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On Free Minor Closed Classes of Graphs Outside
Planarity

Dainis ZEPS * ¥

Abstract

It is shown that the class of graphs on projective plane is not M —class [defined
in [3, 4, 5]] but the class of graphs on torus is M —class, i. e. the forbidden minors
for free minor closed class of graphs on the torus can be found using simplified
formula [without split part] in a similar way as in case of planarity, but in the case
of the projective plane can’t.

Most of definitions of the topological graph theory are the same as in [1].

Graph is defined as a pair of sets (V, E), where V is the set of vertices and E — the set
of edges. For graph G V(G) is its vertex set and E(G) is its edge set. We denote by G —e
graph obtained by deleting edge e € E(G) from G. Similarly, G — v is graph obtained by
deleting vertex v € V(G) from G.

G /e is graph obtained by contracting edge e € E(G) in G. Reverse operation to edge
adding and its contraction is the vertex split operation G ® u that is not unique. Thus,
if in G by adding and contracting e ¢ E(G) appears a new vertex u € V(G’) then there
exists such vertex split G’ ® u that we receive back previous graph G.

H is subgraph of G (denoting it H C @) if there is such a graph H' isomorphic to H
that V(H') C V(G) and E(H') C E(G).

H is a minor of G (denoting it H < G) if H can be obtained performing some edge
contractions in a subgraph of G. It is easy to see that if H < G then H can be obtained
from G by vertex deletions, edge deletions and edge contractions.

A class of graphs A is called minor closed if for each graph H belonging to A and
arbitrary graph G from G < H follows that G is in A.

For a minor closed class A, Forb(A) is the minimal set of forbidden minors, i.e.

Forb(A) = |[{G | G & A}].
Here we use a notion | B| denoting set which contains only minimal minors of B:
|B|2{G|He BANH <G = H=G}.
Analogously, [B] contains only maximal graphs of B:
[B12{G|He BANG < H= H=G}.

Proposition 1. For a minor closed class A if G doesn’t belong to A there exists such
H € Forb(A) that H < G and conversely.
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Theorem 2. (Robertson, Seymour): Forb(A) is finite for any minor closed A.
N,(B) denotes a minor closed class with B as its set of forbidden minors, i.e.
N.(B) £ {G |VH € B: H £ G},

i. e. we may say, that N,(B) is a minor closed class generated by its forbidden minors in
B and Forb(N,(B)) = B . For example, N.(K5, K3 3) is the class of planar graphs, as it
is asserted by Kuratowski theorem.

A planar graph is called free-planar, if after adding an arbitrary edge to it it remains
planar. In [4] it is proved, that the class of free-planar graphs is equal to No(Ky, Ky 3),
and its characterization in terms of the permitted 3-connected components is given.

In [3] a generalization of the notion of free-planar graphs is suggested. We denote by
Free(A) the class of graphs that consists of all graphs which should belong to A after
adding an arbitrary edge to them. It is easy to see, that if A is minor closed Free(A) is
minor closed too [3]. Because of this we use to say, that Free(A) is free-minor-closed-class
for a minor closed class A.

In [3] Kratochvil proved the following theorem:

Theorem 3.
Forb(Free(A)) = | Forb(A)~ U Forb(A)?],
where
B 2{G—-e|GeB,ec EG)}
and

B2 {H|H=G0ov,GeB,veV(G)}.

Further, we denote by Free®(A) repeatedly applied Free k times, i.e.

Free®(A) = A;

Free®(A) = Free(Free*~1(A)).

Let for a minor closed class A Free™(A) do not consist of only empty graphs but
Free™ ' (A) do, then we say that A is of depth m.

In the graph G a vertex split G ® v for v € V(G) is called proper if both new vertices
arising in the result of the split are of the degree at least two. Otherwise the vertex split
is called non-proper.

Theorem 6 in [5] can be simplified.

Theorem 4. Let a class A be of depth m. If there holds
Forb(Free(A)) = | Forb(A)™ |
then there holds also
Forb(Free*(A)) = | Forb(Free"'(A))™|
fork=1,..m.

Proof. We must proof that Forb(Free(A)) = |Forb(A)~| = Forb(Free(Free(A)) =
| Forb(Free(A))” | = |Forb(A)=|. Let H € Forb(A). Then members of Forb(F'ree(A))
are minors of {H}~ and {H}® and for the latter part being the proper minors thus
excluding them from the set Forb(Free(A)) completely. Then always H @ u has some
minor from {H}~ and [because arbitrary H — e ® u is a minor of H ® u in any case]
H — e ® u has a minor from {H}~. O
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Figure 1: Forbidden minor for Ap Fi, p.340. [2]. Splitting vertex 4 we get planar graph
[see fig. 2]. The only edge that can drive it out projective plane is 4'4”.

The class A is called M-class [defined similarly as in [5]] if Forb(Free(A) = [Forb(A)~|.
Theorem 4 says that if A of depth m is M—class then classes Freef(A) are M—classes
for all k,1 < k < m. It is easy to see that the class of planar graphs is M —class. In [5]
an example of M —class artificially is constructed.

The question is: if class of planar graphs is M —class, are graphs on other surfaces
behaving similarly? Here we give answer to this question in the cases of the projective
plane and the torus.

Theorem 5. Let Ap be class of graphs that are embeddable on the projective plane. The
class Ap is not M-class.

Proof. Let us see graph H = F| € Forb(Ap) [2, page 340][on fig. 1 left]. Splitting vertex
4 of H as in fig. 1 right we get graph H' which is planar [see fig. 2 without edge 4'8].
The only possible edge added to H' that would drive it outside Ap would be 4'4”. Truly,
the only nontrivial case is depicted in fig. 2 with edge 4’8 added to H'. Thus H' would
give contribution to Forb(Free(Ap)) and Ap is not M—class. Besides, H' belongs to
Forb(Free(Ap)). O

There are more such graphs from Forb(Ap) which split in such a way that it becomes
planar giving contribution to Forb(Free(Ap)). See e. g. graph By from [2] [p.341] on fig.
3 [B7 split in the way the thick line shows gives planar graph depicted right where only
edge 1'1” gives graph that does not belong to Ap]. Similarly behaves graph Es; see fig. 4.
But not all forbidden minors behave in that way, for example, D7 can be made planar only
splitting off an edge, see fig. 5. In all four examples we get samples of Forb(Free(Ap))
[in last case D;; with edge off]. It is interesting that just the split contribution gives us
planar forbidden minors of Frree(Ap), [except case Dy7, where Dy; — 15 is forbidden minor
for Free(Ap)] .

Let us further discuss the class of graphs on the torus. It is easy to see that for every
H € Ap arbitrary H~ is not planar. Is it right for vertex splits too? Does there exist
H € Ay that for some vertex [v] split H ® v is planar and in the same time H belongs to
forbidden minors of A;? We are going to show that it is not true and that Ay is M —class.

Let A7 be class of graphs on the torus. Following three propositions are equivalent.



Figure 2: Ilustration of the assertion in theorem 5 and fig. 1: F] is planar and F] + 4’8
ison Ap

Figure 3: Forbidden minor for Ap B;, p.341. [2]. Splitting vertex 1 we get planar graph.
The only edge that can drive it out projective plane is 1'1”.

Figure 4: Forbidden minor for Ap FEa, p.339. [2]. Splitting vertex 9 we get planar graph.
The only edge that can drive it out projective plane is 9'9”.
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Figure 5: Forbidden minor for Ap Di7, p.344. [2]. The only split to make graph planar
is to split off an end of an edge joining Ky, i.e. 15, 26, 37 or 48.

Proposition 6. Ar is M—class.

Proposition 7. Let G ¢ Ar and for arbitrary split of v € V(G) G result in G ®v =G’
with two new vertices vy and ve and G'+vivy = G”. Then either there is an edge e € E(G')
that G" —e & Ay or G' can be augmented with an edge e ¢ E(G') differing from vive such
that G’ +e ¢ AT.

Proposition 8. Let G & Ap but for every edge e € E(G) G —e € Ar and edge f be such
that G/ f ¢ Ar. Then there is at least one more edge h differing from f that G/h & Ar
or the edge f is an isthmus.

It is easy to see that 7 follows from 6 immediately.

Assertion 8 is not trivial and the feature expressed by it may be used to build a
counterexample to the assertion 6 or in case we prove that such counterexample does not
exist assertion 6 is proved to be true.

Let us try to build counterexample to assertion 8 or come to the proof that it does
not exist. Thus, we behave as if building the counterexample. Let us take a graph such
as in 8 and split some chosen vertex into two new vertices s and ¢ and name this graph
the counterexample (CE) graph which is to disprove the assertion 8.

Let us say that the triple (G, s,t) defines a C'E graph if:

1) G € Ay and s,t € V(G) and st € E(G);

2) G+ st ¢ Ap and G + st/st & Arp;

3) Ae ¢ F(G) distinct from st that G+ e & Arp;

4) Ae € E(G) that G + st/st —e ¢ Ar and G + st/st/e & Ar.

If conditions 1) - 3) are true for some graph then we call such graph weak CE graph
for CE graph [satisfying all conditions| saying that it is strong C'E graph.

It is easy to see that if strong C'E graph exists then it gives us immediately counterex-
ample to assertion 6. Indeed, if G € Forb(Ar) and for v € V(G) some split G © v[= G']
gives two new vertices vy and ve then (G, vy, v9) defines CE graph if and only if G’ gives
contribution in Forb(F'ree(Ar)), i. e. there doesn’t exist H € Forb(Ar) that H~ < G’
for arbitrary H~.

In place of proposition 8 we are going to prove what follows



Proposition 9. Let e be edge of G that is not isthmus and E(e) set of edges that are
adjacent to e. Let G ¢ Ar but for every edge f € E(e) G/f € Ap. Then G/e € Ay or G
15 a weak C'E graph.

We prove this assertion and the fact that strong C'E graph does not exist in two
theorems 10 and 15.

Theorem 10. Let (G, s,t) define a [possibly weak] CE graph. Then either it does not
have subgraph a subdivision of Ks3 or it is a weak C'E graph.

Proof. Let us suppose that there exists in G some subgraph K that is a subdivision of
K33 and let the main vertices of K be numbered from 1 to 6. Let us suppose that K is
chosen in the way that [as long as possible] no local non-trivial bridges are with respect
to K.

1) First let us consider the case when there is a bridge Br with respect to K that has
a subgraph that is subdivision of some Kuratowski graph.

a) Suppose Br has two attachment vertices to K, say 1 and 4, as depicted in figures
6 and 9.

(i) Let us first assume that at least on of them, say 4, is such that Br has only one
leg, say 4b, attached to it.

Let us number the main vertices of K [from 1 to 6] and one inner vertex of Br [b] as
in figures fig. 6.

Let us consider different possible embeddings of K + Br on torus. Flipping in three
ways is possible due to changes in rotations of vertices in K. Firstly, around 14 up down
we call trivial flipping. Secondly, flipping chains 2..5 and 3..6 from in to out with respect
to the cycle 1..2..3..4..5..6..1 we call non-trivial. Thirdly, flipping chains 2..5 and 1..4
[together with the bridge Br| from in to out with respect to the cycle 1..2..3..4..5..6..1 we
also call non-trivial. Let us divide all possible embedding of K + Br into four subsets
each of which have only these embedding where non-trivial flipping are not performed
but from subset to subset we go over by non-trivial flipping in K + Br. Let us call these
subsets states. Thus we have four states which change one into another by non-trivial
flipping. Let us keep in the mind that the trivial flipping give us additional subdivision
of each state into two substates.

Let A, B, C' and D be four facial walks in K + Br that contain only basic pieces from
K [as in figures 6 and 7]. If a facial walk is not closed then we add in the denotation two
points, e.g. for non closed facial walk A we write A : . Now comes the main observation
of this proof. It is easy to see that the flipping in four possible states turn facial walks
in facial walks, only changing closed facial walk in non closed and vice versa [see figure
6]. More over, this same is true for substates too except that facial walk may be affected
more [see how in fig. 6] than simply changing its direction.

Let S be subset of V(G) and F[S] set of facial walks on S. Let K’ be K together with
the edge 1b and the chains b..b and 1..1 [enclosing the bridge Br]. Let F' be F[V(K)] and
F' be F[V(K")].

Let us define the visibility graph W[U] where U = S U F[S] and S C V(G) and
whose edges are these pairs of elements which see each other in some fixed state, where
vertex see facial walk if it goes into it and two facial walks see each other if there is
some other facial walk that comprise both. The visibility graph defined in this way is
non-determinated for a fixed state [in different embeddings of the same state it may be
different| but nevertheless it is well defined.



Lemma 11. Let U be V(K)UF[K] and U' = V(K')UF[K']. Then graph W U] does not
change by flipping between states. The same is true for W[U'| if flipping is from states
{1,2} to states {3,4}.

Proof. 1t is easy to see that the first assertion is true. Truly, changes between states
by non-trivial flipping does not change facial walks what concerns their content as sets
of vertices. But then visibility between vertices and vertices and facial walks and facial
walks between themselves is kept also.

In the second case [with K’] the visibility graph changes only from state 1 to 2 and 3
to 4 where edges with 1..1 and b..b are changing [see figures 6 and 7]. |

Now, constructing C'E' graph we should decide where to put vertices s and t. We prove
a lemma.

Lemma 12. Let chain p be non-local bridge with respect to K'. Then WK’ +p| does not
change by flipping [if possible] between states.

Proof. The ends of p see each other in all states of flipping in W[K' + p]. Adding p to
K g, some fixed face is divided into two new ones in all states in the same way, because by
flippings [if not obstructed by the new chain] facial walks change only their orientation,
not their order otherwise, thus adding p to K’ the flipping between states would not
change the visibility graph otherwise as in lemma 11. O

The following technical lemma which follows immediately would be useful.

Lemma 13. Vertex on 1..1 sees either A or D in different states but does not see B and
C in any state. Vertexr on b..b sees either B or C in different states but does not see A
and D in any state.

Let us continue with considerations building C'E graph.

Let f be some facial walk in K’. Then we say that a vertex v € V(G) but v € V(K’)
is f-facial vertex if there is a bridge B, [with respect to K'] with v € V(B,) but not its
attach vertex that B, may be embedded in the face with f in its border. From lemma 12
follows that the visibility graph does not change when we add bridge B, to K.

We say that the vertex v belongs to U = V(K) U F[K] if it either belongs to V(K') or
it is a f—facial vertex for some facial walk f € F[K]. We say that v is border vertex if it
is on chains 1..1 or b..b. We say that v is outside vertex if it is in Br otherwise.

Further we consider cases when both s and ¢ are not in local bridges with respect to
K + Br.

Let both s and ¢ belong to K' U F[K]. Then at least two of their neighbors from V' (G)
should be on the border [in order to be seen and unseen in different states]. Say, s belongs
to A, then ¢ should belong to B, C or D. But then one neighbor of s, say s;, should be
on 1..1 and one, say so, on b..b but then, if ¢ be on B or C then it would not see sq, i. e.
the neighbor of s on 1..1, and if ¢ be on D then it would no see s, i. e. the neighbor of s
on b..b, and for the neighbors of £ on the border similarly. Possible flipping in the bridge
Br can not repair the contradiction.

Let s belong to K U F[K] and t to border, say, s € Aor s € D and t € b..b. Then at
least two neighbors of s should be on the border [because flip is needed], but two neighbors
of ¢ should be on the border too [because they can not be in K U F[K] otherwise s would
see them or not see at all without flipping]. But then ¢ would either see all neighbors of s



or not see them at all [from lemma 13]. Possible flipping in the bridge Br can not repair
the contradiction.

Let s belong to K U F[K]| and t be outside. But then neighbors of both must be on
the border and previous situation repeats.

Let neither of s or t belong to K U F[K]. This case we address to other cases taking
the subdivision of Kuratowski graph of Br in place of K.

Let us consider the case when trivial local bridges with respect to K are possible.

If both s and ¢ belong to K U F[K] then weak C'E graph is possible [fig. 8]. But then
some edge in G' = G + st/st is contractible that it remains non-toroidal, because that
subdivision of K5 appears in G’ where one edge of the rim through six vertices of the
wheel W, around the new vertex is contractible.

If a weak C'E graph would arise in the same way in some case with K with some
more bridges then similarly some edge which could be contractible without loosing the
non-toroidal feature. The following lemma says this.

Lemma 14. Let CE graph (H, s,t) arise. Then it is only a weak CE graph.

Proof. Let chains ps and p; contain correspondingly s and ¢ and their ends are on K + Br.
Then there exists in K + Br a cycle C' such that chains p; and p; are bridges against C'
and C' with these chains comprise subdivision of K4 with chains being its non-adjacent
edges [because s and ¢ do not see each other C' is of length more than four and ends
of chains all are distinct]. But then there is some edge h on C that G + st/h remains
non-toroidal. Thus, C'E graph (H, s, t) is not strong. O

(ii) Let us suppose that the block Br both its legs are main vertices of Kuratowski
graph in it. Then we have the situation which is showed in figure 9. But here an additional
flipping is possible after which each basic piece in K’ sees each other what excludes
possibility to build CE graph. [Besides, in this case each facial walk on the left is not
any more facial walk on the right and visibility graph can not be defined.] But if with
some bridge configurations this flipping is obstructed then we return to the previous case
which did not give us a strong C'E graph. Contradiction.

b) Let Br has more than two attach vertices. Then either flipping as before is possible
and the same considerations as before are right or some flipping is prohibited and in
visibility graph edges may only be lost not augmented thus all considerations are the
same as before. Contradiction.

2) Let there is not a single bridge with respect to K with Kuratowski graph in it.
Previous considerations similar as in case 1) b) are right in this case too.

3) Let Br has only of vertex of attachment with respect to K. This case is by author
considered, but here omitted. The case when K and Br are not connected is trivial.

All cases are considered. Thus C'E graph does not have K3 3. Contradiction. O

Theorem 15. Let (G, s,t) define a CE graph. Then it does not have subgraph subdivision
Of K5.

Proof. All considerations as in the previous theorem are the same there.
Case corresponding to the case 1) a) (ii) is demonstrated in fig. 10. Contradiction.
]

Maybe all the prove of the theorem 9 may be made much shorter all the impact putting
on the lemma 14 without considering many cases as it is here done.
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Figure 6: State 1 [with edges (D, 1..1) and (C,b..b)] and state 2 [with edges (A4, 1..1) and

(B,b.b)].
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Figure 7: State 3 [with the same visibility graph as the state 1] and state 4 [with the same
visibility graph as the state 2].

Figure 8: A weak C'E graph
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Figure 9: Only when 4 — 4’ is contracted the flipping to the state right is possible
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Figure 10: Only when 3 — 3 is contracted the flipping to the state right is possible
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