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In this paper, we consider a discrete-time ruin model where experience rating is taken into account. The main objective is to determine the behavior of the ultimate ruin probabilities for large initial capital in the case of light-tailed claim amounts. The logarithmic asymptotic behavior of the ultimate ruin probability is derived. Typical pathes leading to ruin are studied. An upper bound is derived on the ultimate ruin probability in some particular case. The inuence of the number of data points taken into account is analyzed, and numerical illustrations support the theoretical ndings. Finally, we investigate the heavy-tailed case. The impact of the number of data points used for the premium calculation appears to be rather dierent from the one in the light-tailed case.

Introduction

Computation of ruin probabilities is an important topic in actuarial science. Standard references include [START_REF] Asmussen | Ruin Probabilities[END_REF], [START_REF] Dickson | Insurance Risk and Ruin[END_REF], [START_REF] Grandell | Aspects of Risk Theory[END_REF], [START_REF] Kaas | Modern Actuarial Risk Theory Using R[END_REF] and [START_REF] Rolski | Stochastic Processes for Insurance and Finance[END_REF]. Even if the study of the ruin problem resulted in a huge amount of published articles (including in the closely related elds of queueing theory and dam and storage processes), some assumptions have rarely been questioned in the literature, until recently.

The majority of existing results require independent increments for the stochastic process describing the aggregate claim amounts led against the insurance company. However, a lot of practical issues violate this independence assumption, as the result of the implementation of experience rating mechanisms by the insurance company. In this case, the nancial result of a given calendar year then depends on the result(s) of one or several previous years.

In this paper, experience rating is taken into account. Allowing the premium amount to depend on past claims experience through an appropriate credibility mechanism is in line with insurance practice in most lines of business.

In the literature, only some authors have studied ruin problem with credibility dynamics. In [START_REF] Asmussen | On the ruin problem for some adapted premium rules[END_REF], the ruin model allows adapted premiums rules. More precisely, a continuous-time risk process is considered with compound Poisson claims, where the premium rate is exclusively calculated on the basis of past claims statistics, with no reference to the market. In practice, one would use a mixture between a quantity based on past claim experience and a market premium level. The easiest way to compute credibility adjusted premiums is to use Bühlmann's credibility model. This is what [START_REF] Tsai | Ruin probabilities: classical versus credibility[END_REF] have done in a discrete-time risk model. They have studied, by means of Monte-Carlo simulations, the impact of the number of past claim experience years taken into account for the calculation of the premiums on the ultimate ruin probabilities for light-tailed claims.

In this paper, we deal with a framework that is similar to the one of [START_REF] Tsai | Ruin probabilities: classical versus credibility[END_REF]. One of the main observation made by these authors is that for an insurance company with a large initial capital and light-tailed claims, the use of a bigger (nite) number of past claim experience years to calculate the premiums decreases the ultimate ruin probability. Among other results, until a certain number of past claim experience years, this observation is proved in this paper. We also show that the story is dierent for heavy-tailed claim amounts. [START_REF] Asmussen | Ruin Probabilities[END_REF] The model

Let us consider an insurance market made up of n portfolios, where portfolio j @j a I; : : : ; nA is characterized by independent and identically distributed annual aggregated claim amounts Y (j) k , with common distribution function F j . For a randomly chosen insurance company operating on this market, let p j be the probability that the portfolio held by this company is the portfolio j.

To motivate this setting, let us consider for example a simple market made up of P categories of policyholders, with n g "good" policyholders and n b "bad" policyholders, say.

Then a company with s min@n g ; n b A policyholders would have s C I possible portfolios, i.e. n a s C I. Furthermore, the probability p j (associated to portfolio j (j a I; : : : ; s C I), characterized by j I good policyholders) would be given by p j a s3 @s j C IA3@j IA3 We assume that the company uses credibility premiums in order to determine, on the basis of its own claim amounts, the pure premium corresponding to its unknown portfolio. In this setting, the model proposed in [START_REF] Bühlmann | Experience rating and credibility I[END_REF] and ( 1969) is largely used in practice. In this paper, we focus on this well-known credibility model.

Let us denote by Y k the annual claim amounts of the company. The a priori mean of the Y k 's is of course given by a EY k a n j=1 EY (j) p j ; (2.2) where Y (j) is a random variable with distribution function F j , while the a priori variance breaks up in two terms: 2 a VY k a a C ; Parameter a measures the part of the variance coming from the heterogeneity of the market, whereas parameter measures the part of hazard in the a priori variance.

As mentioned in [START_REF] Tsai | Ruin probabilities: classical versus credibility[END_REF], some casualty insurers only consider a nite number of most recent periods of claim experiences to renew the premium. Let us denote by m P N + fIg the so-called "horizon of credibility", which corresponds to the number of periods taken into account for the calculation of the premiums. So, depending on the choice of m, with the convention that 0 i=1 a H, the premium of the company in time k I is given by

C k;m a 2 @I z k;m A C z k;m k 1 i=max(k m;1) Y i min@m; k IA 3 @I C A; (2.6)
where z k;m a min@m; k IA a C min@m; k IA a (2.7) is Bühlmann's credibility factor and > H is the premium security loading. Notice that our premium rule depends on the market (via the parameters , a and ) contrary to [START_REF] Asmussen | On the ruin problem for some adapted premium rules[END_REF]. For simplicity, we have assumed that no historical data is available. This simplifying assumption does not inuence the asymptotic results derived in the sequel. Now, if the portfolio held by the insurer is portfolio j, then the dynamics of the insurer's surplus obeys to the equation

U (j) k;m a u C k i=1 C i;m k i=1 Y (j) i ;
(2.8)

where the C i;m 's are described by equation (2.6) with Y i a Y (j) i , and where u is the initial capital of the company. The corresponding ultimate ruin probability may be written as

(j)
m @uA a r h U (j) k;m < H for some k jU (j) 0;m a u i :

(2.9)

Immediately, it appears the existence of a subset of "bad" portfolios, denoting b m , such that for all j P b m , (j) m @uA a I for all u. Indeed, let us dene (j) m a @I C A@@I z m A C z m EY (j) A EY (j) I;

(

where z m a m a C m a :

(2.11)

Obviously, for m < I, (j) m corresponds to the average security loading of the premium for k > m while for m a I, (j) m a , which corresponds this time to the security loading for k 3 I. The subset b m is then dened as b m a fj a I; : : : ; n X (j) m Hg:

(2.12) Also, in the following, the complementary subset of ("not bad") portfolios is denoted by " b m , and we shall say that j P g if and only if EY (j) . Clearly, we have g & " b m .

The purpose of this paper is to investigate the behavior of the ultimate ruin probabilities (j) m @uA for large u in the case of light-tailed annual claim amounts. First, the logarithmic asymptotic behavior of (j) m @uA is derived. Then, typical pathes leading to ruin are studied.

Also, an upper bound on (j) m @uA is derived in some particular cases. Afterwards, we are able to determine, for each portfolio j, the inuence of "strategy" m on (j) m @uA for large u.

Next, whatever the portfolio j, optimal strategies, in a sense to be dened in the sequel, are deduced. As an illustration, numerical simulations are also performed. Finally, we also study the inuence of m in rst order on (j) m @uA in the heavy-tailed case. As we shall see, the conclusion is totally dierent than in the light-tailed case.

3

Limit results for light-tailed claims

In this Section, for simplicity, let us assume that for all j a I; : : : ; n, there exists r (j) > H such that Ee rY (j) exists for all H < r < r (j) and such that lim r3r (j) Ee rY (j) a I. Clearly, this assumption implies necessarily light-tailed claims.

3.1

The case m < 1

3.1.1 Asymptotic behavior of (j) m @uA Theorem 3.1. Suppose that there exists a unique positive solution to the equation e r(1 zm)(1+) E h e rY (j) (1 (1+)zm) i a I;

(3.1)
which we denote (j) m . Furthermore, assume that for all k, the sum of the rst k annual losses Z k a k i=1 @Y (j) i C i;m A possesses a nite moment-generating function Ee rZ k for H < r < r 0 , with (j) m < r 0 . Hence, we have lim u3I I u ln (j) m @uA a (j) m :

(3.2)
Proof. As a consequence of the Gärtner-Ellis Theorem from large deviations (which is due to [START_REF] Glynn | Logarithmic asymptotics for steady-state tail probabilities in a single-server queue[END_REF], see also [START_REF] Nyrhinen | Rough descriptions of ruin for a general class of surplus processes[END_REF] and [START_REF] Müller | Asymptotic ruin probabilities for risk processes with dependent increments[END_REF]), one only has to show the two following properties:

(A1) m @rA Xa lim k3I 1 k ln Ee rZ k exists for H < r < r 0 , (A2) (j) m is the unique positive value such that m @ (j) m A a H. Hence, (A1) holds true. Concerning (A2), notice that m @rA a ln h m @rA, where h m @rA a e r(1 zm)(1+) E h e rY (j) (1 (1+)zm) i :

Notice that since Ee rY (j) exists for all H < r < r (j) , result (3.2) requires in fact only the existence and the uniqueness of (j) m , with the condition (j) m < r (j) .

The Lundberg coecient (j) m

Let us dene (j) m a @I z m A@I C A EY (j) @I @I C Az m A I:

(3.

3)

The equation (3.1) is equivalent to e r(1 (1+)zm) E[Y (j) ](1+ (j) m ) E h e r(1 (1+)zm)Y (j) i a I; (3.4) and consequently (j) m a (j) m I @I C Az m ; (3.5) where (j) m is the classical Lundberg coecient dened as the unique positive solution of the equation e r E[Y (j) ](1+ (j) m ) Ee rY (j) a I:

(3.6)
Now, from classical results, it is then obvious that the inequality @I >A (j) m > H is a necessary condition for the existence of (j) m . Let us prove that the inequality @I >A (j) m > H is equivalent to m < a and j P " b m .

Proposition 3.1.

@I >A (j) m > H D m < a and j P " b m :

(

Proof. @AA: If I > (j) m > H, then, obviously z m < 1 1+ , or equivalently m < a , and @I z m A@I C A > EY (j) @I @I C Az m A. Thus (j) m a @@I z m A C z m EY (j) A@I C A EY (j) I > EY (j) @I @I C Az m A C z m EY (j) @I C A EY (j) I a @I @I C Az m A C z m @I C A I a H: @@A: Since j P " b m , we have @@I z m ACz m EY (j) A@ICA > EY (j) . Thus, @I z m A@ICA > EY (j) @I @I C Az m A. Now, since m < a , z m < 1 1+ . So, (j) m < I and EY (j) @I @I C Az m A > H. Consequently I > (j) m a @I z m A@I C A EY (j) @I @I C Az m A I > EY (j) @I @I C Az m A EY (j) @I @I C Az m A I a H:

This result highlights the obvious fact that the existence of (j) m implies that j must belong to " b m , since (j) m @uA a I for j P b m .

Let us explain the reason why the horizon of credibility d a e, denoted by m (c) from now, constitutes a critical value for the existence of the Lundberg coecient and consequently for the logarithmic asymptotic behavior of (j) m @uA. From m a m (c) , the global impact of each Y (j) k on the surplus process for k > m, i.e. Y (j) k @I @I C Az m A, becomes negative, which is, of course, a drastic change in the nature of the insured risk. Also, b m a Y for all m ! m (c) .

More fundamentally, in rst order, the only eects selected of the credibility dynamics compared to the classical case m a H are a modication of the security loading and a decreasing of the claim amounts. Indeed, equations (3.4) and (3.5) teach us that (j) m is identical to that of the classical ruin model with a premium security loading equals to (j) m and annual claim amounts given by Y (j) k @I @I C Az m A. Therefore, in this associated classical ruin model, from the critical value m (c) , no ruin can be observed, which explains the reason why a Lundberg coecient does not exist in this case.

So, since Ee rY (j) exists for all H < r < r (j) with lim r3r (j) Ee rY (j) a I, it comes that the two following conditions are of course necessary but also sucient conditions to guarantee the existence and the uniqueness of (j) m : (C1) m < m (c) , (C2) j P " b m .

Let us recall that result (3.2) requires not only the existence and the uniqueness of (j) m but also the additional condition (j) m < r (j) . Firstly, we have the following property for the Lundberg coecient (j) m : Property 3.2. Assume that (j) m 1 and (j) m 2 exist, with H m 1 < m 2 . Then, (j) m 1 < (j) m 2 . Proof. Since z m 1 < z m 2 , we have (j) m 1 < (j) m 2 and consequently, by classical results, (j) m 1 < (j) m 2 . By (3.5), we deduce (j) m 1 < (j) m 2 .

Secondly, let us dene " m (j) a minfm < m (c) X (j) m exist and (j) m ! r (j) g:

(3.8)
If (j) m does not exist for all m < m (c) , then we put " m (j) a H. Also, if for all m < m (c) such that (j) m exists, we always have (j) m < r (j) , then we put " m (j) a m (c) . Hence, if we replace condition (C1) by the stronger condition m < " m (j) , we have now necessary and sucient conditions to guarantee the existence and the uniqueness of (j) m such that (j) m < r (j) , i.e. result (3.2).

Large deviations path to the ruin

Let us assume that m < " m (j) and j P " b m , i.e. that result (3.2) is valid. The goal here is to understand how ruin occurs for large u. More particularly, we want to determine the typical shape of a path leading to ruin when the initial capital of the company is large. To this end, let us use large deviations results of [START_REF] Glynn | Logarithmic asymptotics for steady-state tail probabilities in a single-server queue[END_REF]. First of all, for large u, we know that ruin occurs roughly at time u= H m @ (j) m A. Next, the cumulant generating function u= H m ( (j) m ) @rA of Z u= H m ( (j) m ) is asymptotically changed from u= H m ( (j) m ) @rA to

u= H m ( (j) m ) @r C (j) m A u= H m ( (j) m ) @ (j) m A a r@I C A u= H m ( (j) m ) i=1 @I z i;m A C u= H m ( (j) m ) i=1 ln E 4 e (r+ (j) m )Y (j) 1 ( z i+1;m + z i+2;m +¡¡¡+ z min (i+m;u= H m ( (j) m ));m )(1+) 5 E 4 e (j) m Y (j) 1 ( z i+1;m + z i+2;m +¡¡¡+ z min (i+m;u= H m ( (j) m ));m )(1+)
5 :

(3.9)

Consequently, given that ruin occurs, the claim size distribution Y (j) k is exponentially tilted by the time-dependent factor (j) m @kA, with

for k = 1; : :

: ; u= H m ( (j) m ) m 1 u= 0 m ( (j) m ) k m z m (1 + ) (j)
m ; for k = u= H m ( (j) m ) m + 1; : : : ; u= H m ( (j) m ) :

Hence, for large u, the drift of the path to ruin at time k (k a I; : : : ; u= H m @ (j) m A), denoted as m @kA, is given by m @kA a @I z m A@I C A @I @I C

Az m A E h Y (j) e (j) m (k) Y (j) i E h e (j) m (k) Y (j)
i < H:

(3.10) However, notice that since u 3 I, the time period @u= H m @ (j) m A m C I; u= H m @ (j) m AA where m @kA decreases with k is negligible compared with the time period @I; u= H m @ (j) m A mA where m @kA remains constant.

This analysis highlights that ruin is caused by a succession of small claims, followed by a succession of moderately large claims. (j) m @uA In this subsection only, we take into account a possible claim experience of h years say, i.e.

Upper bound on

(Y (j) h+1 ; Y (j) h+2 ; : : : ; Y (j) 0 ), because, this time, as we see in the following, it will impact the result. Hence, equation (2.6) becomes

C k;m a 2 @I z k;m A C z k;m k 1 i=max(k m;1 h) Y i min@m; h C k IA 3 @I C A; (3.11)
with z k;m a min@m; h C k IA a C min@m; h C k IA a :

(3.12)

Let b a min@m; hA, and let us denote (j) m @u; y 0 ; : : : ; y 1 b A a r h U (j) k;m < H for some k jU (j) 0;m a u; Y (j) 0 a y 0 ; : : : ; Y where U k a U (j) k;m C @I C AY (j) k @" z k+1;m C ¡ ¡ ¡ C "

z k+m;m A C Y (j) k 1 @" z k+1;m C ¡ ¡ ¡ C " z k+m 1;m A C ¡ ¡ ¡ C Y (j) max(k m+1;1 h) @" z k+1;m C ¡ ¡ ¡ C "
z m+max(k m+1;1 h);m A, u a U 0 , and T a inffkjU (j) k;m < Hg, with " z k;m a z k;m min(m;h+k 1) . Proof. First, we note that U k a U (j) k;m C @I C AY (j) k @" z k+1;m C ¡ ¡ ¡ C "

z k+m;m A C Y (j) k 1 @" z k+1;m C ¡ ¡ ¡ C " z k+m 1;m A C ¡ ¡ ¡ C Y (j) max(k m+1;1 h) @" z k+1;m C ¡ ¡ ¡ C " z m+max(k m+1;1 h);m A a U (j) k 1;m C C k;m Y (j) k C@I C AY (j) k @" z k+1;m C ¡ ¡ ¡ C " z k+m;m A C Y (j) k 1 @" z k+1;m C ¡ ¡ ¡ C " z k+m 1;m A C ¡ ¡ ¡ C Y (j) max(k m+1;1 h) @" z k+1;m C ¡ ¡ ¡ C " z m+max(k m+1;1 h);m A a U (j) k 1;m C @I z k;m A@I C A C z k;m @I C A k 1 i=max(k m;1 h) Y (j) i min@m; k C h IA Y (j) k C@I C AY (j) k @" z k+1;m C ¡ ¡ ¡ C " z k+m;m A C Y (j) k 1 @" z k+1;m C ¡ ¡ ¡ C " z k+m 1;m A C ¡ ¡ ¡ C Y (j) max(k m+1;1 h) @" z k+1;m C ¡ ¡ ¡ C " z m+max(k m+1;1 h);m A a U (j) k 1;m C @I C AY (j) k 1 @" z k;m C ¡ ¡ ¡ C " z k+m 1;m A C Y (j) k 2 @" z k;m C ¡ ¡ ¡ C " z k+m 2;m A C ¡ ¡ ¡ C Y (j) max(k m;1 h) @" z k;m C ¡ ¡ ¡ C " z m+max(k m;1 h);m A C@I z k;m A@I C A Y (j) k @I @I C A@" z k+1;m C ¡ ¡ ¡ C " z k+m;m AA a U k 1 C @I z k;m A@I C A Y (j)
k @I @I C A@" z k+1;m C ¡ ¡ ¡ C " z k+m;m AA:

Hence, if we denote by ¨k the sigma-algebra generated by fY (j) i ; i a I; P; : : : ; kg, we have E h e (j) m Ûk j¨k 1 i a e (j) m Ûk 1 e (j) m (1 z k;m )(1+) E h e (j) m Y (j) (1 (1+)( z k+1;m +¡¡¡+ z k+m;m )) i :

Now, let us dene h k;m @rA a e r(1 z k;m )(1+) E h e rY (j) (1 (1+)( z k+1;m +¡¡¡+ z k+m;m )) i :

Obviously, for k ! m h C I, h k;m @rA a h m @rA. Since z k 1;m z k;m and " z k 1;m ! " z k;m , we clearly have h k 1;m @rA h k;m @rA h m @rA. Consequently, by (3.1), h k;m @ (j) m A h m @ (j) m A a I.

Thus, we get E h e (j) m Ûk j¨k 1 i a e (j) m Ûk 1 h k @ (j) m A e (j) m Ûk 1 :

So, the process fe (j) m Ûk g is a super-martingale.

Let w be a positive integer. By the Optional Stopping Theorem (considering the stopping time T w a minfT; wg),we get e (j) m @u; y 0 ; : : : ; y 1 b A:

Remark Inequality (3.14) becomes an equality when h ! m. Indeed, in this case, for k ! I, we have h k;m @ (j) m A a h m @ (j) m A a I. Thus, the process fe (j) m Ûk g is a martingale.

Furthermore, the random variables e (j) m Ûw I T >w pointwise converge to zero for w 3 I and are bounded by I since U w > H for w < T .

3.1.5

The case m ! " m (j) and j P " b m Now, let us consider the case m ! " m (j) and j P " b m . For the next result, let us denote (j) m @uA by (j) m; @uA, (j) m by (j) m; , (j) m by (j) m; , (j) m by (j) m; and (j) m by (j) m; to reveal explicitly the dependence in . Obviously, notice that (j) m; increases with . Hence, we know by classical results that (j) m; also increases with and consequently (j) m; by (3.5) (?;1) < r (j) (j) m; (?;2) . Then, we have lim u3I sup I u ln (j) m; @uA r (j) :

(3.17)

Proof. Obviously, there exists (?;1) < "

(?;2) such that (j) m; a r (j) . For all (?;1) < " , we have lim u3I sup I u ln (j) m; @uA lim u3I I u ln (j) m; @uA a (j) m; :

Letting 4 "

, we obtain (3.17).

As a particular, let us assume that Y (j) $ Exp@ j A. In this case, Ee rY (j) exists all for r < j and is equal to j j r . Clearly, r (j) a j . Now, since lim u3I I u ln rU (j) 1;m < H a j (3.18) and that (j) m @uA ! rU (j) 1;m < H, result (3.17) becomes lim u3I inf I u ln (j) m @uA a lim u3I sup I u ln (j) m @uA a j :

(3.19)

Conclusion

In conclusion, on the one hand, if j P b m then (j) m @uA a I for all u. On the other hand, if j P " b m , then for m < " m (j) , the logarithmic asymptotic behavior of (j) m @uA is given by equation (3.2) while for @IA > m ! " m (j) , the logarithmic asymptotic behavior of (j) m @uA is this time characterized by equation (3.17).

3.2

The case m = 1

Clearly, with z m a I, i.e. m a I, the results of the previous section have no meaning. This is the reason why this important case has to be treated separately. which we denote (j) I . If we assume that for all k, Ee rZ k exists for H < r < r 0 (with (j) I < r 0 ), where Z k a k i=1 @Y (j) i C i;I A, we have lim u3I I u ln (j) I @uA a (j) I :

(3.21)

Proof. Again, it suces to show that I @rA Xa lim k3I 1 k ln Ee rZ k exists for H < r < r 0 , and that (j) I is the unique positive value such that I @ (j) I A a H. We have ln Ee rZ k a r@I C A ln Ee rY (j) @1+(1+)ln@ ai ak+ AA a 1 0 dx ln E h e rY (j) (1+(1+) ln x) i :

It appears that result (3.21) requires only the existence and the uniqueness of (j) I (since the condition (j) I < r (j) is always fullled).

Equation (3.20) and so (j) I does not depend on market parameters , a and . It means that for u 3 I, the logarithmic asymptotic behavior of (j) m @uA is insensitive to the initial premium and to the speed with which premiums C k;I become Y (j)

1 +¡¡¡+Y (j) k 1 k 1 @I C A.
As a particular case, let us consider Y (j) $ N i=1 U i , where N is Poisson distributed with parameter and the U i 's are i.i.d. random variables. We assume that N and the U i 's are independent. We have Ee rY (j) We recognize the equation (2.2) in [START_REF] Asmussen | On the ruin problem for some adapted premium rules[END_REF]. In fact, this is not surprizing since (j) I is insensitive to market parameters , a and .

The Lundberg coecient (j) I

Since m a I, we know that (j) m a > H for all j, i.e. b m a Y.

Proposition 3.3. Assume that HH I @rA > H. Then, (j) I exists and is unique.

Proof. Obviously, we have I @HA a H. Denoting Y (j) @I C @I C A ln xA by Z x , we have H I @rA a since > H, and H I @rA becomes positive for large r. Now, since HH I @rA > H by assumption, the proof is over.

Large deviations path to the ruin

As previously, we aim at knowing how ruin occurs for the case m a I. Of course, the ruin occurs roughly at time u= H I @ (j) I A. Now, the cumulant generating function u= H I ( (j) I ) @rA of Z u= H I ( (j) I ) is asymptotically changed from u= H I ( (j) I ) @rA to u= H I ( (j) I ) @r C (j) I A u= H I ( (j) I ) @ (j) I A a r@I C A (3.24)

Consequently, given that ruin occurs, the claim size distribution Y (j) k is this time exponentially tilted by the factor (j) I @kA, where (j) I @kA a (3.26)

The factor (j) I @kA is negative as long as k < u= H I @ (j) I Ae 1 1+ .

We learn that this time, ruin is the consequence of atypically small claim amounts in a rst time, followed by atypically large claim amounts in a second time. This result is similar to those obtained in [START_REF] Asmussen | On the ruin problem for some adapted premium rules[END_REF] Impact of the insurer's strategy m on (j) m (u) for large u 3.3.1 Comparison of (j) m @uA and (j) m+1 @uA for large u (with m < I) Let us assume that the insurer's strategy is to take an horizon of credibility m < I. The objective is to determine for large u if it is benecial to take one year more to renew the premium. In other words, the objective is to compare (j) m @uA and (j) m+1 @uA for large u.

For j P b m , we have the following Proposition: Proposition 3.4.

(j) m+1 @uA (j) m @uA a I for all u:

(3.27)

Proof. It suces to show that b m+1 b m . Let j P b m+1 . By denition, (j) m+1 H. Let h@xA a @I xA C xEY (j) . We have h H @xA a EY (j) > H since (j) m+1 H means EY (j) ! @I C A@@I z m+1 A C z m+1 EY (j) A and > H. Thus, since z m+1 > z m , we have (j) m a @I C

A h(zm) E[Y (j) ] I < @I C A h(z m+1 ) E[Y (j) ] I a (j) m+1
H, or equivalently, j P b m .

This means that if j P b m , it is benecial to pass from an horizon of credibility m to an horizon m C I, whatever the initial capital u. Now, for j P " b m , it could seem a priori that the comparison of (j) m @uA and (j) m+1 @uA for large u diers according to the involved portfolio j. Indeed, two opposite a priori behaviours seem to take shape. If j P g, then h H @xA H and consequently (j) m ! (j) m+1 , which seems to be in favor of (j) m @uA (j) m+1 @uA whatever u and in particular for large u. But, on the other hand, if j P " b m n g, then h H @xA > H and consequently (j) m < (j) m+1 , which seems this time to be in favor of the inequality (j) m+1 @uA (j) m @uA whatever u. For m < " m (j) , we have the next Proposition: Proposition 3.5. There exists a positive constant u 0 such that for all u ! u 0 , we have (j) m+1 @uA (j) m @uA:

(3.28)

Proof. We know that j P " b m and m < " m (j) . Since b m+1 b m , j P " b m+1 . Hence, we have to consider two cases.

Firstly, let us assume that m C I < " m (j) . By Property 3.2, our result is proved.

Secondly, let us assume that m C I ! " m (j) . Hence, we know that lim u3I I u ln (j) m @uA a (j) m and lim u3I sup I u ln (j) m+1 @uA r (j) ;

and since (j) m < r (j) , this completes the proof.

Thus, even if j P g and hence (j) m ! (j) m+1 , (3.28) holds for large u. In fact, this is not surprizing. With light-tailed claims, the event ruin occurs after many atypically large claims.

At most m is large, at most the premium reacts favorably to this large claims, i.e. (j) m+1 becomes larger than (j) m in such circumstances. This facts are conrmed by our analysis of the path leading to ruin. Indeed, it teaches us that the ruin is caused by a succession of many atypically large claims more dangerous as m is large since (j) m increases with m.

For m ! " m (j) , we can nothing conclude from this kind, since the only result we have is equation (3.17).

In conclusion, assuming that the strategy of the company is m, if j P b m , then it is always benecial for large u to increase by I the horizon of credibility. Furthermore, if j P " b m , for m < " m (j) , the same conclusion comes while for m ! " m (j) , we cannot certify that this is also the case.

Sub-optimal strategies m for large u

Let us investigate sub-optimal strategies m for large u. Denition 3.5. A strategy m 1 is said to be sub-optimal compared to a strategy m 2 if for all portfolio j, we have (j) m 2 @uA (j) m 1 @uA for u 3 I. Denition 3.6. A strategy m 1 is said to be sub-optimal if there exists a strategy m 2 such that m 1 is sub-optimal compared to m 2 .

We have the next Proposition: Proposition 3.6. m < min fj: m (j) >0g " m (j) like m a I are sub-optimal.

Proof. In view of Propositions 3.4 and 3.5, it is clear that m < min fj: m (j) >0g " m (j) is suboptimal. For m a I, it is also obvious since (j) I < r (j) .

As we have seen, for a given portfolio j, increasing m decreases the number of "bad portfolios" and provides better premium adaptation to scenarios leading to ruin, at least as long as m < " m (j) . An extension of this reasoning to all m would allow to think that all m < I is sub-optimal compared to m a I. However, Proposition 3.6 shows that this is not the case. In fact, as u 3 I, all m < I becomes negligible compared to the ruin time T . Hence, the premiums will be able to react "quickly" (relatively to T ) and "signicantly" (at least for m "large" but nite) to a succession of large claim amounts, whatever the time where this claims occur and whatever the claim amounts observed before. But for m a I, obviously, this is not the case anymore. Indeed, as time passes, the premium reaction will become less and less eective to nish by not be able anymore to thwart several important successive claim amounts. This phenomenon is even truer if the claim amounts observed initially are small. This is well highlighted by the analysis of the path leading to ruin.

A probable extension of Proposition 3.6 would be then the following: m a I is suboptimal and all m < I is sub-optimal compared to m C I.

Numerical illustration

Let us consider an insurance market made up of Q portfolios, i.e. n a Q. Let us assume that Y (j) (j a I; P; Q) are Exponentially distributed, with mean I= j and variance I= 2 j . We then have a @I= 1 Ap 1 C@I= 2 Ap 2 C@I= 3 Ap 3 , a a @I= 1 A 2 p 1 C@I= 2 A 2 p 2 C@I= 3 A 2 p 3 and a @I= 2 1 Ap 1 C @I= 2 2 Ap 2 C @I= 2 3 Ap 3 . Let us assume that I= 1 a Q=R, I= 2 a I, I= 3 a S=R, p 1 a p 2 a I=Q and a H:I. We have j a I; P P g and j a Q P b m as long as m < QH.

The critical horizon of credibility m (c) a PSH. For our numerical purpose, let us compare strategies m a H; P; IH; PSH; IHHH and I. Of course, for all u, (3) m @uA a I for m a H; P and IH. Carrying out IHH HHH simulations on an horizon of IH HHH time periods, we obtain the results below, also shown on 0:764% 0:540% 0:386% 0:260% 0:200% 0:148% 0:086% 0:060% 0:046% 0:036% m = 2 0:608% 0:408% 0:276% 0:214% 0:150% 0:088% 0:054% 0:042% 0:018% 0:010% m = 10 0:450% 0:308% 0:220% 0:148% 0:094% 0:046% 0:020% 0:010% 0:006% 0:000% m = 250 0:478% 0:318% 0:236% 0:160% 0:094% 0:050% 0:024% 0:008% 0:005% 0:000% m = 1000 0:478% 0:318% 0:236% 0:160% 0:094% 0:050% 0:024% 0:008% 0:004% 0:000% m = I 0:478% 0:318% 0:236% 0:160% 0:094% 0:050% 0:024% 0:008% 0:004% 0:000% 8:688% 7:016% 5:686% 4:618% 3:746% 3:018% 2:462% 1:970% 1:598% 1:328% m = 10 2:866% 2:016% 1:452% 1:004% 0:738% 0:538% 0:374% 0:280% 0:188% 0:134% m = 250 2:190% 1:360% 0:860% 0:554% 0:380% 0:224% 0:140% 0:088% 0:060% 0:038% m = 1000 2:170% 1:304% 0:823% 0:528% 0:367% 0:203% 0:128% 0:084% 0:058% 0:037% m = I 2:286% 1:395% 0:865% 0:530% 0:365% 0:202% 0:127% 0:084% 0:058% 0:037% 18 20 m = 0 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% m = 2 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% m = 10 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% m = 250 99:992% 99:648% 96:894% 88:370% 73:964% 58:720% 42:814% 29:850% 20:238% 13:378% 8:816% m = 1000 99:994% 99:790% 97:490% 89:582% 75:532% 57:010% 41:046% 28:186% 18:682% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% m = 2 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% m = 10 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% 100:000% m = 250 5:714% 3:660% 2:440% 1:566% 1:034% 0:704% 0:486% 0:330% 0:240% 0:142% m = 1000 4:708% 2:862% 1:784% 1:048% 0:644% 0:412% 0:250% 0:146% 0:098% 0:038% m = I 4:708% 2:862% 1:784% 1:048% 0:644% 0:412% 0:250% 0:146% 0:098% 0:038% On the one hand, asymptotically, whatever the portfolio j, we see that the larger m is, the smaller (j) m @uA is, even for m ! " m (j) @ m (c) A. This conrms our theoretical ndings and intuition, namely that (also for m ! min fj: m (j) >0g " m (j) ) m is sub-optimal compared to m CI.

On the other hand, for small initial capital u, a bigger value of m may this time increase in certain cases the ultimate ruin probability. Obviously, this observation is not unexpected.

Remark Clearly, the numerical illustrations can not highlight the fact that m a I is sub-optimal.

Limit results for heavy-tailed claims

We have seen that in the case where the Lundberg coecient exists, adjusting premium with credibility may increase this one. As typical sample paths for which ruin occurs exhibit a sequence of moderately large claims, there is quite often enough time to compensate early losses with credibility-adjusted future premiums. On the opposite, in the heavy-tailed case, it is often said that ruin is likely to be caused by one large claim (see for example Theorems 1.1 and 1.2 in [START_REF] Asmussen | Large deviations results for subexponential tails, with applications to insurance risk[END_REF] in the classical risk model). It is logical to think that credibility plays a less important role for heavy-tailed claim amount distributions.

In this Section, we focus on the regular variation case. 

We note F P . The convergence is uniform on each subset y P y 0 ; IA (H < y 0 < I).

In the light-tailed case, we have studied the inuence of m on the Lundberg coecient (j) m a lim u3I I u ln (j) m @uA:

(4.2)

In our heavy-tailed case, the equivalent quantity to be studied is parameter (j) m a lim u3I I ln u ln (j) m @uA:

(4.3)
As we consider the case F j P (j), and since credibility adjustments involve implicitly that the two rst moments of claim amounts exist, we restrict to the case (j) > P. Now, for m < m (c) , we shall prove that, if j P " b m , then m does not modify the value of (j) m , which is in accordance with our intuition. Theorem 4.2. Suppose that the Y (j) k 's are regularly varying with index (j) > P. If m < m (c) and j P " b m , i.e. > EY (j) @I z m A C z m EY (j) I; (4.4) we get (j) m a lim u3I I ln u ln (j) m @uA a (j) I: where c is the (continuous-time) premium income rate, is the intensity of the Poisson process, F W is the cumulative distribution function of the individual claim amounts and W is the expected individual claim amount. In the (j) -regularly varying case with (j) > P (this means that I F W @xA $ x (j) as x 3 I;

this corresponds to cont @uA $ c W I (j) I u (j) +1 : This result may be adapted to the discrete-time model, with constant I-period premium income and independent, identically distributed (aggregate) claim amounts on each period, with (j) -regularly varying distribution: if the safety loading is positive, for (j) > I, there exists C > H such that the (discrete-time) probability of ruin disc @uA satises disc @uA $ Cu (j) +1 as u 3 I. To show this, one might for example use arguments developed in [START_REF] Rullière | Another look at the Picard-Lefèvre formula for nite-time ruin probabilities[END_REF] and [START_REF] Lefèvre | On nite time ruin probabilities for classical risk models[END_REF].

To show that there exist C 1 > H and a function 1 such that (j) m @uA ! 1 @uA and 1 @uA $ C 1 u (j) +1 as u 3 I; let us consider a modied model, in which future earned premiums due to each claim are anticipated and earned at the claim instant: if claim amount Y (j) k occurs at time k, the sum of future credibility premiums associated to Y (j) k corresponds to Y (j) k @I C A z i;m a z m , we have from Embrechts and Veraverbeke (1982) that the ruin probability 1 @uA in the modied model satises 1 @uA $ C 1 u (j) +1 for some C 1 > H as u 3 I as long as the safety loading is positive in the modied model, which is guaranteed by condition (4.4).

To show that there exist C 2 > H and a function 2 such that (j) m @uA 2 @uA and 2 @uA $ C 2 u (j) +1 as u 3 I; let us rewrite (j) m @uA as (j) m @uA a r h WI i m; U (j) i;m < H or Wi > m; U (j) i;m < H i : This means that (j) m @uA r h WI i m; U (j) i;m < H i C r h Wi > m; U (j) i;m < H i :

The rst term is O@u (j) A and so o@u (j) +1 A. where a @I C A@I z m A EY (j) @I z m @I C AA > H from Condition (4.4).

Hence, since for any sequences of nonnegative r.v.'s @X i A i!1 and @Z i A i!1 , and for any sequences of nonnegative numbers @a i A i!1 and @b i A i!1 , we have rWi ! I; X i C Z i > a i C b i rWi ! I; X i > a i C rWj ! I; Z j > b j ; we get that r h Wi > m; U (j) i;m < H The second term is equivalent to C 3 u (j) +1 as u 3 I for some constant C 3 > H, because it corresponds to a ruin probability with claim size distribution in RV @ (j) A and with a positive Y (j) l > u=P C P i 5 r Wi > m; mY (j) i > u=P C P @i mA ! a r Wi > H; mY (j) i > u=P C P i ! :

This may be rewritten as (3) m (u) 

  j) (1 ( z i+1;m + z i+2;m +¡¡¡+ z min (i+m;k);m )(1+)) rZ k a r@I z m A@I C A C ln E h e rY (j) (1 (1+)zm) i :

3 .

 3 Assume that m < " m (j) and j P " b m . Then (j) m @u; y 0 ; : : : ; y 1 b A e

3. 2 . 1

 21 Asymptotic behavior of(j) I @uA Let us state an analogue of Theorem 3.1. Theorem 3.4. Suppose that there exists a unique positive solution to the equation

  a e (e r 1) . So, the equation (3.20(1+(1+) ln x) £ a H:(3.23) 

  for his continuous time compound Poisson model. A typical path to ruin is shown in Figure 3.1.
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 5 Proof. In the compound Poisson risk model with sub-exponential claims,[START_REF] Embrechts | Estimates for the probability of ruin with special emphasis on the possibility of large claims[END_REF] have shown that the (continuous-time) classical ruin probability @uA with initial surplus u ! H (without credibility premium adjustment) behaves as u 3
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 42 Figure 4.2: Numerical results for(2) m(u) 
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 43 Figure 4.3: Numerical results for(3) 

  

Let us conclude in saying that, on the one hand, if j P b m then (j) m+1 @uA (j) m @uA a I by Proposition 3.4 (clearly also valid for the heavy-tailed case), but on the other hand, this time, if j P " b m , then an increasing of the horizon of credibility has asymptotically no impact on (j) m @uA in rst order, at least for m < m (c) .