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A ase study on the reliability ofmultiphase WKB approximation for theone-dimensional Shr�odinger equationLaurent Gosse�
Abstrat. We present a short overview of high-frequeny asymptotis for the 1DShr�odinger equation while emphasizing the omputational aspets. We show that pre-sumably di�erent tehniques like stationary phase methods, WKB or Wigner analysisgive esssentially the same marosopi behaviour. Moment systems and K-branh en-tropy solutions are introdued in order to derive well-suited numerial methods. Finally,we display some omputations supporting these ideas on a lassial example.1. IntrodutionWe are interested in omputing eÆiently the high frequeny asymptotis of theCauhy problem for the following linear equation:i~�t + ~22m�xx = 0;  (t = 0; :) =  0; x 2 R: (1.1)The unknown  is the quantum mehanial wave-funtion of some partile of massm > 0; ~ stands of ourse for the Plank onstant. It is ustomary to work withdimensionless variables and one is led to introdue a saled Plank onstant " > 0;problem (1.1) rewritesi"�t + "22 �xx = 0;  (t = 0; :) =  0; x 2 R: (1.2)In order to study the wave-partile transition (or lassial limit), one is espeiallyinterested in a lass of initial data of the WKB (or monokineti) type: (t = 0; :) = A0(x) exp(i'0(x)="); x 2 R: (1.3)The slowly-varying quantities A0 � 0 and '0 appearing in this last expression arealled respetively the amplitude and the phase of the wave  0. Data of the form(1.3) with A0 ompatly supported are usually alled wave pakets. We stress thatthe equation (1.2) may arise when onsidering areas of appliation di�erent fromquantum mehanis, see [26℄.



2 L. Gosse2. Asymptotis of  and raysIn this setion, we aim at setting up tehniques in order to ompute the asymptotisof  satisfying (1.2){(1.3) for " ! 0 without solving numerially the equation inorder to bypass the meshing onstraints explained in [23℄.2.1. The stationary phase methodThis proedure is extensively exposed in [8℄; we have in mind to present it brieyin our rather simple ontext. A �rst and elementary observation is that the saledShr�odinger equation (1.2){(1.3) admits an expliit solution in terms of a so-alledosillatory integral: (t; x) = ZRZRA0(y) exp� i"�'0(y) + �(x � y)� t�2=2�� :dy:d�: (2.4)We all "generalized phase" the funtion S(�; y) = '0(y) + �(x � y) � t�2=2 inorder to avoid any onfusion with the aforementioned WKB phase '. Then thestationary phase lemma ensures that provided A0; '0 are C1 funtions, (t; x) =Xj A0(yj)p1 + t'000 (yj) exp�� i�4 � exp� i"�'0(yj) + t'0(yj)2=2��+O("):(2.5)Loosely speaking, one goes from a ontinuous superposition of waves in (2.4) toa disrete one (2.5) disarding all the ouples of points �; y exept those aroundwhih the generalized phase S is stationary thanks to the numerous anellationsinside the integral. The seleted points are therefore ritial points of S hener�;yS = 0, '00(y)� � = 0; x� y � t� = 0:So, for any x 2 R and at a given time t > 0, one has to �nd all the possible valuesyj , j = 1; 2; 3; ::: satisfying the ray equations (also alled biharateristis)� = '00(y); x = y + t'00(y): (2.6)In the language of onservation laws, one is more used to speak about harateristiurves; in this ase, '00 is related to the initial veloity, as we shall see later.A entral problem in this approah is that the approximation (2.5) seems toblow up for 1 + t'000 (yj)! 0; we shall all this blow-up lous the austi urve.2.2. Wigner measure analysis



A ase study on the reliability of multiphase WKB approximation for the one-dimensional Shr�odinger equation3A more modern tool to investigate the lassial limit of (1.2){(1.3) is the Wignertransform, whih is de�ned as an "angularly resolved energy density":W [ ℄(t; x; �) = ZR (t; x+ "z=2) � (t; x� "z=2) exp(�i�z):dz: (2.7)Let us de�ne a sequene of solutions  " to (1.2){(1.3) andW " its assoiated familyof Wigner transforms; then a well-known ompatness lemma, [21℄, states thatk "kL2 � C uniformly )W " *W 2M+; "! 0;where M+ stands for the one of nonnegative measures in t; x; � 2 R+ � R � R.Moreover, the limit Wigner measure satis�es the following free transport equation,�tW + ��xW = 0; W (t = 0; x; �) = A0(x)2Æ(x� �x'0(x)); (2.8)(Æ(:) the standard Dira measure) whih admits the expliit solution,W (t; x; �) =W (t = 0; y; �);away from austis, as soon as for any x 2 R and at a given time t > 0, y satis�esthe ray equations (2.6). Of ourse, one shouldn't expet a unique solution in thegeneral ase; thus several values yj , j = 1; 2; 3; ::: are to be found. Aordingly,the initial monokineti density will split into a more omplex objet of the type(2.5) beyond a ertain breakup time.A major interest in this tehnique lies in the fat that quadrati observablesan be easily obtained by taking the moments of W ; for instane, the positiondensity reads: �(t; x) = lim"!0 j "(t; x)j2 = ZRW (t; x; �):d�: (2.9)2.3. WKB and the evolution of the position densityThis tehnique is based on the assumption that for any value of the saled Plankonstant " below a ertain threshold, the solution of (1.2){(1.3) is well approxi-mated by an ansatz, (t; x) ' A(t; x) exp(i'(t; x)="); t > 0:Another onvenient way to motivate this ansatz is to trae bak to (2.5) while in-troduing a (generally multivalued) mapping Y : (t; x) 7! yj , j = 1; 2; ::: suh thatequations (2.6) hold. Finally, one de�nes a phase-amplitude pair '(t; x); A(t; x)relying on (2.5) and the quantities yj = Y (t; x). In modern language, workingwith an ansatz amounts to guessing the mirostruture in the problem (1.2){(1.3);it says that the �ne sale struture of the initial data stands still forever. Indeed,the saling in (2.7) is adapted to wave funtions  endowed with osillations ofO(") wave-length.



4 L. GosseThus plugging this ansatz and splitting between real and imaginary parts inside(1.2) leads to:�t'+ 12(�x')2 = "22A�xxA; �t(A2) + �x(A2�x') = 0: (2.10)The "at of faith" that leads to the lassial WKB system is that "22A�xxA ! 0when "! 0; this dispersive limit is essentially supported beyond breakup timeby the fat that the emerging eikonal equation on ' admits the same rays as (2.6).So there is a onsisteny with the two preeding methods. Let us also reall thatfor small time, this kind of asymptotis are fully justi�ed, see [16℄. A survey isalso given by Keller [20℄In the limit, system (2.10) beomes weakly oupled as the eikonal equationdeouples and an be solved independently; of ourse, in order to remain onsistentwith the two aforementioned proedures, one must give up the idea of solving inthe ontext of visosity solutions, [7℄. See however [12℄ for rather omplete resultsin this (wrong) diretion. If one introdues a veloity variable u = �x', then the�rst equation beomes the lassial Burgers' equation�tu+ u�xu = 0; u0 = �x'0;for whih the multivalued (or geometri) solution is to be sought through the rays(2.6), [4, 17℄. If one an omplete this program, then the intensity A2(t; x) an beeasily reovered; indeed, at any time t > 0, one hasA2(t; x) = A20(y) �����y�x ���� :One an dedue from (2.6) that x = y+tu0(y) = y+tu(t; x), so the last expressionboils down to �����y�x ���� = 1� t�xu(t; x);with u(t; x) supposedly known. However, in the homogeneous ase, the mostaurate way to derive the intensity follows from�����y�x ���� = �����x�y �����1 = 1j1 + tu00(y)j ;whih leads to the expression:A2(t; x) = A0(y)2j1 + tu00(y)j ; y = x� tu(t; x): (2.11)This formula will be of onstant use in the numerial omputations; it is of ourseequivalent to the one written in (2.5) sine '000 (y) = u00(y) and �(t; x) = A2(t; x).2.4. The ray-traing method



A ase study on the reliability of multiphase WKB approximation for the one-dimensional Shr�odinger equation5For the sake of ompleteness, we shortly reall the ray-traing method as a numeri-al tool. It onsists in sampling a ompat interval of the real axis into a olletionof absissas yl, l = 1; 2; ::: and then shoot rays forward in time using the equations(2.6). The veloity u(t; x) is found through the onservation law u(t; x) = u0(y)and the intensity is dedued by means of (2.11). One of its main shortomings isthe loss of auray in the rarefation fans, see Fig.4 in [11℄ or [2, 9, 29℄, whihimposes repetitive regridding proesses.3. Two numerial strategies based on momentsFor purely omputational reasons, the simulation of a transport equation of thetype (2.8) may be onsidered as too expensive sine the veloity variable � wouldhave to be sampled too. So a lassial idea to move bak to a less big omputationalspae is to take moments in � in order to work in the physial spae t; x only.3.1. The Delta-losure (Wigner analysis)This is the most diret way to proeed; namely, one onsiders (2.8) and integrateagainst � to derive an in�nite hierarhy:�tmi + �xmi+1 = 0; mi(t; x) = ZR �i�1W (t; x; �):d�; i = 1; 2; ::: (3.12)However, it isn't always neessary to simulate suh a big system; as an example,if u00(x) � 0, W (t; x; �) keeps on being monokineti and (3.12) redues to thepressureless gas system, [6℄,�t�+ �xq = 0; �tq + �x(q2=�) = 0; q=� = u:In this last ase, � and u remain smooth. When breakup ours, for some t� 2 R+ ,equations (2.6) admit several roots yj and a more intriate kineti densityis to beinserted inside (3.12). Following [28, 25, 18, 9, 6℄, we an assume an upper boundj � K 2 N and postulate thatW (t; x; �) = KXj=1Aj(t; x)2Æ(� � uj(t; x)); j = 1; 2; :::;K:Then one has to onsider 2K moments in order to lose (3.12):�tm1 + �xm2 = 0; �tm2 + �xm3 = 0; ::: �tm2K + �xm2K+1 = 0; (3.13)where mi(t; x) =PKj=1 �j(t; x)uj(t; x)i�1, i = 1; 2; :::; 2K. Closing (3.13) amountsto expressing m2K+1 as a funtion of m1;m2; :::;m2K . Despite the fat it is theo-retially doable, it remains a diÆult task for K > 4. Even worse, systems (3.13)



6 L. Gosseare generally only weakly hyperboli and admit measure-solutions. This makesnumerial simulations deliate; results are available in [3, 9, 13, 18℄.3.2. The Heaviside-losure (K-branh solutions)It has been observed [4℄ that the geometri solutions of Burgers' equation withu0(x) � 0 an be reovered out of a kineti problem in the avour of (2.8),�tf + ��xf = 0; f(t = 0; x; �) = H(u0(x)� �)H(�);with H the Heaviside funtion. Beyond breakup time, f eases to be of thismonokineti-like form and a orret representation would be,f(t; x; �) = KXj=1(�1)j�1H(uj(t; x)� �); (3.14)as long as no more thanK folds appear. A remarkable feature is that (3.14) an beobtained from an entropy minimization proess; this eventually led to the de�nitionof K-multivalued solutions in [5℄ (the lassial entropy solutions [22℄ orrespond toK = 1). These K-multivalued solutions admit a kineti formulation:De�nition 1. We all K-multivalued solution any measurable funtion f(t; x; �) 2f0; 1g on R�R+�R+ satisfying the following equation in the sense of distributions�tf + ��xf = (�1)K�1�K� ~m; f(t; x; �) = KXj=1(�1)j�1H(uj(t; x)� �); (3.15)where ~m is a nonnegative Radon measure on R � R+ � R+ .The set of uj(t; x)'s is alled the K-branh entropy solution of Burgers' equation,[11℄. The same way as in the preeding setion, one onsiders moments mi(t; x) =1i PKj=1(�1)j�1uj(t; x)i�1, i = 1; 2; :::;K and an equivalene result holds:Theorem 3.1. (Brenier & Corrias, [5℄)A measurable funtion f(t; x; �) =PKj=1(�1)j�1H(uj(t; x)��) is a K-multivaluedsolution if and only if all the following entropy inequalities hold for any �, �K� � � 0:�t ZR+ �(�)f(t; x; �):d� + �x ZR+ ��(�)f(t; x; �):d� � 0: (3.16)Equality holds in ase �K� � � 0.A beautiful property is that this onstrution is onsistent with the Delta-losure oming from Wigner analysis:Theorem 3.2. (Equivalene of moment systems, [13℄)Let 0 � u0 = �x'0 be a smooth funtion and ~w(t = 0; x; �) be the solution of



A ase study on the reliability of multiphase WKB approximation for the one-dimensional Shr�odinger equation7the Liouville equation (2.8) with initial ondition, ~w(t = 0; x; �) = H(u0(x) � �).Consider the set:C = n� 2 R+suh that ~w(t; x; �) = 1; for some (t; x) 2 R+ � Ro:Assume that C has only M onneted omponents. If M = 12 (K + 1) (K odd) orM = K=2 (K even), then the moment systems (3.13) and (3.16) produe the sameveloities uj(t; x), j = 1; 2; :::K.Of ourse, formula (2.11) is to be used in order to dedue the intensities in aonsistent way from the K-branh entropy solution. We lose this setion mention-ing that the hoie of the upper bound K 2 N an be done relying on the rigorousresults of [30℄; see [14℄.3.3. About multivalued intensitiesAs one may be espeially interested in reovering physial observables whih aresingle-valued, we want to explain how to work them out of the uj(t; x)'s and theAj(t; x)'s, j = 1; 2; :::;K. For instane, the position density assoiated to (2.5) isan osillatory objet sine ross-termswill exhibit small-sale behaviour. However,following [14℄, we observe that they an be expeted to beome negligible as "! 0relying on a stationary phase argument. Let us pik up a smooth test funtion�(t; x) and onsider, for j; j0 � K,8t > 0; ZRAj(t; x)Aj0 (t; x) exp �i�'j � 'j0�(t; x)="��(t; x):dx:Thus the stationary phase lemma ensures that if � is supported in a domainwhere (Aj ; 'j) and (Aj0 ; 'j0 ) are C1, this integral is O(") exept on points where�x�'j � 'j0�(t; x) = (uj � uj0)(t; x) = 0, that is, on austis.All in all, we have obtained that a very reasonable approximation of the �rstquadrati observable for small " � 0 is given by the simple expression:  (t; x) = j (t; x)j2 ' KXj=1 jAj(t; x)j2: (3.17)This will be heked numerially in the next setion; other quadrati observablesould be derived similarly.4. Numerial results: a Gaussian pulseWe give as an initial data for (1.2){(1.3) the following WKB pulse: 0(x) = exp��12(x� �)2� : exp(�i os(x)="); x 2 [0; 2�℄: (4.18)



8 L. Gosse4.1. K-branh solutions and the orresponding intensityThis orresponds to '0(x) = � os(x), u0(x) = sin(x), andA0(x) = exp �� 12 (x� �)2�whih are all C1. We shall not give details about the numerial shemes we usedfor simulating the K-branh solutions related to this problem; everything is to befound in [11, 13, 14℄. The meshing was �x = 2�=512, �t = �x=1:05 and thesolutions are shown in t = 3 on Fig.1. The rays an be seen on Fig.2 in [13℄; a
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Figure 1: Comparison between the WKB solution and the ray-traing one in t = 3.so-alled usp singularity develops and the geometri solution of Burgers' equa-tion admits 3 values inside the entral fan. The K-branh solution mathes theray-traing pro�le with very good auray.4.2. Comparison with the Shr�odinger equationRelying on (3.17), (2.11), we derived the approximate position density we om-pared with the one oming out of a standard Fourier sheme for (1.2) (see [1℄)with 212 modes. One an see the agreement as " is dereased on Fig.2; theShr�odinger solution's density osillates at higher and higher frequenies aroundthe value whih has been obtained out of the WKB omputation. We took" = 1=50; 1=85; 1=145; 1=220. 5. Conlusion
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Figure 2: Comparison between the WKB position density (3.17), (2.11), and adiret Shr�odinger simulation in t = 3.


