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Introduction

We continue to investigate combinatorial maps, see [START_REF] Bonnington | Fundamentals of topological graph theory[END_REF][START_REF] Little | Cubic combinatorial maps[END_REF][START_REF] Liu | Polyhedral Theory on Graphs[END_REF][START_REF] Stahl | A combinatorial analog of the Jordan curve theorem[END_REF][START_REF] Stahl | A duality for permutations[END_REF][START_REF] Tutte | Combinatorial maps, Graph theory[END_REF][START_REF] Vince | Combinatorial maps[END_REF], applying the same idea of considering the corners between the edges in the embedding of the graph on the surface to be the elements on which act permutations [START_REF] Zeps | Graphs as rotations[END_REF].

Using permutations as a tool for combinatorial map, we can get a one-one map between permutations and graphs on surfaces. One way, how to do this, is shown in [START_REF] Zeps | Graphs as rotations[END_REF]. A way, how to exploit this, is for some chosen feature of permutations to find the corresponding one in the graphs. Reversely, if we can find for operations on graphs corresponding operations on permutation, then we can hope, that some nontrivial manipulations on graphs can be done using the simplest operations on permutations, i.e. multiplication, selection of submaps etc. In this work we argue to have proved a simple conjecture on permutations with less trivial graph-topological conjuncture in correspondence, but the main stress putting on the possibility to do corresponding graph-topological calculus using simple operations with permutations.

We have implemented the permutation calculus in the PASCAL program, reproving our ideas on different series of maps, that are entered either manually or generated randomly. In the environment in this way built, we both build the algorithms to do some computations and compute many things with the simplest formulas with permutations. The investigations are intendet to find sufficiently large set of permutational furmulas with graph-topological operations in correspondence, to use it as an independent vehicle for topological calculus already without algorithmical support. A point that must be mentioned is that permutational calculus with simplest operations can be done linear against the order of permutations or the amount of the updated part in them.

Permutations, combinatorial maps and partial combinatorial maps

Permutations act on a universal set C the elements of which we call corners because of their geometrical interpretation. For a permutation P and c ∈ C c P denotes the element of C in which P maps c. Permutations we multiply from left to right.

In general we use the same terminology for combinatorial maps as in [START_REF] Zeps | Graphs as rotations[END_REF].

A pair of permutations (P, Q) we call combinatorial map whenever P -1 • Q is a matching, i.e. involution without fixed elements. The main characteristics of combinatorial map is its edge-rotation equal to Q • P -1 and next-edge-rotation π equal to P -1 • Q.

Usually we are working with classes of maps with fixed π, that are closed under multiplication of maps from left.

Partial combinatorial maps (shorter p-maps) are pairs of permutation without any restriction on their multiplication, i.e. their edge rotation can be arbitrary permutation.

Paths and cycles in combinatorial maps

For a combinatorial map (P, Q), a sequence of elements c

1 , . . . , c n (n > 0) is a path, if for c i , (0 < i < n), next element c i+1 in the sequence is equal to c P i or c Q i .
If this same holds also for c n and c 1 , i.e. c 1 equals to c P n or c Q n , then the path is closed, forming a cycle. Simple cycles are cycles without repetition of elements. For a combinatorial map simple cycles are transitive permutations on some subsets of the set C with the appropriate choice of next elements.

A cycle cover of the combinatorial map (P, Q) is a permutation acting on the whole set C, where each of its orbits is a cycle in (P, Q). Then cycles in cycle covers are always simple cycles. Simplest cycle covers of (P, Q) are P and Q themselves.

Trivially enough, multiplying a cycle cover of some combinatorial map with some submap [START_REF] Zeps | Graphs as rotations[END_REF]of its π, i.e. next-edge-rotation, we get another (and possibly every) cycle cover of this combinatorial map.

We say, that two cycles 

ζ

Two-colorable cycle covers in combinatorial maps

Firstly let us consider two-colorable cycle covers generally. Let us notice, that , when the edge is not an inner edge, the pairs (c 1 , c 3 ) and (c 2 , c 4 ) contain corners of different coloring. So, edges of one color in π and are inner edges, but with different color corners -cycle-edges and cut-edges.

For further considerations most useful are cycle cover colorings without inner edges. Then immediately is right what follows.

Theorem 2 Let us suppose, that for a combinatorial map (P, Q) with cycle cover ζ elements are colored in two colors, green and red, so that this is also a cycle cover coloring and there are not inner edges. Then | C green |=| C red |, where C green ∪ C red = C, and π and are one-one matches between C green and C red .

Further we speak about the way how to get two-colorable cycle covers without inner edges in combinatorial maps, using a knot of this map. Combinatorially, knot is a zigzag walk cover in the combinatorial map [START_REF] Bonnington | Fundamentals of topological graph theory[END_REF] and [START_REF] Zeps | Graphs as rotations[END_REF]. Zigzag walk always has orbits of even degree, so it is possible to connect with a zigzag walk a coloring of elements of combinatorial map. More over, elements of one color form cycles of one color, resulting in the cycle cover with coinciding coloring.

Theorem 3 Let for a combinatorial map (P, Q) is given coloring C green ∪ C red , and a knot of this map by this same coloring is colored alternatively. Then there exists one unique cycle cover of this map with this same coloring as the cycle cover coloring without inner edges.

Proof Let us suppose the opposite, and elements of one color do not form cycles. Then there must be an element c, say of green color, but the colors of both c P (= c 1 ) and c Q (= c 3 ) are red. But the pair (c 1 , c 3 ) belongs to π and its elements must have different colors. We have come to a contradiction. And of course, there can not be inner edges.

Thenafter, inversely, each cycle cover without inner edges fixes some knot with precision to the reverse.

Let for a chosen knot μ of (P, Q) the corresponding cycle cover is ζ and let us express it as ζ green • ζ red , where ζ green contains cycles of green elements, and ζ red contains cycles of red elements.

It is easy to get following features of cycle cover ζ without inner edges for (P, Q). 

Theorem 4 It holds 1) ζ • π = ζ altern ,
γ (P,Q) > γ (P,ζ) + γ (Q,ζ) . Let us prove that ζ • ζ -1 cycl = P . Really, ζ • ζ -1 cycl = P • π cycl • π cycl • P -1 cycl = P • P -1 cycl = P .
It remains to prove that γ (P ,Q) = γ (ζ,Q) . It follows from the fact, that multiplication of ζ by reverse ζ cycle do not changes the genus of the partial map (ζ, Q), because the orbits of the reverse of ζ cycle are subedges of multiedges of p-map (P , Q), where the last are the remnants of the cutting the surface along the cycles.

This completes the proof of the theorem.

Conclusions

Let us compare our main theorem and the topological theorem. The main theorem above says that the difference between genera of (P, Q) and (ζ, Q) plus the difference between genera of (Q, P ) and (ζ, P ) is greater then genus of (P, Q).

Trying to translate this fact in the topological language, it would mean, that every cover of cycles ζ have enough cycles in the sense that, cutting along them surface both of (P, Q) and its dual (Q, P ), reduces its genus completely. The uncontractable to point cycles of ζ cycle in the the graph (ζ, Q) give uncontractable cycles, but in the graph (ζ, P ) genus-reducing-cuts of edges.

This gives a hope, that it is possible to find more useful operations, which would result in some permutational calculus with topological application.

Theorem 1

 1 Let us suppose, that for a combinatorial map (P, Q) with cycle cover ζ elements are colored in two colors, so that this is also a cycle cover coloring. Let an arbitrary edge be with its (possibly not all distinct) corners c 1 , c 2 , c 3 , c 4 , such that c 2 = c -P 1 , c 3 = c π 1 and c 4 = c -Q 1 . Then there are three possibilities: 1) c 1 and c 2 belong to the same color and c 3 and c 4 to the other color , [then we call such an edge cut-edge]; 2) c 1 and c 4 belong to the same color and c 2 and c 3 to the other color, [then we call such an edge cycle-edge]; 3) all corners of the edge are of the same color,[then we call such an edge inner edge]. Proof An edge is either a place where cycles of different color touch, or the same cycle meets itself (going either along the edge [like cycle-edge] or across the edge [like cut-edge]).

  [START_REF] Bonnington | Fundamentals of topological graph theory[END_REF] and ζ 2 in (P, Q) touch each other when for same element e 1 of ζ 1 e P . Let us suppose, that the elements of C for some combinatorial map (P, Q) with a fixed cycle cover are colored in such a way, that 1)elements of cycles of the cycle cover are colored in the same color, and 2) cycles with equal element coloring do not touch. Such a coloring of elements of combinatorial map we call a cycle cover coloring.

	1 or e Q 1 or e -P 1	or e -Q 1	is passed through
	by the cycle ζ 2		

  where ζ altern is a cycle cover with alternating coloring of its elements; 2)ζ -1 • P = ζ -1 altern • Q = π cycle, where π cycle have all cycle-edges and only them;3) ζ -1 altern • P = ζ -1 • Q = π cut ,where π cut have all cut-edges and only them; 4) π cycle and π cut are complementary involutions and thus π cycle • π cut = π. Now we may think in terms of graphs and topology, but corresponding manipulations do in maps, i.e. permutations. Let us partition C into C cycle ∪ C cut , where the first set contains elements of π cycle and the second -of π cut . The partial map (P, ζ) | C cycle is a combinatorial map on C cycle . Applying the theorem dually, we get, that also (Q, ζ) restricted on C cut is a combinatorial map on this set. Let us write ζ cycle in the place of ζ | cycle , and so also ζ cut in the place of ζ | cut . We call (P, ζ) | C cycle and (P, ζ) | Ccut correspondingly a cycle graph and a cut graph. The second one is in general a partial map. Before we come to our main theorem we must notice what follows.

	5 Graphs on surfaces
	Theorem 5

Theorem 6 All cycles of the cycle cover for (P, Q) are also cycles in p-map (ζ, Q).

Theorem 7 (Main theorem)
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Proof

Direct use of Eiler formula gives that there must hold an inequality Further we try to show that this rather simple fact about permutations causes less trivial consequence in graphic-topological view.

Cutting surface along cycles in graph embeddings

From the graph topological point of view, when we cut a surface, in which a graph is embedded, along some cycle, then the surface is either cut to two parts or its genus is reduced depending whether the cut line along the cycle is contractible in the topological sense to point or not. Choosing some cycle in cycle cover and cutting orbits into orbits of one color in P along this cycle do the same thing in the combinatorial maps.

Let us denote multiplication P •P -1 cycle by P and consider it nearer, seeing behind the partial map (P , Q) one with cut embendance surface along the cycles of cycle cover.

Theorem 8

P , i.e.

cycle and the genus of (P , Q) is equal to the genus of (ζ, Q).

Proof First we prove some lemmas.

Lemma 1 Orbits of P cycle have an alternating coloring, but orbits of P have elements of one color.

Proof

Before it is shown that P • π cycl = ζ. Restricting this expression onC cycle we get (P • π cycl ) | cycl = ζ cycl , but the left side is equal to (P cycl • π cycl , what was to be proved.