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A case study on the reliability of
multiphase WKB approximation for the
one-dimensional Schrodinger equation

Laurent Gosse*

Abstract. We present a short overview of high-frequency asymptotics for the 1D
Schrédinger equation while emphasizing the computational aspects. We show that pre-
sumably different techniques like stationary phase methods, WKB or Wigner analysis
give esssentially the same macroscopic behaviour. Moment systems and K-branch en-
tropy solutions are introduced in order to derive well-suited numerical methods. Finally,
we display some computations supporting these ideas on a classical example.

1. Introduction

We are interested in computing efficiently the high frequency asymptotics of the
Cauchy problem for the following linear equation:

2
ihd) + ;—maxw =0, t=0)=vy zER (1.1)

The unknown ) is the quantum mechanical wave-function of some particle of mass
m > 0; h stands of course for the Planck constant. It is customary to work with
dimensionless variables and one is led to introduce a scaled Planck constant e > 0;
problem (1.1) rewrites

2
ied + %axm =0, P(t=0,)=v0; zeR (1.2)

In order to study the wave-particle transition (or classical limit), one is especially
interested in a class of initial data of the WKB (or monokinetic) type:

Pt =0,.) = Ao(z) explivo(z)/€); z€R (1.3)

The slowly-varying quantities Ay > 0 and ¢ appearing in this last expression are
called respectively the amplitude and the phase of the wave 3. Data of the form
(1.3) with Ag compactly supported are usually called wave packets. We stress that
the equation (1.2) may arise when considering areas of application different from
quantum mechanics, see [26].
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2. Asymptotics of ¢y and rays

In this section, we aim at setting up techniques in order to compute the asymptotics
of v satisfying (1.2)—(1.3) for ¢ — 0 without solving numerically the equation in
order to bypass the meshing constraints explained in [23].

2.1. The stationary phase method

This procedure is extensively exposed in [8]; we have in mind to present it briefly
in our rather simple context. A first and elementary observation is that the scaled
Schrodinger equation (1.2)—(1.3) admits an explicit solution in terms of a so-called
oscillatory integral:

0= [ [ awexs (oot + €0 =) - 1€272) )y, (2)

We call "generalized phase” the function S(£,y) = po(y) + &(z — y) — t£2/2 in
order to avoid any confusion with the aforementioned WKB phase ¢. Then the
stationary phase lemma ensures that provided Ag, g are C* functions,

-5 o () e (2 (sl + 00 12) )+ 000)

(2.5)

Loosely speaking, one goes from a continuous superposition of waves in (2.4) to

a discrete one (2.5) discarding all the couples of points &,y except those around

which the generalized phase S is stationary thanks to the numerous cancellations
inside the integral. The selected points are therefore critical points of S hence

VeyS=0&¢p(y) —€=0, z-y—t£=0.

So, for any z € R and at a given time ¢ > 0, one has to find all the possible values
yj, 7 =1,2,3,... satisfying the ray equations (also called bicharacteristics)

E=¢o(y), x=y+tey(y). (2.6)

In the language of conservation laws, one is more used to speak about characteristic
curves; in this case, ¢y is related to the initial velocity, as we shall see later.

A central problem in this approach is that the approximation (2.5) seems to
blow up for 1 + t¢g(y;) — 0; we shall call this blow-up locus the caustic curve.

2.2. Wigner measure analysis
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A more modern tool to investigate the classical limit of (1.2)-(1.3) is the Wigner
transform, which is defined as an ”angularly resolved energy density”:

W)t z, &) = /Rw(t,x +e2/2)(t,x — e2/2) exp(—if2).dz. (2.7)

Let us define a sequence of solutions ¢ to (1.2)—(1.3) and W€ its associated family
of Wigner transforms; then a well-known compactness lemma, [21], states that

19°]|z2 < C uniformly = W* =W e M*, &0,

where M stands for the cone of nonnegative measures in ¢, z,£ € Rt x R x R.
Moreover, the limit Wigner measure satisfies the following free transport equation,

W + €0, W =0, W(t=0,z,& = Ag(x)*5(x — yipo(x)) (2.8)

(6(.) the standard Dirac measure) which admits the explicit solution,
W(t7 x’ f) = W(t = 03 y7 f))

away from caustics, as soon as for any z € R and at a given time ¢ > 0, y satisfies
the ray equations (2.6). Of course, one shouldn’t expect a unique solution in the
general case; thus several values y;, j = 1,2,3,... are to be found. Accordingly,
the initial monokinetic density will split into a more complex object of the type
(2.5) beyond a certain breakup time.

A major interest in this technique lies in the fact that quadratic observables
can be easily obtained by taking the moments of W; for instance, the position
density reads:

plt.z) = im0 (t.a)f = [ Wita.€)de. (2.9)
2.3. WKB and the evolution of the position density

This technique is based on the assumption that for any value of the scaled Planck
constant € below a certain threshold, the solution of (1.2)-(1.3) is well approxi-
mated by an ansatz,

Y(t,x) ~ A(t, z) exp(ip(t,x)/e), t>0.

Another convenient way to motivate this ansatz is to trace back to (2.5) while in-
troducing a (generally multivalued) mapping Y : (¢,2) — y;, j = 1,2, ... such that
equations (2.6) hold. Finally, one defines a phase-amplitude pair (¢, z), A(t, z)
relying on (2.5) and the quantities y; = Y (¢,z). In modern language, working
with an ansatz amounts to guessing the microstructure in the problem (1.2)—(1.3);
it says that the fine scale structure of the initial data stands still forever. Indeed,
the scaling in (2.7) is adapted to wave functions ¢ endowed with oscillations of

O(e) wave-length.
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Thus plugging this ansatz and splitting between real and imaginary parts inside
(1.2) leads to:

52

Orp + %(814,0)2 = ﬂamA, 01 (A?) + 8,(A%0,¢) = 0. (2.10)
The ”act of faith” that leads to the classical WKB system is that %BMA -0
when € — 0; this dispersive limit is essentially supported beyond breakup time
by the fact that the emerging eikonal equation on ¢ admits the same rays as (2.6).
So there is a consistency with the two preceding methods. Let us also recall that
for small time, this kind of asymptotics are fully justified, see [16]. A survey is
also given by Keller [20]

In the limit, system (2.10) becomes weakly coupled as the eikonal equation
decouples and can be solved independently; of course, in order to remain consistent
with the two aforementioned procedures, one must give up the idea of solving in
the context of wiscosity solutions, [7]. See however [12] for rather complete results
in this (wrong) direction. If one introduces a velocity variable u = 0, ¢, then the
first equation becomes the classical Burgers’ equation

O + udzu = 0, g = Oz o,

for which the multivalued (or geometric) solution is to be sought through the rays
(2.6), [4, 17]. If one can complete this program, then the intensity A2(¢,z) can be
easily recovered; indeed, at any time ¢ > 0, one has

dy

2(1.2) = B 2

One can deduce from (2.6) that © = y+tuo(y) = y+tu(t, z), so the last expression
boils down to
Ay

5| = 1 —td,u(t,x),

with (¢, z) supposedly known. However, in the homogeneous case, the most
accurate way to derive the intensity follows from

-1

Oy| |0z _ 1
or| |oy| |1+ tul(y)|’
which leads to the expression:
Ao (y)?
At z) = ——22 y=x —tu(t,z). 2.11
0 = T ) (0 210

This formula will be of constant use in the numerical computations; it is of course
equivalent to the one written in (2.5) since ¢f (y) = ujb(y) and p(t,z) = A%(¢, ).

2.4. The ray-tracing method



A case study on the reliability of multiphase WKB approximation for the one-dimensional Schrédinger equationd

For the sake of completeness, we shortly recall the ray-tracing method as a numeri-
cal tool. It consists in sampling a compact interval of the real axis into a collection
of abscissas y;, I = 1,2, ... and then shoot rays forward in time using the equations
(2.6). The velocity u(t, ) is found through the conservation law u(t,z) = ug(y)
and the intensity is deduced by means of (2.11). One of its main shortcomings is
the loss of accuracy in the rarefaction fans, see Fig.4 in [11] or [2, 9, 29], which
imposes repetitive regridding processes.

3. Two numerical strategies based on moments

For purely computational reasons, the simulation of a transport equation of the
type (2.8) may be considered as too expensive since the velocity variable £ would
have to be sampled too. So a classical idea to move back to a less big computational
space is to take moments in ¢ in order to work in the physical space t, z only.

3.1. The Delta-closure (Wigner analysis)

This is the most direct way to proceed; namely, one considers (2.8) and integrate
against £ to derive an infinite hierarchy:

Oym; + Oymiyq =0, m;(t,z) = / ETYW(t, 2, 6).dE, i=1,2,... (3.12)
R

However, it isn’t always necessary to simulate such a big system; as an example,
if up(z) > 0, W(t,z,&) keeps on being monokinetic and (3.12) reduces to the
pressureless gas system, [6],

Orp + 0,q =0, Orq +0:(q*/p) =0, q/p=u.

In this last case, p and u remain smooth. When breakup occurs, for some t* € R,
equations (2.6) admit several roots y; and a more intricate kinetic densityis to be
inserted inside (3.12). Following [28, 25, 18, 9, 6], we can assume an upper bound
j < K € N and postulate that

K
Wtz €)= Z Ai(t,2)%8(€ —uy(t,x)), =12, K.

Then one has to consider 2K moments in order to close (3.12):
Om1 + Oymo = 0, Oyma + Oy ms = 0, .. Omak + azm2K+1 =0, (313)

where m;(t,z) = Z]K:l pi(t,x)u;(t,z)1, i =1,2,..,2K. Closing (3.13) amounts
to expressing mog 1 as a function of my, mg, ..., maog . Despite the fact it is theo-
retically doable, it remains a difficult task for K > 4. Even worse, systems (3.13)
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are generally only weakly hyperbolic and admit measure-solutions. This makes
numerical simulations delicate; results are available in [3, 9, 13, 18].

3.2. The Heaviside-closure (K-branch solutions)

It has been observed [4] that the geometric solutions of Burgers’ equation with
uo(x) > 0 can be recovered out of a kinetic problem in the flavour of (2.8),

Of+80:f=0,  f(t=0,2,8) = H(uo(z) — H(E),
with H the Heaviside function. Beyond breakup time, f ceases to be of this
monokinetic-like form and a correct representation would be,

K

fla,&) =Y (=1 H(u;(t,x) - &), (3.14)

=1

as long as no more than K folds appear. A remarkable feature is that (3.14) can be
obtained from an entropy minimization process; this eventually led to the definition
of K-multivalued solutions in [5] (the classical entropy solutions [22] correspond to
K =1). These K-multivalued solutions admit a kinetic formulation:

Definition 1. We call K-multivalued solution any measurable function f(t,z,§) €
{0,1} on RxR* xR* satisfying the following equation in the sense of distributions

K

Of +&0af = (1)K '0fm,  ftw, &) =D (1) " H(u;(t,z) = &), (3.15)

j=1
where m is a nonnegative Radon measure on R x RT x RT.
The set of u;(t, z)’s is called the K-branch entropy solution of Burgers’ equation,

11]. The same way as in the preceding section, one considers moments m; (¢, x) =
g
%Z;il(—l)j’luj (t,2)""',i=1,2,.., K and an equivalence result holds:

Theorem 3.1. (Brenier & Corrias, [5])

A measurable function f(t,z,£) = Zle(—l)j_lH(uj(t,x) — &) is a K-multivalued

solution if and only if all the following entropy inequalities hold for any 6, 8?0 >0:

o / 6(6)f(t,, €).dE + 0, / €0(6)f (1,2, €).d¢ < 0. (3.16)
R+ R+
Equality holds in case BEKB =0.

A beautiful property is that this construction is consistent with the Delta-
closure coming from Wigner analysis:

Theorem 3.2. (Equivalence of moment systems, [13])
Let 0 < ug = Oxp0 be a smooth function and w(t = 0,x,£) be the solution of
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the Liouville equation (2.8) with initial condition, w(t = 0,2,&) = H(ug(z) — &).
Consider the set:

C= {f € R* such that w(t,z,&) = 1, for some (t,zr) € Rt x ]R}.
Assume that C has only M connected components. If M = (K + 1) (K odd) or

M = K/2 (K even), then the moment systems (3.13) and (3.16) produce the same
velocities uj(t,z), j =1,2,..K.

[

Of course, formula (2.11) is to be used in order to deduce the intensities in a
consistent way from the K-branch entropy solution. We close this section mention-
ing that the choice of the upper bound K € N can be done relying on the rigorous
results of [30]; see [14].

3.3. About multivalued intensities

As one may be especially interested in recovering physical observables which are
single-valued, we want to explain how to work them out of the u;(¢, )’s and the
A;(t,z)’s, j =1,2,..., K. For instance, the position density associated to (2.5) is
an oscillatory object since cross-termswill exhibit small-scale behaviour. However,
following [14], we observe that they can be expected to become negligible as ¢ — 0
relying on a stationary phase argument. Let us pick up a smooth test function
¢(t,x) and consider, for j,j' < K,

vt > 0, /RAj (t,z)Ajy (t,x) exp (z (; — o) (¢, x)/s)zb(t,:r).dx.

Thus the stationary phase lemma ensures that if ¢ is supported in a domain
where (A4;,¢;) and (A;, ;) are C*, this integral is O(e) except on points where
02 (¢j — @jr ) (t,x) = (uj — uj)(t,z) = 0, that is, on caustics.

All in all, we have obtained that a very reasonable approximation of the first
quadratic observable for small £ > 0 is given by the simple expression:

K
Vit z) = |y(t,z))? = Z |4 (t,2) ). (3.17)

This will be checked numerically in the next section; other quadratic observables
could be derived similarly.

4. Numerical results: a Gaussian pulse
We give as an initial data for (1.2)-(1.3) the following WKB pulse:

Yo(z) = exp <—%(m - 7r)2> .exp(—icos(z)/e), z € [0, 27]. (4.18)
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4.1. K-branch solutions and the corresponding intensity

This corresponds to ¢g(z) = — cos(z), ug(z) = sin(z), and Ag(z) = exp (—3(z — 7)?)
which are all C>°. We shall not give details about the numerical schemes we used
for simulating the K-branch solutions related to this problem; everything is to be
found in [11, 13, 14]. The meshing was Az = 27 /512, At = Az/1.05 and the
solutions are shown in ¢ = 3 on Fig.1. The rays can be seen on Fig.2 in [13]; a

0.8+

0.6
04 10
024
-+
10
o
-2
-02| / 10
0.4

-+
10

-08] w0

1 2 3 4 5 6 © 1 2 3 4 5 6

Figure 1: Comparison between the WKB solution and the ray-tracing one in ¢ = 3.

so-called cusp singularity develops and the geometric solution of Burgers’ equa-
tion admits 3 values inside the central fan. The K-branch solution matches the
ray-tracing profile with very good accuracy.

4.2. Comparison with the Schrodinger equation

Relying on (3.17), (2.11), we derived the approximate position density we com-
pared with the one coming out of a standard Fourier scheme for (1.2) (see [1])
with 2'2 modes. One can see the agreement as € is decreased on Fig.2; the
Schrodinger solution’s density oscillates at higher and higher frequencies around
the value which has been obtained out of the WKB computation. We took
e =1/50,1/85,1/145,1/220.

5. Conclusion
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We tried to give an overview on some efficient computational methods for the
semiclassical approximation of (1.2)—(1.3). Apart from stationary phase argu-
ments, we emphasized most of all kinetic-based methods. Two main classes exist
nowadays: the one based on Wigner equation (2.8) and the other coming from the
K-multibranch solutions of [5]. When it is applicable, the second one leads usu-
ally to lighter numerical algorithms. However, open problems subsist: the hardest
one being the passage from moments coordinates m;(t,z) to K-branch solutions
uj(t, ). This is a well-known inverse problem called the Markov moment prob-
lem; progress are expected to be made in this direction, [15, 27]. Other strategies
are available, see [2, 9, 19, 24, 29].
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Figure 2: Comparison between the WKB position density (3.17), (2.11), and a
direct Schrédinger simulation in ¢t = 3.



