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A 
ase study on the reliability ofmultiphase WKB approximation for theone-dimensional S
hr�odinger equationLaurent Gosse�
Abstra
t. We present a short overview of high-frequen
y asymptoti
s for the 1DS
hr�odinger equation while emphasizing the 
omputational aspe
ts. We show that pre-sumably di�erent te
hniques like stationary phase methods, WKB or Wigner analysisgive esssentially the same ma
ros
opi
 behaviour. Moment systems and K-bran
h en-tropy solutions are introdu
ed in order to derive well-suited numeri
al methods. Finally,we display some 
omputations supporting these ideas on a 
lassi
al example.1. Introdu
tionWe are interested in 
omputing eÆ
iently the high frequen
y asymptoti
s of theCau
hy problem for the following linear equation:i~�t + ~22m�xx = 0;  (t = 0; :) =  0; x 2 R: (1.1)The unknown  is the quantum me
hani
al wave-fun
tion of some parti
le of massm > 0; ~ stands of 
ourse for the Plan
k 
onstant. It is 
ustomary to work withdimensionless variables and one is led to introdu
e a s
aled Plan
k 
onstant " > 0;problem (1.1) rewritesi"�t + "22 �xx = 0;  (t = 0; :) =  0; x 2 R: (1.2)In order to study the wave-parti
le transition (or 
lassi
al limit), one is espe
iallyinterested in a 
lass of initial data of the WKB (or monokineti
) type: (t = 0; :) = A0(x) exp(i'0(x)="); x 2 R: (1.3)The slowly-varying quantities A0 � 0 and '0 appearing in this last expression are
alled respe
tively the amplitude and the phase of the wave  0. Data of the form(1.3) with A0 
ompa
tly supported are usually 
alled wave pa
kets. We stress thatthe equation (1.2) may arise when 
onsidering areas of appli
ation di�erent fromquantum me
hani
s, see [26℄.



2 L. Gosse2. Asymptoti
s of  and raysIn this se
tion, we aim at setting up te
hniques in order to 
ompute the asymptoti
sof  satisfying (1.2){(1.3) for " ! 0 without solving numeri
ally the equation inorder to bypass the meshing 
onstraints explained in [23℄.2.1. The stationary phase methodThis pro
edure is extensively exposed in [8℄; we have in mind to present it brie
yin our rather simple 
ontext. A �rst and elementary observation is that the s
aledS
hr�odinger equation (1.2){(1.3) admits an expli
it solution in terms of a so-
alledos
illatory integral: (t; x) = ZRZRA0(y) exp� i"�'0(y) + �(x � y)� t�2=2�� :dy:d�: (2.4)We 
all "generalized phase" the fun
tion S(�; y) = '0(y) + �(x � y) � t�2=2 inorder to avoid any 
onfusion with the aforementioned WKB phase '. Then thestationary phase lemma ensures that provided A0; '0 are C1 fun
tions, (t; x) =Xj A0(yj)p1 + t'000 (yj) exp�� i�4 � exp� i"�'0(yj) + t'0(yj)2=2��+O("):(2.5)Loosely speaking, one goes from a 
ontinuous superposition of waves in (2.4) toa dis
rete one (2.5) dis
arding all the 
ouples of points �; y ex
ept those aroundwhi
h the generalized phase S is stationary thanks to the numerous 
an
ellationsinside the integral. The sele
ted points are therefore 
riti
al points of S hen
er�;yS = 0, '00(y)� � = 0; x� y � t� = 0:So, for any x 2 R and at a given time t > 0, one has to �nd all the possible valuesyj , j = 1; 2; 3; ::: satisfying the ray equations (also 
alled bi
hara
teristi
s)� = '00(y); x = y + t'00(y): (2.6)In the language of 
onservation laws, one is more used to speak about 
hara
teristi

urves; in this 
ase, '00 is related to the initial velo
ity, as we shall see later.A 
entral problem in this approa
h is that the approximation (2.5) seems toblow up for 1 + t'000 (yj)! 0; we shall 
all this blow-up lo
us the 
austi
 
urve.2.2. Wigner measure analysis



A 
ase study on the reliability of multiphase WKB approximation for the one-dimensional S
hr�odinger equation3A more modern tool to investigate the 
lassi
al limit of (1.2){(1.3) is the Wignertransform, whi
h is de�ned as an "angularly resolved energy density":W [ ℄(t; x; �) = ZR (t; x+ "z=2) � (t; x� "z=2) exp(�i�z):dz: (2.7)Let us de�ne a sequen
e of solutions  " to (1.2){(1.3) andW " its asso
iated familyof Wigner transforms; then a well-known 
ompa
tness lemma, [21℄, states thatk "kL2 � C uniformly )W " *W 2M+; "! 0;where M+ stands for the 
one of nonnegative measures in t; x; � 2 R+ � R � R.Moreover, the limit Wigner measure satis�es the following free transport equation,�tW + ��xW = 0; W (t = 0; x; �) = A0(x)2Æ(x� �x'0(x)); (2.8)(Æ(:) the standard Dira
 measure) whi
h admits the expli
it solution,W (t; x; �) =W (t = 0; y; �);away from 
austi
s, as soon as for any x 2 R and at a given time t > 0, y satis�esthe ray equations (2.6). Of 
ourse, one shouldn't expe
t a unique solution in thegeneral 
ase; thus several values yj , j = 1; 2; 3; ::: are to be found. A

ordingly,the initial monokineti
 density will split into a more 
omplex obje
t of the type(2.5) beyond a 
ertain breakup time.A major interest in this te
hnique lies in the fa
t that quadrati
 observables
an be easily obtained by taking the moments of W ; for instan
e, the positiondensity reads: �(t; x) = lim"!0 j "(t; x)j2 = ZRW (t; x; �):d�: (2.9)2.3. WKB and the evolution of the position densityThis te
hnique is based on the assumption that for any value of the s
aled Plan
k
onstant " below a 
ertain threshold, the solution of (1.2){(1.3) is well approxi-mated by an ansatz, (t; x) ' A(t; x) exp(i'(t; x)="); t > 0:Another 
onvenient way to motivate this ansatz is to tra
e ba
k to (2.5) while in-trodu
ing a (generally multivalued) mapping Y : (t; x) 7! yj , j = 1; 2; ::: su
h thatequations (2.6) hold. Finally, one de�nes a phase-amplitude pair '(t; x); A(t; x)relying on (2.5) and the quantities yj = Y (t; x). In modern language, workingwith an ansatz amounts to guessing the mi
rostru
ture in the problem (1.2){(1.3);it says that the �ne s
ale stru
ture of the initial data stands still forever. Indeed,the s
aling in (2.7) is adapted to wave fun
tions  endowed with os
illations ofO(") wave-length.



4 L. GosseThus plugging this ansatz and splitting between real and imaginary parts inside(1.2) leads to:�t'+ 12(�x')2 = "22A�xxA; �t(A2) + �x(A2�x') = 0: (2.10)The "a
t of faith" that leads to the 
lassi
al WKB system is that "22A�xxA ! 0when "! 0; this dispersive limit is essentially supported beyond breakup timeby the fa
t that the emerging eikonal equation on ' admits the same rays as (2.6).So there is a 
onsisten
y with the two pre
eding methods. Let us also re
all thatfor small time, this kind of asymptoti
s are fully justi�ed, see [16℄. A survey isalso given by Keller [20℄In the limit, system (2.10) be
omes weakly 
oupled as the eikonal equationde
ouples and 
an be solved independently; of 
ourse, in order to remain 
onsistentwith the two aforementioned pro
edures, one must give up the idea of solving inthe 
ontext of vis
osity solutions, [7℄. See however [12℄ for rather 
omplete resultsin this (wrong) dire
tion. If one introdu
es a velo
ity variable u = �x', then the�rst equation be
omes the 
lassi
al Burgers' equation�tu+ u�xu = 0; u0 = �x'0;for whi
h the multivalued (or geometri
) solution is to be sought through the rays(2.6), [4, 17℄. If one 
an 
omplete this program, then the intensity A2(t; x) 
an beeasily re
overed; indeed, at any time t > 0, one hasA2(t; x) = A20(y) �����y�x ���� :One 
an dedu
e from (2.6) that x = y+tu0(y) = y+tu(t; x), so the last expressionboils down to �����y�x ���� = 1� t�xu(t; x);with u(t; x) supposedly known. However, in the homogeneous 
ase, the mosta

urate way to derive the intensity follows from�����y�x ���� = �����x�y �����1 = 1j1 + tu00(y)j ;whi
h leads to the expression:A2(t; x) = A0(y)2j1 + tu00(y)j ; y = x� tu(t; x): (2.11)This formula will be of 
onstant use in the numeri
al 
omputations; it is of 
ourseequivalent to the one written in (2.5) sin
e '000 (y) = u00(y) and �(t; x) = A2(t; x).2.4. The ray-tra
ing method



A 
ase study on the reliability of multiphase WKB approximation for the one-dimensional S
hr�odinger equation5For the sake of 
ompleteness, we shortly re
all the ray-tra
ing method as a numeri-
al tool. It 
onsists in sampling a 
ompa
t interval of the real axis into a 
olle
tionof abs
issas yl, l = 1; 2; ::: and then shoot rays forward in time using the equations(2.6). The velo
ity u(t; x) is found through the 
onservation law u(t; x) = u0(y)and the intensity is dedu
ed by means of (2.11). One of its main short
omings isthe loss of a

ura
y in the rarefa
tion fans, see Fig.4 in [11℄ or [2, 9, 29℄, whi
himposes repetitive regridding pro
esses.3. Two numeri
al strategies based on momentsFor purely 
omputational reasons, the simulation of a transport equation of thetype (2.8) may be 
onsidered as too expensive sin
e the velo
ity variable � wouldhave to be sampled too. So a 
lassi
al idea to move ba
k to a less big 
omputationalspa
e is to take moments in � in order to work in the physi
al spa
e t; x only.3.1. The Delta-
losure (Wigner analysis)This is the most dire
t way to pro
eed; namely, one 
onsiders (2.8) and integrateagainst � to derive an in�nite hierar
hy:�tmi + �xmi+1 = 0; mi(t; x) = ZR �i�1W (t; x; �):d�; i = 1; 2; ::: (3.12)However, it isn't always ne
essary to simulate su
h a big system; as an example,if u00(x) � 0, W (t; x; �) keeps on being monokineti
 and (3.12) redu
es to thepressureless gas system, [6℄,�t�+ �xq = 0; �tq + �x(q2=�) = 0; q=� = u:In this last 
ase, � and u remain smooth. When breakup o

urs, for some t� 2 R+ ,equations (2.6) admit several roots yj and a more intri
ate kineti
 densityis to beinserted inside (3.12). Following [28, 25, 18, 9, 6℄, we 
an assume an upper boundj � K 2 N and postulate thatW (t; x; �) = KXj=1Aj(t; x)2Æ(� � uj(t; x)); j = 1; 2; :::;K:Then one has to 
onsider 2K moments in order to 
lose (3.12):�tm1 + �xm2 = 0; �tm2 + �xm3 = 0; ::: �tm2K + �xm2K+1 = 0; (3.13)where mi(t; x) =PKj=1 �j(t; x)uj(t; x)i�1, i = 1; 2; :::; 2K. Closing (3.13) amountsto expressing m2K+1 as a fun
tion of m1;m2; :::;m2K . Despite the fa
t it is theo-reti
ally doable, it remains a diÆ
ult task for K > 4. Even worse, systems (3.13)



6 L. Gosseare generally only weakly hyperboli
 and admit measure-solutions. This makesnumeri
al simulations deli
ate; results are available in [3, 9, 13, 18℄.3.2. The Heaviside-
losure (K-bran
h solutions)It has been observed [4℄ that the geometri
 solutions of Burgers' equation withu0(x) � 0 
an be re
overed out of a kineti
 problem in the 
avour of (2.8),�tf + ��xf = 0; f(t = 0; x; �) = H(u0(x)� �)H(�);with H the Heaviside fun
tion. Beyond breakup time, f 
eases to be of thismonokineti
-like form and a 
orre
t representation would be,f(t; x; �) = KXj=1(�1)j�1H(uj(t; x)� �); (3.14)as long as no more thanK folds appear. A remarkable feature is that (3.14) 
an beobtained from an entropy minimization pro
ess; this eventually led to the de�nitionof K-multivalued solutions in [5℄ (the 
lassi
al entropy solutions [22℄ 
orrespond toK = 1). These K-multivalued solutions admit a kineti
 formulation:De�nition 1. We 
all K-multivalued solution any measurable fun
tion f(t; x; �) 2f0; 1g on R�R+�R+ satisfying the following equation in the sense of distributions�tf + ��xf = (�1)K�1�K� ~m; f(t; x; �) = KXj=1(�1)j�1H(uj(t; x)� �); (3.15)where ~m is a nonnegative Radon measure on R � R+ � R+ .The set of uj(t; x)'s is 
alled the K-bran
h entropy solution of Burgers' equation,[11℄. The same way as in the pre
eding se
tion, one 
onsiders moments mi(t; x) =1i PKj=1(�1)j�1uj(t; x)i�1, i = 1; 2; :::;K and an equivalen
e result holds:Theorem 3.1. (Brenier & Corrias, [5℄)A measurable fun
tion f(t; x; �) =PKj=1(�1)j�1H(uj(t; x)��) is a K-multivaluedsolution if and only if all the following entropy inequalities hold for any �, �K� � � 0:�t ZR+ �(�)f(t; x; �):d� + �x ZR+ ��(�)f(t; x; �):d� � 0: (3.16)Equality holds in 
ase �K� � � 0.A beautiful property is that this 
onstru
tion is 
onsistent with the Delta-
losure 
oming from Wigner analysis:Theorem 3.2. (Equivalen
e of moment systems, [13℄)Let 0 � u0 = �x'0 be a smooth fun
tion and ~w(t = 0; x; �) be the solution of



A 
ase study on the reliability of multiphase WKB approximation for the one-dimensional S
hr�odinger equation7the Liouville equation (2.8) with initial 
ondition, ~w(t = 0; x; �) = H(u0(x) � �).Consider the set:C = n� 2 R+su
h that ~w(t; x; �) = 1; for some (t; x) 2 R+ � Ro:Assume that C has only M 
onne
ted 
omponents. If M = 12 (K + 1) (K odd) orM = K=2 (K even), then the moment systems (3.13) and (3.16) produ
e the samevelo
ities uj(t; x), j = 1; 2; :::K.Of 
ourse, formula (2.11) is to be used in order to dedu
e the intensities in a
onsistent way from the K-bran
h entropy solution. We 
lose this se
tion mention-ing that the 
hoi
e of the upper bound K 2 N 
an be done relying on the rigorousresults of [30℄; see [14℄.3.3. About multivalued intensitiesAs one may be espe
ially interested in re
overing physi
al observables whi
h aresingle-valued, we want to explain how to work them out of the uj(t; x)'s and theAj(t; x)'s, j = 1; 2; :::;K. For instan
e, the position density asso
iated to (2.5) isan os
illatory obje
t sin
e 
ross-termswill exhibit small-s
ale behaviour. However,following [14℄, we observe that they 
an be expe
ted to be
ome negligible as "! 0relying on a stationary phase argument. Let us pi
k up a smooth test fun
tion�(t; x) and 
onsider, for j; j0 � K,8t > 0; ZRAj(t; x)Aj0 (t; x) exp �i�'j � 'j0�(t; x)="��(t; x):dx:Thus the stationary phase lemma ensures that if � is supported in a domainwhere (Aj ; 'j) and (Aj0 ; 'j0 ) are C1, this integral is O(") ex
ept on points where�x�'j � 'j0�(t; x) = (uj � uj0)(t; x) = 0, that is, on 
austi
s.All in all, we have obtained that a very reasonable approximation of the �rstquadrati
 observable for small " � 0 is given by the simple expression:  (t; x) = j (t; x)j2 ' KXj=1 jAj(t; x)j2: (3.17)This will be 
he
ked numeri
ally in the next se
tion; other quadrati
 observables
ould be derived similarly.4. Numeri
al results: a Gaussian pulseWe give as an initial data for (1.2){(1.3) the following WKB pulse: 0(x) = exp��12(x� �)2� : exp(�i 
os(x)="); x 2 [0; 2�℄: (4.18)



8 L. Gosse4.1. K-bran
h solutions and the 
orresponding intensityThis 
orresponds to '0(x) = � 
os(x), u0(x) = sin(x), andA0(x) = exp �� 12 (x� �)2�whi
h are all C1. We shall not give details about the numeri
al s
hemes we usedfor simulating the K-bran
h solutions related to this problem; everything is to befound in [11, 13, 14℄. The meshing was �x = 2�=512, �t = �x=1:05 and thesolutions are shown in t = 3 on Fig.1. The rays 
an be seen on Fig.2 in [13℄; a
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Figure 1: Comparison between the WKB solution and the ray-tra
ing one in t = 3.so-
alled 
usp singularity develops and the geometri
 solution of Burgers' equa-tion admits 3 values inside the 
entral fan. The K-bran
h solution mat
hes theray-tra
ing pro�le with very good a

ura
y.4.2. Comparison with the S
hr�odinger equationRelying on (3.17), (2.11), we derived the approximate position density we 
om-pared with the one 
oming out of a standard Fourier s
heme for (1.2) (see [1℄)with 212 modes. One 
an see the agreement as " is de
reased on Fig.2; theS
hr�odinger solution's density os
illates at higher and higher frequen
ies aroundthe value whi
h has been obtained out of the WKB 
omputation. We took" = 1=50; 1=85; 1=145; 1=220. 5. Con
lusion
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Figure 2: Comparison between the WKB position density (3.17), (2.11), and adire
t S
hr�odinger simulation in t = 3.


