list of all leaves inserted in the factor tree, which can be easily obtained during the factor tree construction. In fact, f o rt h es a k eo f exposition, list leaf can be seen as a family of variables (list leaf i ) 1≤i≤N (one for each input sequence), where each list leaf i has average length n (the average length of an input sequence). Observe that the substring labeling the path from the root to the j-th leaf of list leaf i corresponds to the j-th at most k-length substring of the i-th input string. Second, the variable b j stores the j-size box-links being built. Moreover, we have to set up the function AddBoxLink. AddBoxLink(b,v,i) adds a box-link between an existing (j -1)size box-link b and a leaf v for the i-th input sequence. However, it only creates a new box-link if there is not already a box-link between box-link b and node v (merging in this way equivalent box-links). In either way, creating or not a new box-link, the AddBoxLink function sets the Boolean array entry i to 1. The pseudo-code of the algorithm to build box-links is presented in Algorithm 1.

Algorithm 1 BoxLink(Boxes p, BoxSize k, BoxDistance d, ListLeaf list leaf ) (1) for i from 1 to N (2) while size of list leaf i ≥ pk +(p -1)d (3) b 0 = AddBoxLink(nil, list leaf i [0],i) (4) for j from 1 to p -1 (5) b j = AddBoxLink(b j-1 , list leaf i [jk + jd],i) (6)
remove the first leaf of list leaf i Next, we establish the time and space complexity for the BoxLink algorithm.W ed enote by n l the number of nodes at depth l of the generalized suffix tree for the same input sequences as the factor tree where the box-links are being constructed (note that this suffix tree is never built, it only serves the purpose of providing us a value to establish the complexity analysis). 

Structured motif extraction using box-links

In this section we introduce the algorithm to extract structured motifs from upstream sequences of co-regulated genes. The basic data structure used by the algorithm is a factor tree. The first step is the construction of the generalized k-factor tree T for the input set of DNA sequences (recall that k is the size of the boxes in the structured models). Next, the tree is modified in order to store at each node the Colors array, as explained in Section 3. The pre-processing phase ends with the construction of box-links, which are added to the leaves of the factor tree. At this point we are in condition to start the extraction phase, but before presenting the pseudo-code of the algorithm we need to introduce the following concept. A e-node-occurrence of a model m is a pair (v, e v ) such that: (i) v is a node in the factor tree T ; (ii) e v is the Hamming distance between the label of the path from the root to v and m; (iii) e v ≤ e. Whenever e is understandable from context we use node-occurrence instead of e-node-occurrence. Clearly, when substitutions are allowed (e>0) a model can have more that one node-occurrence in T .

We now give a summary of the extraction process for p =2 . The pseudo-code for the extraction is presented in Algorithm 2. The algorithm recursive process is initialized with ExtractMotifs(m = ε, i =1 ) , where ε represents the empty model. The algorithm starts by extracting single motifs m 1 of length k, one at a time. The extraction of single motifs is done by a simple depth-first traversal of the factor tree T (step ( 7)) [START_REF] Sagot | Spelling approximate repeated or common motifs using a suffix tree[END_REF]. Since i =1<p=2a recursive call is made with ExtractMotifs(m = m 1 , 2) (step ( 8)). For each node-occurrence v of a first box m 1 (step (1)), box-links are followed to reach nodes z (step (2)) and the content of the Boolean array Colors stored in these box-links is used to temporarily and partially modify the Colors of the target nodes z (steps (3) to ( 6)). The extraction of the second box m 2 then proceeds in the same way, but only over this modified part of the tree (step ( 7)). Once the extraction of all valid motifs (m 1 ,m 2 ),d has ended (step ( 9)), the factor tree is restored to its previous state (step [START_REF] Ukkonen | On-line construction of suffix trees[END_REF]). The construction of another single motif m 1 follows (step ( 7)), and the whole process unwinds in a recursive way until all structured motifs are extracted.

Algorithm 2 ExtractMotifs(Motif m, Box i) (1) for each node-occurrence v of m (2)
for each leaf z such that there is a box-link b v,z from v to z (3) put z in L(i) [START_REF] Eskin | Genome-wide analysis of bacterial promoter regions[END_REF] if (first time z is reached) set Colors z to -→ 0 and put z in N extEnds (5)

Colors z = Colors z + Colors b v,z (6) 
UpdateTree(T ,N extEnds) [START_REF] Sagot | Spelling approximate repeated or common motifs using a suffix tree[END_REF] for each motif m i obtained by a depth-first traversal of T

(8) if (i<p) ExtractMotifs(m = m 1 ...m i ,i +1) (9)
else KeepMotif(m = (m 1 ,...,m p ),d ) (10) RestoreTree(T ,L(i))

A proper appreciation of the algorithm needs some set up that follows. The UpdateTree updates the Boolean arrays from the nodes in N extEnds to the root in the following way: if nodes z and z have the same parent z, then Colors z = Colors z + Colors z (Colors are usually implemented as a bit vector, so this means the bitwise OR operation). Any arc from the root that does not have a node in N extEnds is not part of the updated tree, nor are the subtrees rooted at its node in N extEnds. Moreover, L(i) is an array that stores the state of the nodes at level k for the (i -1)-th box of a structured model. The RestoreTree restores the Boolean arrays from the nodes in L(i) to the root in the following way: if nodes z and z have the same parent z, then Colors z = Colors z + Colors z . Any arc from the root is part of the restored tree. Finally, KeepMotif stores all information concerning valid motifs.

Next, we establish the complexity of Algorithm 2. The term ν(e, k) denotes the number of distinct words that are at a Hamming distance at most e from a k-long word. Proof. We can parcel out the complexity into: (i) the number of operations needed to build all p parts of structured motifs; (ii) the number of operations needed to update T ; (iii) the number of operations needed to restore T . To compute (i) we have to calculate the cost of all visits to nodes between the root and level k (the deeper level ever reached). Notice that when spelling all parts of a motif we are working with nodes between the root and level k only, and because factor trees are compact, being at least binary, there are at most 2n k such nodes. Hence, the number of visits to nodes between the root and level k is upper bounded by twice the number of visits to nodes at level k. Moreover, when no substitutions are allowed, there are at most b p (k, d) ways of spelling all structured motifs. However, when up to e substitutions are allowed, a node at level k may be visited O(ν p (e, k)) times more. Hence, (i) takes O(Nb p (k, d)ν p (e, k)), where N accounts for the access to the Colors array. To compute (ii) we need to count the number of operations necessary to modify the first k levels of T which is upper bounded by O(Nb p (k, d)ν p-1 (e, k)). This corresponds to all visits made to nodes z coming from b v,z for all models m p-1 .I n addition, the propagation from z to the root R for all models m p-1 is upper bounded by the same value. Finally, since (iii) is also upper bounded by the time to update T , we conclude that Algorithm 2 takes O(Nb p (k, d)ν p (e, k)) time. Briefly, the space complexity is given by the space required by box-links and the space required by the factor tree and the L(i) arrays (1 ≤ i<p). This algorithm exhibits an exponential time and space gain relatively to the previous approaches to extract structured motifs presented in [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF], where the best algorithm takes

O(Nb p (k, d)ν p (e, k)+Nn pk+(p-1)d ν p-1 (e, k)) time a and O(Nn pk+(p-1)d + Npn k )
space. The difference between the time complexity expressions occurs in the second term which is eliminated by Algorithm 2. Observe that in the worst case scenario, the factor tree is complete and we have b p (k, d) = min{|Σ| pk , |Σ| pk+(p-1)d } = |Σ| pk <n pk+(p-1)d = |Σ| pk+(p-1)d which reflects an exponential gain of the order |Σ| (p-1)d (we denote by |Σ| the cardinality of Σ, so for the DNA alphabet case |Σ| =4 ). The major gain of this new method, over previous approaches for extracting structured motifs, is that in the worst case scenario the extraction time of the motifs remains independent of the distances between them (recall that an exponential factor on (p -1)d disappears in the worst case analysis). A similar reasoning applies for the exponential gain in space complexity.

a The time complexity presented herein differs from the one presented in [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF]. Indeed, the authors of [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF] acknowledged a mistake in the time complexity and agree with the expression we present here.

Experimental results

This section presents results attained by RISO, the C implementation of the new algorithm proposed in this paper, as well as benchmark comparisons with SMILE, the C implementation of the algorithm presented in [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF] made available by the authors. The results presented were obtained using a Intel Pentium IV at 2.4GHz with 1GB of RAM.

The structured motifs extracted by RISO were classified according to their statistical significance in order to give them some biological relevance [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF]. The Z-score for a motif was considered, indicating how far and in what direction the number of occurrences of the motif deviates from its distribution mean. This score is especially useful when comparing the relative occurrences of motifs from distributions with different means and different standard deviations. This difference clearly occurs for highly conserved regions on a set of DNA sequences against ordinary uniformly distributed sequences (random background).

Human simulated data

As a basic test of RISO, we used a set of DNA sequences generated by a Markov chain with order 5, calibrated on intergenic oligonucleotide frequencies for the human DNA. These sequences were obtained using the Regulatory Sequence Analysis (RSA) tools (http://rsat.scmbb.ulb.ac.be/rsat/). In this context, two datasets were prepared, one with 1000 sequences of size 1000, and another with 2000 sequences of size 2000. Four sets of experiments were performed by running RISO and SMILE over each dataset, requiring a quorum of 20% (q = 200/1000)a n d40% (q = 800/2000) for each data set, respectively. Each set of experiments consisted on three searches for structured motifs of two boxes with sizes 3, 5, and 7, respectively, in all cases distanced by 15 nucleotides. Allowed substitutions varied in the experiments: in the first search e 1 =0and e 2 =0 ; in the second search e 1 =1and e 2 =1 ; in the third search e 1 =2and e 2 =1 .I nF i gure 3 we depict the results obtained in these experiments. We emphasize that time results encompass the construction of the factor tree with box-links (for the RISO case), which took, in the computationally most demanding experiment, less than 5 seconds. In terms of time RISO was always much faster than SMILE (with both RISO curves lying below SMILE curves). RISO showed to be scalable with respect to dataset size increase (RISO performed 3.5 times slower when dataset size increased 4 times, while SMILE performed 6 times slower with the same dataset size). In terms of space RISO also showed a better performance. Moreover, SMILE was not able to cope with a dataset of 4000 sequences of size 4000 in a 1GB memory machine, while RISO was able to perform extractionso v e r this dataset.

Cis-regulatory regions in yeast

In real data we evaluated the performance of the algorithm to recover known motifs in yeast, as well as to discover new ones. As test sets we used a collection of 68 genes that are known to be regulated by zinc cluster factors. The upstream sequences were retrieved from positions -1 to -1000 relative to the ORF (open-reading frame) start positions. To set up our data we took advantage of the TRANSFAC database (http://www.gene-regulation.com/). We made several extractions not allowing substitutions (e =0 ) and requiring a quorum of 10% (q =7 /68) in the collected data. Our method was able to detect 6 CRMs with very high significance out of 9 that we looked for. The results are summarized in Table 1. The first column of the table lists the searched TFs, while the known consensus for each TF is presented in the next column, using the standard IUPAC code. For known consensi, lowercase letters represent uncertainty with respect to the corresponding nucleotide, whereas capital letters denote a higher certainty. The third column presents the predicted motifs, where we emphasize the TFs GAL4, LEU3 and PPR1 because they were perfect matches (with respect to the known motifs) with very high significance. The Z-score is presented in the fourth column and its position in the ordered list of the scored motifs is presented in the last column. When no ranking is provided it means that the predicted motif was not in the fifteen best ranked. We stress that all the extractions performed above took less than one minute with RISO, and in the best case RISO was 375 times faster than SMILE.

Conclusion

We presented a new algorithm and data structure for the extraction of structured motifs in DNA sequences. The new algorithm exhibits an exponential time and space gain, in the worst case analysis, relatively to existing algorithms for extracting structured motifs [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF].

The only added cost comes from the computation of box-links but this time is negligible in comparison with the time required to perform the extraction of the structured motifs. Moreover, the proposed algorithm only requires the creation of a suffix tree pruned at the level of the largest box of the structured motif (called a factor tree [START_REF] Allali | The at most k-deep factor tree[END_REF]), saving much space in comparison with the algorithms proposed in [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF] that are based on the full suffix tree. Experimental results show that the new algorithm is much faster than the SMILE algorithm [START_REF] Marsan | Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification[END_REF], in some cases, more than two orders of magnitude faster. The application of RISO to biological datasets shows the ability of the method to extract relevant consensi. Future work can progress in several directions. First, we are refining RISO in order to have a trade-off between computing some box-links and having others storedinmemory , reducing even more the space used by the algorithm. Second, it would be valuable to combine our approach with probabilistic ones, possibly by modeling each motif within a structured motif using the standard position specific scoring matrix (PSSM) representation. Finally, we are exploring the use of our algorithm as part of a framework to unveil the complex gene regulatory network underlying the yeast response to the 2,4-D herbicide and to a new antimalarial/antitumor drug artesunate.

Figure 1 .

 1 Figure 1. The 5-factor tree (on the left) and the 3-factor tree (on the right) for the string AGACAGGAGGC$.
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 2 Figure 2. The 3-factor tree for the string AGACAGGAGGC$ with box-link for p =2and d =4.

  Moreover, we define b p (k, d) = min{n p k ,n pk+(p-1)d }. Proposition 4.1. Algorithm 1 takes O(N 2 np) time and O(Nb p (k, d)) space. Proof. Step 1 requires O(N ) time. Step 2 requires O(n), where n is the average number of leaves in list leaf i . Step 4 requires O(p) time. Step 5 requires O(N ) time, which corresponds to the creation or update of Colors array. Hence, Algorithm 1 takes O(N 2 np) time. Briefly, the space complexity is given by the number of box-links (which is upper bounded by b p (k, d)) times its size (which is upper bounded by N ).
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 42 Algorithm 2 takes O(Nb p (k, d)ν p (e, k)) time and O(Nb p (k, d)+Npn k ) space.
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 3 Figure 3. Time (on the left) and space (on the right) comparison of RISO and SMILE.
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 1 Regulons of Zn cluster proteins.

	TF name	Known motif	Predicted motifs	Z-score Ranking
	GAL4 HAP1 LEU3 LYS PDR PPR1 PUT3 UGA3 UME6	CGGn 11 CCG CGGnnntanCGG RCCggnnccGGY wwwTCCrnyGGAwww tytCCGYGGary wyCGGnnwwykCCGaw yCGGnangcgnannnCCGa aaarccgcsggcggsawt tagccgccga	CGGn 11 CCG (GAL4) GGGn 3 AGC CGGn 6 CGG (HAP1) GCCn 6 GGT (LEU3) TTCn 4 GGA TCCGCG CGGn 6 CCG (PPR1) CCGn 11 GCC AGCCGCC GGCGGCTAA TAGCCGCC GCCGCCGA	7.05 3.05 2.08 4.82 3.05 3.58 5.86 3.05 7.59 27.33 12.52 12.52	1st --6th --1st --2nd 11th 12th
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