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. In this paper, we extend this result and find convex sets C ⊂ R N , besides the unit Euclidean ball B, for which P + rC reconstructs the topology of A. This class of convex sets includes in particular N -dimensional cubes in R N . We proceed in two steps. First, we establish the result when P is an ε-offset of A. Building on this first result, we then consider the case when P is a finite noisy sample of A.

INTRODUCTION

In this paper, we study the Minkowski sum between a convex set and a point set that samples a shape, generalizing previous results that establish the Minkowski sum retrieves the topology of the shape when the convex set is a Euclidean ball.

Prior work and problem.

Motivated by surface reconstruction from 3D scan data and manifold learning from point clouds, several authors have formulated precise conditions under which a reconstruction algorithm outputs a topologically correct approximation of a shape, given as input a possibly noisy sample of it [START_REF] Amenta | The power crust, unions of balls, and the medial axis transform[END_REF][START_REF] Dey | Critical points of the distance to an epsilon-sampling of a surface and flow-complex-based surface reconstruction[END_REF][START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF][START_REF] Niyogi | Finding the Homology of Submanifolds with High Confidence from Random Samples[END_REF][START_REF] Chazal | Smooth Manifold Reconstruction from Noisy and Non Uniform Approximation with Guarantees[END_REF]. Maybe one of the simplest algorithm consists in outputting a Euclidean r-offset of the sample, that is the union of Euclidean balls with radius r centered on the sample points. Assuming the reach of the shape is positive and data points form a sufficiently dense and accurate sample of the shape, authors in [START_REF] Niyogi | Finding the Homology of Submanifolds with High Confidence from Random Samples[END_REF][START_REF] Chazal | Smooth Manifold Reconstruction from Noisy and Non Uniform Approximation with Guarantees[END_REF] have established that r-offsets of the data points are homotopy equivalent to the shape for suitable values of the offset parameter r (see Figure 1, left). The aim of this work is to understand how this result generalizes when, instead of unions of Euclidean balls, we consider for the reconstruction unions of translated and scaled copies of a convex set C centered on the data points. In other words, writing B for the unit Euclidean ball centered at the origin and letting P be a sample of the shape A, we would like to understand what happens if we replace the Euclidean r-offset P + rB by the Minkowski sum P + rC. Do we keep the topology of the shape A as in Figure 1, middle or do we lose it as in Figure 1, right? We are particularly interested in the case where C is a polytope.

Motivation.

Our motivation to study this question is two-fold. First, in many practical applications such as stereo vision or image analysis, the accuracy of measures varies in magnitude according to the direction of measurements. In this context, it seems reasonable to recover the topology of the shape, using a convex set which takes into account the anisotropy of the measurement device. Second, we believe that unions of cubes could present some advantages over unions of Euclidean balls for topological computations in high dimension. In practice, the reconstruction represented by an α-offset is replaced by the more convenient corresponding α-shape which shares the same homotopy type [START_REF] Edelsbrunner | The union of balls and its dual shape[END_REF]. Indeed, the αshape has a simpler geometry and, being a simplicial complex, can benefit from existing theorems and algorithms ded-hole Figure 1: The union of disks and squares retrieve the topology of the sampled curve unlike the union of triangles.

icated to topological computations. However, if the ambient dimension is large, the α-shape may have a high complexity [START_REF] Amenta | A tight bound for the Delaunay triangulation of points on a pol yhedron[END_REF] and its computation may be rather expensive and requires sophisticated data structures [START_REF] Boissonnat | Incremental construction of the Delaunay triangulation and the Delaunay graph in medium dimension[END_REF]. Our idea to circumvent this problem is the following. Given ε > 0, we define the cubical grid Gε = (εZ) N ⊂ R N and replace the sample P ⊂ R N by a nearby sample Pε ⊂ Gε. Applying our result to the unit N -dimensional cube C = [-1, 1] N ∈ R N , we shall see that the set Pε + kεC retrieves the homotopy type of the shape, for some well-chosen integer k. Hence, our result allows us to reconstruct with the right homotopy type a shape by a union of voxels with vertices the cubical grid (see [START_REF] Attali | Reconstructing shapes with guarantees by unions of convex sets[END_REF] for a precise statement of this corollary and [START_REF] Attali | Optimal reconstruction might be hard[END_REF] for an application). Such a "cubical set" has a simpler structure than the α-shape and may be more convenient for topological computations in high dimension. Following this idea, our work might contribute to build a bridge between the point of view of distance functions in computational topology and the world of voxels in digital image processing.

Chosen approach and contributions.

A first idea to tackle the problem mentioned above is to use the framework of semi-concave functions. Specifically, one can associate to any symmetric convex set C with a nonempty interior a norm . C defined by x → x C = inf{α > 0 | x ∈ αC}. The balls of the associated distance dC are translated and scaled copies of C. The metric dC is invariant by translation but is not isotropic unless C is the Euclidean ball. Suppose the boundary of C is smooth with a bounded curvature. Given a subset Y ⊂ R N , the squared distanceto-Y function x → miny∈Y xy 2 C is semi-concave [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF] and has therefore a generalized gradient which induces a continuous flow. Hence, a theory similar to what has been done in the Euclidean case [START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF][START_REF] Chazal | The λ-medial axis[END_REF][START_REF] Chazal | Smooth Manifold Reconstruction from Noisy and Non Uniform Approximation with Guarantees[END_REF] can be developed. However, we are interested in convex sets, such as polytopes, whose boundary are not necessarily smooth nor has a bounded curvature. It follows that the semi-concavity property is lost and no generalized gradient of the squared distance-to-Y function can induce a flow. The proof technique used in this paper should be of independent interest since it overcomes the limitation of flow-based methods and applies to convex sets with non-smooth boundary. Taking inspiration in [START_REF] Niyogi | Finding the Homology of Submanifolds with High Confidence from Random Samples[END_REF] where a deformation retract of a Euclidean offset of the sample onto the shape is constructed explicitly, we move away from this approach and introduce a new proof scheme based a sandwich lemma (Lemma 1). Results in this paper are positive as well as negative. We carefully identify a class of convex sets to which the above result can be extended. We also give examples of convex sets outside this class which won't provide a correct reconstruction. We proceed in two steps. First, we state a reconstruction theorem, when the sample P is an arbitrarily small Euclidean offset of the shape and secondly when P is a finite sample.

Outline.

Section 2 presents definitions and the formal statements of our two reconstruction theorems. Section 3 proves the first reconstruction theorem and Section 4 proves the second. Section 5 concludes the paper.

STATEMENT OF RESULTS

Before we state our results in Section 2.3, we first introduce the necessary background in topology in Section 2.1 and identify in Section 2.2 classes of convex sets to which our results will apply.

Homotopy equivalences

First, we review some classical definitions in topology that can be found for instance in [START_REF] Hatcher | Algebraic topology[END_REF][START_REF] Munkres | Topology[END_REF]. Two continuous maps h, k : X → Y are homotopic and we write h ≃ k if there is a continuous map F : X × [0, 1] → Y such that F (x, 0) = h(x) and F (x, 1) = k(x) for all x ∈ X. Let f : X → Y and g : Y → X be two continuous maps. Suppose that f • g : Y → Y is homotopic to the identity map of Y and g • f : X → X is homotopic to the identity map of X, i.e. suppose we have f • g ≃ 1Y and g • f ≃ 1X . Then, the maps f and g are called homotopy equivalences, and each is said to be a homotopy inverse of the other. Furthermore, the spaces X and Y are said to have the same homotopy type, which we denote by X ≃ Y . We say that a subspace A of X is a deformation retract of X if there exists a continuous map H : X × [0, 1] → X such that H(x, 0) = x, H(x, 1) ∈ A for all x ∈ X and H(a, t) = a for all a ∈ A and all t ∈ [0, 1]. Such a function H is called a deformation retraction of X onto A. Let r : X → A be the retraction defined by r(x) = H(x, 1) and let i : A → X the inclusion map. We have i • r ≃ 1X and r • i = 1A. Thus, if A is a deformation retract of X, the inclusion i : A → X is a homotopy equivalence. Note that assuming X deformation retracts to A is stronger than assuming the inclusion map A ֒→ X is a homotopy equivalence, which in turn is stronger than assuming A ≃ X, as illustrated in Figure 2. We now state a technical lemma that will provide us key tools in establishing that two shapes have the same topology. Proof. To prove the first part of the lemma, suppose F is a deformation retraction of A1 onto A0 and G is a deformation retraction of X1 onto X0. Then, one can check that the map H : X0 × [0, 1] → X0 defined by H(x, t) = G(F (x, t), 1) is a deformation retraction of X0 onto A0. To prove the second part of the lemma, let i0 : A0 → X0, j : X0 → A1 and i1 : A1 → X1 denote inclusions (see Figure 3). Suppose r is a homotopy inverse of j • i0 and s is a homotopy inverse of i1 • j. We prove that the inclusion k = i1 • j • i0 from A0 to X1 is a homotopy equivalence with homotopy inverse r • j • s. Indeed, using the fact that composition preserves the relation ≃, we have k

• (r • j • s) = i1 • (j • i0 • r) • j • s ≃ i1 • 1A 1 • j • s ≃ 1X 1 and similarly (r • j • s) • k = r • j • (s • i1 • j) • i0 ≃ r • j • 1X 0 • i0 ≃ 1A 0 .

Properties on convex sets

In this section, we define two properties that will help us identify classes of convex sets.

θ-roundness

We associate to every compact convex set a non-negative real number called the θ-roundness which can be interpreted as a certain kind of curvature. Given a convex set C in R N , the normal cone N (x) to C at x is the set of unit vectors n such that (xy) • n ≥ 0, for all points y ∈ C. Definition 1. Let θ ∈ [0, π] and κ ≥ 0. We say that the compact convex set C is (θ, κ)-round if for all points c1, c2 ∈ C and all vectors n1 ∈ N (c1) and n2 ∈ N (c2), the following implication holds: See Appendix B for a proof. For our reconstruction theorems, we shall consider compact convex sets which have the property to be (θ, κ)-round for a positive κ and a small enough θ. Specifically, we will require θ ≤ θN = arccos(-1 N ). Not all convex sets satisfy this property. To construct a counterexample, consider a compact convex set C which is contained in an affine space of dimension i with 0 < i < N . Let n be a unit vector orthogonal to the smallest affine space containing C. For every point c ∈ C, both n and its opposite vector -n belong to N (c). Consider two distinct points c1, c2 ∈ C and let n1 = n and n2 = -n. We have ∠(n1, n2) = π, (c1 -c2) • (n1 -n2) = 0 and c1 -c2 = 0, showing that there are no κ > 0 such that C is (π, κ)-round. Equivalently, the π-roundness of C is zero. As a counterexample with a non-empty interior, take a triangular prism in R 3 . Its θ3-roundness is zero. In the technical report [START_REF] Attali | Reconstructing shapes with guarantees by unions of convex sets[END_REF], we compute the θ2-roundness of regular polygons in the plane and establish that the θN -roundness of the

∠(n1, n2) ≥ θ =⇒ (c1 -c2) • (n1 -n2) ≥ κ c1 -c2 2 . The θ-roundness of C is the supremum of κ ≥ 0 such that C is (θ, κ)-round. Note that if the compact convex set C has θ-roundness κ, then C is (θ, κ)-round. If C is (θ, κ)-round, then C is (θ ′ , κ ′ )-round whenever θ ≤ θ ′ and κ ′ ≤ κ. It is not difficult to see that C is (π, κ)-
N -dimensional cube B∞ = [-1, 1] N ⊂ R N is: κ(B∞) = 8 > < > : 1 2 √ 2 `cos π 4 + cos π 12 ´if N = 2, 1 √ 6 if N = 3, 1 (N -2) √ N if N ≥ 4,

Eccentricity

In this section, we associate to every subset C ⊆ R N a parameter called eccentricity. Intuitively, eccentricity can be thought of as a measure of how much intersections of translated copies of C centered at points in Q deviate from the convex hull of Q. We recall that the Minkowski sum of two subsets X ⊂ R N and Y ⊂ R N is the subset defined by

X + Y = {x + y | x ∈ X, y ∈ Y }. To simplify notations, we shall write x + Y instead of {x} + Y . Let B = {x ∈ R N |
x ≤ 1} be the unit Euclidean ball centered at the origin. Given a non-negative real number r, we call the Minkowski sum X + rB the Euclidean r-offset of X and denote it by X r . We write Conv(Q) for the convex hull of Q ⊂ R N . Definition 2. Given ξ ≥ 0, we say that C is ξ-eccentric if for all compact Q ⊂ R N , the following implication holds (see Figure 4):

\ q∈Q (q + C) = ∅ =⇒ \ q∈Q (q + C) ! ∩ (Conv(Q) + ξC) = ∅.
The Note that the eccentricity is a real number between 0 and 1. If the eccentricity of a compact set C is ξ, then C is ξeccentric. The property to be ξ-eccentric is invariant under bijective linear transformations. We now give eccentricities for simple objects and adopt the convention that all objects we consider in this paragraph have their centroids at the origin. Computations can be found in the technical report [START_REF] Attali | Reconstructing shapes with guarantees by unions of convex sets[END_REF]. The eccentricity of the unit N -dimensional Euclidean ball B is zero. More generally, i-dimensional Euclidean balls for 0 ≤ i ≤ N have eccentricity 0. Ellipsoids which can be obtained from Euclidean balls by applying a linear transformation also have eccentricity 0. Symmetric compact convex sets in the plane have eccentricity 0 as well. At the opposite end of the spectrum, triangles have eccentricity 1 (see Figure 4). In [START_REF] Attali | Reconstructing shapes with guarantees by unions of convex sets[END_REF], we show that N -dimensional cubes have eccentricity 1 -2 N , for N ≥ 2.

eccentricity of C is the infimum of ξ ≥ 0 such that C is ξ-eccentric. cq 1 cq 2 q2 q1 q1 + C q2 + C q1q2 + ξC x q1 q1 + C ν q2 + C ν q2 x q1q2 + ξC ν

Reconstruction Theorems

First, we formulate a sampling condition inspired by the work in [START_REF] Amenta | Surface reconstruction by Voronoi filtering[END_REF][START_REF] Amenta | A simple algorithm for homeomorphic Surface Reconstruction[END_REF][START_REF] Chazal | A sampling theory for compact sets in Euclidean space[END_REF]:

Definition 3. Given a non-negative real number ε and a subset C ⊂ R N , we say that P ⊂ R N is an (ε, C)-sample of A ⊂ R N if A ⊂ P + εC and P ⊂ A + εB.
Notice that P is an (ε, B)-sample of A if and only if the Hausdorff distance between P and A does not exceed ε. If B ⊂ C, then an (ε, B)-sample is also an (ε, C)-sample. The reason why our definition is not symmetric with respect to A and P is to enhance conditions that are used in the proofs of our reconstruction theorems. Given a compact subset A of R N , we recall that the medial axis M of A is the set of points in R N which have at least two closest points in A. The reach of A is the infimum of distances between points in A and points in M :

reach(A) = inf a∈A,x∈M a -x .
Shapes with a positive reach include, but are not limited to, compact smooth surfaces with bounded curvatures. Intuitively, a shape with a positive reach cannot have sharp concave edges. Suppose A has a positive reach. Given a convex set C and an (ε, C)-sample P of A, we would like to know whether the Minkowski sum P +rC retrieves the topology of A. Theorem 1 answers the question when P = A ε is a Euclidean ε-offset of A and Theorem 2 provides an answer when P is a finite sample of A. Before stating our results, we start with an example which illustrates that not all convex sets C can be used to reconstruct the topology of shapes with a positive reach. Specifically, we take A to be the moment curve

A = {(x1, x2, x3) ∈ R 3 | x2 = x 2
1 , x3 = x 3 1 } and prove that for r arbitrarily small, we can always find a convex set C such that the Minkowski sum A + rC is not homotopy equivalent to A. For this, let C be a segment of length 2 centered at the origin and contained in the straight-line

Lt = {(x1, x2, x3) ∈ R 3 | x2 = 0, x3 = t 2 x1}
for some positive real number t. Observe that translated copies of Lt intersect the moment curve A in at most one point, except when the translated copy meets A in the two points at = (t, t 2 , t 3 ) and bt = (-t, t 2 , -t 3 ). Hence, as r increases, the Minkowski sum A + rC undergoes a topology change when the two segments at + rC and bt + rC meet (see Figure 5). This happens for r = atbt /2 which can be made arbitrarily small by choosing t small enough. We now list conditions we shall need on the compact convex set C, the last condition being only for the second theorem:

(i) B ⊂ C ⊂ δB for some δ ≥ 1; (ii) C is (θ, κ)-round for θ ≤ θN = arccos(-1 N ) and κ > 0; (iii) C is ξ-eccentric for ξ < 1.
The two conditions (ii) and (iii) do not imply each other. Indeed, any equilateral triangle in R 2 with centroid the origin has eccentricity 1 and a positive θ-roundness for all 0 < θ ≤ θ2. Hence, it satisfies (ii) for some θ ≤ θ2 and some κ > 0 but not (iii) for any ξ < 1. Conversely, a segment in R 2 has θ2-roundness 0 and eccentricity 0. Hence, it satisfies (iii) for ξ = 0 but not (ii) for any θ ≤ θ2 and κ > 0. Table 1 gathers for different compact convex sets C values of δ, θ, κ and ξ for which conditions (i), (ii) and (iii) hold. To state our theorems, let us introduce:

Rr = R - r 4 - r r 4 " 2R + r 4 " ,
and note that Rr tends to R as r R → 0.

Theorem 1. Let A be a compact subset of R N with positive reach R. Let C be a compact convex set of R N satisfying conditions (i) and (ii). Then, A ε + rC deformation retracts to A for all real numbers ε > 0 and r > 0 such that ε + (δ -1)r < min{Rr, R r/κ }.

The proof of Theorem 1 is given in Section 3. Theorem 1 will be useful in establishing our second theorem: Theorem 2. Let A be a compact subset of R N with positive reach R. Let C be a compact convex set of R N satisfying conditions (i), (ii) and (iii). Let P be a finite (ε, C)-sample of A. Then, the inclusion A ֒→ P + rC is a homotopy equivalence for all real numbers ε > 0 and r > 0 such that (1) (δ-1)r < min{R-r, R r/κ }, (2) δr < R-ε, (3) δ(r+α0) < R and (4):

2R - p (R -ε) 2 -(δr) 2 - p R 2 -δ 2 (r + α0) 2 < (1-ξ)r -ε, where α0 = ξr + R - p (R -ε) 2 -(δr) 2 .
The proof of Theorem 2 is given in Section 4. Notice that Theorem 2 requires that θ ≤ θN , κ > 0 and ξ < 1. If these three conditions are fulfilled, then by choosing r = 4ε 1-ξ and ε R small enough, all the assumptions of Theorem 2 are satisfied, implying that the inclusion A ֒→ P + rC is a homotopy equivalence. Given a fixed convex set C, Table 1 gives numerical approximations of the largest value of ε R for which assumptions of Theorem 2 hold.

To conclude this section, we prove that condition (iii) in Theorem 2 is necessary. In other words, if we take a compact convex set C which satisfies conditions (i) and (ii) but whose eccentricity is 1, it may happen that for some sample P , the Minkowski sum P + rC does not recover the topology of A, no matter what value r takes in the interval [ε, Rε]. To construct such an example, consider a parabola A in the plane with equation y = x 2 and a finite sample P ⊂ A symmetric with respect to the y-coordinate axis. Furthermore, we let C be the equilateral triangle with centroid the origin and vertices (0, -2), ( √ 3, 1) and (-√ 3, 1). We note that with increasing value of r, holes appear in the Minkowski sum P + rC each time two triangles scaled by r meet at a common vertex on the y-axis (see Figure 6). We then adjust the height of the sample points in such a way that P + εC does not have the correct topology and as r increases, a hole appears in P + rC each time a hole gets destroyed, as illustrated in Figure 6.

PROOF OF THEOREM 1

In this section, we prove Theorem 1. In other words, we prove that for r and ε small enough with respect to the reach of A, the Minkowski sum A ε + rC deformation retracts to A. Our strategy is as follows. We consider two positive real numbers ε ′ and ε ′′ such that there is chain of inclusions: 

A ⊂ A ε + rC ⊂ A ε ′ ⊂ A ε ′′ + rC (1) 

Background on distance functions

The distance function d(•, Y ) to the compact subset Y of R N associates to each point x ∈ R N its Euclidean distance to Y , d(x, Y ) = miny∈Y xy . The distance function d(•, Y ) is 1-Lipschitz, but is not differentiable in general. Nonetheless, it is possible to define a notion of critical points analogue to the classical one for differentiable functions. Specifically, Grove defines in [17, Slightly recasting Proposition 1.8 in [17, page 362], we have:

Lemma 3 (Isotopy Lemma [17]). Let 0 < ε ≤ ε ′ . If the distance function d(•, Y ) has no critical value in the in- terval [ε, ε ′ ], then Y ε is a deformation retract of Y ε ′ .
If furthermore Y has a positive reach R, then the projection map πY which associates to each point x ∈ Y ε its closest point πY (x) on Y is well defined and continuous [16, page 435]. Thus, the map H : 

[0, 1] × Y ε → Y ε defined by H(t, x) = (1 -t)x + tπY (x) is a deformation retraction of Y ε onto Y . It follows that:

Distance functions to Minkowski sums

In what follows, A designates a compact subset of R N with positive reach R and C designates a compact convex set of R N . We begin with a technical lemma which will help us to situate critical points of the distance function to A + C, assuming C is round enough. Proof. Let ρ = d(x, A+C). For i ∈ {1, 2}, let yi = ai+ci with ai ∈ A and ci ∈ C. Since ρ = (xci)ai < R, it follows that xci has a unique projection ai = πA(xci) onto A (see Figure 7). On the other hand, we know from [16, page 435] that the projection map πA onto A is

" R R-ρ "
-Lipschitz for points at distance less than ρ from A. Thus,

a1 -a2 ≤ R R -ρ c1 -c2 . Let ni = x-a i -c i
x-a i -c i . Squaring both sides of the above inequality and plugging a2 -a1 = c1 -c2 + ρ(n1 -n2) into the left side, we obtain

2(c1 -c2) • (n1 -n2) + ρ n1 -n2 2 ≤ 2R -ρ (R -ρ) 2 c1 -c2 2 .
For i ∈ {1, 2}, the unit vector ni belongs to

N (ci). Since C is (θ, κ)-round and ∠(n1, n2) ≥ θ, it follows that (c1 -c2) • (n1 -n2) ≥ κ c1 -c2 2 and ρ n1 -n2 2 ≤ " 2R -ρ (R -ρ) 2 -2κ « c1 -c2 2 .
In particular, this implies that 2κ

≤ 2R-ρ (R-ρ) 2 or equivalently ρ 2 -2 `R -1 4κ ´ρ + R 2 -R κ ≤ 0.
Solving this quadratic inequality yields to the result.

As a consequence of the lemma above, if x is sufficiently close to A + C, then the angle between any two vectors connecting x to points in ΓA+C (x) is small which implies, in turn, that x is not a critical point of d(•, A + C). The following lemma makes this idea precise. Lemma 6. If C is (θ, κ)-round with θ ≤ arccos(-1 N ) and κ > 0, then the distance function d(•, A + C) has no critical value in the interval (0, R 1/κ ).

In order to prove Lemma 6, we need the following result also known as Jung's Theorem. Given a compact subset K ⊂ R N , we denote by diam(K) = maxp,q∈K d(p, q) the diameter of K.

Lemma 7 (Jung's Theorem). The smallest ball enclosing a compact subset K of R N has radius

r ≤ diam(K) s N 2(N + 1)
.

Equality is attained for the regular N-simplex.

For a short proof of Jung's theorem, see [START_REF] Silva | Coverage in sensor networks via persistent homology[END_REF].

Proof of Lemma 6. Let x ∈ R N and ρ = d(x, A + C). Suppose 0 < ρ < R 1/κ and let us prove that x is noncritical. By Lemma 5, for all points y1, y2 ∈ ΓA+C (x), we have ∠y1xy2 < θ. It follows that diam(ΓA+C (x)) < 2ρ sin θ 2 . Using

sin θ 2 = r 1 -cos θ 2 ≤ r N + 1 2N ,
and applying Jung's Theorem, we get that the smallest ball B enclosing ΓA+C (x) has radius r < ρ. Let S denote the sphere centered at x with radius ρ. Observe that ΓA+C (x) ⊂ S ∩ B. Since the radius of B is smaller than ρ, the radical hyperplane Π of the two spheres S and ∂B separates x from ΓA+C (x). Thus x ∈ Conv(ΓA+C (x)) and x is noncritical.

Combining Lemma 3 and Lemma 6 and using the fact that if C is (θ, κ)-round, then rC is (θ, κ r )-round, we get immediately conditions under which a Euclidean offset of A + rC deformation retracts to another Euclidean offset:

Lemma 8. If C is (θ, κ)-round with θ ≤ arccos(-1 N ) and κ > 0, then A ε + rC is a deformation retract of A ε ′′ + rC for all positive real numbers r, ε and ε ′′ such that ε ≤ ε ′′ < R r/κ .
We are now ready to establish the proof of our first reconstruction theorem.

Proof of Theorem 1. Equation ( 1) holds whenever ε ′ = ε + δr and ε ′′ = ε + (δ -1)r. Since by hypothesis ε ≤ ε ′′ < R r/κ , Lemma 8 implies that A ε ′′ + rC deformation retracts to A ε + rC. By hypothesis, we have ε ′ < R and therefore, A ε ′ deformation retracts to A from Lemma 4. Applying the Sandwich Lemma allows us to conclude.

PROOF OF THEOREM 2

In this section, we present our proof of Theorem 2. A designates a compact subset of R N whose reach R is positive, C is a compact convex set of R N satisfying conditions (i), (ii) and (iii) and P is a finite (ε, C)-sample of A. First, we introduce a set which will play a key role. Given three positive real numbers α, β and r, we set Ap(α) = (p + rC) ∩ (A β + αC) and define

H(α) = [ p∈P Conv Ap(α).
Our proof uses two carefully chosen positive constants α0 and α1 such that for all sufficiently small β, we have the sequence of inclusions (see Figure 8):

A ⊂ H(α0) ⊂ A β + α1C ⊂ P + rC (2) 
Having established this sequence of inclusions in Section 4.1, we find in Section 4.2 conditions under which H(α0) ֒→ P + rC is a homotopy equivalence. Combined with the conditions we found in Section 3 which ensure that A ֒→ A β + α1C is a homotopy equivalence, we deduce immediately using Lemma 1 (Sandwich Lemma) conditions under which A ֒→ P + rC is a homotopy equivalence.

Establishing a key sequence of inclusions

In this section, we find conditions under which inclusions in (2) hold. To establish the middle inclusion, we need the following key inclusion, illustrated in Figure 8:

Conv Aq (α 0 ) q A Conv Ap(α 0 ) p A β + α 0 C P + rC A β + α 1 C C Figure 8
: Nested sequence of objects considered for the proof of Theorem 2. Constants α0 and α1 are chosen such that Conv Ap(α0) is contained in A + α1C for all p ∈ P .

Lemma 9. Suppose δ(r + α0) < R -β and α1 -α0 ≥ R - p (R -β) 2 -δ 2 (r + α0) 2 . Then, Conv Ap(α0) ⊂ A + α1C. Proof. Let A ′ = A β ∩ (p + rC + α0(-C))
. Note that Ap(α0) ⊂ A ′ + α0C for if x belongs to Ap(α0) = (p + rC) ∩ (A β + α0C), we can find c0, c1 ∈ C and a ′ ∈ A β such that x = a ′ + α0c0 = p + rc1, showing that a ′ ∈ A ′ and x ∈ A ′ + α0C. Thus and using lemma 15,

Conv Ap(α0) ⊂ Conv(A ′ + α0C) = Conv(A ′ ) + α0C.
By construction, A ′ is contained in a ball of radius δ(r +α0). Applying Lemma 14 with

Q = A ′ , ε = β and ρ = δ(2r -ε), we get Conv(A ′ ) ⊂ A + (R - p (R -β) 2 -ρ 2 )B if ρ < R -β.
Thus, for all p ∈ P we have Conv Ap(α0) ⊂ A + α1C whenever δ(r

+ α0) < R -β and α1 -α0 ≥ R - p (R -β) 2 -δ 2 (r + α0) 2 .
Taking the union over all points p ∈ P on both sides of the inclusion in Lemma 9 we get immediately the middle inclusion in (2), i.e. H(α0) ⊂ A β + α1C. The left-most and right-most inclusions in (2) are easy to establish, using A ⊂ P + εC and B ⊂ C.

Lemma 10. The sequence of inclusions in (2) holds whenever α1 ≤ rεβ, δ(r

+ α0) < R -β and α1 -α0 ≥ R - p (R -β) 2 -δ 2 (r + α0) 2 .

A homotopy equivalence for nested collections of convex sets

It is not difficult to see that the inclusion H(α) ⊂ P + rC holds for all positive real numbers α and β. The goal of this section is to find conditions under which the inclusion map H(α) ֒→ P + rC is a homotopy equivalence. For this, we use covers of H(α) and P + rC by finite collections of convex sets. Specifically, we have H(α) = S p∈P Conv Ap(α) and P + rC = S p∈P (p + rC). Since sets in the two collections {Conv Ap(α)}p∈P and {p+rC}p∈P are convex, we can apply Leray's theorem [START_REF] Leray | Sur la forme des espaces topologiques et sur les points fixes des représentations[END_REF] to each, and obtain that the union of sets in each collection has the same homotopy type as its associated nerve:

H(α) ≃ Nerve{Conv Ap(α)}p∈P P + rC ≃ Nerve{p + rC}p∈P
A key step consists in proving that, for suitable values of α, the nerves of the two collections are actually the same. As a consequence, H(α) and P + rC have the same homotopy type. We strengthen this result thanks to Lemma 11: and state conditions under which the inclusion H(α) ֒→ P + rC is a homotopy equivalence in Lemma 12.

Lemma 11. Consider two finite collections of compact convex sets of R N , C = {Ci}i∈I and D = {Di}i∈I such that Ci ⊂ Di for all i ∈ I and suppose the two collections have the same nerve. Then, the inclusion S i Ci ֒→ S i Di is a homotopy equivalence.

From Corollary 4G.3 in [START_REF] Hatcher | Algebraic topology[END_REF] also known as Leray's theorem [START_REF] Leray | Sur la forme des espaces topologiques et sur les points fixes des représentations[END_REF] or the Nerve Lemma, it is clear that S i Ci and S i Di which share the same nerve have the same homotopy type. But, we need here a stronger result, namely that the inclusion S i Ci ֒→ S i Di is a homotopy equivalence. Even though this fact can be deduced from a result in [START_REF] Bendich | Inferring local homology from sampled stratified spaces[END_REF], we provide below a short proof to make the paper self-contained. Let us consider a partition of unity {φσ}σ∈K subordinate to the open cover {Uσ}σ∈K [23, page 22]. Note that the map φσ is identically zero for the simplices σ for which Uσ = ∅.

For each simplex σ ∈ K, we choose an arbitrary point cσ ∈ T i∈σ Ci and introduce the map h :

S i∈I Di → R N defined by: h(x) = X σ∈K φσ(x)cσ.
By construction, h is continuous. We claim that x ∈ Di =⇒ h(x) ∈ Ci. Indeed, if x ∈ Di and φσ(x) = 0, one has i ∈ σ and therefore cσ ∈ Ci. Hence, the non-zero terms in the above sum is a convex combination of points in Ci and the claim follows from the convexity of Ci. Let us prove that h is a homotopy inverse of the inclusion map g : S i Ci → S i Di. In other words, we have to check that g • h is homotopic to the identity of S i Di and h•g is homotopic to the identity of S i Ci. This can be done using twice the homotopy H(x, t) = (1-t)•x+t•h(x), first considered as a map from S i Di ×[0, 1] into S i Di, second considered as a map from

S i Ci × [0, 1] into S i Ci.
Lemma 12. Consider positive real numbers r, ε, α and β such that δr < Rε, δ(r + α) < Rβ and α ≥ ξr + Rp (Rε) 2 -(δr) 2 . Then, the inclusion H(α) ֒→ P + rC is a homotopy equivalence.

Proof. We prove the lemma in three stages: (a) First, we prove that for δr < Rε and α ≥ ξr + Rp (Rε) 2 -(δr) 2 , we have Nerve{p + rC}p∈P = Nerve{Ap(α)}p∈P .

Note that this is equivalent to proving that for all subsets Q ⊂ P , \ q∈Q (q + rC) = ∅ ⇐⇒ \ q∈Q [(q + rC) ∩ (A β + αC)] = ∅.

One direction is trivial: if a point belongs to the intersection on the right, then it belongs to the intersection on the left. Suppose now that T q∈Q (q + rC) = ∅. In particular, using C ⊂ δB this means that Q can be enclosed in a ball of radius ρ = δr. Since C is ξ-eccentric, there exists z ∈ T q∈Q (q +rC) such that z ∈ Conv(Q) + ξrC. Since P is an (ε, C)-sample of A, we have Q ⊂ P ⊂ A ε . Applying Lemma 14, we get that Conv(Q) ⊂ A α-ξr . Hence and using B ⊂ C, we get z ∈ A + (αξr)B + ξrC ⊂ A β + αC. We conclude this section by the proof of our second reconstruction theorem.

Proof of Theorem 2. For β small enough, we have β + (δ -1)r < min{Rr, R r/κ }, δ(r + α0) < Rβ and

2R - p (R -ε) 2 -(δr) 2 - p (R -β) 2 -δ 2 (r + α0) 2 ≤ (1 -ξ)r -ε -β.
Setting α1 = α0 + R -p (Rβ) 2δ 2 (r + α0) 2 , the above inequality can be rewritten as α1 ≤ rεβ. Thus, the sequence of inclusions in (2) holds by Lemma 10. Furthermore, the inclusion H(α) ֒→ P + rC is a homotopy equivalence by Lemma 12. Since α1 ≤ r and β+(δ-1)r < min{R-r, R r/κ } imply β + (δ -1)α1 < min{R -α1, R α 1 /κ }, the inclusion A ֒→ A β + α1C is a homotopy equivalence by Theorem 1. Applying the Sandwich Lemma allows us to conclude.

DISCUSSION

In this paper, we have exhibited a class of compact convex sets whose Minkowski sum with a sufficiently dense sample retrieves the topology of the sampled shape. Compact convex sets in this class possess three properties: a non-empty interior, a positive θN -roundness and an eccentricity smaller than 1. In particular, this class contains Euclidean balls but, more interestingly, also includes N -dimensional cubes, with potential algorithmic applications in high dimensions.

Results in this paper raise a number of questions. For instance, it would be interesting to know what is the lowest density of sample points Theorem 2 authorizes and if this number is tight, especially for N -dimensional balls. Also, Theorem 2 requires the sample P to be finite and the shape A to have a positive reach. Can we relax these two conditions?

Figure 2 :

 2 Figure 2: Two nested shapes A ⊂ X which are close in Hausdorff distance and have the same homotopy type but for which the inclusion A ֒→ X is not a homotopy equivalence.

A0j•i 0 >< 1 >Figure 3 :

 013 Figure 3: Diagram for the proof of Lemma 1. All arrows but the dotted ones are inclusions.

  round if and only if the diameter of C is upper bounded by 2 κ . Suppose the boundary of C is a C 2smooth hypersurface in R N and orient ∂C such that normals point outside the convex set. Then, for all points x ∈ ∂C, the normal cone at x is reduced to a single vector which is the normal to ∂C at x. The absolute values of the principal curvatures at point x ∈ ∂C are non-negative real numbers |κ1(x)| ≥ |κ2(x)| . . . ≥ |κN-1(x)| and we let κmin(C) be the minimum of |κN-1(x)| over all points x ∈ ∂C. Lemma 2. A compact convex set C whose boundary is C 2 -smooth has 0-roundness κmin(C).

Figure 4 :

 4 Figure 4: Top: two translated copies of a triangle C. The intersection point x does not belong to any set Conv({q1, q2})+ξC for ξ < 1, thus showing that the eccentricity is 1. Bottom: bulging the triangle makes its eccentricity drops to a value smaller than 1.

Figure 5 :

 5 Figure 5: Cycle in the Minkowski sum of the moment curve with a segment.

Figure 6 :

 6 Figure 6: As the size of triangles increases, the hole created by the 4 upper points appears exactly when the hole created by the 4 lower points fills up.

  page 360] critical points for the distance function to a closed subset of a Riemannian manifold. Using Equation (1.1)' in [17, page 360], we recast this definition in our context as follows. Let ΓY (x) = {y ∈ Y | d(x, Y ) = xy } be the set of points in Y closest to x: Definition 4. A point x ∈ R N is a critical point of the distance function d(•, Y ) if x ∈ Conv(ΓY (x)). The critical values of d(•, Y ) are the images by d(•, Y ) of its critical points.

Lemma 5 .

 5 Consider a point x ∈ R N such that d(x, A + C) < R. Let y1, y2 ∈ ΓA+C (x) be two points on A + C with minimum distance to x. Suppose C is (θ, κ)-round for κ > 0 and ∠y1xy2 ≥ θ. Then, d(x, A + C) ≥ R 1/κ .

Figure 7 :

 7 Figure 7: Notations for the proof of Lemma 5.

  Proof. Let K(C) be the abstract simplicial complex whose simplices are the (non-empty) subsets of indices σ ⊂ I such that T i∈σ Ci = ∅. Since the two collections C and D have the same nerves, K(C) = K(D) and we let K = K(C). For every subset of indices σ / ∈ K, a standard compactness argument yields a real number ρσ > 0 such that T i∈σ D ρσ i = ∅. Let ρ = min σ / ∈K ρσ and define the open set Oi = {x ∈ R N , d(x, Di) < ρ} for every i ∈ I. By construction, the nerve of the collection O = {Oi}i∈I is the same as the nerve of D and K(O) = K. For each σ ∈ K, we introduce the possibly empty open set: It is obvious from the definition that S σ∈K Uσ ⊂ S i∈I Oi. Let us associate to each point x ∈ S i∈I Oi the subset of indices τ (x) = {i ∈ I, x ∈ Oi}. Since x ∈ U τ (x) , it follows that:

  (b) Second, we prove that Nerve{p + rC}p∈P = Nerve{Conv Ap(α)}p∈P .(4)From Lemma 9, we obtain the sequence of inclusionsAp(α) ⊂ Conv Ap(α) ⊂ Ap(α ′ ), for δ(r+α) < R-β and α ′ = α+R-p (Rβ) 2δ 2 (r + α) 2 .Taking the intersection over all points q ∈ Q, we get )} ⊂ Nerve{Conv Ap(α)} ⊂ Nerve{Ap(α ′ )}, where p ranges over P . By Equation (3), the two nerves on the left and on the right are equal to Nerve{p + rC}p∈P , showing that Nerve{Conv Ap(α)}p∈P = Nerve{p + rC}p∈P . (c) Third, noticing that Conv Ap(α) ⊂ p + rC for all p, we apply Lemma 11 to the two collections of convex sets C = {Conv Ap(α)}p∈P and D = {p + rC}p∈P .

Table 1 :

 1 Columns 2 to 5: values of δ, θ, κ and ξ for which B ⊂ C ⊂ δB and the convex set C is (θ, κ)-round and ξ-eccentric. Columns 6 and 7: values of R/ε and r/ε for which Theorem 2 holds. Numerical values are obtained by brute force, enumerating all pairs (ε, r) in a grid, checking if they satisfy conditions of Theorem 2 and keeping the one with largest ε. Lemma 4. If Y has a positive reach R, then Y ε deformation retracts to Y , for all 0 ≤ ε < R.

	convex set C	δ	θ	κ	ξ	R/ε	r/ε
	Euclidean ball B ⊂ R N cube B∞ in R N cube B∞ in R 2 cube B∞ in R 3 cube B∞ in R 4 cube B∞ in R 5 cube B∞ in R 10	1 √ N √ 2 √ 3 √ 4 √ 5 √ 10	0 arccos(-1 N ) 2π 3 0.608 π 0.5804 π 0.5641 π 0.5319 π	1 κ(B∞) 0.65974 1 √ 6 1/4 0.149071 0.03953	0 1 -2 N 0 1/3 1/2 3/5 4/5	12.9781 3.95723 24.9973 4.04227 96.4687 6.14485 247.528 8.1826 508.183 10.2006 4505.44 20.2264
	cube B∞ in R 100	10	0.503183 π 0.0010204 49/50	4948245 200.232
	p-gon Pp in R 2 (p even) square in R 2 hexagon in R 2 octagon in R 2 dodecagon in R 2 36-gon in R 2 360-gon in R 2	1 cos π p √ 2 1.1547 1.08239 1.03528 1.00382 1.00004	2π 3 2π 3 2π 3 2π 3 2π 3 2π 3 2π 3	κ(Pp) 0.65974 0.69936 0.793353 0.8660254 0.951917 0.9949868	0 0 0 0 0 0 0	24.9973 4.04227 16.9858 3.99837 15.04119 3.98101 13.84148 3.968 13.07011 3.95844 12.97897 3.95724

* This work is partially supported by ANR Project GIGA ANR-09-BLAN-0331-01. † A full version of this paper is available at http://hal.archives-ouvertes.fr/hal-00427035

APPENDIX A. BASIC PROPERTIES

In this appendix, we present basic properties relating the smallest ball enclosing Q ⊂ R N and the convex hull of Q.

Lemma 13. Consider a subset Q ⊂ R N whose smallest enclosing ball has radius r. Then, Conv(Q) ⊂ S q∈Q B(q, r). Proof. For all q ∈ Conv(Q), there are points q1, . . . , qn in Q and non-negative real numbers α1, . . . , αn summing up to 1, such that q = P n i=1 αiqi. Let πi(x) = xqi 2r 2 be the power distance of x ∈ R N from Bi = B(qi, r) and note that Bi

Bi. Indeed, if a point x belongs to all balls Bi, then πi(x) ≤ 0 for all 1 ≤ i ≤ n, which implies π(x) ≤ 0. On the other hand, if π(x) ≤ 0 then πi(x) ≤ 0 for at least one index i, which implies that x belongs to at least one ball Bi. Now, our choice of r as the radius of the smallest ball enclosing Q implies that T n i=1 Bi = ∅, showing that B is non-empty. Thus, B is a ball and it is not difficult to see that its center is point q. It follows that q ∈ B ⊂ S n i=1 Bi, which concludes the proof.

The next lemma states that the convex hull of a set of points cannot be too far away from a shape with positive reach, assuming the set of points is close to the shape and are enclosed in a ball of small radius. Formally: Proof. Suppose R < +∞ for otherwise, A is convex and Conv(Q) ⊂ A ε . Let x be a point on Conv(Q) furthest away from A. By Lemma 13, there exists a point q ∈ Q such that

showing that x has a unique projection a onto A. We claim that the plane H passing through x and orthogonal to the segment xa is a supporting plane of the convex hull of Q. To prove this, consider the two open half-spaces that H bounds and let H -be the one half-space that does not contain a. Furthermore, consider the half-line with origin a that passes through x and let z be the point on this half-line at distance R from a (see Figure 9). By construction, B(z, R) is tangent to A at a and its interior does not intersect A. We prove that Conv(Q) ∩ H -= ∅. Suppose for a contradiction that there exists a point y ∈ Conv(Q) ∩ H -. Then, the whole segment xy belongs to Conv(Q) and in particular intersects B(z, zx ). But points in the interior of B(z, zx ) are furthest away from A than x, contradicting the definition of x as the point of Conv(Q) furthest away from A. It follows that H is a supporting plane of the convex hull of Q as claimed. Thus, Q ∩ H is non-empty and can be enclosed in a ball of radius smaller or equal to ρ. The convex hull of Q∩H contains x and by Lemma 13, there exists a point q ′ ∈ Q∩H such that xq ′ ≤ ρ. On the other hand, zq ′ ≥ Rε.

Lemma 15. For any subset Q ⊂ R N and any convex set

The proof is straightforward and hence omitted.

B. PROOF OF LEMMA 2

We start with a preliminary lemma.

Lemma 16. For all points c1, c2 ∈ C, c1 = c2 and all vectors n1 ∈ N (c1) and n2 ∈ N (c2), we have

where κx,n(y) is the curvature of the sphere passing through points x and y and with outer normal n at point x.

Proof. See Figure 10, left. Let Si be the sphere passing through points c1 and c2 with outer normal ni at ci, for i ∈ {1, 2}. Let n ′ 2 be the outer unit normal to S1 at c2 and n ′ 1 be the outer unit normal to S2 at c1. We have

1 + n2) = 0 Summing up these four equations gives the result. Proof of Lemma 2. We first prove that for all points c1, c2 ∈ ∂C with normals n1 and n2 respectively:

Consider a sphere S tangent to ∂C at point x and meeting ∂C in another point y = x. Let D be the ball that S bounds. We begin by proving that κmin(D) ≥ κmin(C). Consider a 2dimensional plane P passing through x and y and containing the common normal to ∂D and ∂C at point To prove that the inequality is tight, note that if c2 tends to c1 along a curve γ in ∂C, then the ratio

tends to the absolute value of the normal curvature of γ at c1. In particular, if |κN-1(x)| reaches its minimum at x = c1 and the tangent line to γ at c1 is the associated principal direction, then the ratio tends to κmin(C).