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Abstract

A simple way to reconstruct a shape A € RY from a sample P is to output an r-offset P + rB,
where B = {z € RV | ||z|| < 1} designates the unit Euclidean ball centered at the origin. Recently,
it has been proved that the output P + rB is homotopy equivalent to the shape A, for a dense
enough sample P of A and for a suitable value of the parameter r [12, 23|. In this paper, we extend
this result and find convex sets C C RY, besides the unit Euclidean ball B, for which P + rC
reconstructs the topology of A. This class of convex sets includes in particular N-dimensional cubes
in RY. We proceed in two steps. First, we establish the result when P is an e-offset of A. Building
on this first result, we then consider the case when P is a finite noisy sample of A.

1 Introduction

In this paper, we study the Minkowski sum between a convex set and a point set that samples a
shape, generalizing previous results that establish the Minkowski sum captures the topology of the
shape when the convex set is an Euclidean ball.

Prior work and problem. Motivated by surface reconstruction from 3D scan data and mani-
fold learning from point clouds, several authors have formulated precise conditions under which a
reconstruction algorithm outputs a topologically correct approximation of a shape, given as input
a possibly noisy sample of it [3, 14, 7, 23, 12]. Maybe one of the simplest algorithm consists in
outputting an Euclidean r-offset of the sample, that is the union of Euclidean balls with radius r
centered on the sample points. Assuming the reach of the shape is positive and the data points
form a sufficiently dense and accurate sample of the shape, authors in [23, 12] have established that
r-offsets of the data points are homotopy equivalent to the shape for suitable values of the offset
parameter r (see Figure 1, left). The aim of this work is to understand how this result generalizes
when, instead of unions of Euclidean balls, we consider for the reconstruction unions of translated
and scaled copies of a convex set C centered on the sample. In other words, writing B for the
unit Euclidean ball centered at the origin and letting P be a sample of a shape A, we would like
to understand what happens if we replace the Euclidean r-offset P + rB by the Minkowski sum
P+rC. Do we keep the topology of the shape A as in Figure 1, middle or do we lose it as in Figure
1, right? We are particularly interested in the case where C' is a polytope.
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Figure 1: The union of disks and squares capture the topology of the sampled curve unlike the
union of triangles.

Motivation. Our motivation to study this question is two-fold. First, in many practical applica-
tions such as stereo vision or image analysis, the accuracy of measures varies in magnitude according
to the direction of measurements. In this context, it seems reasonable to recover the topology of
the shape, using a convex set which takes into account the anisotropy of the measurement device.
Second, we believe that unions of cubes could present some advantages over unions of Euclidean
balls for topological computations in high dimension. In practice, the reconstruction represented
by an a-offset is replaced by the more convenient corresponding a-shape which shares the same
homotopy type [16]. Indeed, the a-shape has a simpler geometry and, being a simplicial complex,
can benefit from existing theorems and algorithms dedicated to topological computations. However,
if the ambient dimension is large, the a-shape may have a high complexity and its computation
may be rather expensive and requires sophisticated data structures [5]. Our idea to circumvent this
problem is the following. Given € > 0, we define the cubical grid G. = (¢Z)N c RY and replace the
sample P C RN by a nearby sample P. C G.. Applying our result to the unit N-dimensional cube
C = [-1,1]Y € RV, we shall see that the set P. + keC captures the homotopy type of the shape,
for some well-chosen integer k. Hence, our result allows us to reconstruct with the right homotopy
type a shape by a union of voxels with vertices the cubical grid. Such a “cubical complex” has
a simpler structure than the a-shape and may be more convenient for topological computations
in high dimension. Following this idea, our work contributes to build a bridge between the point
of view of distance functions in computational topology and the world of voxels in digital image
processing.

Chosen approach and contributions. A first idea to tackle the problem mentioned above is
to use the framework of semi-concave functions. Specifically, one can associate to any symmetric
convex set C' with a non-empty interior a norm ||.||¢ defined by z — ||z||c = inf{a >0 |z € aC}.
The balls of the associated distance dg are translated and scaled copies of C. The metric d¢ is
invariant by translation but is not isotropic unless C is the Euclidean ball. Suppose the boundary of
C is smooth with a bounded curvature. Given a subset Y C RY, the squared distance-to-Y function
x — mingey do(z, y)? is semi-concave [6] and has therefore a generalized gradient which induces a
continuous flow. Hence, a theory similar to what has been done in the Euclidean case |7, 11, 12| can
be developed. However, we are interested in convex sets, such as polytopes, whose boundary are
not necessarily smooth nor has a bounded curvature. It follows that the semi-concavity property
is lost and no generalized gradient of the squared distance-to-Y function can induce a flow. The
proof technique used in this paper presents interest in itself since it overcomes the limitation of



flow-based methods and applies to convex sets with non-smooth boundary. Taking inspiration in
[23] where a deformation retract of an Euclidean offset of the sample onto the shape is constructed
explicitly, we move away from this approach and introduce a new proof scheme based a sandwich
lemma (Lemma 1). Results in this paper are positive as well as negative. We carefully identify a
class of convex sets to which the above result can be extended. We also give examples of convex
sets outside this class which won’t provide a correct reconstruction. We proceed in two steps. First,
we state a reconstruction theorem, when the sample P is an arbitrarily small Euclidean offset of
the shape and secondly when P is a finite sample of the shape.

Outline. Section 2 presents definitions and the formal statements of our two reconstruction theo-
rems. Section 3 proves the first reconstruction theorem and Section 4 proves the second. Section 5
concludes the paper.

2 Statement of Results

Before we state our results in Section 2.3, we first introduce the necessary background in topology
in Section 2.1 and identify in Section 2.2 classes of convex sets to which our results will apply.

2.1 Homotopy equivalences

First, we review some classical definitions in topology that can be found for instance in [19, 22].
Two continuous maps h, k : X — Y are homotopic and we write h ~ k if there is a continuous map
F: X x[0,1] =Y such that F(z,0) = h(z) and F(z,1) = k(x) for all z € X. Let f: X — Y and
g:Y — X be two continuous maps. Suppose that fog:Y — Y is homotopic to the identity map
of Y and go f : X — X is homotopic to the identity map of X, i.e. suppose we have fog ~ 1y
and go f ~ 1x. Then, the maps f and g are called homotopy equivalences, and each is said to
be a homotopy inverse of the other. Furthermore, the spaces X and Y are said to have the same
homotopy type, which we denote by X ~ Y. We say that a subspace A of X is a deformation retract
of X if there exists a continuous map H : X x [0,1] — X such that H(z,0) = z, H(z,1) € A
for all x € X and H(a,t) = a for all @ € A and all t € [0,1]. Such a function H is called a
deformation retraction of X onto A. Let r : X — A be the retraction defined by r(z) = H(z,1)
and let i : A — X the inclusion map. We have ior ~ 1x and roi = 14. Thus, if A is a deformation
retract of X, the inclusion i : A — X is a homotopy equivalence. Note that the converse is not
true: if the inclusion A — X is a homotopy equivalence, A is not necessarily a deformation retract
of X. To see this, take for instance A to be an open disk and X a closed disk containing A. Hence,
assuming X deformation retracts to A is stronger than assuming the inclusion map A — X is a
homotopy equivalence, which in turn is stronger than assuming A ~ X, as illustrated in Figure 2,
left. We now state a technical lemma that will provide us key tools in establishing that two shapes
have the same topology.

Lemma 1 (Sandwich Lemma). Consider four nested spaces Ay C Xo C A1 C Xy. If Ay deforma-
tion retracts to Ag and X1 deformation retracts to Xg, then Xg deformation retracts to Ag. If the
inclusions Ag — Ay and Xo — Xy are homotopy equivalences, then the inclusion Ag — X1 is a
homotopy equivalence.



Figure 2: Left: two nested shapes A C X which are close in Hausdorff distance and have the same
homotopy type but for which the inclusion A < X is not a homotopy equivalence. Right: diagram
for the proof of Lemma 1. All arrows but the dotted ones are inclusions.

Proof. To prove the first part of the lemma, suppose F' is a deformation retraction of A; onto Ay and
G is a deformation retraction of X; onto Xy. Then, one can check that the map H : Xy x[0,1] — X
defined by H(z,t) = G(F(z,t),1) is a deformation retraction of Xy onto Ap.

To prove the second part of the lemma, let ig : A9 — Xo, j : Xog — A1 and i1 : A1 — X3
denote inclusions (see Figure 2, right). Suppose r is a homotopy inverse of j o iy and s is a
homotopy inverse of i1 o j. We prove that the inclusion k = i1 o j o ig from Ag to X7 is a homotopy
equivalence with homotopy inverse r o j o 5. Indeed, using the fact that composition preserves the
relation ~, we have ko (rojos) =ijo(joigor)ojos~ijoly ojos~1ly, and similarly
(rojos)ok=rojo(soijoj)oig~rojolyx,oipg1ly,. 0

2.2 Properties on convex bodies
A conver body designates a non-empty compact convex set. In this section, we define two properties
that will help us identify classes of convex bodies.

2.2.1 Roundness

We associate to every convex body a non-negative real number called the f-roundness which can be
interpreted as a certain kind of curvature. Given a convex set C' in RY, the normal cone N'(x) to
C' at x is the set of unit vectors n such that (x —y) -n > 0, for all points y € C.

Definition 1. Let 6 € [0, 7] and > > 0. We say that the convex body C' is (0, 3)-round if for all
points c1,co € C and all vectors ny € N'(c1) and ny € N(ca), the following implication holds:

Z(ni,mg) >0 = (c1 —c3) - (n1 —ng) > »||cy — co|
The 6-roundness of C' is the supremum of » > 0 such that C is (6, »)-round.

Note that if the convex body C has roundness s, then C is (6, »)-round. Indeed, for all points
c1,co € C, for all vectors ny € N(c1), ng € N(c2) such that Z(ny,n2) > 6 and for all real number
v > 0, we have

(1 =) - (m1 —ma2) > (3 —v) [ler — e,

e



which also holds in the limit as v goes to 0. If C'is (6, »)-round, then C'is (€', »)-round whenever
0 < 6" and 5/ < . Since a similitude with ratio ¢ multiplies distances by ¢ and preserves angles, C
is transformed under such a similitude into a (6, »z/p)-round convex body. It is not difficult to see
that C is (m, »)-round if and only if the diameter of C' is upper bounded by % To get a feeling of
what this means for a convex body to be (6, 5)-round, let us consider two distinct points ¢1,co € C
and two unit vectors n; € N(c1) and ng € N(c2) and study the ratio:

(c1 —c2) - (n1 —no)
[er — cal|?

(1)

First, observe that this ratio is non-negative by choice of n; in the normal cone of ¢; for i € {1, 2}.
If the boundary of C'is a sphere with center z and curvature k, then this ratio is equal to k, since
in that case n; = k(¢; — z). We give a geometric interpretation of the ratio in Lemma 2 and a tight
lower bound for convex bodies with a smooth boundary in Lemma 3.

Lemma 2. For all points c1,c2 € C, ¢1 # co and all vectors ny € N(c1) and na € N(c2), we have

(c1 —c2) - (n1 —n2)
o —alf 2 Werm(e2) + Feana(er)),

where Ky, (y) is the curvature of the sphere passing through points x and y and with outer normal
n al pownl x.

AaC

Figure 3: Notations for the proof of Lemma 2 and Lemma 3.

Proof. See Figure 3, left. Let S; be the sphere passing through points ¢; and ce with outer normal
n; at ¢;, for i € {1,2}. Let n), be the outer unit normal to Sy at c2 and n) be the outer unit normal
to So at ¢;. We have

(e1 = c2) - (n1 —mj) R (C2) e — ea?
(1 —e2)- (0 —n2) = Keymy(er)ller — eaf®
(1 —c2)-(nh+ny) = 0
(ca—c1)-(ny+n2) = 0
Summing up these four equations gives the result. O



Suppose the boundary of C' is a C2-smooth hypersurface in RY and orient dC such that normals
point outside the convex set. Then, for all points x € 9C, the normal cone at x is reduced to a single
vector which is the normal to C at x. The absolute values of the principal curvatures at point
x € OC are non-negative real numbers |1 (z)| > |ka(z)]... > |kn—1(z)| and we let Kmin(C) be the
minimum of |ky_1(z)| over all points x € dC. We refer to [15] for an introduction to differential
geometry that define curvature. Note that if co tends to ¢ along a curve v in 9C, then the ratio
in (1) tends to the absolute value of the normal curvature of v at ¢;. In particular, if |ky_1(z)]
reaches its minimum at x = ¢; and the tangent line to v at ¢; is the associated principal direction,
then the ratio in (1) tends to kpin(C). The next lemma states that the ratio in (1) is actually lower
bounded by Kmin(C).

Lemma 3. Suppose C is a convex body whose boundary is a C?-smooth hypersurface in RV . Then,

inf (c1 —c2) - (n1 —no)
C1,C2,11,12 ||61 — CQ||2

= /{min(C%

where the infimum is taken over all points c1,co € OC, ¢1 # co and n; designates the normal af ¢;
forie {1,2}.

Proof. We only need to prove that for all points c1,co € dC with normals ny and no respectively:
(e1 = c2) - (m = 1n2) 2 Fimin(O)[ler — e21*.

Consider a sphere S tangent to 0C at point x and meeting JC in another point y # x. Let D be
the ball that S bounds. We begin by proving that fmin(D) > Kmin(C). Consider a 2-dimensional
plane P passing through z and y and containing the common normal to 9D and 9C' at point z. In
particular, P passes through the center of D. We think of D = DN P and C = C NP as two convex
bodies in R2. By construction, D and dC are C2-smooth curves tangent at point x and meeting
at point y # 2. Thus, we reduced the geometric situation in RV to the same situation in R2. Let
us prove that Iimm(D) > mmln(C) Suppose for a contradiction that nmm(D) < Iimm(c> In other
words, the curvature of circle D is smaller than the curvature at any point on the curve C. Theorem
1 in [20] tells us that C, except for z, lies in the interior of D, as illustrated in Figure 3 right. But,
this contradicts the fact that C intersects the boundary of D in y # x. Thus, Hmm(D) > /{mm(C)
and it follows that Kmin(D) = Emin(D N P) > Kpin(C N P) > knin(C), as claimed. In other words,
given two points z # y on the boundary of C' and a unit vector n € N'(x), we have just proved that
the curvature £z, (y) of the sphere passing through x and y with outer normal n at point x satisfies
Kzn(Y) > Kmin(C). Applying Lemma 2 gives the claimed inequality and therefore the result. O

As an immediate consequence of Lemma 3, a convex body C' whose boundary is C2-smooth has
O-roundness Kmin(C). For instance, the N-dimensional Euclidean ball B has 0-roundness 1. For
our reconstruction theorems, we shall consider convex bodies which have the property to be (6, »)-
round for a positive s and a small enough 0. Specifically, we will require 6§ < 0y = arccos(—%).
Not all convex bodies satisfy this property. To construct a counterexample, consider a convex body
C which is contained in an affine space of dimension ¢ with 0 < ¢ < N. Let n be a unit vector
orthogonal to the smallest affine space containing C. For every point ¢ € C, both n and its opposite
vector —n belong to N(¢). Consider two distinct points ¢1,¢o € C and let n; = n and ng = —n.
We have Z(ny,ng2) =7, (c1 —c2) - (n1 —n2) = 0 and ||c; — c2|| # 0, showing that there are no s > 0
such that C is (7, »)-round. Equivalently, the m-roundness of C' is zero. As a counterexample with



a+C g+ C

Figure 4: Left: two translated copies of a triangle C'. The intersection point x does not belong to
any set Hull({q1, g2}) + £C with £ < 1, thus showing that the eccentricity of C'is 1. Right: bulging
the triangle makes its eccentricity drops to a value smaller than one. Notations for the proof of
Lemma 22.

a non-empty interior, take a triangular prism in R3. Its §3-roundness is zero because we can always
find an edge of the prism whose dihedral angle is less than % and therefore two distinct points c1, co
on this edge, two vectors n1 € N(c1), na € N(cz) orthogonal to the edge and making an angle
Z(ny,ng) = %” > 03 such that (c; — c2) - (n1 —n2) = 0 and ||c; — 2] # 0. In Appendix B.1.1,
we compute the fs-roundness of regular polygons in the plane and in Appendix B.1.2, we give the
On-roundness of N-dimensional cubes in RYV.

2.2.2 Eccentricity

In this section, we associate to every subset C C RY a parameter called eccentricity. Intuitively,
eccentricity can be thought of as a measure of how much intersections of translated copies of C
centered at points in ) deviate from the convex hull of (). We recall that the Minkowsk:i sum of two
subsets X C RY and Y C R¥ is the subset defined by X +Y = {z+y |z € X,y € Y}. To simplify
notations, we shall write  + Y instead of {x} + Y. Let B = {z € RY | ||z|| < 1} be the unit
Euclidean ball centered at the origin. Given a non-negative real number r, we call the Minkowski
sum X + 7B the Euclidean r-offset of X and denote it by X .

Definition 2. Given ¢ > 0, we say that C is &-eccentric if for all compact Q@ C RY, the following
implication holds:

M@+ #£0 = [ (V(@+C) | n(Hu(Q) +£C) # 0.
qEQ o)

The eccentricity of C is the infimum of € > 0 such that C is £-eccentric.

Note that the eccentricity is a real number between 0 and 1. To see this, consider a subset () C
R and suppose z € Nyeq(a+C) or equivalently @ C z—C. This implies that Hull(Q)N (2 —C) # 0
or equivalently z € Hull(Q) + C. It follows that any subset C' is 1-eccentric and the eccentricity
is at most 1. The property to be &-eccentric is invariant under bijective linear transformations.
To see this, consider a bijective linear map ¢. Since ¢ is linear, we have ¢(q + C) = ¢(q) + ¢(C)
and ¢(Hull(Q) + £C) = Hull(¢(Q)) + £o(C). Since ¢ is bijective, two subsets X and Y intersect
if and only if ¢(X) and ¢(Y") intersect. It follows immediately that C' is &-eccentric if and only if



¢(C) is &-eccentric and ¢(C) has the same eccentricity as C. A useful observation is that if the
eccentricity of a compact set C is £, then C is &-eccentric. We now give eccentricities for simple
objects and adopt the convention that all objects we consider in this paragraph have their centroids
at the origin. The eccentricity of the unit N-dimensional Euclidean ball B is zero. Indeed, suppose
Nyeq(q + B) # 0 and let z be the center of the smallest Euclidean ball enclosing all points in Q.
Clearly, z belongs to the non-empty common intersection ﬂqu(q + B) and by Lemma 14, z also
belongs to Hull(Q), showing that B is 0-eccentric. More generally, i-dimensional Euclidean balls for
0 <4 < N have eccentricity 0. Ellipsoids which can be obtained from Euclidean balls by applying
a linear transformation also have eccentricity 0. We establish in Appendix B.2.1 that symmetric
convex bodies in the plane have eccentricity 0 as well. At the opposite end of the spectrum, triangles
have eccentricity 1 (see Figure 4). While a subset C' C RY may have an eccentricity equal to 1, we
prove in Appendix B.2.2 that bulging it is enough to make its eccentricity drops to a value smaller
than 1. In Appendix B.2.3, we establish that N-dimensional cubes in RY have eccentricity 1 — %,
for N > 2.

2.3 Reconstruction Theorems
First, we formulate a sampling condition inspired by the work in |2, 1, 7]:

Definition 3. Given a non-negative real number € and a subset C C RN, we say that P C RY is
an (g,C)-sample of ACRYN if ACP+eC and P C A+¢B.

Notice that P is an (g, B)-sample of A if and only if the Hausdorff distance between P and A
does not exceed €. If B C C, then an (e, B)-sample is also an (¢, C)-sample. The reason why our
definition is not symmetric with respect to A and P is to enhance conditions that are used in the
proofs of our reconstruction theorems. Given a compact subset A of RV, we recall that the medial
azis M of A is the set of points in RY which have at least two closest points in A. The reach of A
is the infimum of distances between points in A and points in M:

reach(A) = inf |la — x|
ac€AxeM

Suppose the shape A has a positive reach. Given a convex body C and an (e,C)-sample P of A,
we would like to know whether the Minkowski sum P + rC captures the topology of A. Theorem 1
answers the question when P = A™¢ is an Euclidean e-offset of A and Theorem 2 provides an answer
when P is a finite sample of A. Before stating our results, we start with an example which illustrates
that not all convex bodies C can be used to reconstruct the topology of shapes with a positive reach.
Specifically, we take A to be the moment curve A = {(x1,79,23) € R® | 20 = 22, 23 = 23} and
prove that for r arbitrarily small, we can always find a convex body C such that the Minkowski
sum A + rC is not homotopy equivalent to A. For this, let C be a segment of length 2 centered
at the origin and contained in the straight-line L; = {(x1,z2,23) € R3 | 29 = 0, 23 = t2x1} for
some positive real number t. Observe that translated copies of L; intersect the moment curve A
in at most one point, except when the translated copy meets A in the two points a; = (t,12,t%)
and by = (—t,t?, —t3). Hence, as 7 increases, the Minkowski sum A + rC undergoes a topology
change when the two segments a; + rC and by + rC meet (see Figure 5, left). This happens for
r = |la; — b¢]|/2 which can be made arbitrarily small by choosing ¢ small enough. Hence, besides
requiring A to have a positive reach, we need conditions on the convex body C that we now list,
the last condition being only for the second theorem:



(i) B C C C 4B for some § > 1;
(ii) C is (0, 3)-round for 6 < Oy = arccos(—+;) and » > 0;
(iii) C is &-eccentric for € < 1.

The two conditions (ii) and (iii) do not imply each other. Indeed, an equilateral triangle in R?
with centroid the origin is (6, ﬁ)—round (see Appendix B.1.1) and has eccentricity 1. Hence, it
satisfies (ii) for @ = 09 and » = ﬁ but not (iii) for any £ < 1. Conversely, a segment in R? has
fo-roundness 0 and eccentricity 0. Hence, it satisfies (iii) for £ = 0 but not (ii) for any 6 < 6y and

»x > 0. Figure 6 gathers for different convex bodies C values of ¢, 6, > and £ for which conditions
(i), (ii) and (iii) hold. To state our theorems, let us introduce:

- e i)

and note that R, tends to R as  — 0.

Theorem 1. Let A be a compact subset of RN with positive reach R. Let C be a convex body of
RN satisfying conditions (i) and (ii). Then, AYe 4rC deformation retracts to A for all positive real
numbers v and € such that e + (6 — 1)r < min{R —r, R, /,.}.

Figure 5: Left. Cycle in the Minkowski sum of the moment curve with a segment. Right. As the
size of triangles increases, the hole created by the four upper points appears exactly when the hole
created by the four lower points is filled up.

The proof of Theorem 1 is given in Section 3.

Theorem 2. Let A be a compact subset of RN with positive reach R. Let C be a convex body
of RN satisfying conditions (i), (ii) and (iii). Let P be a finite (¢,C)-sample of A. Then, the
inclusion A — P + rC is a homotopy equivalence for all positive real numbers r and € such that:
(1) (6 = )r <min{R —r, R, ..}, (2) or <R —¢, (3) 6(r + ) < R and

(4) 2R —+/(R—¢)2 —(6r)2 — \/R2 = 82(r +ap)2 < (1 —&)r — ¢,
where ag = ér + R — /(R — )2 — (0r)2.




The proof of Theorem 2 is given in Section 4. Notice that Theorem 2 requires that 6 < 0y,
7 > 0 and & < 1. If these three conditions are fulfilled, then by choosing r = 14%5 and & small
enough, all the assumptions of Theorem 2 are satisfied, implying that the inclusion A — P +rC is
a homotopy equivalence. Given a fixed convex body C, Figure 6 gives numerical approximations of

the largest value of 5 for which assumptions of Theorem 2 hold.

’ convex body C H ) \ 0 \ ” \ £ H R/e \ r/e ‘
| Euclidean ball BCRY | 1 | 0 | 1 ] 0 [ 129781 [3.95723 |
cube By, in RV VN | arccos(—%) | 2(Boo) -2
cube By in R? V2 2x 0.65974 0 24.9973 | 4.04227
cube By, in R? V3 0.608 % 1/3 || 96.4687 | 6.14485
cube By, in R?* V2 0.5804 1/4 1/2 | 247.528 | 8.1826
cube By in R? NG 0.56417 | 0.149071 | 3/5 | 508.183 | 10.2006
cube By in R0 V10 0.53197 0.03953 | 4/5 | 4505.44 | 20.2264
cube By, in R0 10 0.503183 7 | 0.0010204 | 49/50 | 4948245 | 200.232
p-gon P, in R? (p even) H CO;% ‘ 2 ‘ 2#(Pp) ‘ 0 H ‘ ‘
square in R? V2 e 0.65974 0 24.9973 | 4.04227
hexagon in R? 1.1547 e 0.69936 0 16.9858 | 3.99837
octagon in R? 1.08239 =z 0.793353 0 15.04119 | 3.98101
dodecagon in R? 1.03528 b 0.8660254 | 0 13.84148 | 3.968
36-gon in R? 1.00382 e 0.951917 0 13.07011 | 3.95844
360-gon in R2 1.00004 = 0.9949868 | 0 12.97897 | 3.95724

Figure 6: Columns 2 to 5: values of 9, 6, s and £ for which B C C' C B and the convex body C'is
(0, »)-round and &-eccentric. Formulas are given in Appendix B. Columns 6 and 7: values of R/¢
and r/e for which Theorem 2 holds. Numerical values are obtained by brute force, enumerating
all pairs (¢,7) in a grid, checking if they satisfy conditions of Theorem 2 and keeping the one with
largest ¢.

To conclude this section, we prove that condition (iii) in Theorem 2 is necessary. In other words,
if we take a convex body C which satisfies conditions (i) and (ii) but whose eccentricity is 1, it may
happen that for some sample P, the Minkowski sum P + rC does not recover the topology of A,
no matter what value r takes in the interval [e, R — ¢]. To construct such an example, consider a
parabola A in the plane with equation y = 22 and a finite sample P C A symmetric with respect
to the y-coordinate axis. Furthermore, we let C be the equilateral triangle with centroid the origin
and vertices (0, —2), (v/3,1) and (—v/3,1). We note that with increasing value of r, holes appear
in the Minkowski sum P + rC each time two triangles scaled by r meet at a common vertex on
the y-axis (see Figure 5, right). We then adjust the height of the sample points in such a way that
P + eC does not have the correct topology and as r increases, a hole appears in P + rC each time
a hole gets destroyed, as illustrated in Figure 5, right.
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3 Proof of Theorem 1

In this section, we prove Theorem 1. In other words, we prove that for » and € small enough with
respect to the reach of A, the Minkowski sum A*¢ + rC deformation retracts to A. Our strategy is
as follows. We consider two positive real numbers ¢’ and €” such that there is chain of inclusions:

A c At 4rCc c AT c AT 4rC (2)

and find conditions under which the third set deformation retracts to the first set and the fourth
set deformation retracts to the second set. Applying the Sandwich Lemma allows us to conclude.
All the difficulty comes from the second part of the proof which involves comparing the topology
of two Euclidean offsets of A + rC, namely A1t + rC and A*¢" + rC. This leads us to study in
details Euclidean offsets of Minkowski sums in Section 3.2. A powerful tool to detect changes in
the topology of Euclidean offsets consists in studying the critical points of distance functions. Key
results concerning distance functions are recalled in Section 3.1.

3.1 Background on distance functions

The distance function d(-,Y) to the compact subset Y of RY associates to each point z € R its
Euclidean distance to Y
d(z,Y) =min ||z — y|.
(@) = min [lo — y]

The distance function d(-,Y") is 1-Lipschitz, but is not differentiable in general. Nonetheless, it is
possible to define a notion of critical points analogue to the classical one for differentiable functions.
Specifically, Grove defines in [18, page 360] critical points for the distance function to a closed subset
of a Riemannian manifold. Using Equation (1.1)’ in [18, page 360], we recast this definition in our
context as follows. Let 'y (x) be the set of points in Y closest to x:

Iy(z)={y €Y [d(z,Y) = [l —yll}

Definition 4. A point z € RY is a critical point of the distance function d(-,Y) if x € Hull(Ty (z)).
The critical values of d(-,Y") are the images by d(-,Y) of its critical points.

Slightly recasting Proposition 1.8 in [18, page 362, we have:

Lemma 4 (Isotopy Lemma [18]). Let 0 < e < &’. If the distance function d(-,Y) has no critical
value in the interval [e,€'], then Y¢ is a deformation retract of y+e',

If furthermore Y has a positive reach R, then the projection map 7y which associates to each
point & € Y ¢ its closest point 7y (x) on Y is well defined and continuous |17, page 435]. Thus, the
map H : [0,1] x Y — Y€ defined by H(t,z) = (1 — t)x + twy(x) is a deformation retraction of
Y ¢ onto Y. It follows that:

Lemma 5. If Y has a positive reach R, then Y ¢ deformation retracts to'Y, for all 0 < e < R.

11



3.2 Distance functions to Minkowski sums

In what follows, A designates a compact subset of RY with positive reach R and C designates a
convex body of RY. We begin with a technical lemma which will help us to situate critical points
of the distance function to A 4+ C, assuming C' is round enough.

Lemma 6. Consider a point x € RV such that d(z, A+ C) < R. Let y1,y2 € T'arc(x) be two
points on A+ C with minimum distance to x. Suppose C' is (6, »)-round for » > 0 and Lyizys > 6.
Then, d(x, A+ C) > Ry,

Figure 7: Notations for the proof of Lemma 6.

Proof. Let p = d(x, A+ C). For i € {1,2}, let y; = a; + ¢; with a; € A and ¢; € C. Since
p=|(x —¢;) —a;]]| <R, it follows that = — ¢; has a unique projection a; = m4(x — ¢;) onto A (see
Figure 7). On the other hand, we know from [17, page 435] that the projection map 74 onto A is

(R%)—Lipschitz for points at distance less than p from A. Thus,
P

R
R—p

lar —az|| < ller — ez

Let n; = =—2=%.  Squaring both sides of the above inequality and plugging as — a3 = ¢1 — co +

[z—ai—ci||*
p(n1 — n2) into the left side, we obtain

2R—p

(R —p)?
For ¢ € {1,2}, the unit vector n; belongs to N(¢;). Since C is (6, »)-round and Z(ny,ng) > 0, it
follows that (c; — ¢2) - (n1 — n2) > s|lc1 — co||? and

2(c1 —c2) - (n —n2) + pllm —no* < ller — ez

2R—p 2
plin < ( ~2) e - el
(R —p)?
In particular, this implies that 2 < (?Dﬁixg or equivalently

1 R
p22<R>p+R2§0.
43¢ %4

Solving this quadratic inequality yields to the result. O
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As a consequence of the lemma above, if x is sufficiently close to A+ C, then the angle between
any two vectors connecting x to points in I'yy o (z) is small which implies, in turn, that x is not a
critical point of d(-, A+ C). The following lemma makes this idea precise.

Lemma 7. If C is (0, 5)-round with 0 < arccos(—%) and »x > 0, then the distance function

d(-, A+ C) has no critical value in the interval (0, Ry/,,).

In order to prove Lemma 7, we need the following result also known as Jung’s Theorem. Given
a compact subset K C RV we denote by diam(K) = max, 4 d(p, q) the diameter of K.

Lemma 8 (Jung’s Theorem). The smallest ball enclosing a compact subset K of R has radius

) N
r < diam(K), | SN

Equality is attained for the reqular N-simplez.
For a short proof of Jung’s theorem, see [13].

Proof of Lemma 7. Let € RY and p = d(x, A+ C). Suppose 0 < p < Ry/,. and let us prove that
x is non-critical. By Lemma 6, for all points y1,y2 € I'a+co(x), we have Zyxys < 0. It follows that
diam(I"41c(x)) < 2psin g. Using

) \/10089 N +1
sin — = —— < _—,
2 2 2N

and applying Jung’s Theorem, we get that the smallest ball B enclosing I' 44 ¢(x) has radius r < p.
Let S denote the sphere centered at = with radius p. Observe that I'4yc(x) C SN B. Since the
radius of B is smaller than p, the radical hyperplane II of the two spheres S and 0B separates x
from T'yyc(z). Thus z € Hull(T' 41 (z)) and x is non-critical. O

Remark. Using the terminology introduced in 7], Lemma 7 can be reformulated by saying that
the critical function of d(-, A + C) does not vanish in the interval (0, R;/,,). Slightly adapting the
proof, we can strengthen this result and establish that the p-reach of A+ C' is greater than R, /,, for

[ = COS g, under the same hypothesis. Shapes with positive u-reach have nice properties [8, 9, 10].

Combining Lemma 4 and Lemma 7 and using the fact that if C' is (0, »)-round, then rC is
(6, %Z)-round, we get immediately conditions under which an Euclidean offset of A+rC deformation
retracts to another Euclidean offset:

Lemma 9. If C is (0, )-round with 6 < arccos(—+) and » > 0, then AY +rC is a deformation
retract of ATE" +rC for all positive real numbers r, e and € such that ¢ < " < Ry /s

We are now ready to establish the proof of our first reconstruction theorem.

Proof of Theorem 1. Equation (2) holds whenever ¢/ = ¢ + §r and ¢’ = ¢ + (§ — 1)r. Since by
hypothesis ¢ < &” < R, /,,, Lemma 9 implies that A" 4 1C deformation retracts to AT +rC. By

hypothesis, we have ¢ < R and therefore, A*e deformation retracts to A from Lemma 5. Applying
the Sandwich Lemma allows us to conclude. O
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4 Proof of Theorem 2

In this section, we present our proof of Theorem 2. A designates a compact subset of RY whose
reach R is positive, C' is a convex body of RY satisfying conditions (i), (ii) and (iii) and P is a finite
(e,C)-sample of A. First, we introduce a set which will play a key role. Given three positive real
numbers «, 8 and 7, we set Ay(a) = (p +7rC) N (AP + aC) and define

H(a) = U Hull A,(c).
pEP

Our proof uses two carefully chosen positive constants o and oy such that for all sufficiently small
B3, we have the sequence of inclusions (see Figure 8):

A C H(aw) ¢ AP+, ¢ P+rC (3)

Having established this sequence of inclusions in Section 4.1, we find in Section 4.2 conditions under
which H(ag) — P + rC is a homotopy equivalence. Combined with the conditions we found in
Section 3 which ensure that A — A™? 4+ ;C is a homotopy equivalence, we deduce immediately
using Lemma 1 (Sandwich Lemma) conditions under which A — P+rC'is a homotopy equivalence.

P+rC L

AJ”@ + o1 C
AtA + aoC

Figure 8: Nested sequence of objects considered for the proof of Theorem 2. Constants ag and oy
are chosen such that Hull 4,(c) is contained in A+ a;C for all p € P.

4.1 Establishing a key sequence of inclusions

In this section, we find conditions under which inclusions in (3) hold. To establish the middle
inclusion, we need the following key inclusion, illustrated in Figure 8:

Lemma 10. Suppose §(r + ag) < R— 3 and a1 — ag > R — /(R — 3)2 — 62(r + ap)?. Then,
HullAp(ao) C A+ aoqC.

14



Proof. Let A" = AT N (p+rC + ap(—C)). Note that A,(ag) C A’ + apC for if = belongs to
Ay(ap) = (p+7rC) N (ATP + apC), we can find cg,c; € C and @’ € ATP such that z = o’ + ageo =
p + rep, showing that ' € A" and « € A’ + apC. Thus and using lemma 17,

Hull A,(ag) € Hull(A' + aoC) = Hull(A') + aoC.

By construction, A’ is contained in a ball of radius §(r + ap). Applying Lemma 16 with @ = A,
e=and p=0(2r—e¢), we get

Hull(4) ¢ A+(R—+/(R—-pB)?—-p*)B

if p < R— (. Thus, for all p € P we have Hull A,(ag) C A+ a1C whenever §(r + ap) < R — 3 and
a1 —ag > R—/(R—B)2—8(r + ap)?. O

Taking the union over all points p € P on both sides of the inclusion in Lemma 10 we get
immediately the middle inclusion in (3), i.e. H(ag) C AP 4+ a1C. The left-most and right-most
inclusions in (3) are easy to establish. Indeed, since P is an (e, C)-sample of A, we have A C P+¢C
and for € < r and g > 0, the left-most inclusion follows from

A C (P+rC)n(AY +00C) = | J Ap(en) © | Hull Ay(ag) = Hap).

peEP peEP

Using again A C P+ ¢C and B C C, the right-most inclusion comes from
AP +01C € P4 (e+B8+4+a)C C P+rC
which holds whenever a; < r — e — 3. Next lemma summarizes our findings.

Lemma 11. The sequence of inclusions in (8) holds whenever oy <r—e— (3, §(r + ) < R—f
and a1 — ap > R— /(R — ()2 — 82(r + ap)?.

4.2 A homotopy equivalence for nested collections of convex bodies

It is not difficult to see that the inclusion H(«) C P+ rC holds for all positive real numbers o and
(. The goal of this section is to find conditions under which the inclusion map H(«) — P + rC' is
a homotopy equivalence. For this, we use covers of H(«) and P + rC by finite collections of convex
bodies. Specifically, we have H(a) = U ,cp Hull Ay(a) and P+ rC = {J,cp(p + rC). Since sets in
the two collections {Hull Ay(a)}pep and {p + rC}pcp are convex, we can apply Leray’s theorem
[21] to each, and obtain that the union of sets in each collection has the same homotopy type as its
associated nerve:

H(a) =~ Nerve{Hull Ap(a)}pep
P+rC =~ Nerve{p+rClpcp

A key step consists in proving that, for suitable values of a, the nerves of the two collections are
actually the same. As a consequence, H(«) and P+rC have the same homotopy type. We strengthen
this result, thanks to Lemma 12, and state conditions under which the inclusion H(«) < P + rC
is a homotopy equivalence in Lemma 13.
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Lemma 12. Consider two finite collections of convezr bodies of RN, C = {C;}ier and D = {D;}icr
such that C; C D; for all i € I and suppose the two collections have the same nerve. Then, the
inclusion | J; C; — U, D; is a homotopy equivalence.

From Corollary 4G.3 in [19] also known as Leray’s theorem [21] or the Nerve Lemma, it is clear
that |J, C; and |J; D; which share the same nerve have the same homotopy type. But, we need
here a stronger result, namely that the inclusion |J; C; — |J; D; is a homotopy equivalence. Even
though this fact can be deduced from a result in [4]|, we provide below a short proof to make the
paper self-contained.

Proof. Let K(C) be the abstract simplicial complex whose simplices are the (non-empty) subsets
of indices o C I such that (,c, C; # (. Since the two collections C and D have the same nerves,
K(C) = K(D) and we let K = K(C).

For every subset of indices o ¢ K, a standard compactness argument yields a real number p, > 0
such that (;e, D; 7 = 0. Let p = min, ¢ po and define the open set O; = {z € RV, d(x, D;) < p}
for every i € I. By construction, the nerve of the collection O = {O;};cs is the same as the nerve
of D and K(O) = K. For each o € K, we introduce the possibly empty open set:

U, =()0:\ | JDi.
i€o i¢o

It is obvious from the definition that | ¢ x Us C |U;c; Oi- Let us associate to each point z € (J;c; O;
the subset of indices 7(z) = {i € I,z € O;}. Since x € U,(y), it follows that:

U v- =0

ceK i€l

Let us consider a partition of unity {¢,}scx subordinate to the open cover {U, }scx [24, page 22].
Note that the map ¢, is identically zero for the simplices o for which U, = (). For each simplex
o € K, we choose an arbitrary point ¢, € (;c, C; and introduce the map h : |J,c; D; — RY defined
by:

i€o

h(z) = ¢olx)co.
ceK
By construction, h is continuous. We claim that z € D; = h(x) € C;. Indeed, if z € D; and
¢o(x) # 0, one has i € o and therefore ¢, € C;. Hence, the non-zero terms in the above sum is a
convex combination of points in C; and the claim follows from the convexity of C;. Let us prove
that h is a homotopy inverse of the inclusion map g : |J; C; — U, Di. In other words, we have to
check that goh is homotopic to the identity of | J;, D; and ho g is homotopic to the identity of | J, C;.
This can be done using twice the homotopy H(z,t) = (1 —t)-x +t- h(z), first considered as a map
from (J; D; x [0, 1] into |J; D;, second considered as a map from | J; C; x [0,1] into |, C;. O

Lemma 13. Consider positive real numbers r, €, o and 3 such that ér < R—e, 6(r+a) < R—f and
a>&r+ R—+/(R—¢)?—(6r)2. Then, the inclusion H(a) — P +rC is a homotopy equivalence.

Proof. We prove the lemma is three stages:
(a) First, we prove that for 67 < R — ¢ and a > ér + R — /(R — )2 — (67)2, we have

Nerve{p + rC}pep = Nerve{Ap() }pep- (4)

16



Note that this is equivalent to proving that for all subsets Q C P,

N (a+7C) #0 = (g +rC) N (AT +aC)] 0.
qeQ qeQ

One direction is trivial: if a point belongs to the intersection on the right, then it belongs to the
intersection on the left. Suppose now that ﬂqu(q + rC) # 0. In particular, using C' C 0B this
means that () can be enclosed in a ball of radius p = dr. Since C is &-eccentric, there exists
z € (Nyeq(q + rC) such that z € Hull(Q) + {rC. Since P is an (e, C)-sample of A, we have
Q C P C A*e. Applying Lemma 16, we get that Hull(Q) ¢ A*(@=¢") Hence and using B C C, we
get 2 € A+ (a—&r)B+&rC C AP +aC.

(b) Second, we prove that

Nerve{p + rC}pep = Nerve{Hull A,(a)}pep. (5)
From Lemma 10, we obtain the sequence of inclusions

Ap(a) C HullAy(a) C Ay(a),

for §(r + @) < R— B and o/ = a+ R — /(R — )2 — 82(r + a)2. Taking the intersection over all
points g € Q, we get

() Agla) € [(JHullAg(e) C () Agle),
q€Q q€Q qeQ

and consequently
Nerve{A,(a)},ep C Nerve{Hull A,(a)}pep C Nerve{A,(a')}pep.

By Equation (4), the two nerves on the left and on the right are equal to Nerve{p+7C},cp, showing
that Nerve{Hull A,(a)},cp = Nerve{p + rC}pcp.

(c) Third, noticing that Hull A,(a) C p+ rC for all p, we apply Lemma 12 to the two collections
of convex bodies C = {Hull Ay(a) }pep and D = {p+ rC}pecp. O

We conclude this section by the proof of our second reconstruction theorem.

Proof of Theorem 2. For (3 small enough, we have 3+ (6 —1)r < min{R—7, R, ..}, 6(r+ap) < R—p3
and

2R—/(R—e)2—(6r)2 =/ (R—P)2=2(r+ )2 <(1—&)r—e—0.

Setting a1 = ag + R — /(R — 8)2 — 82(r + ap)?, the above inequality can be rewritten as a; <
r —e — (. Thus, the sequence of inclusions in (3) holds by Lemma 11. Furthermore, the inclusion
H(a) — P + rC is a homotopy equivalence by Lemma 13. Since ay < r and f+ (§ — 1)r <
min{R — 7, R,/,.} imply 3+ (§ — 1)ax < min{R — a1, R,, /,.}, the inclusion A — AT +a,C is a
homotopy equivalence by Theorem 1. Applying the Sandwich Lemma allows us to conclude. O
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5 Discussion

In this paper, we have exhibited a class of convex bodies whose Minkowski sum with a sufficiently
dense sample captures the topology of the sampled shape. Convex bodies in this class possess three
properties: a non-empty interior, a positive fy-roundness and an eccentricity smaller than 1. In
particular, this class contains Fuclidean balls but, more interestingly, also includes N-dimensional
cubes, with potential algorithmic applications in high dimensions.

The results in this paper raise a number of questions. First, it would be interesting to know what
is the lowest density of sample points Theorem 2 authorized and if this number is tight, especially
for N-dimensional balls. In the case of Euclidean balls, we found numerically that 5 = 0.077 fulfills
the requirements of our theorem (see Figure 6) and is the best ratio we can get with our sampling
conditions. This is approximatively half less than the value 3 — /8 obtained in [23]. To understand
the discrepancy between the two results, we have to go back to the proof of Theorem 2. In the case
of Euclidean balls, the proof can be simplified as described in Appendix C, yielding the following
sampling condition:

R—V(R—-¢e)?-1 < r—c¢

Setting r = Ae, the above condition is equivalent to & < % and plugging A = 2 + /2 the
inequality gives 5 < 3 — V8 exactly as in [23]. Similarly, we ask whether our upper bound on e
is tight for N-dimensional cubes? Another point is that Theorem 2 requires the sample P to be
finite. Can we relax this condition? Since Lemma 12 is not true anymore if we remove the finiteness
condition on the families of convex set, our proof has no obvious extension to the case where P is
infinite. However, we conjecture Theorem 2 should still be true. Finally, if the convex body C' is
close to the Euclidean ball, in other words if C' satisfies B C C' C §B for a small §, can we derive
bounds on the eccentricity and 6y-roundness?
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A Basic properties

In this appendix, we present basic properties relating the smallest ball enclosing @ C RY and the
convex hull of Q.

Lemma 14. The center of the smallest ball enclosing the compact subset Q C RY lies on the conves

hull of Q.

Proof. Let B(z,r) be the smallest ball enclosing (). Suppose for a contradiction that z ¢ Hull(Q)
and let 2’ be the point on Hull(Q) closest to z. For every point ¢ € @, we have |2/ —q|| < ||z—q|| =7,
showing that there exists a ball enclosing @) centered at 2z’ and smaller than B(z,r), which contradicts
the definition of B(z,r). O

Lemma 15. Consider a subset Q C RY whose smallest enclosing ball has radius r. Then, Hull(Q) C
quQ B(‘]a 7”).

Proof. For all ¢ € Hull(Q), there are points ¢, . . ., g, in @ and non-negative real numbers aq, ..., ay,
summing up to 1, such that ¢ = Y " | ig;. Let m;(z) = ||z — ¢;||*> — r? be the power distance of
z € RN from B; = B(g;,r) and note that B; = 7, '(—00,0]. Let m(z) = I, a;m;(x) and set
B = 7 1(—00,0]. We prove that "/, B; C B C U, B;. Indeed, if a point z belongs to all balls
B, then m;(z) < 0 for all 1 <4 < n, which implies 7(z) < 0. On the other hand, if 7(z) < 0 then
mi(x) < 0 for at least one index ¢, which implies that = belongs to at least one ball B;. Now, our
choice of r as the radius of the smallest ball enclosing @ implies that (), B; # 0, showing that B
is non-empty. Thus, B is a ball and it is not difficult to see that its center is point ¢. It follows that
q € B C |J;, B;, which concludes the proof. O

The next lemma states that the convex hull of a set of points cannot be too far away from a
shape with positive reach, assuming the set of points is close to the shape and are enclosed in a ball
of small radius. Formally:

Lemma 16. Consider a subset Q C AT in RN and suppose Q can be enclosed in a ball of radius

p<R—c¢. Then, HUH(Q) C Ate fora> R — \/m

Proof. Suppose R < +oo for otherwise, A is convex and Hull(Q) C A'c. Let x be a point on
Hull(Q) furthest away from A. By Lemma 15, there exists a point ¢ € @ such that ||z — ¢q|| < p.
Thus, d(z, A) < ||lz—q||+d(g,A) < p+e < R, showing that x has a unique projection a onto A. We
claim that the plane H passing through = and orthogonal to the segment xa is a supporting plane
of the convex hull of (). To prove this, consider the two open half-spaces that H bounds and let
H~ be the one half-space that does not contain a. Furthermore, consider the half-line with origin
a that passes through = and let z be the point on this half-line at distance R from a (see Figure
9). By construction, B(z, R) is tangent to A at a and its interior does not intersect A. We prove
that Hull(Q) N H~ = (. Suppose for a contradiction that there exists a point y € Hull(Q) N H~.
Then, the whole segment zy belongs to Hull(Q)) and in particular intersects B(z, |z — z||). But
points in the interior of B(z, ||z — z||) are furthest away from A than x, contradicting the definition
of x as the point of Hull(Q)) furthest away from A. It follows that H is a supporting plane of the
convex hull of @ as claimed. Thus, @ N H is non-empty and can be enclosed in a ball of radius
smaller or equal to p. The convex hull of @ N H contains z and by Lemma 15, there exists a
point ¢ € Q@ N H such that ||z — ¢|| < p. On the other hand, ||z — ¢|| > R —e. It follows that
lz —all = R = /llz = I = lz = ¢|? < O
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_8(n,liz-l)

Figure 9: Notations for the proof of Lemma 16.

Lemma 17. For any subset Q C RN and any convezx set C C RN, Hull(Q + C) = Hull(Q) + C.

The proof is straightforward and hence omitted.

B Explicit constants in some simple cases

B.1 Roundness

Recall that 6y = arccos(—%). In this appendix, we compute the 6y-roundness of N-dimensional
cubes and the #-roundness of regular polygons. To prepare computations, we first reformulate the

O-roundness of convex bodies whose normal cones have a diameter smaller than 2 sin g:

Lemma 18. Let 8 > 0. Consider a convex body C and suppose that for every point c € C and every
pair of vectors ni,ne € N(c), we have Z(ny,ng) < 0. Then, the O-roundness of C can be expressed
as
min | er—c2) - (1 —mo)
c1,c2,n1,n2 ler — e2|?

where the minimum is taken over all points c1,co on the boundary of C' and all vectors ny € N(c1)
and ny € N(co) making an angle Z(ni,na) > 0. Furthermore, if C is polytope, the minimum is
attained when c1 and co are vertices of C.

Proof. The support of the normal cycle of C is N' = {(¢,n) € C x S¥~! | n. € N(e)}. Since N is
homeomorphic to the boundary of an offset of C' [10], N is compact. Define the closed set

Ep={(c1,n1,c2,n2) € RN x SN"Lx RV x SN~V | L(ng,np) > 0}

and consider the set Dy = (N x N) N Ey. By construction, Dy which is the intersection of a
compact set and a closed set is compact. For any quadruple (ci,n1,c2,n2) € Dy, we have ¢ # ca,

for otherwise, n; and ng would belong to the same normal cone and make an angle Z(ny,ng) > 6
(c1—c2)-(n1—n2)

which contradicts our hypothesis. Hence, the function Dy — R, (¢1,n1,c2,n2) — Tor—cll? is

well-defined and attains its minimum.
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For the second part of the lemma, suppose the minimum is attained at the quadruple (¢1,n1, c2,ng) €

Dy. Recall that by choice of ny in the normal cone of ¢1, we have (¢ — ¢2) - ny > 0 and similarly
(c2 — c1) - ng > 0. We distinguish two cases. If the minimum vanishes, then we have that both
(c1 —c2) -n1 =0 and (c2 — c1) - ng = 0. Hence, the minimum is still attained if we replace ¢; and
co by vertices of the faces to which they belong respectively. Suppose now that the minimum does
not vanish and is attained at a point ¢; in the relative interior of a face F' of the polytope. Let v
be a unit vector parallel to F' and choose tg > 0 small enough such that ¢; + tv belongs to F for all
t € [—to,to]. Consider the function f : [—to,to] — R defined by

(c+tv)-n

where ¢ = ¢; — ¢ and n = ny — ny. Since f has a minimum at ¢ = 0, we deduce that f/(0) = 0 and
1"(0) > 0. Computing the first derivative of f, we obtain

—(v-n)t? —2(c-n)t+ | cl|?(v-n) —2(c-n)(c- U).

!
t) =
7 ot o]
Using f/(0) =0 and ¢-n = (¢1 — ¢2) - (n1 — n2) > 0, we get that f”(0) = 72(("’|+”)4”v”2 < 0, which
leads to a contradiction. O

Let us make a few useful observations. Suppose we are given two distinct points ¢; and ¢ on
the boundary of C' and we are looking for the pair of unit vectors ni, ny which minimizes the ratio:

(c1 —¢2) - (n1 —na) (c1 —c2)-n1  (c2—c1) no

|1 — cal|? e —el? 1 — cal|?

subject to the three constraints (a) Z(ny,n2) > 6 (b1) n1 € N(c1) and (bg) na € N(cg). Since the
two terms on the right side are positive by choice of n; in the normal cone of ¢;, it follows that a
pair of vectors which minimizes the left side subject to (a), (b;) and (bg) also minimizes the ith
term on the right side under the two constraints (a) and (b;) for ¢ € {1,2}. If now we relax all the
constraints on n; and ng, then the dot product (¢; —¢;)-n; has a unique minimum which is attained
for n; = (¢j—¢;)/|lci—c;||. Since this value can never be reached when n; belongs to the normal cone
of ¢;, it shows that as we minimize the sum, one of the two constraints (a) or (b;) must be active
for all ¢+ € {1,2}. Specifically, if one of the two vectors n; or ng lies in the interior of its associated
normal cone, then the angle Z(n1, n2) must exactly be equal to . Conversely, if Z(nq,ng2) > 6, then
both n; and ngy lie on the boundary of their associated normal cone. Furthermore, if Z(n1,n2) > 6
for all ny € N(c1) and ny € N(cg), then the vectors ny and ng that minimize the sum both lie on
the boundary of their associated normal cone.

B.1.1 Roundness of regular polygons

Recalling that 6, = 2{, we compute the fo-roundness of regular p-gons, for p > 3. Using the
natural identification between R? and C, we denote by P, the regular p-gon whose vertices are

V0, ULy« ++, Up—1 with




By construction, the unit disk is tightly contained in P, and we have B C P, C § B for 6 = (cos %)_1.
Given k > 1, we define

(Uk - UO) ) (nk - TL(]) (6)

¥, = min ,

no,nk |lve — vol|?
where the minimum is taken over all vectors ng € N(vg) and ny € N(vx) making an angle
Z(no,ny) > 2. The y-roundness of P, is #(Pp) = ming <z z| > Let us compute 3. Not-
ing that the condition Z(ng,ng) > %’r imposes k > % — 1, we consider three cases depending on the
value of k.

Case 1: If k > &+ 1, any pair of vectors ng € N(pg) and ny, € N (py) satisfies Z(ng,ny) > %’r

Hence, the values of ng and nj that minimize f are extreme values of their respective normal cones.
. . (2k—1)7 . . .
Specifically, ng = e'» and n, = €'~ » . Since in that case ng — nj and vy — v are collinear, the

dot product is equal to the product of the norms and we have:

i k-7 iz . (k=)
T e v —er| T ST
M = COS— X ok = COS— X .
b 1—e"7 ] p sIn 5"

Since s increases with k, the smallest value of s is obtained for k = [£7] 4 1. Note that this case
may happen only if p > 6 since it requires that £ +1 < k < |£].

Case 2: If k& = [£], the extreme values of the normals in their respective normal cones that

minimize the ratio in (6) violate the condition Z(ng,n;) > 2F. It follows that the minimum is

reached when ng and nj are constrained by Z(ng,ni) = %” Therefore, the minimum is attained

when the angle between ng — ng and vy — vg is maximized. This happens for instance for ng = e'v
. 1 2
and ny, = '™ 73). Recall that the dot product of two vectors represented by u,v € C, is Re [u7]

where U is the conjugate of v and Re[.] designates the real part of a complex number. Using vy = 1

I TEL:

cosnpl T We get:

Re [(1 B ei%ésh) (e_’% B e—iw(;+§)>:|
T

%(q = C€O0S— X

2[p/3]m _;2[p/3]n
) )

L T 2 s 2[ /31 T 2[ /31 T 21
cos 5 [COSE—COS<?+E) — COoS (%—5> —|—Cos<%—5—?)}

B 2 — 2cos (W) ’

and v, =

Case 3: If k = [£] — 1, the extreme values for the normals in their respective normal cones that

minimize the ratio in (6) still violate the condition Z(ng,ny) > 2. It follows that the minimum is

reached when ng and nj are constrained by Z(ng,ng) = %’T Therefore, the minimum is attained

when the angle between ng —ny and vg — vy, is maximized. This happens for instance for ng = e " »
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—-1,2 . o 1P/31—1
(F+3), Using vg = 1 and v, = Coslﬂ/p e , we get:

;(2[p/31=1)m iT im(L—2)
- Re||ll—e¢ P (eP—e P3)

X

A ™ . Clp/31-1)x . Cle/s1-D)r
Refll—e P 1—e P

cos T [COSE—COS<2§—E> —COS<M—E)+COS<%—E—%‘>}

1T
and np = e

p p P p p
2 —2cos <7(2(p/§_1)ﬂ) 7

For p > 6, all three situations may happen and the roundness of P, is

#(Pp) = min{%(g]ﬂ, %%17%(%]—1}'

All three arguments of the minimum above are converging to 1 as p — oo but it seems that the
minimum is never realized by the last expression. For all integer values in the range p = 3,...,11
the minimum is attained by the second expression and for values p > 12 the minimum is attained
sometimes by the first and sometimes by the second argument.

For 4 < p <5, only the second and third cases may occur. For p = 3, we cannot apply Lemma
18 anymore but a closer look to this simple case shows that the roundness »(Ps) is equal to the
second term above. We get:

%(P3) = 5 COS g = T
1 s s T
#(Py) = 3 cos 1 (COS 1 + cos E)
w(Ps) = cos £ (cos T + cos % + cﬂos 2T+ cos %)
2+ 2cos ¥
Figure 10 shows some values of s(P)).
H Py ‘ #(Pp) H
equilateral triangle in R? | 0.4330127
square in R? 0.659739608
hexagon in R? 0.699358737
octagon in R? 0.79335334
dodecagon in R? 0.866025404
36-gon in R? 0.951917139
360-gon in R? 0.994986799

Figure 10: Values of roundness »(P)) for regular p-gons in the plane.
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B.1.2 Roundness of N-dimensional cubes

Lemma 19. The Oy-roundness of the N-dimensional cube Boo = [—1,1]N C RY is:

Q—ﬂ(cos&%-cosl%) if N =2,

#(Bxo) = 5 if N =3,
l .
ey N =4,

Proof. Consider two distinct vertices v, v’ and let us compute the minimum of

(v o) (n—n)
fo =2

fn,n') =

9

over all vectors n € N(v) and n’ € N'(w) making an angle Z(n,n’) > 6y > 7. Note that when the
minimum is attained, Z(n,n’) = . Suppose the two vertices v and v" differ by exactly k coor-
dinates. Without loss of generality, we may assume v = (1,...,1) and ' = (—1,...,—1,1,--- , 1).
We reformulate the minimization problem as follows. Note that a unit vector n = (nl, ...y MN)
belongs to N (v) if and only if all coordinates are non-negative and it belongs to NV (v') if and only
ifn; <O0forl1<i<kandn; >0for k+1<i<N. Thus,if n' = (n},...,n) € N(v), the vector

m = (—nj,...,—nj, Ny, ..,n)y) has non-negative coordinates and we set g(n,m) = f(n,n’). The
minimum s, of f subject to n € N(v), n' € N(v'), Z(n,n") > Oy is also the minimum of
1 k
g(n,m) = = 5 Z ni +m;)
subject to:

(©) iy mami = % + 2o s
(ii) n; > 0 and m; > 0 for all 1 <i < k;

(i) SN, n2=1, 3N m?=1,n;>0and m; >0 forall k+1<i<N.

By Lemma 20, the minimum of g subject to (i) and (ii) is %\/% + Zfik_ﬂ n;m; and this minimum

is attained for n1 = my = \/% + Zfikﬂ n;m; and n; = m; = 0 for 2 < ¢ < k. We consider three
cases:

1. f N >3 and k < N — 2, we choose n; = mq = ﬁ, ny =my_1=14/1— % and set all other
coordinates to zero. We note that n and m thus defined satisfy conditions (i), (ii) and (iii)
e . 1 o
and minimize g by construction. We have 3¢, = AV > HN_2 = N VN

2. IfNZQandk:N—l,wesetnl:mlzw/%—i—ﬁ,mv:m]v:,/%—ﬁandni:mizo

otherwise. The vectors n and m thus defined satisfy the three conditions (i), (ii) and (iii) and
N+1
(N—1)v2N "

3. f N>1and k= N we use the fact that the minimum of g subject to (ii) and (iii) is % and
deduce that sy > -+ -

minimize g by construction. Hence, seny_1 =
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#(Bxo) is the minimum of s over all k € {1,...,N}. When N >4, »y_9 = m is smaller
NE1 1 .
NoDVIN and »y > « and this proves the lemma for the case N > 4.
When N < 3, the inequality sy > % is not sufficient to conclude and we have to compute .
Introducing the unit vector e = ﬁ, we note that >y is the minimum of g(n, m) = ﬁ(en—l—e-m)
subject to (i) n-m > &, (ii) n; > 0 and m; > 0 for all 1 <4 < N and (iii) ||n|| = ||m| = 1. Tt is
not difficult to check that the minimum of g subject to (i) and (iii) is attained when n, m and e are
coplanar. Setting o = Z(e,n) and constraining n and m to belong to the first orthant, we get that
1

1 1
arccos — — arccos —— < o < arccos —— and
N vN —  — VN

or equal than both sn_; =

1 1
n, m = ——— [COS &« + COS | arccos — — «
glmm) = 3U% { ( N >]

attains its minimum for o = arccos %, in other words when n is one of the vectors of the canonical

N
basis of RY. Hence,

1 1 < 1 1 >
N = — + COS | arccos — — arccos ——

2N 2VN N VN

For N = 2, we get that s = § is larger than s = ﬁ (cos% + cos %) For N = 3, we have
w = %, oy = % and 23 = % and the smallest value is %. O
Lemma 20. Consider the function g : R¥ x R¥ — R which maps the pair of vectors u = (uy, . .., uz)

and v = (v1,...,v;) to g(u,v) = Zle(ui + v;). The minimum of g subject to Zle uv; = A% and
u; >0, v; >0 foralli € {1,...,k} is 2A. This minimum is attained for the k pairs of vectors
(Ae;, Ae;) where e; is the ith vector of the canonical basis of R¥, i.e. the vector whose ith coordinate
s equal 1 and whose other coordinates are equal to 0.

Proof. First, observe that the function i : R xR — R defined by h(z,y) = z+y subject to zy = A?,
z > 0 and y > 0 is minimized for x = y = A and the minimum is 2A. Suppose now all coordinates
of w and v are fixed but u; and v;. Using the above observation, we deduce that the minimum of
g subject to uv; = A% — Z#j ujvj, u; > 0 and v; > 0 is obtained for u; = v;. Repeating this
argument for all ¢, we get that g subject to the constraints stated in the lemma attains its minimum
for w = v. Furthermore, the minimum of g(u,u) = 22?21 u; subject to Zle u? = A% and u; > 0
forall i € {1,...,n} is 2A4 and this minimum is attained for the k vectors Ae;, Aeg, ..., Aep. O

B.2 Eccentricity

B.2.1 Eccentricity of 2-dimensional symmetric convex bodies is (

Recall that a subset C C RY is symmetric if C = —C, or equivalently if for all 2 € RN, z € C if
and only if —x € C. In this section we prove the following :

Lemma 21. Any symmetric convex body C of R? has eccentricity 0.

Proof. Consider a compact subset Q C R? such that ﬂqu(q + C) # 0 and let us prove that

N (@+C) | NHullQ # 0. (7)
q€qQ
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First, we claim that for any pair of points q1, g2 € @, the intersection (¢1 +C)N (g2 +C)NHull @
is non-empty. Consider a point x in the intersection (¢ +C) N (g2 + C) and let ¢1, c2 € C such that
T = q1+c1 = g2+cz. Since C'is symmetric, —co, —c; € C and therefore the point y = g1 —co = go—c1
also belongs to the intersection (q1 + C) N (g2 + C). By construction, the four points qi1,x, g2,y
form a parallelogram and therefore the midpoint of ¢y¢s which is also the midpoint of xy belongs
to (g1 + C) N (g2 + C) and since the midpoint belongs to Hull @, we get the claim.

To conclude the proof, we apply Helly’s Theorem to the collection of convex sets {g + C'}4eq
completed with the set Hull Q. This asserts that the collection of convex sets in R? have a non-
empty common intersection provided only that the same is true for each triplet of convex sets. By
assumption, (¢g1 + C) N (g2 + C) N (g3 + C) # 0 for all ¢1, 2,93 € @ and we have just established
that (g1 +C) N (g2 +C)NHULQ # 0 for all ¢1,92 € Q. Hence, every triplets in the collection have
a non-empty common intersection and Equation (7) follows. O

B.2.2 Eccentricity of offsets

Next lemma states that Fuclidean v-offsets have eccentricity less than 1 for any positive v:

Lemma 22. Let C C RY and v > 0. The eccentricity of Ct" is bounded from above by &, =
inf{ e R|C C&CT}. If C C 6B, then &, < ﬁ

Proof. Suppose ﬂqu(q + C*) # 0. Then, for every point ¢ € Q, we can find a point ¢, € ¢+ C
such that (,co(cq +vB) # 0. Because the Euclidean ball vB has eccentricity 0, it follows that

M (co+vB) | N (Hullfe, [q € Q}) # 0.
q€Q

From Lemma 17 and by definition of &, we have Hull{c, | ¢ € Q} € Hull{g+ C | ¢ € Q} =
Hull(Q) + C C Hull(Q) + £ C™. Thus, the following superset is also non-empty:

N(g+C™) | nEHU(Q) +&CT) # 0,
qeQ

showing that the eccentricity of C*” is bounded from above by &,. If C C B, then (1 + 5)C C
C + vB, implying the upper bound on &,. O

B.2.3 Eccentricity of N-dimensional cubes

In this section, we assume N > 2 and compute the eccentricity of the N-dimensional cube By, =
{z € RV | [|l2]loo < 1}

Lemma 23. The eccentricity of Boo 15 1 — %

Proof. Consider a compact subset @ in RY and suppose the cubes ¢ + Bo centered at ¢ € Q have
a non-empty common intersection:

Z(Q) = [)(¢+ Bxo) # 0.
q€Q
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The proof consists first in choosing carefully a point z € Z(Q) and second in finding £ € R such
that z € Hull(Q) + {Bx. Let Z be the smallest axis-parallel box containing Q). The z center of Z
belongs to the common intersection of the cubes, Z(Q).

We call diagonal of Z any segment that connects two vertices o and o’ of Z which are symmetric
with respect to z. To bound the distance between z and Hull(Q), we first prove that any diagonal
00’ intersects Hull(Q). Suppose for a contradiction that a diagonal oo’ do not intersect Hull(Q).
Then, there exists a plane H parallel to 0o’ and separating oo’ from Hull(Q) (see Figure 11 left).
In particular, this implies that at least one face of Z is entirely contained in the open half-space
bounded by H and containing oo’. This face does not contain any point ¢ € @), contradicting the
definition of Z as the smallest axis-parallel box containing Q.

T3
p3
ilvg ™
A4 /=
l \\
' \\
/ o
/ \‘\
%0, 0 g z
/ > 2—,])2—> xTo
1 ~ -7 ..‘___.-"'-...
p1

X1

Figure 11: Left: projection of the box Z onto a plane orthogonal to the diagonal oo’. The shaded
face is entirely contained in the open half-space bounded by H and passing through the diagonal
0o'. Right: An axis-parallel box and its intersections with planes pipops and vivavs.

We have just proved that Z has at least one vertex o such that the segment oz intersects Hull(Q).
Consider the point p on ozNHull(Q) closest to z and let P be a plane through p supporting Hull(Q).
Observe that P must intersect all faces of Z, for otherwise it would be possible to find a smaller

axis-parallel box containing (). Using this observation, we find an upper bound on Hj:g”z Since
this ratio is left unchanged by a scaling which transforms Z into a cube with edge length 1, we may
assume that o = (0,...,0) and z = (%, . %) Let v; be the vertex of Z on the w;-axis different
from o. The vertices v1,...,vy span a plane which intersects oz in v = (%, R %) and

Iz =pllo _ Iz =20 _, 2

[z —olls ™[Iz = 0lloo N

Using [z — of|c < 1, we get z € Hull(Q) + (1 — #)Bs and By is &-eccentric for £ = 1 — 2. If
we assume Q) = {v1,...,vn}, then Z(Q) = {z} and v is the point in Hull(Q) closest to z for the
Loo-norm, showing that the eccentricity of By is &. O
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C A simpler proof for Euclidean balls

In this section, we provide a simpler proof of Theorem 2 when C = B.

Theorem 3. Let A be a compact subset of RY with positive reach R. Let P be an (e, B)-sample
of A. Then, P+ rB is homotopy equivalent to A for all positive real numbers r and € such that
r<R—eand R—\/(R—¢e)?2—r?<r—ec.

Proof. Let « = R— /(R — €)? — r2. By hypothesis & < r — ¢ and because P is an (e, B)-sample of
A, we have the inclusion A+ aB C P+ rB. Setting A,(«) = (p+7B) N (A + aB), it follows that
A+ aB =,ecp Ap(a). Using Leray’s theorem [21] and Lemma 24, we get that

A+aB ~ Nerve{A,(a)}pep
P+rB =~ Nerve{p+rB}ycp

Let us prove that Nerve{p + rB},cp = Nerve{A,(a)},cp. Note that this is equivalent to proving
that for all subsets Q C P,

((@+rB) #0 < (l(g+rB)N(A+aB)] #0.
q€qQ qeQ

One direction is trivial: if a point belongs to the intersection on the right, then it belongs to the
intersection on the left. Suppose now that (o (q+7C) # 0 and let z be the center of the smallest
ball enclosing ). Clearly, z belongs to the common intersection ﬂqu(q +rC) and by Lemma 14, z
also belongs to Hull(@). The ball centered at z with radius r encloses ). Since P is an (e, B)-sample
of A, we have Q C P C A™®. Applying Lemma 16, we get that Hull(Q) C A + aB and the equality
between the two nerves follows. Hence, P 4+ rB is homotopy equivalent to A + aB and therefore to
A since a < R, O

Lemma 24. Consider a subset Q C A*® in RN. Let A,(a) = (p+7B) N (A + aB). Then,
Nyeq Aq(a) is either empty or contractible for r < R—¢ and a > R — /(R —¢)* — 2.

Proof. Suppose Z = () qu(q + rB) is non-empty. Then, Z being convex is contractible. We prove
that Z ~ Z N AT®. Consider z € T\ AT (see Figure 12). For every point ¢ € @, we have
d(z, A) < ||z —q|| +d(q,A) < r+e < R, showing that x has a unique orthogonal projection a onto
A. We let y be the point of AT closest to x and prove that the segment xy is within Z. For this, we
establish that for all ¢ € @, the orthogonal projection ¢’ of ¢ onto the straight-line passing through
x and a lies in AT, Suppose ¢’ # a for otherwise clearly ¢ € AT and consider the half-line with
origin a and passing through ¢’. Let z be the point on this half-line whose distance to a is R. By
construction, B(z, R) is tangent to A at a and its interior does not intersect A. Since Q C A™*e,
points ¢ € @ do not lie in the interior of B(z, R —¢) and ||z — ¢|| > R — . By choice of ¢’ as the
orthogonal projection of ¢ onto the straight-line through x and a, we have [|¢' — ¢|| < ||z —q|| < 7.
Combining these two inequalities, we get an upper bound on the distance from ¢’ to a:

R—+/|z—ql> = llg — q|?

R E=

la =4

VANVAN
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Thus, ¢ € AT and y lies between z and ¢/. This shows that the distance to ¢ decreases as we move
on the segment xy, starting from x and going toward y. Since this is true for all ¢ € @, we deduce
that zy C Z. This inclusion allows us to construct a deformation retraction of Z onto Z N A*¢ by
setting fy(x) = (1 —t)z +tyif x € T\ AT and fi(x) = = otherwise. O

Figure 12: For the proof of Lemma 24.
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