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Using combinatorial maps in graph-topological
computations

Dainis ZEPS * ¥

Abstract

Possible use of combinatorial maps in graph-topological calculations are inves-
tigated continuing [10]. Some new permutational functions with interesting graph-
topological interpretations are considered.

1 Introduction

We continue to investigate the combinatorial maps, see [1, 3, 4, 6]. We apply the idea
used in [8] considering the corners between the edges in the embedding of the graph on
the surface to be the elements on which the permutations act. This work is a continuation
of [8, 9, 10].

We use permutation calculus as a tool for describing graphs on surfaces.In particu-
lar we use the fact that there can be established a one-one map between permutations
and graphs on surfaces. A possible way how to do it is shown in [8]. A way, how to
exploit this fact, is to find for some chosen feature of the graphs on surfaces the corre-
sponding characteristics in permutations. Thus, every permutational formula has some
equivalent operation on graphs. For a chosen map that has a graph on the surface in
correspondence, any computable in permutations partial map has an object in this graph
in correspondence. It is interesting to find such partial maps that has such graphic objects
in correspondence that has some graphic or graph-topological interpretation. The other
way round, if we can find for some operations on graphs corresponding operations on per-
mutations, then we can hope, that some nontrivial manipulations on graphs can be done
using some sufficiently simple operations on permutations, i.e. multiplication of permu-
tations, selection of submaps of maps etc. In this work we prove some simple conjectures
on permutations with less trivial graph-topological conjectures in correspondence.

We use computer program of permutation calculus checking our ideas on different series
of [manually entered or randomly generated] maps. In future we hope to find sufficiently
large set of permutational formulas with graph-topological operations in correspondence
to use them independently for topological calculus without any other algorithmic sup-
port. From computational point of view it is sufficiently important that permutational
calculus with simplest operations mostly can be done linearly with respect to the order
of permutations or updated parts of them.

*This research is supported by the grant 96.0247 of Latvian Council of Science.
tAuthor’s address: Institute of Mathematics and Computer Science, University of Latvia, 29 Rainis
blvd., Riga, Latvia. dainize@cclu.lv



2 Permutations, combinatorial maps and partial com-
binatorial maps

Permutations act on a universal set " the elements of which we call corners because of
their geometrical interpretation. For a permutation P and ¢ € C ¢! denotes the element
of C in which P maps c¢. Permutations we multiply from left to right.

In general we use the same terminology for combinatorial maps as in [8].

A pair of permutations (P, Q) we call combinatorial map whenever P~1- (@ is a match-
ing, i.e. involution without fixed elements. The main characteristics of combinatorial map
is its edge-rotation g equal to @ - P~! and next-edge-rotation 7 equal to P~!- Q.

Usually we are working with classes of maps with fixed 7, that are closed under
multiplication of maps from left.

Partial combinatorial maps (shorter p-maps) are pairs of permutation without any
restriction on their multiplication, i.e. their edge rotation can be arbitrary permutation.

We use apparatus of permutations calculation developed in [9]. If C' is divided into C
01 A
CQ . B
A and B that act from C into C [in case of A] and from C; into C' [in case of B].

and Cy, then p = denotes a permutation that is calculated using permutations

3 Cycles and cycle covers in combinatorial maps

For a combinatorial map (P, @), a cyclic sequence of elements ¢y, ... , ¢, (n > 0) is called
cycle, if for ¢;, (0 < i < n), next element ¢;,; in the sequence is equal to ¢! or le. Simple
cycle is a cycle without repetition of elements. For a combinatorial map simple cycles are
transitive permutations on some subsets of C'.

A cycle cover of the combinatorial map (P, Q) is a permutation acting on C, where
each of its orbits is a cycle in (P,Q). Cycles in cycle covers are always simple cycles.
Trivial cycle covers of (P, Q) are P and @) themselves.

Multiplications of cycle cover of some combinatorial map with submaps [8] of its next-
edge-rotation 7 gives all possibly cycle covers of this combinatorial map.

Two cycles ¢; and (, in (P, Q) touch each other if e; belongs to ¢; and el or e? or ey
or el_Q belongs to cycle (, too.

Let us suppose, that for some combinatorial map (P, Q) with a fixed cycle cover the
elements of C' are colored in such a way, that 1)elements of cycles of the cycle cover are
colored with the same color, and 2) cycles with equal element coloring do not touch. Such
a coloring of elements of combinatorial map we call a cycle cover coloring.

P

4 Two-colorable cycle covers in combinatorial maps

We consider two-colorable cycle covers.

Let for a combinatorial map (P, Q) with cycle cover ( elements be colored in two
colors in the way that this is also a cycle cover coloring. Let an arbitrary edge be with its
(possibly not all distinct) corners ¢y, ¢9, €3, ¢4, such that ¢y = cl_P, c3 = ¢} and ¢4 = cl_Q.
There are three possibilities:

1) ¢; and ¢y have the same color and ¢3 and ¢4 have the same other color , [we call such



an edge cut-edge];

2) ¢; and ¢4 have the same color and ¢y and c3 have the same other color, [we call such
an edge cycle-edge];

3) all corners of the edge are of the same color,[we call such an edge inner edge].

Let for a combinatorial map (P, Q) with cycle cover ¢ elements are colored with two
colors, green and red, in such a way that this is also a cycle cover coloring and there are
not inner edges. Then | Cyreen |=| Creq |, where Cyreen U Creq = C, and 7 and p are
one-one matches between Cyeen, and Ceq.

We call a zigzag walk cover a knot in the combinatorial map [1] and [8]. Zigzag walk
always has orbits of even degree, thus it is naturally to connect with a zigzag walk a cycle
cover coloring [theorem 3 [10]]. Inversely, each cycle cover without inner edges fixes some
knot.

Let for a chosen knot u of (P, Q) the corresponding cycle cover be ¢ and let us express
it as Cgreen * Cred, Where (gpeen contains cycles of green elements, and (,.q contains cycles
of red elements.

It holds [theorem 4 [10]]

)¢ -m= Caltem, where (yiern 1S @ cycle cover with alternating coloring of its elements;

2) (L-P= Caltem - Q) = Teycle, Where ey, have all possible cycle-edges;
)¢
)

3) Gt - P = (7' Q = Tews, where 7.,y have all possible cut-edges;
4) Teyele and Teut are complementary involutions: meyere * Teyr = 7.

5 Graphs on surfaces

In [10] we considered a map [P - Pycle7Q] It deserves an interest because it may be
interpreted as map [P, Q] with cut some cycles. Let us define some new permutational
functions that may have interesting graph—topological interpretations Let us deﬁne four
following multiplications A=P-PL B=Q-Q,., C=P -P,land D=Q -Q_}

cycle’ cycle*
Next theorem shows that these permutations have similar properties:
Theorem 1.
A=P- Pcyile =q- Cc_yilm
B=Q- th ¢ Cout:
C =P P = Catern* Cottorn..,
and
D = Q- Qe = Cattern * Catternyy .-

Proof. O
Theorem 2. The restrictions of the partial maps

(€, Qleuts

€, Pleyete

[Calterrm Q]cycle
and
[Calterny P]cut

are geometric maps.



Proof. Firstly,  restricted on Ceyere (Ceyr) multiplied by 7 or meyee (Teur) give the same
result. Thus, the dual of the restriction coincide with the restriction of its dual. Certainly,
the same is true for (yern, P and @ too.

Further, (. - 7 maps into P -7 and Qeys - ™ maps into (e 7, thus the map [¢, Q]eus
is geometric.

Similarly we conclude for other restrictions.

Ceyete * ™ maps into @ - m and Pryee - ™ maps into Copern - 7, thus the map [C, Pleyee is
geometric.

Calterneyer * ™ Maps into P -7 and Qeyere - ™ maps into ¢ -, thus the map [Carern, Qleyere
is geometric.

Calternay, - ™ maps into @ - 7 and @y - ™ maps into ¢ - 7, thus the map [Curern, Pleut 1S
geometric. O

Theorem 3.
f)’[c: P] = f}’[(;a P]cycle;

7[Calterna Q] = V[Calterna Q]cycle;
V[Caltern: P] = V[Calterm P]cut;
7[C7 Q] = ’7[<7 Q]cut-

Proof. Let us prove that v[(,P] = 7[(, Pleycie- By previous theorem the restriction
Y[¢, Pleyete is a geometric map. As follows, the next edge rotation 7 py is equal to
Teyele- 1t means, that the edge rotation of [¢, P] has "normal edges” from 7. and
"half edges” corresponding to cut edges from 7.,;. Eliminating an edge (a,b) from P that
belongs to 7., and choosing a new knot that has the same coloring of elements [that is
always possible only by eliminating cut edges| the new value of P has the same 7.yqe and
Teut- Thus, the new value of ¢ should be ( |44, i.e. with eliminated elements corresponding
to the eliminated edge. It means that genus of [P, (] does not change by eliminating a
cut edges.

We have proved that v[(, P] = 7[(, Pleycte. Duality gives us that v[¢, Q] = V[¢, Qleus-
To prove that f}/[(;alterna Q] = V[Calterna Q]cycle we use conjecture Ctﬁtlern : Q = Teycle and sim-
ilarly as previously considerations. Applying duality we get ¥[Custern, P = Y[Catterns P)eut-

O

To the previous theorem we add some new conjectures.

Theorem 4.
f)’[c: P] = f)’[c: P]cycle = f}’[Ba P];

f)’[(;alterna Q] - V[Calterna Q]cycle = V[Ca Q]a
V[Calterm P] = V[Calterm P]cut = 7[D7 P]a
¢, QI = ¢ Qlew = ~[A, Q).

Before to prove this we need a simple theorem.



Theorem 5. There holds:
C . Ccut . A
B C1cycle . B

_ C1cycle: C
Caltern — { Ccut . D

and

Proof. For the first conjecture:

_J Cow: A Ceu: Cgc_yile _
C_{ Ccycle: B _{ C1cycle: CCc_ult _C

For the second conjecture:
C » — { Ccycle e
attern Ccut . D

. —1
o { Ccycle . (altern . CaltleTncut

. - = Calterw
Ccut . Caltern ! Calte?”ncycle

Now we return to the proof of theorem [4]. First we prove fourth right equation:

Theorem 6. v[¢, Q] = 7[A4, Q).

To prove this conjecture we need additional lemma.

Lemma 7. Ify[Y,Z] =0 and X¢, =i then

fy[{ Coi X 71— 1x.2)

Cg Y
. Ccut . A
According theorem 5 ( = c.o. - We must prove that y[B,Q] = 0 and
cycle -

Ccycle = i'
The first equation is proven by the following lemma.

Lemma 8. (B, Q] = 1[Q - Q.1 Q] = 0.
Proof. O

The second equation is proven by the following trivial lemma.

Cy: 1 .

Lemma 9. { C : X’X&;ha 0.
Indeed, Ag,,, ={ o © = i. This completes the proof of the theorem
eed, Ac,yqe = Coyete * P'Pc;ile = 1. completes the proof of the theorem.

Now the first right equation from theorem 4:

Theorem 10. v[(, P] = v[B, P].



Proof. From theorem 5

C — Ccycle . B
Ccut . A )
NA, P =1[Q- Q. Q1 =0
by lemma 8 applied dually.

BC _ Ccycle ) —
= ) 1 =
cut Ccut . Q . cht

by lemma 9. 0

Now the second right equation from theorem 4:

Theorem 11. ¥[Cutern, @) = 7[C, Q].
Proof. From theorem 5
_ Ccycle : C
Caltern — { ch . D -

fY[Dv Q] = fY[Q : Qc_ylclev Q] =0
by lemma 8 applied dually.

o Cc’u,t . Z .
C cycle { Ccycle N = P—l =1

cycle
by lemma 9. O
Now the third right equation from theorem 4:
Theorem 12. 7[Cutern, P] = [ D, P].

Proof. From theorem 5
C _ Ccut : D
altern — Ccycle O
7[C7P] :7[P~PCZ%,P] =0
by lemma 8.
Ccut . 1 .
D == _ =

Ccycle { Ccycle : Q . Qcylcle v

by lemma 9. U

We have ended the proof of the theorem 4.
In [10] in theorem 6 (Main theorem) inequality is too strong.There are maps that reach
equality. We give this theorem in a new appearance.

Theorem 13.
NPQ) = VPO T Q0
and
YPQ) Z= V(Plattern) T V(@QCattern)



Proof. O
To prove this theorem we must prove a lemma.

Lemma 14.

1<l = epa + clo.0 — cpqs

”Caltern” 2 C[PaCaltern] + C[QaCaltern] - C[PaQ]'

Let us add a theorem without proof.

Theorem 15. For cubic maps [P, Q] there hold:

7[P7 C] - 7[P7 C]cycle = 7[P7 Caltern] = V[Pa Caltern]cut = 0;
VB, Pl =9[D,P] =~[A,D] = 0;
3[4, D] = (B, C] = 0.

Partial maps [A, @] and [B, C|] are of particular interest because the first contains all
cut-edges and the second - all cycle-edges and they are two cut parts of [P, Q)] together
comprising all [P, Q).

In order to illustrate all characteristics that we have considered we give an example of
a combinatorial map corresponding to K.

P=(1753)(2101816)(4 1220 17)(6 14 15 19)(8 13 11 9)

Q=(181416)(2976 13121954 11 10 17 3)(15 20 18)

0=(19)(211)(316)(4 13)(5 17)(6 8)(7 19)(10 20)(12 15)(14 18)

pu=(121112151634131418 1756 8 71920 10 9)

a=(1814111017161954)(2 713129 18 1520 6 3)

B =(17)(23)(45)(619)(8 14)(9 11)(10 17)(12 13)(15 20)(16 18)

Teur = (1 2)(3 4)(11 12)(13 14)(17 18)(19 20)

Teyete = (5 6)(7 8)(9 10)(15 16)

A:(153)(216)(4 1220 17)(6 14)(8 13 11)

B:(18)(2976)(519)(10 11)(14 16)(15 18

C:(175)(210)(619)(8 11 9)(14 15)(16 18)

D:(116)(2 1017 3)(4 11 5)(6 13 12 19)(8 14)(15 20 18)

mra,n] : (1 2)(34)(516 10 15 6 8)(11 12)(13 14)(17 18)(19 20)

me,p - (1192 11)(5 6)(7 8)(9 10)(14 18)(15 16)

(€5 Pleyee=(5 7)(6 15)(8 9)(10 16)

=(5 810 15)(6 16 9 7)
[Cattern; Pleut=(1 3)(2 18)(4 12 20 17)(11 13)(14 19)
=(14 1114 20 18)(2 17 3)(12 19 13)
[C, Pleyete=(114)(2 13 12 19 4 11 17 3)(18 20)
=(113 11 18 19 3)(2 14)(4 12 20 17)
[Calterm Q]cycle:(5 1097 6) (8 16)
=(59815167)
(=(1813111018151953)(2976 14 16)(4 12 20 17)
Cattern =(1 754119814 15 20 18 16)(2 10 17 3)(6 13 12 19).

10 18)(15 19)

N



Figure 1: Combinatorial map [P, Q)] corresponding to K. [P, (] is drawn bold. [P, (utern)
can be seen changing cut-edges to cycle-edges and cycle-edges to cut-edges

Figure 2: Cycle dual submap [(, Q] and partial map [A, Q]. Orbits of { are easy seen
as cycles in [A, Q).
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Figure 3: Cycle submap [C, P]eyee and partial map [B, P]. Orbits of ¢ are easy seen as
cycles in [B, P].
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Figure 4: Cut dual submap [Cutern, @]eyere and partial map [C, Q]. Orbits of (uern are
easy seen as cycles in [C, Q).
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Figure 5: Cut submap [Cutern, Plewt and partial map [D, P]|. Orbits of (yern are easy seen
as cycles in [D, P].
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Figure 6: Partial maps [A, D] and [B,C]. [A, Q] have all cut-edges and [B,C] have all
cycle-edge.
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