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The use of combinatorial maps in
graph-topological computations

Dainis ZEPS * |

Abstract

Having through the use of combinatorial maps a one-one
correspondence between, say, permutations and graphs on sur-
faces, we try to find out simple formulas with permutations for
non trivial calculations in the graphs on surfaces.

1 Introduction

We continue to investigate combinatorial maps, see [1, 3, 4, 6, 7, 8, 9],
applying the same idea of considering the corners between the edges
in the embedding of the graph on the surface to be the elements on
which act permutations [11].

Using permutations as a tool for combinatorial map, we can get
a one-one map between permutations and graphs on surfaces. One
way, how to do this, is shown in [11]. A way, how to exploit this,
is for some chosen feature of permutations to find the correspond-
ing one in the graphs. Reversely, if we can find for operations on
graphs corresponding operations on permutation, then we can hope,
that some nontrivial manipulations on graphs can be done using the
simplest operations on permutations, i.e. multiplication, selection of
submaps etc. In this work we argue to have proved a simple conjec-
ture on permutations with less trivial graph-topological conjuncture
in correspondence, but the main stress putting on the possibility to
do corresponding graph-topological calculus using simple operations
with permutations.

We have implemented the permutation calculus in the PASCAL
program, reproving our ideas on different series of maps, that are
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entered either manually or generated randomly. In the environment
in this way built, we both build the algorithms to do some computa-
tions and compute many things with the simplest formulas with per-
mutations. The investigations are intendet to find sufficiently large
set of permutational furmulas with graph-topological operations in
correspondence, to use it as an independent vehicle for topological
calculus already without algorithmical support. A point that must
be mentioned is that permutational calculus with simplest operations
can be done linear against the order of permutations or the amount
of the updated part in them.

2 Permutations, combinatorial maps and
partial combinatorial maps

Permutations act on a universal set C' the elements of which we call
corners because of their geometrical interpretation. For a permuta-
tion P and ¢ € C ¢ denotes the element of C' in which P maps c.
Permutations we multiply from left to right.

In general we use the same terminology for combinatorial maps
as in [11].

A pair of permutations (P, Q) we call combinatorial map whenever
P~!.Q is a matching, i.e. involution without fixed elements. The
main characteristics of combinatorial map is its edge-rotation g equal
to @ - P~! and next-edge-rotation 7 equal to P~ - Q.

Usually we are working with classes of maps with fixed =, that
are closed under multiplication of maps from left.

Partial combinatorial maps (shorter p-maps) are pairs of permu-
tation without any restriction on their multiplication, i.e. their edge
rotation can be arbitrary permutation.

3 Paths and cycles in combinatorial maps

For a combinatorial map (P,Q), a sequence of elements ci,...,c,
(n > 0) is a path, if for ¢;, (0 < i < n), next element ¢;11 in the
sequence is equal to ¢! or CZQ. If this same holds also for ¢, and

c1, i.e. ¢ equals to cf or ¢?, then the path is closed, forming a



cycle. Sitmple cycles are cycles without repetition of elements. For a
combinatorial map simple cycles are transitive permutations on some
subsets of the set C' with the appropriate choice of next elements.

A cycle cover of the combinatorial map (P, Q) is a permutation
acting on the whole set C, where each of its orbits is a cycle in (P, Q).
Then cycles in cycle covers are always simple cycles. Simplest cycle
covers of (P,Q) are P and @ themselves.

Trivially enough, multiplying a cycle cover of some combinatorial
map with some submap [11]of its =, i.e. next-edge-rotation, we get
another (and possibly every) cycle cover of this combinatorial map.

We say, that two cycles (; and (5 in (P, Q) touch each other when
for same element e; of (; e’ or e? ore; ¥ or el_Q is passed through
by the cycle (2. Let us suppose, that the elements of C' for some
combinatorial map (P, Q) with a fixed cycle cover are colored in such
a way, that 1)elements of cycles of the cycle cover are colored in the
same color, and 2) cycles with equal element coloring do not touch.
Such a coloring of elements of combinatorial map we call a cycle cover
coloring.

4 Two-colorable cycle covers in combina-
torial maps

Firstly let us consider two-colorable cycle covers generally.

Theorem 1 Let us suppose, that for a combinatorial map (P, Q)
with cycle cover { elements are colored in two colors, so that this is
also a cycle cover coloring. Let an arbitrary edge be with its (possibly
not all distinct) corners c1, ca, c3,cq, such that co = cfP, c3 =c] and
cy = cfQ.

Then there are three possibilities:

1) ¢1 and c3 belong to the same color and c3 and c4 to the other color
, [then we call such an edge cut-edge]/;

2) ¢1 and cq belong to the same color and co and cg to the other color,
[then we call such an edge cycle-edge]/;

3) all corners of the edge are of the same color, [then we call such an
edge inner edge]/.



Proof  An edge is either a place where cycles of different color
touch, or the same cycle meets itself (going either along the edge
[like cycle-edge] or across the edge [like cut-edge]).

Let us notice, that , when the edge is not an inner edge, the pairs
(c1,c3) and (cz, ca) contain corners of different coloring. So, edges of
one color in 7 and g are inner edges, but with different color corners
- cycle-edges and cut-edges.

For further considerations most useful are cycle cover colorings
without inner edges. Then immediately is right what follows.

Theorem 2 Let us suppose, that for a combinatorial map (P, Q)
with cycle cover { elements are colored in two colors, green and red,
so that this is also a cycle cover coloring and there are not inner
edges.

Then | Cyreen |=| Crea |, where Cyreen U Creq = C, and m and o are
one-one matches between Cyreen and Creq.

Further we speak about the way how to get two-colorable cycle
covers without inner edges in combinatorial maps, using a knot of this
map. Combinatorially, knot is a zigzag walk cover in the combinato-
rial map [1] and [11]. Zigzag walk always has orbits of even degree,
S0 it is possible to connect with a zigzag walk a coloring of elements
of combinatorial map. More over, elements of one color form cycles
of one color, resulting in the cycle cover with coinciding coloring.

Theorem 3 Let for a combinatorial map (P, Q) is given coloring
Cyreen U Cred , and a knot of this map by this same coloring is col-
ored alternatively. Then there exists one unique cycle cover of this
map with this same coloring as the cycle cover coloring without inner
edges.

Proof Let us suppose the opposite, and elements of one color
do not form cycles. Then there must be an element ¢, say of green
color, but the colors of both ¢’ (= ¢1) and ¢?(= ¢3) are red. But the
pair (c1, c3) belongs to 7 and its elements must have different colors.
We have come to a contradiction. And of course, there can not be
inner edges.

Thenafter, inversely, each cycle cover without inner edges fixes
some knot with precision to the reverse.



Let for a chosen knot u of (P, Q) the corresponding cycle cover is
¢ and let us express it as (green - Gred, Where (green contains cycles of
green elements, and (..q contains cycles of red elements.

It is easy to get following features of cycle cover ¢ without inner
edges for (P, Q).

Theorem 4 It holds

1) ¢ - = Caitern, where Coptern 1S a cycle cover with alternating
coloring of its elements;

2)("1-P= Ca_ltlem - Q = Teycle, Where Teycre have all cycle-edges and
only them;

3) Ca_l%em P =("1Q = meus, where oy have all cut-edges and only
them;

4) Teyeie and ey are complementary involutions and thus Teycie -
Teut = T

5 Graphs on surfaces

Now we may think in terms of graphs and topology, but corresponding
manipulations do in maps, i.e. permutations.

Let us partition C into Ceyere U Ceut, where the first set contains
elements of 7cyce and the second - of mey.

Theorem 5 The partial map (P,() |c.,.. 5 a combinatorial map
on Ceyele-

Applying the theorem dually, we get, that also (Q, () restricted
on C,; is a combinatorial map on this set.

Let us write (cycre in the place of ¢ |cycre, and so also (e in the
place of ¢ |cut-

We call (P, () |c.,.. and (P,¢) |c.,, correspondingly a cycle graph
and a cut graph. The second one is in general a partial map.

Before we come to our main theorem we must notice what follows.

Theorem 6 All cycles of the cycle cover for (P,Q) are also cycles
in p-map (¢, Q).

Theorem 7 (Main theorem)

YPQ) = VPO Q.-



Proof  Direct use of Eiler formula gives that there must hold an
inequality

¢ PTHI+1¢- Q7 I +2 (1 CII>3/2 - 1+ 2¢pe) +2¢(0.0) — 2

ie. || ¢ II> ¢y + ¢, ) — 1; where ¢(p¢) and ¢(q ¢y are numbers
of components in the corresponding partial maps. But cycles of the
cycle cover of (P, Q) are also orbites of both (¢, P) and (¢, @), but
being cut as a separate component only in the one of them. This
proves what was stated.

Further we try to show that this rather simple fact about permu-
tations causes less trivial consequence in graphic-topological view.

5.1 Cutting surface along cycles in graph embed-
dings

From the graph topological point of view, when we cut a surface,
in which a graph is embedded, along some cycle, then the surface
is either cut to two parts or its genus is reduced depending whether
the cut line along the cycle is contractible in the topological sense to
point or not. Choosing some cycle in cycle cover and cutting orbits
into orbits of one color in P along this cycle do the same thing in the
combinatorial maps.

Let us denote multiplication P- Pc;ile by P and consider it nearer,
seeing behind the partial map (P, Q) one with cut embendance sur-
face along the cycles of cycle cover.

Theorem 8 P, i.e. P- P} is equal to ¢ -2, and the genus

cycle cycle

of (P, Q) is equal to the genus of ((,Q).

Proof First we prove some lemmas.

Lemma 1 Orbits of P.yce have an alternating coloring, but orbits
of P have elements of one color.

Lemma 2 Pcycle s Teycle = Ccycle-

Proof Before it is shown that P - m.ye = (. Restricting this
expression onCpyere We get (P - Teyet) leyet= Ceyet, but the left side is
equal to (Peyel - Teyel, What was to be proved.



Let us prove that ¢ - ¢}

cyc

, = P. Really,

C'Cc_yil:P'TrCyCl'TrCyCl'Pc_yil :P’Pc;ilzp-

It remains to prove that v(p gy = v(¢,q)- It follows from the fact,
that multiplication of ¢ by reverse (cycie do not changes the genus
of the partial map (¢, Q), because the orbits of the reverse of (cycre
are subedges of multiedges of p-map (P, Q), where the last are the
remnants of the cutting the surface along the cycles.

This completes the proof of the theorem.

6 Conclusions

Let us compare our main theorem and the topological theorem.

The main theorem above says that the difference between genera
of (P, Q) and (¢, Q) plus the difference between genera of (@, P) and
(¢, P) is greater then genus of (P, Q).

Trying to translate this fact in the topological language, it would
mean, that every cover of cycles ( have enough cycles in the sense
that, cutting along them surface both of (P, Q) and its dual (Q, P),
reduces its genus completely. The uncontractable to point cycles of
Ceyele in the the graph (¢, @) give uncontractable cycles, but in the
graph (¢, P) genus-reducing-cuts of edges.

This gives a hope, that it is possible to find more useful operations,
which would result in some permutational calculus with topological
application.
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