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TRYING TO PROVE THE KURATOWSKI THEOREM
FROM BELOW.

DAINIS ZEPS

ABSTRACT. This note examines possibility to prove the Kura-
towski theorem from below, i.e. assuming that Kuratowski-like
theorem for free-planar graphs is right. Version of Kuratowski
theorem for 3-connected components is proved. Another proof of
Kuratowski teorem is added.

Graph is defined as a pair of sets (V, E'), where V' is the set of vertices
and E — the set of edges. For graph G V(G) is its vertex set and E(G)
is its edge set. We denote by G — e graph obtained by deleting edge
e € E(G) from G. Similarly, G — v is graph obtained by deleting vertex
v € V(G) from G.

Similarly, G.e is graph obtained by contracting edge e € E(G) in
G. Reverse operation to edge adding and its contraction is the vertex
split operation G ® u, that is not unique. Thus, if in G by adding and
contracting e ¢ E(G) appears a new vertex u € V(G') then there exists
such vertex split G’ ® u that we receive back previous graph G.

H is subgraph of G (denoting it H C G) if there is such a graph H’
isomorphic to H and V(H') C V(G) and E(H') C E(G).

H is a minor of G (denoting it H < G) if H can be obtained by edge
contractions from some subgraph of G. It is easy to see that if H < G
then H can be obtained from G by vertex deletions, edge deletions and
edge contractions.

A class of graphs A is called minor closed if for each graph H be-
longing to A and arbitrary graph G from G' < H follows that G is in
A.

For a minor closed class A, F(A) is the minimal set of forbidden
minors, i.e.

F(4)= {G| G ¢ A}).
Here we use a notion |B]| denoting set which contains only minimal
minors of B:

|B| £ {G|HEBANH<G= H==G}.
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Analogously, [ B| which contains only maximal graphs, i.e. all graphs
of B that are minors of [B] is defined as follows:

[B12{G|HeBAG < H= H=~=G}.

Proposition 0.1. For a minor closed class A if G doesn’t belong to A
there exists such H € F(A) that H < G and conversely.

Theorem 0.2. (Robertson, Seymour): F(A) is finite for any minor
closed A.

Let G(n,m) denote the set of all graphs with n, (n > 0) vertices and
m,(m > 0) edges. Let B(n,m) denote the set of all bigraphs with
n,(n > 0) vertices and m, (m > 0) edges. Let C(n,m) be arbitrary
subset of G(n, m) and D(n,m) be arbitrary subset of B(n,m). Some-
times we are saying that graph G' with n vertices and m edges belongs
to a set of graphs (not specifying the set) meaning by this set G(n, m).

Sets of graphs C; = C(ny, my) and Cy = C(ng, my) are non-compatible
if no graph from C; is a minor for any graph from C, and vice versa.

Lemma 0.3. Sets of graphs Gi = G(ny,my) and Gy = G(ng, my) are
non-compatible iff ny > ny and my < mo or vice versa: ny < no and
my > May.

Proof. If there holds n; > n, and m; < ma, then it is easy to see that
compatibility is impossible.

Let us assume that G; = G(ny,m;) and Gy = G(ny, ms) are non-
compatible. If graphs with equal number of vertices were allowed then
we could take a graph and its subgraph with the same number of ver-
tices and the sets were compatible. If graphs with equal number of
edges were allowed then we could take two equal graphs and one re-
plenish with as many as necessary isolated vertices and they were com-
patible. Thus, the non-compatibility condition must be just as stated
by lemma. O

It is easy to see that the statement of the lemma is right also for pairs
of sets B(ny, my) and B(ng, me) and B(ny, m;) and G(ng, ms) respec-
tively. Evidently, the last case corresponds to Kuratowski graphs, i.e.
B(6,9) and G(5,10) are non-compatible sets of graphs, where B(6,9)
comprise only K33 but G(5,10) only K.

For sets of graphs G and S let G |s denote only these graphs from G
that do not have graphs from S as minors:

Gls2{G|GeGAVHeS: H£G).

N,(B) denotes the minor closed class with B as its set of forbidden
minors, i.e.

N,(B) = {G |VH € B: H £ G}.
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In other words, we may say, that N,(B) is a minor closed class gen-
erated by its forbidden minors in B. For example, No(Kj5, K33) is the
class of planar graphs, as it is asserted by Kuratowski theorem.

One more denotation for the minor-closure of B:

(BY={G|3H € B:G < H}.

If B ={G} then we write (G) in place of ({G}).

Let us use some denotations for some small graphs:

Zk, k >0, is empty graph with k& vertices, equal with Z, = k x K.

X = K4+ Ky, i.e. star with four edges and an isolated vertex.

Y = K3+ K, i.e. star with three edges and an isolated edge.

V = K3+ 3 x Ky, i.e. triangle and three isolated vertices.

U is the cycle of length 5 plus a vertex of degree 2 connected to two
non-consecutive vertices of the cycle.

Let us state some simple facts with these and Kuratowski graphs:

Lemma 0.4. [No({V, Z7})—| = {K373, K5, K2,4, K175, U}

Proof. If graph has 6 vertices it is without triangles, i.e. it is a bigraph.
There are four possible maximal such graphs, i.e. Kj3, K4, K5 and
U.

If graph has less than 6 vertices, it is arbitrary otherwise, i.e. maxi-
mal graph is Kj. O

Lemma 0.5. [N,({V, X,Y, Z:})] = { K33, K5}

Proof. X excludes K5 and Y excludes U and both X and Y exclude
Ky ,. O

If Z; is removed from lemmas condition then graphs with components
isomorphic to Kuratowski graphs and their subgraphs are allowed.

A planar graph is called free-planar, if after adding an arbitrary edge
it remains to be planar. In [4] it is proved, that the class of free-planar
graphs is equal to N,(Kj , Kj3), and its characterization in terms of
the permitted 3-connected components is given.

In [2] a generalization of the notion of free-planar graphs is suggested.
We denote by Free(A) the class of graphs that consists of all graphs
which should belong to A after adding an arbitrary edge to them. It is
easy to see, that, if A is minor closed, then Free(A) is minor closed too
[2]. Because of this we use to say, that Free(A) is free-minor-closed-
class for a minor closed class A.

In [2] Kratochvil proved the theorem:

F(Free(A)) = [F(A)” U F(4)%],
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where
B2 {G—-e|GeB,ec E(G)}
and
B2 {H|H=2Gov,GeB,veV(QG)})

Further, we denote by Free®(A) repeatedly applied Free k times,
i.e.

Free®(A) = A;

Freek(A) = Free(Free*~1(A)).

Let for a minor closed class A Free™(A) is not consisting of only
empty graphs but Free™ ! (A) is, then we say that A is of depth m.

In the graph G with some vertex v a vertex split G ® v is called
proper if both new vertices arising in the result of the split of v are of
degree at least two. Otherwise the vertex split is called non-proper.

Theorem 0.6. Let a class A be of depth m and all graphs of F(A)
belong either to mutually non-compatible or coinciding sets of graphs.
If there holds
F(Free(A)) = F(A)~
then there holds also
F(Free®(A)) = F(Free®'(A))~
fork=1,....,m.

Proof. By induction if m is equal to 1 all is done by theorem’s assump-
tion otherwise it suffices to prove that

F(Free®™(A)) = F(Free®(A))~
for 1 < k < m assuming that
F(Free®(A)) = F(Free*='(A))~

is right.

Let us suppose first that F(Freef(A)) consists only from one graph.
Then all graphs F(Free*(A))~ have the same number of edges and
they can’t be proper minors of each other. Thus, they all are present
in F(Free*t1(A)).

F(Freef(A))® can not give some contribution to F(Freef1(A))
either. Let us suppose for a moment that it does and some graph
G € F(Free*(A)) is such that G’ with some vertex v split (G' = GOv
giving new vertices v; and vy) were not present in F(Freef(A))~.

Let us suppose that this vertex split was non-proper. Then a corre-
sponding hanging edge or isolated edge arises, but graph without this
edge is already present in F'(Free®(A)) . Thus, non-proper vertex split
can not give any new contributor to F'(Free®t1(A)). Further, let us
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suppose that this vertex split was proper. Let us find some ancestor
H of G in F(Freef 1(A) such that H minus some edge e is equal to
G. Let us add e = (s,t) to G’ getting a new graph H'(= G' + ¢') in
this way: if none of ends of e were equal to v then adding e(= ¢€') is
possible only in one way; if one of the ends, say s, of e is equal to
v then without loss of generality we add a new edge ¢ = (vy,t) to
one of the new vertices (i.e. v;) arising in the result of the split of
v. Then this graph must be also contributor to F'(Free*(A)), because
there exists some vertex split H ® v such that H ® v is equal to H'
but the assumption of the theorem excludes this [...because H' has a
proper minor h already present in F(Free*(A))~. If ¢ € E(h) then
h — €' should be also a minor of G', thus G’ is not a contributor in
F(Free**'(A)). If ¢ ¢ F(h) then h minus arbitrary edge is minor of
G' and present in F(Free®(A))~. Thus, in this case too G’ is not a
contributor in F'(Free**!(A))].

Let us suppose that F'(Frecf 1(A) consists from many graphs. But,
because of either non-compatibility or coincidence of the sets to which
these graphs belong the same is true for the set F(Freef(A)) too.
Truly, non-compatible assumed contributors of F'(Free*(A))~ can not
exclude each other. Either can not such that are with equal number
of vertices and edges except the cases of isomorphism. Thus distinct
descendants of the same level from distinct forbidden graphs can not
be proper minors of each other.

The consideration about the contribution of F(Freef(A))® does not
change in the general case. O

Theorem 0.7. For A = Planar and 0 < k < 10
F(Free*(Planar)) = B(6,9 — k) |(x,y} UG (5,10 — k).

Proof. Graphs X,Y exclude these minors that are present in K4 but
are absent in K3 3. Indeed, B(6,8) = {K;3, Ky4} and X, Y as minors
are present in Ky 4 and its descendants and are absent in K33 and its
descendants. O

Corollary 0.8. For A = Planar Kratochvil’s theorem has the follow-
mg appearance

F(Free*(Planar)) = F(Free" ' (Planar))~
for k=1,...,10.
Let for a class A of depth m holds:
F(Free®(A)) = F(Free**(A))~

for k =1,...,m. Then we call this class M-class.
Then we can state:
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Corollary 0.9. For the case A is M-class of depth m Kratochvil’s
theorem has following appearance

F(Free®(A)) = F(Free®'(A))~
fork=1,...,m.

Theorem 0.10. Let B = free(A) and B is M-class. A is M-class
iff F(B)=F(A)".

Proof. If A is M-class then theorem by definiton of M-class F/(B) =
F(A)~. Conversely, from the definition of the M-class and from facts
that F'(B) = F(A)~ and B is M-class follows that A is M-class too.

U

We would like to apply last theorem in the case when Kuratowski-
like theorem for free planar graphs were supposed to be right and it
would be necessary to prove Kuratowski theorem itself. But we could
do this only in the case we knew that the class Planar is M —class.
Either we could prove Kuratowski theorem from below directly and
then conclude that the class Planar is M —class.

Let us do the latter case.

We would base ourselves on the characteristic of free planar graphs
by their 3-connected components [3, 4].

Let us recall some definitions from 3-connectivity and 3-connected
components [or, shorter, 3-components| [5, 3]. Generalized vertex or
g-vertez is vertex or two vertices [virtual edge|. Generalized edge or g-
edge is pair generalized vertices. We say that some planar 3-component,
becomes nonplanar by closing g-edge if by merging this 3-component
with another proper 3-component [i. e. having K, as minor| through
this g-edge the resulting graph [or 3-component| is nonplanar. See
fig. 2. We say that H is S—marked minor of G if H < G and S is
subset of vertices both of H and G.

We would hold ourselves to following assumptions. Let G' be planar
but G plus some edge e = vw becomes nonplanar. Let G be divided into
3-components and P,, be minimal sequence of g-edges vywy, ..., vy wy,
k > 0 such that each g-edge belongs to distinct 3-component and v; = v
and wy = w and w; = v; ;1 for 1 < ¢ < k. Let 3-component C; possesses
g-edge v;w;. We say that this 3-component gives rise to nonplanarity
if C; by closure of g-edge v;w; gives graph [or 3-component] that is
nonplanar. In general, by fixing such path P of g-edges we would say
that each component C;, 1 < ¢ < k is marked with the g-edge v;w;.

Let us consider possible components of free planar graphs. We would
turn our interested to these components with such marked g-edge that
by composing the graphs could give rise to nonplanarity. Let us recall



from [4] that these components with marked g-edge would be

1) W3 with marked one rim edge and one spike edge in such a way that
they are not touching each other;

2) Wi, k > 3, with marked two spike edges not going into common
triangle;

3) Cs with marked two edges both going into different triangles.

See fig. 1 [cases 1, 2, 3].

Let us suppose the following reduction of the nonplanar graph G such
that G — e for some e € F(G) is planar: let G —e = Gy, Gy, .Gy, .G
for m > 0 be such sequence of graphs that G;1; = G; — e; where not
virtual edge e; € F(G;) and e; belongs to such 3-component of G;
that is not free planar or isomorphic to K5 and if it were giving rise to
nonplanarity it remained such after elimination of e; too. Furthermore,
m is maximal. Let us call this reduction of the nonplanar graph G' with
the nonplanar edge e FP-reduction giving in the result graph G,,.

Let us formulate some variation of Kuratowski-like theorem going
out from the free planarity:

Theorem 0.11 (Kuratowski theorem from below). Let G be planar and
G + e nonplanar. Then arbitrary FP-reduction of G + e gives G, that
G, + e is nonplanar, all 3-components in G, are free planar graphs
or reduced Kuratowsk:i graphs, and at least one 3-component is, accord-
ing one of four cases of fig. 1, free planar graph with pair of virtual
edges giving rise to nonplanarity [cases 1,2,3], or reduced Kuratowski
graph with pair of virtual vertices giving rise to nonplanarity [case 4].
In cases 1, 2, 8 G + e should have K33 as minor and in case 4 G + e
should have Ky as minor. Other cases are excluded.

Let us first prove a lemma that may be considered as sort of some
variation of the Kuratowski theorem applied for 3-components.

Lemma 0.12 (Kuratowski theorem for 3-components). Let C' be 3-component
with one

g-edge e = vw and C' be planar but closed by e becomes nonplanar and
let C' be minimal in sense that no edge can be eliminated that C reduces
to some smaller 3-component with the same features. Then:

1) if deg(e) =4 in C then C is isomorphic to W3 [case 1 fig. 1];

2) if deg(e) = 3 and both g-vertices in e are of degree 2 in C' then C' is
isomorphic to Wy [case 2 fig. 1] ;

3) if deg(e) = 3 and one g-vertex in e is of degree 1 in C' then such
minimal C does not exist ;

4) if deg(e) =2 in C' v then C' is isomorphic to K5 [case 4 fig. 1]
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AT

FiGUurReE 1. Cases of 3-components of G,, in the FP-
reduction giving rise to nonplanarity. Marked g-edge vw
is drawn bold.

O

b)

FiGUre 2. Closure of g-edge with 3-component. In case
a g-edge of degree three in C' is closed with Kj; in case
b g-edge of degree four in C' is closed with Cl.

Proof. Because of 3-connectivity of C' there must be in C' always {v}—marked
minor K, [, say, K,| and {w}—marked minor K, |, say, K,]| as well as
{v, w}—marked minor K, [, say, Ky

Let us consider four cases:
1) deg(e) = 4: K, may coincide with K, giving W3 = K,,, otherwise
C must have Kj as {v, w}—marked minor and at least one edge not
belonging to it and C' would be reducible not violating nonplanarity
condition;
2) deg(e) = 4 and both g-vertices in e are of degree 2: if K, = K,, then
minimal possible C' must be isomorphic to Wy; otherwise C' must have
Wy as {v, w}—marked minor and at least one edge not belonging to it
and C would be reducible not violating nonplanarity condition;
3) deg(e) = 3 and one g-vertex in e is of degree 1: without loss of
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generality let us suppose that deg(v) = 1 and deg(w) = 2 [and w = st|
; then K, and K, possibly are different and C' in minimal case is
isomorphic to Wy where, say, e; = vs € E(C); then C' is not minimal
because e; can be eliminated giving case 1; otherwise analogously as
in case 2 C' would be reducible, but in this case to case 1;

4) deg(e) = 2: then K, and K, have 3 common edges in minimal
case of C being isomorphic to K ; otherwise C' must have K, as
{v, w}—marked minor plus extra edge [because of three distinct chains
from v to w such that v is not seen from w]| and C' would be reducible
not violating nonplanarity condition. O

Proof of the Kuratowski theorem from below. Let e be vw. Firstly, in
G, there exist a chain from v to w, otherwise, if there would be an edge
whose elimination would exclude such a chain, then it would comprise
a 3-component and its elimination were prohibited.

We must prove that the 3-components of GG, that are giving rise to
nonplanarity are just as in fig. 1. Indeed, if we requested free planarity
or equality to K5 then we must get just these cases that are shown in
fig. 1. Requesting additionally minimality [of edges], case 1 can not be
reduced and coincides with case 1 of the lemma. Case 2 can be reduced
to case 2 of lemma. In case 3 one outer edge can be eliminated giving
reduction to case 1. Case 4 coincides with the case 4 of the lemma.
FP-reduction was performed in such a way that the edges that were
m for nonplanarity were left untouched. Thus both G + e and G,, + e
are nonplanar because of these 3-components of G,, that give rise to
nonplanarity. Thus G +e should have K33 as minor in cases 1, 2, 3 and
K5 as minor in case 4. Other cases are excluded and thus Kuratowski
theorem is proved. O

After we have done this excursion with 3-components of free planar
graphs in order to prove the Kuratowski theorem from below we may
conclude what follows.

Theorem 0.13. The class Planar is M-class.

This follows from theorem 0.10.

What really does mean the fact that class Planar is M-class? Let us
accomplish following consideration. Let GG be planar and G + e — non-
planar and let G’ be divided into 3-components. Then according previ-
ous GG + e is nonplanar because of nonplanarity of some 3-components
[in case of appropriate closing by g-edge]. Let the number of such 3-
components be k, £ > 1. Then eliminating just k£ edges [i. e. one from
each 3-component rising nonplanarity] G' becomes free planar and re-
versely, G + e + f; is nonplanar, where f; is such edge from arbitrary
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3-component that gives rise to nonplanarity that violates this feature.
Thus, only in the case when £ = 1 we get something resembling di-
rectly M-class’s main feature that eliminating to edges we cross some
free class. But this may occur on arbitrary large graphs and arbitrary
large 3-components. Because of this Planar is actually M-class.

Further some examples of M-classes. N,({K33}) is an M-class be-
cause proper vertex split operation is not possible. In fig. 7?7 the forbid-
den graphs of a non-trivial example of M-class are given. Fig. 4 shows
instances of these forbidden graphs after proper vertex split operation
is applied to them. Fig. 5 shows the instances of the forbidden graphs
of corresponding free class of this M-class where proper vertex split
operation is possible. Fig. 6 shows instances of the graphs of Fig. 5
where proper vertex split operation is applied to them.

One more proof of Kuratowski theorem follows.

Theorem 0.14 (Kuratowski). The class Planar is equal to No({ K33, K5}).

Proof. Let us assume that there is some forbidden minor H for class
Planar distinct from K33 and K5 and it is 3-connected and minimal.
Then neither K33 nor K5 are minors of H.

Let v € V(H) deg(v) = k > 3. Let v be split arbitrary in v; and v, in
such a way that deg(v1) = 2 and deg(vy) = k — 2, thus obtaining graph
H, from H. Let edges s;v; and tyv; be incident with vy in Hy. Let us
choose such split of v that H, is nonplanar of higher genus than before
this split. Such possibility must be always present because H neither
has hinges nor is equal to K5. But H; — vit; must be planar because
H — vty is planar [because of minimality of H]. But one edge [v1t]
can not cause higher nonplanarity [than genus one of H;| from state of
planarity [of H; — vit;]. Contradiction. Thus, if we assume H to have
vertices of degree higher than three then we come to contradiction.

Then H must be cubic graph and can not have K, as minor. Then
for arbitrary edge e of H, e = vw, and arbitrary cycle ¢ in H—e through
v and w there must be two chords with respect to ¢ that prevent against
embedding ¢ with both chords and e in the plane. They form together
K3 3. We have come to contradiction that H does not have K33 as a
minor. ]

The proof of Kuratowski theorem in [4] is improved in [6].

Acknowledgements. [ would like to thank Jan Kratochvil for invalu-
able help to prepare this note.

ptlfigl.IpNon-trivial example of M-class: Forbidden graphs of an M-
class A with one forbidden graph from G(5,8), two forbidden graphs
from m(6,7) and one forbidden graph from G(7,6).figl
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FIGURE 3. 1

AWA RS

FIGURE 4. Non-trivial example of M-class: Instances
of the forbidden graphs of A from fig. 7?7 after proper
vertex split operation is applied to them.

Gl

FIGURE 5. Non-trivial example of M-class: Instances
of the forbidden graphs of F'ree(A) where proper vertex
split operation is possible.

MAHANEE Y

FI1GURE 6. Non-trivial example of M-class: Instances of
the graphs from fig. 5 with proper vertex split operation
applied to them.
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Descendants

of Ky 4 Descendants of K33 Descendants of K

@ Free'(Planar) : @ @
'<>\ Free*(Planar) Q E @ @
Q ~O— | Free? (Planar) : B H E <> A % G <

\ﬁ \.jr Free‘l(Planar):Hip. E E @A_é Aﬁ 6 @

X ¢ | Free®(Planar) : 5. 7% < O XX o a4 O

FIGURE 7. In the first column there are elements of
B(6,9) that have minors X or Y and do not contribute
to Free®(Planar), 1 < k < 5. In the second and third
columns there are elements of Freek(Planar), 1<k <5b.
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