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Abstract

In this paper, we prove the stability estimate of the inverse problem for the determination the mag-
netic field and the electric potential using the Neumann spectral data. We show that the knowledge of
the eigenvalues {λk, k ≥ 1} and the boundary value of the normal derivatives of the corresponding
eigenfunctions {∂νϕk, k ≥ 1}, and of the electro-magnetic Schrödinger operator, are sufficient to
uniquely determine the magnetic field and the electric potential.

To obtain this result, we establish the stability estimate of the inverse problem of determining
the electric potential entering the electro-magnetic wave equation in a bounded smooth domain in
Rd from boundary observations. This information is enclosed in the hyperbolic (dynamic) Dirichlet-
to-Neumann map associated to the solutions to the electro-magnetic wave equation. We prove in
dimension d ≥ 2 that the knowledge of the Dirichlet to Neumann map for the electro-magnetic wave
equation measured on the boundary determines uniquely the electric potential.

Keywords: Stability estimate, hyperbolic inverse problem, magnetic field, Dirichlet to Neumann
map, spectral data.

1 Introduction

Throughout this paper, we assume that the dimension d ≥ 2. Let Ω ⊂ Rd be an open bounded set, with
C∞ boundary Γ = ∂Ω. Given T > 0, we consider the following initial boundary value problem for the
wave equation with a magnetic and electric potential

(
∂2
t −∆A + q(x)

)
u(t, x) = 0 in Q = (0, T )× Ω,

u(0, x) = 0, ∂tu(0, x) = 0 in Ω,

u(t, x) = f(t, x) on Σ = (0, T )× Γ,

(1.1)

where

∆A =
d∑
j=1

(∂j + i aj)
2 = ∆ + 2i A · ∇+ i div(A)−A ·A , (1.2)
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and A = (aj)1≤j≤d ∈ W 3,∞(Ω; Rd) is a magnetic potential and the bounded electric potential q ∈
L∞(Ω). It is well known (see [24]) that if f(0, x) = 0 then (1.1) is a well-posed initial-boundary value
problem. Therefore, we may define the operator

ΛA,q : H1(Σ) −→ L2(Σ)
f 7−→ (∂ν + i A · ν)u (1.3)

where ν(x) denotes the unit outward normal to Γ at x. The operator ΛA,q, which is the main subject of
this paper, is called the Dirichlet to Neumann map of (1.1) on Σ.

Using energy estimate one can prove that ΛA,q is continuous from H1(Σ) to L2(Σ). The inverse
problem is whether knowledge of the Dirichlet-to-Neumann map ΛA,q on the boundary determines
uniquely the magnetic potential A and the electric potential q.

As given in [3] and [12], it is clear that one can not hope to uniquely determine the vector field A
and that is due to the invariance of the Dirichlet-to-Neumann map by gauge transformation. For that, in
geometric term, the vector field A defines the connection given by the one form αA =

∑d
j=1 ajdxj , and

the non-uniqueness says that the best we could hope to reconstruct from the Dirichlet-to-Neumann map
ΛA,q is the connection dαA given by

dαA =
d∑

i,j=1

(
∂ai
∂xj
− ∂aj
∂xi

)
dxj ∧ dxi. (1.4)

We denote by

HA,q(x,D) = −∆A + q(x)

where ∆A as given by (1.2), with domain D(HA,q) = H1
0 (Ω) ∩ H2(Ω). It is well known that the

spectrum of HA,q consists of a sequence of the eigenvalues, counted according to their multiplicities

λ1,A,q ≤ λ2,A,q ≤ . . . ≤ λk,A,q → +∞.

The corresponding eigenfunctions is denoted by (ϕk,A,q). We may assume that this sequence form an
orthonormal basis of L2(Ω).
We consider the eigenvalue problem

HAl,ql(x,D)ϕ(x) = λϕ(x) in Ω,

ϕ(x) = 0 on Γ.
(1.5)

To simplify the notation we have

(λk,Al,ql)k = (λlk)k and (ϕk,Al,ql)k = (ϕlk)k for l = 1, 2.

We assume that 0 is not an eigenvalue of HA,q. Then using the elliptic regularity, we obtain

‖ϕk‖H2(Ω) ≤ Cλk ‖ϕk‖L2(Ω) .

Where, C is depending only on Ω,M. Therefore

‖∂νϕk‖H1/2(Γ) ≤ Cλk.
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To obtain an asymptotic behavior of eigenvalues of HA,q, we cannot apply the Weyl’s formula. Then
this is owing to the difficulty to find an exact elementary solution of the parabolic equation corresponds
to this operator. Since the counting function

N(λ̃) = #{k ≥ 1, λk ≤ λ̃}

depends only on principal part of the symbol of HA,q(x,D) which equal to |ξ|2 (See Reiko and Sigeru
[30]), we have

C−1k2/d ≤ λk ≤ Ck2/d.

Then, we can conclude that
‖∂νϕk‖H1/2(Γ) ≤ Ck

2/d. (1.6)

We recall that `1 is the usual Banach space of real-valued sequences such that the corresponding series
is absolutely convergent. This space is equipped with its natural norm.

We fix d+ 2 > m >
d

2
+ 1 such that w = (wk)k is the sequence given by wk = k

−2m
d for each k ≥ 1.

We introduce the following Banach spaces

`1w(H1/2(Γ)) = {g = (gk)k; gk ∈ H1/2(Γ); k ≥ 1 and
(

wk ‖gk‖H1/2(Γ)

)
∈ `1},

and
`1w(C) = {y = (yk)k; yk ∈ C; k ≥ 1 and (wk |yk|) ∈ `1}.

The natural norms on this spaces are respectively

‖g‖`1w(H1/2(Γ)) =
∑
k≥1

wk ‖gk‖H1/2(Γ) , (1.7)

and
‖y‖`1w(C) =

∑
k≥1

wk |yk| . (1.8)

In what follows, we shall use the following notations:

DΩ = inf
{
R ∈ R+ : Ω ⊂ B(x0, R) for some x0 ∈ Rd

}
. (1.9)

Here B(x0, R) =
{
x ∈ Rd : |x− x0| < R

}
.

The one-dimensional inverse problem of the reconstruction of a differential operator from its spectral
data goes back to 40-50 th (Börg [10], Levinson [23], Gelfand-Levitan [14], Krein [20, 21]).

The issue of stability estimates for multidimensional inverse spectral problems for hyperbolic opera-
tor with electric potential was first addressed by Alessandrini and Sylvester [1] and recently Bellassoued,
Choulli and Yamamoto [4] found a stability estimate related to the multidimensional Borg-Levinson the-
orem using a result of stability in determining q from a partial Dirichlet to Neumann map provided that
q is a priori known in a neighborhood of the boundary of spatial domain and satisfies on additional con-
dition. And this result is an extension of result in [11] which itself is a variant of a theorem in [1].

The inverse spectral problem for the Schrödinger operator with analytic potential was considered
by Berezanskii [8, 9]. In 1987 Sylvester and Uhlmann [33] and Novikov and Henkin [15] proved the
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uniqueness in the nonanalytic case. A.Nachman, J.Sylvester, G.Uhlmann [25] solved the inverse bound-
ary spectral problem for the Schrödinger operator by reducing it to the inverse boundary value problem
in fixed frequency and then using the method of complex geometric optics [33].

For more general literature see Katchalov, Kurylev and Lassas [22] studies of the inverse boundary
spectral problem. The main aim of this book is to develop a rigorous theory to solve several types of
inverse problem exactly, rather than to discuss applied numerical aspects of these problems.

In this paper, we show how to obtain estimates for dαA and q by some spectral data. More precisely,
we will show that the knowledge of the eigenvalues {λk, k ≥ 1} and the boundary value of the normal
derivatives of the corresponding eigenfunctions {∂νϕk, k ≥ 1} is sufficient to uniquely determine the
magnetic field dαA and the electric potential q. Our main result is given by the following theorem

Theorem 1 Let A1, A2 be two real W 3,∞(Ω; Rd) vector fields on Ω and q1, q2 ∈ L∞(Ω), α > d
2 + 3

such that ‖Al‖Hα(Ω) ≤ M and ‖ql‖L∞(Ω) ≤ M for l = 1, 2. We assume that A1 = A2 and q1 = q2 on
the boundary Γ. Then there exist a constant C > 0 and 0 < θ < 1 such that

‖q1 − q2‖H−1(Ω) + ‖dαA1 − dαA2‖L∞(Ω) ≤ C
(∥∥λ1 − λ2

∥∥
`1w(C)

+
∥∥∂νϕ1 − ∂νϕ2

∥∥
`1w(H1/2(Γ))

)θ
.

(1.10)
The left-hand side of the inequality is assumed to be small and C depends on Ω, M and d.

To prove Theorem 1, we shall make use of the Dirichlet to Neumann given by (1.3). So we are going
to establish a stability result for the inverse problem consisting in the determination of magnetic field
dαA and the potential q from the norm of the D-to-N map ΛA,q in L(H1(Σ), L2(Σ)).

Theorem 2 Let A1, A2 be two real W 3,∞(Ω; Rd) vector fields on Ω and q1, q2 ∈ L∞(Ω), α > d
2 + 3

such that ‖Al‖Hα(Ω) ≤ M and ‖ql‖L∞(Ω) ≤ M for l = 1, 2. We assume that A1 = A2 and q1 = q2 on
the boundary Γ and T > DΩ. Then there exist a constant C > 0 and µ′ ∈ (0, 1) such that

‖q1 − q2‖H−1(Ω) + ‖dαA1 − dαA2‖L∞(Ω) ≤ C ‖ΛA1,q1 − ΛA2,q2‖
µ′ . (1.11)

Where C depends on Ω, M , T and d.

In order to study the spectral stability, we denote by Λ̃A,q the restriction of ΛA,q in the space
H2d+4(0, T ;H3/2(Γ)) which given by

Λ]A,q : H2d+4(0, T ;H3/2(Γ)) −→ L2((0, T );Hs(Γ)), (1.12)

for any s ∈ [0, 1/2]. We denote ‖.‖s the norm in L(H2d+4(0, T ;H3/2(Γ)), L2((0, T );Hs(Γ))).

Theorem 3 Let A1, A2 be two real W 3,∞(Ω; Rd) vector fields on Ω and q1, q2 ∈ L∞(Ω), α > d
2 + 3

such that ‖Al‖Hα(Ω) ≤ M and ‖ql‖L∞(Ω) ≤ M for l = 1, 2. We assume that A1 = A2 and q1 = q2 on
the boundary Γ and T > DΩ. Then there exists a constant C > 0 and µ ∈ (0, 1) such that

‖q1 − q2‖H−1(Ω) + ‖dαA1 − dαA2‖L∞(Ω) ≤ C
∥∥∥Λ]A1,q1

− Λ]A2,q2

∥∥∥µ
s
. (1.13)

Where C depends on Ω, M , T and d.
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The inverse problem given by Theorem 2 and 3 is to recover information about the magnetic and
electric potential from the D-to-N map measured on the whole boundary.

The hyperbolic inverse problem often occurs in applications, they have been extensively studied and
there are several methods to solve them. Most methods are based on the geometrical ideas and finite
speed of propagation e.g Isakov [18]. The results devoted to the uniqueness in these problems can be
found in Eskin [13], Rakesh-Symes [28] , Ramm-Sjostrand [29].

Although stability in the hyperbolic inverse problem is a less studied subject than uniqueness, there
are already many interesting results in this direction. These results Bellassoued [2], Bellassoued-Ben
Joud [3], Bellassoued-Jellali-Yamamoto [5, 6], Imanuvilov-Yamamoto [16], [19], [32].

The paper is organized as follows. Section 2 is devoted to prove the Theorem 1. Section 3 deals
with the construction of geometrical optics solutions, Hodge decomposition and contains the proof of
Theorem 2 and 3. Finally, we give a proof of some important Lemmas considered in the Appendix.

2 Proof of Theorem 1

Let A ∈ W 3,∞(Ω,Rd) and q ∈ L∞(Ω). We denote σ(HA,q) = {λk}k≥1 be the spectrum of HA,q and
ρ(HA,q) = C \ σ(HA,q) be resolvent set of σ(HA,q). For any λ ∈ ρ(HA,q) and f ∈ H3/2(Γ), we
introduce the elliptic problem 

(−∆A + q − λ)u = 0 in Ω,

u = f on Γ.
(2.1)

We define the D-to-N map associated to the above problem given by

ΠA,q : H3/2(Γ)→ Hs(Γ) (2.2)

for 0 < s < 1
2 , such that ΠA,q(f) =

∂u

∂ν
+ iA.νu. We denote by ‖.‖ 3

2
,s the norm in L(H3/2(Γ), Hs(Γ)).

We are going to introduce the following lemmas, which are given in [1], [4] and [11], in case we
have a laplace instead of the magnetic laplace. For more detail, we shall sketch the proofs to Lemma 2.2
and 2.3 in an appendix.

Lemma 2.1 Let A ∈ W 3,∞(Ω; Rd) and q ∈ L∞(Ω). Then for any m > d
2 , f ∈ H3/2(Γ) and λ ∈

ρ(HA,q), we have

dm

dλm

(
ΠA,q(λ)

)
f = −m!

∑
k≥1

1
(λk − λ)m+1

〈f, ∂νϕk〉 ∂νϕk |Γ,

where 〈 , 〉 denote the inner product in L2(Γ).

Lemma 2.2 Let 0 < s < 1
2 . We fix j ≥ 0 then we have∥∥∥∥∥

(
d

dλ

)j (
ΠA1,q1(λ)−ΠA2,q2(λ)

)∥∥∥∥∥
3
2
,s

≤ C |λ|−j+
1
4

(1+2s) .
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Remark 1 The difference between the result of the previous lemma and what was expressed in [1] is the
power of the λ and this is due to the presence of the magnetic potential.

Lemma 2.3 For any f ∈ H2(d+2)(0, T,H1/2(Γ)) satisfies(
∂

∂t

)j
f(0, x) = 0 for x ∈ Γ and j = 0, 1, . . . , 2d+ 3,

we have

Λ]A,q(f) =
d+1∑
j=0

[(
d

dλ

)j
ΠA,q(λ)

]
λ=0

(
− ∂2

∂t2

)j
f + RA,qf, (2.3)

where,

RA,q(f) =
∞∑
k=1

(λk)
−d−5/2 ∂ϕk

∂ν

∫ t

0
sin
√
λk(t− s)

〈(
− ∂2

∂s2

)d+2

f(s, .), ∂νϕk(.)

〉
ds+ iA.νf,

where 〈 , 〉 denote the inner product in L2(Γ).

2.1 Preliminaries estimations

In this subsection, We will introduce the estimates, which are the keys of our result. For that we note

P(j)(λ) =
(
d

dλ

)j (
ΠA1,q1(λ)−ΠA2,q2(λ)

)
,

R](f) = RA1,q1(f)−RA2,q2(f)

and
δ =

∥∥λ1 − λ2
∥∥
`1w(C)

+
∥∥∂νϕ1 − ∂νϕ2

∥∥
`1w(H1/2(Γ))

.

Lemma 2.4 There exists a constant C > 0 such that the following estimates holds true∥∥∥P(d+1)(λ)
∥∥∥

3
2
,s
≤ Cδ. (2.4)

and ∥∥∥P(j)(0)
∥∥∥

3
2
,s
≤ Cδθ, (2.5)

for any λ ≤ 0. Where θ is equal to 1− 4d−4
4d+5−2s .
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Proof . We first address the case where j = d+ 1. We suppose that A1 = A2 on Γ. For f ∈ H3/2(Ω),
we have the following equation

P(d+1)(λ)(f) = (d+ 1)!

−∑
k≥1

1
(λ1
k − λ)d+2

〈
f, ∂νϕ

1
k

〉
∂νϕ

1
k +

∑
k≥1

1
(λ2
k − λ)d+2

〈
f, ∂νϕ

2
k

〉
∂νϕ

2
k


= −(d+ 1)!

∑
k≥1

(
1

(λ1
k − λ)d+2

− 1
(λ2
k − λ)d+2

)〈
f, ∂νϕ

1
k

〉
∂νϕ

1
k

−(d+ 1)!
∑
k≥1

1
(λ2
k − λ)d+2

< f, ∂νϕ
1
k − ∂νϕ2

k > ∂νϕ
1
k

−(d+ 1)!
∑
k≥1

1
(λ2
k − λ)d+2

( 〈
f, ∂νϕ

2
k

〉 (
∂νϕ

1
k − ∂νϕ2

k

) )
= I1 + I2 + I3.

Where

I1 = −(d+ 1)!
∑
k≥1

(
1

(λ1
k − λ)d+2

− 1
(λ2
k − λ)d+2

)〈
f, ∂νϕ

1
k

〉
∂νϕ

1
k

I2 = −(d+ 1)!
∑
k≥1

1
(λ2
k − λ)d+2

〈
f, ∂νϕ

1
k − ∂νϕ2

k

〉
∂νϕ

1
k

I3 = −(d+ 1)!
∑
k≥1

1
(λ2
k − λ)d+2

( 〈
f, ∂νϕ

2
k

〉 (
∂νϕ

1
k − ∂νϕ2

k

) )
.

We have the following estimates

‖I1‖H1/2(Γ) ≤ (d+ 1)!
∑
k≥1

∣∣∣∣ 1
(λ1
k − λ)d+2

− 1
(λ2
k − λ)d+2

∣∣∣∣ ∥∥∂ϕ1
k

∥∥2

H1/2(Γ)
‖f‖L2(Γ) . (2.6)

Using the asymptotic behavior of the eigenvalue and elliptic regularity we have∣∣∣∣ 1
(λ1
k − λ)d+2

− 1
(λ2
k − λ)d+2

∣∣∣∣ ≤ C max
k≥1

(
1

(λ1
k)
d+3

,
1

(λ2
k)
d+3

) ∣∣λ1
k − λ2

k

∣∣
≤ C

k
2
d

(d+3)

∣∣λ1
k − λ2

k

∣∣ (2.7)

and ∥∥∂ϕ1
k

∥∥
H1/2(Γ)

≤ k
2
d . (2.8)

Combining (2.6), (2.7) and (2.8) we obtain

‖I1‖H1/2(Γ) ≤ (d+ 1)!
∑
k≥1

1

k
2
d

(d+2)

∣∣λ1
k − λ2

k

∣∣ ‖f‖L2(Γ) . (2.9)

Using the fact that 2
d(d+ 2) > 2

dm, then we have

‖I1‖H1/2(Γ) ≤ C
∥∥λ1 − λ2

∥∥
`1w(C)

‖f‖L2(Γ) . (2.10)
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Using expression of I2, we have

‖I2‖H1/2(Γ) ≤ (d+ 1)!
∑
k≥1

1∣∣λ2
k − λ

∣∣d+2

∥∥∂νϕ1
k

∥∥
H1/2(Γ)

∥∥∂νϕ1
k − ∂νϕ2

k

∥∥
H1/2(Γ)

‖f‖L2(Γ) .

By (2.8) we have

‖I2‖H1/2(Γ) ≤ (d+ 1)!
∑
k≥1

1

k
2
d

(d+2)

∥∥∂νϕ1
k − ∂νϕ2

k

∥∥
H1/2(Γ)

‖f‖L2(Γ)

≤ C
∥∥∂νϕ1 − ∂νϕ2

∥∥
`1w(H1/2(Γ))

‖f‖L2(Γ) . (2.11)

Using the same argument, we obtain

‖I3‖H1/2(Γ) ≤ C
∥∥∂νϕ1 − ∂νϕ2

∥∥
`1w(H1/2(Γ))

‖f‖L2(Γ) . (2.12)

Combining (2.10), (2.11) and (2.12), we have the desired inequality given by (2.4).

Now, we will prove the second inequality given by (2.5). So to obtain the remaining cases (j < d+1),
we write Taylor’s formula with remainder, we may write, for 1 ≤ j ≤ d.

P(j)(0) =
d∑
h=j

P(h)(λ)
(h− j)!

(−λ)h−j +
∫ 0

λ

(−τ)d−j

(d− j)!
P(d+1)(τ)dτ. (2.13)

Using Lemma 2.2, we have ∥∥∥P(h)(λ)
∥∥∥

3
2
,s
≤ C |λ|−h+ 1

4
(1+2s) .

Then

∥∥∥P(h)(0)
∥∥∥

3
2
,s
≤ C

 d∑
h=j

|λ|h−j |λ|−h+ 1
4

(1+s) + |λ|d−j+1
∥∥∥P(d+1)

∥∥∥
3
2
,s


≤ C

 d∑
h=j

|λ|−j+
1
4

(1+2s) + |λ|d−j+1
∥∥∥P(d+1)

∥∥∥
3
2
,s

 . (2.14)

Using (2.4), we obtain

∥∥∥P(h)(0)
∥∥∥

3
2
,s
≤ C

 d∑
h=j

|λ|−j+
1
4

(1+2s) + |λ|d−j+1 δ

 . (2.15)

We suppose that |λ| ≥ 1, so it easy to see that |λ|−j+
1
2 ≤ 1 and |λ|−j ≤ 1 for j ≥ 1. Then we have∥∥∥P(h)(0)

∥∥∥
3
2
,s
≤ C

(
|λ|−

1
4

(1−2s) + |λ|d+1 δ
)

for |λ| ≥ 1. (2.16)

For |λ| = δ−
4

4d+5−2s and for θ = 1− 4d−4
4d+5−2s .

This completes the proof. �
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Lemma 2.5 There exists C > 0 such that the following estimate is holds∥∥∥R]
∥∥∥
s
≤ Cδ. (2.17)

We remind that ‖.‖s is the norm in L(H2d+4(0, T ;H3/2(Γ)), L2((0, T );Hs(Γ))).

Proof . We denote fj =
(
−∂2

∂s2

)j
f , since A1 = A2 on Γ, then

R](f) =
∑
k≥0

(
λ1
k

)−d−5/2
∂νϕ

1
k

∫ t

0
sin
√
λ1
k(t− s)

〈
fd+2(s, .), ∂νϕ1

k(.)
〉
ds

−
∑
k≥0

(
λ2
k

)−d−5/2
∂νϕ

2
k

∫ t

0
sin
√
λ2
k(t− s)

〈
fd+2(s, .), ∂νϕ2

k(.)
〉
ds.

We split R](f) into three terms R](f) = F1 + F2 + F3, where

F1 =
∑
k≥0

∂νϕ
1
k

∫ t

0

sin
√
λ1
k(t− s)(

λ1
k

)d+5/2
−

sin
√
λ2
k(t− s)(

λ2
k

)d+5/2

〈fd+2(s, .), ∂νϕ1
k(.)
〉 ds

F2 =
∑
k≥0

1
(λ2
k)
d+5/2

(
∂νϕ

1
k − ∂νϕ2

k

) ∫ t

0
sin
√
λ2
k(t− s)

〈
fd+2(s, .), ∂νϕ1

k(.)
〉
ds

F3 =
∑
k≥0

1
(λ2
k)
d+5/2

∂ϕ2
k

∂ν
.

∫ t

0
sin
√
λ2
k(t− s)

〈
fd+2(s, .),

(
∂νϕ

1
k(.)− ∂νϕ2

k(.)
)〉
ds.

So we have the following estimates

‖F1‖H1/2(Γ) ≤
∑
k≥0

∥∥∥∥∂ϕ1
k

∂ν

∥∥∥∥2

H1/2(Γ)

∫ t

0

∣∣∣∣∣∣
sin
√
λ1
k(t− s)(

λ1
k

)d+5/2
−

sin
√
λ2
k(t− s)(

λ2
k

)d+5/2

∣∣∣∣∣∣ ‖fd+2(s, .)‖L2(Γ) ds.

On the other hand we have∣∣∣∣∣∣
sin
√
λ1
k(t− s)

(λ1
k)
d+5/2

−
sin
√
λ2
k(t− s)

(λ2
k)
d+5/2

∣∣∣∣∣∣ ≤ max
k≥1

(
1

(λ1
k)
d+3

,
1

(λ2
k)
d+3

) ∣∣λ1
k − λ2

k

∣∣
≤ 1

k
2
d

(d+3)

∣∣λ1
k − λ2

k

∣∣ .
So we have

‖F1‖H1/2(Γ) ≤
∑
k≥0

∥∥∥∥∂ϕ1
k

∂ν

∥∥∥∥2

H1/2(Γ)

1

k
2
d

(d+3)

∣∣λ1
k − λ2

k

∣∣ ∫ t

0
‖fd+2(s, .)‖L2(Γ) ds. (2.18)
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When we use (2.8), we obtain

‖F1‖H1/2(Γ) ≤
∑
k≥0

1

k
2
d

(d+3)

∣∣λ1
k − λ2

k

∣∣ ∫ t

0
‖fd+2(s, .)‖L2(Γ) ds

≤ C
∥∥λ1 − λ2

∥∥
`1w(C)

‖f‖H2d+4(0,T ;H1/2(Γ)) .

Furthermore

‖F2‖H1/2(Γ) ≤
∑
k≥0

1

k
2
d

(d+5/2)

∣∣∣∣∂ϕ1
k

∂ν
−
∂ϕ2

k

∂ν

∣∣∣∣ ∥∥∥∥∂ϕ1
k

∂ν

∥∥∥∥
H1/2(Γ)

∫ t

0
‖fd+2(s, .)‖L2(Γ) ds

≤
∑
k≥0

1

k
2
d

(d+5/2)

∣∣∣∣∂ϕ1
k

∂ν
−
∂ϕ2

k

∂ν

∣∣∣∣ ∫ t

0
‖fd+2(s, .)‖L2(Γ) ds

≤
∥∥∂νϕ1 − ∂νϕ2

∥∥
`1w(H1/2(Γ))

‖f‖H2d+4(0,T ;H1/2(Γ)) .

Using the same calculus we obtain

‖F3‖H1/2(Γ) ≤
∥∥∂νϕ1 − ∂νϕ2

∥∥
`1w(H1/2(Γ))

‖f‖H2d+4(0,T ;H1/2(Γ)) .

As a conclusion we found the following estimate∥∥∥R]
∥∥∥
s
≤ Cδ.

This completes the proof of the Lemma. �

2.2 End of the proof of Theorem 1

Using the result of Lemma 2.4, we obtain the following estimate for any ϕ ∈ H3/2(Γ)∥∥∥∥∥
[(

d

dλ

)j (
ΠA1,q1(λ)−ΠA2,q2(λ)

)]
λ=0

ϕ

∥∥∥∥∥
Hs(Γ)

≤ δθ ‖ϕ‖H3/2(Γ) . (2.19)

We rely on the decomposition given (2.3), it follows from (2.19) that for any ψ ∈ H2d+4(0, T ;H3/2(Γ))∥∥∥∥∥
[(

d

dλ

)j (
ΠA1,q1(λ)−ΠA2,q2(λ)

)]
λ=0

ψ

∥∥∥∥∥
L2(0,T ;Hs(Γ))

≤ δθ ‖ψ‖H2d+4(0,T ;H3/2(Γ)) .

Using the estimation given above and the result of Lemma 2.5, we have∥∥∥Λ]A1,q1
− Λ]A2,q2

∥∥∥
s
≤ Cδθ, (2.20)

provided that δ is sufficiently small.
Combining this estimate with (1.13), we obtain the result of Theorem 1.
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3 Stability estimate for the inverse problem from the D-to-N map

In this section, we are interested in the proof of the Theorems 2 and 3. For this, we will prove the two
following estimates which are given in the Theorem 2

‖dαA1 − dαA2‖L∞(Ω) ≤ C ‖ΛA1,q1 − ΛA2,q2‖
µ′ . (3.21)

‖q1 − q2‖H−1(Ω) ≤ C ‖ΛA1,q1 − ΛA2,q2‖
µ′ . (3.22)

We have the same estimates when we replace ||ΛA1,q1 − ΛA2,q2 || by ||Λ]A1,q1
− Λ]A2,q2

|| and this is the
result of Thorem 3.
To prove the first inequality, we repeat the same idea in Bellassoued and Ben Joud [3] but the difference
between the two works is that in [3], we consider only the wave operator in the magnetic field and in this
work we added an electric potential. That does not modify neither the Construction of the geometrical
optic solutions nor the proofs, we just add in the term V , given in the lemma 3.1 in [3], the term (q1 −
q2)u2 and the following estimate∣∣∣∣∫

Q
V (x)u2(t, x).v(t, x)dx dt

∣∣∣∣ ≤ CNω(φ2)Nω(φ1)

is still true. The norm Nω(φ) is given after that.
The estimate for the electric potentials is slightly more involved and the complications would arise when
one tries to establish the estimate for the electric potential (lower order) in the presence of the magnetic
field (higher order). To remedy to this difficulty, we first show by using the Hodge decomposition that the
d operator on differential forms in some sense ”bounded invertible” when restricted to right subspaces.
Then we will combine this fact with the estimate we have for dαA1 − dαA2 to obtain the estimate for
electric potentials. The rest of this paper is devoted to prove an estimate of the electric potential.

3.1 Construction of geometrical optics solutions

The following result concerning the existence of the geometrical optics solutions for the magnetic wave
equation will be important to prove our main result. From the hypothesis there exists % > 0 such that
T > T − 4% > DΩ and Ω lies in the ball B(x0,

T
2 − 2%). We may assume without loss of generality that

x0 is the origin of Rd, and let

D% = B

(
0,
T

2

)
\B
(

0,
T

2
− 2%

)
=
{
x ∈ Rd :

T

2
− 2% < |x| < T

2

}
. (3.1)

Let φ ∈ C∞0 (Rd) such that
supp(φ) ⊂ D%.

Thus we have
suppφ ∩ Ω = ∅, (suppφ± Tω) ∩ Ω = ∅, ∀ω ∈ Sd−1. (3.2)

Moreover the function Φ(t, x) = φ(x+ tω) solves in R× Rd the transport equation

(∂t − ω · ∇) Φ(t, x) = 0. (3.3)

Finally, for ω ∈ Sd−1 we set

H2
ω(D%) =

{
φ ∈ H2(Rd), ω · ∇φ ∈ H2(Rd), and supp(φ) ⊂ D%

}
(3.4)
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and
Nω(φ) = ‖φ‖H2(Rd) + ‖ω · ∇φ‖H2(Rd) . (3.5)

Now we recall the following Lemma which is proved in [3].

Lemma 3.1 Let ω ∈ Sd−1, φ ∈ H2
ω(D%), A ∈W 3,∞(Ω; Rd), q ∈ L∞(Ω) and τ > 0, then(

∂2
t −∆A + q

)
u(t, x) = 0, (t, x) ∈ Q = (0, T )× Ω

has a solution of the form

u(t, x) = φ(x+ tω)b(t, x)eiτ(x.ω+t) + ψτ (t, x), (3.6)

where

b(t, x) = exp
(
i

∫ t

0
ω ·A(x+ sω)ds

)
(3.7)

and ψτ (t, x) satisfies
ψτ (t, x) = 0, for all (t, x) ∈ Σ

and
ψτ (θ, x) = 0, x ∈ Ω, θ = 0 or T.

Moreover
τ ‖ψτ‖L2(Q) + ‖∇ψτ‖L2(Q) ≤ CNω(φ) (3.8)

where C is a constant depending only on Ω, T , d and ‖A‖W 3,∞(Ω;Rd).

3.2 Hodge decomposition

We consider (Ω,Γ) to be a Riemannian manifold with boundary and denote by F k(Ω) to be set of k-
forms on Ω and Wm,pF k(Ω) to be its Wm,p closure. Set

Ek(Ω) := {dα; α ∈ H1
DF

k−1(Ω)}, Ck(Ω) := {dα; α ∈ H1
NF

k−1(Ω)},

where H1
DF

k(Ω) and H1
NF

k(Ω) are the set of H1 k-forms with homogenous Dirichlet and Neumann
boundary trace, respectively. Furthermore, we denote by Hk(Ω) to be the L2 closed of the space of
harmonic k-forms. The corresponding subspaces in Wm,pF k(Ω) are denoted by

Wm,pEk(Ω) := Ek(Ω) ∩Wm,pF k(Ω), Wm,pCk(Ω) := Ck(Ω) ∩Wm,pF k(Ω)

and
Wm,pHk(Ω) := Hk(Ω) ∩Wm,pF k(Ω).

Finally, we denote

Wm,p
D (Ω; Rn) = {A ∈Wm,p(Ω; Rn); A.τ̂ = 0, ∀ τ̂ ∈ TxΓ, x ∈ Γ}

and
X0 =

(
Wm,pC1(Ω)⊕Wm,pH1(Ω)

)
∩Wm,p

D (Ω; Rn).
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In the classical form the Hodge decomposition theorem states that if Ω is a smooth subdomain of
smooth compact Riemannian manifold, then any smooth differential form A in Ω can be decomposed as

A = dα+ δβ + κ

where α, β, κ are smooth differential forms in Ω, two of which have a vanishing normal or tangential
component on Ω and so that dκ = δκ = 0. Here d is the exterior differential operator and δ is the
codifferential.
If A ∈Wm,pF 1 and Ω has a smooth boundary, then on has Hodge decomposition given by

A = dα+ δβ + κ and α ∈Wm+1,p
D (Ω,R), δβ ∈Wm,pC1(Ω) and κ ∈Wm,pH1(Ω). (3.9)

Further, the three summands in (3.9) are uniquely determined and mutually orthogonal with respect to
the natural L2 inner product.
Based on the Hodge decomposition, Tzou showed in [34], that for p ≥ 2 and m ≥ 1

d : X0 −→Wm−1,pE2(Ω) has a bounded inverse.

This statement means that for all A ∈Wm−1,pE2(Ω) we have ‖A‖Wm,p(Ω,Rn) ≤ C ‖dA‖Wm−1,p(Ω,Rn).
We would like to apply this result to the vector field (A1 − A2) which may not be in X0. For that, pick
p > n and apply the Hodge decomposition to (A1 − A2) in the space W 3,∞(Ω; Rn) to get A1 − A2 =

dα + δβ + κ, where α ∈ W 4,∞(Ω) ∩ H1
0 (Ω). Define A′1 = A1 −

dα

2
, A′2 = A2 +

dα

2
so that

A′1 − A′2 ∈ W 3,∞C1(Ω) ⊕W 3,∞H1(Ω). Since we have already assumed that A1 − A2 = 0 in Γ, it
is easy to show that it has no tangential component at the boundary and α ∈ H1

0 (Ω), we conclude that
A′1 −A′2 has no tangential component. This means that

A′1 −A′2 ∈W 3,∞C1(Ω)⊕W 3,∞H1(Ω) ∩H1
D(Ω; Rn).

So by the Lemma 6.2 from [34]∥∥A′1 −A′2∥∥W 3,∞(Ω)
≤ C

∥∥∥dαA′1 − dαA′2∥∥∥L∞(Ω)
= ‖dαA1 − dαA2‖L∞(Ω) . (3.10)

Gauge equivalence then implies that ΛA′j ,qj = ΛAj ,qj for j = 1, 2.

Remark 2 With this choice of A′1 and A′2, we remake that div(A′1 − A′2) = 0. This come from the fact
that on the 1-form div = ∗d∗, so using this definition, the Lemma 4.1 in Ben Joud [7] and the fact that κ
is an harmonic form we obtain

div(A′1 −A′2) = div(δβ + κ) = ∗d ∗ δβ + ∗d ∗ κ = −δδβ − δκ = 0.

We will from now, make the same work again with the magnetic field defined above. In this case, with
this special forms of A′1 and A′2, there is a condition change given by A′1 − A′2 is not vanish in Γ but it
has not tangential component.
As before, we set

A′(x) = (A′1 −A′2)(x) (3.11)

and

V ′(x) = −idiv(A′) + (A
′2
2 −A

′2
1 )(x) = (A

′2
2 −A

′2
1 )(x) = (A′2 −A′1)(A′2 +A′1). (3.12)

Recall that since (A′1−A′2) = 0 and (q1− q2) = 0 on Γ, we can extend A′ to a H1(Rd) vector field and
q to L∞(Rd) by defining it to be zero outside of Ω and we will refer to the extension as A′ and q. We can
extend V to L∞(Rd) function by defining it to be zero outside of Ω and we will refer to the extension as
V .
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3.3 Preliminaries estimates

In this subsection, we complete the proof of Theorem 2. We are going to use the geometrical optics
solutions and the x-ray transform of the difference of two magnetic potentials.
As before, we let ω ∈ Sd−1 and Al ∈ W 3,∞(Ω; Rd), ql ∈ L∞(Ω; Rd) such that ‖Al‖W 3,∞ ≤ M and
‖ql‖L∞ ≤M for l = 1, 2. We set A′(x) = (A′2 −A′1)(x), q(x) = (q2 − q1)(x) and

b(t, x) = (b2b1)(t, x) = exp
(
i

∫ t

0
ω ·A′(x+ sω)ds

)
. (3.1)

Recall that since (A′1 − A′2) = 0 and q1 − q2 = 0 on Γ , we can extend A′ to a H1(Rd) vector field and
q to L∞(Rd) by defining it to be zero outside of Ω and we will refer to the extention as A′ and q. With
this extention we have that dα′A is an L2(Rd) function supported only in Ω.

Lemma 3.2 There exists C > 0 such that for any ω ∈ Sd−1 and φ1, φ2 ∈ H2
ω(D%) the following

estimates holds true:∣∣∣∣∫ T

0

∫
Rd
q(x+ tω)b(t, x)dxdt

∣∣∣∣ ≤ Cτ3 ‖φ1‖H1(Rd) ‖φ2‖H2(Rd) ‖ΛA1,q1 − ΛA2,q2‖

+
C

τ
Nω(φ1)Nω(φ2) + Cτ

∥∥A′∥∥
L∞
Nω(φ1)Nω(φ2) (3.2)

for any sufficiently large τ > 0.

Proof . For τ sufficiently large, Lemma 3.1 guarantees the existence of the geometrical optics solutions
u2 to (

∂2
t −∆A′2

+ q2

)
u(t, x) = 0 in Q, u(0, ·) = ∂tu(0, ·) = 0 in Ω

in the form
u2(t, x) = φ2(x+ tω)b2(t, x)eiτ(x.ω+t) + ψ2,τ (t, x), (3.3)

corresponding to the magnetic potential A2 and φ2, where ψ2,τ satisfies

τ ‖ψ2,τ‖L2(Q) + ‖∇ψ2,τ‖L2(Q) ≤ CNω(φ2) (3.4)

and
u2 ∈ C1(0, T ;L2(Ω)) ∩ C(0, T ;H1(Ω)).

We denote u1, the solution of

(
∂2
t −∆A′1

+ q1

)
u1 = 0 (t, x) ∈ Q,

u1(0, x) = ∂tu1(0, x) = 0 x ∈ Ω,

u1(t, x) = u2(t, x) := fτ (t, x) (t, x) ∈ Σ.

(3.5)

Defining u = u1 − u2, one gets

(
∂2
t u−∆A′1

+ q1

)
u(t, x) = 2iA′ · ∇u2(t, x) + V ′(x)u2(t, x) + q(x) (t, x) ∈ Q,

u(0, x) = ∂tu(0, x) = 0 x ∈ Ω,

u(t, x) = 0 (t, x) ∈ Σ.
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where V ′(x) is given in (3.12).
Therefore, we have constructed the special solution v ∈ C1(0, T ;L2(Ω)) ∩ C(0, T ;H1(Ω)) to the back-
ward magnetic wave equation(

∂2
t −∆A′1

+ q1

)
v(t, x) = 0, (t, x) ∈ Q, v(T, x) = ∂tv(T, x) = 0, x ∈ Ω,

having the form
v(t, x) = φ1(x+ tω)b1(t, x)eiτ(x·ω+t) + ψ1,τ (t, x), (3.6)

corresponding to the magnetic and electric potential A′1, q1 and φ1, where ψ1,τ satisfies

τ ‖ψ1,τ‖L2(Q) + ‖∇ψ1,τ‖L2(Q) ≤ CNω(φ1). (3.7)

Integrating by parts and using the Green’s formula, we obtain∫
Q

(
∂2
t −∆A′1

+ q1

)
u(t, x) · v(t, x) dx dt =

∫
Q

2iA′ · ∇u2(t, x) · v(t, x)dxdt

+
∫
Q
V ′(x)u2(t, x) · v(t, x)dxdt+

∫
Q
q(x)u2(t, x) · v(t, x)dxdt

= −
∫

Σ

(
∂ν + i A′1 · ν

)
u(t, x)v(t, x)dσxdt. (3.8)

Combining (3.8) with (3.5), we obtain∫
Q
q′(x)u2(t, x) · v(t, x)dxdt = −

∫
Q

2iA′ · ∇u2(t, x) · v(t, x)dxdt

−
∫
Q
V ′(x)u2(t, x) · v(t, x)dxdt−

∫
Σ

(ΛA1,q1 − ΛA2,q2) (fτ )(t, x)gτ (t, x)dσxdt (3.9)

where
gτ (t, x) = φ1(x+ tω)b1(t, x)eiτ(x·ω+t), (t, x) ∈ Σ.

It follows from (3.6) and (3.3) that∫
Q
q(x)u2(t, x) · v(t, x)dxdt = −

∫
Q
q(x)(φ2φ1)(x+ tω)(b2b1)(t, x)dxdt+ Iτ . (3.10)

By using (3.7) and (3.4) we obtain

|Iτ | ≤
C

τ
Nω(φ2)Nω(φ1). (3.11)

Consequently, by (3.11), (3.10) and (3.9), we obtain∣∣∣∣∫
Q
q(x)(φ2φ1)(x+ tω)(b2b1)(t, x)dxdt

∣∣∣∣ ≤ ∣∣∣∣∫
Q

2iA′ · ∇u2(t, x) · v(t, x)dxdt
∣∣∣∣

+C
∣∣∣∣∫
Q
V (x)u2 · vdxdt

∣∣∣∣+ C

∣∣∣∣∫
Σ

(ΛA1,q1 − ΛA2,q2) (fτ )(t, x)gτ (t, x)dσxdt
∣∣∣∣+

C

τ
Nω(φ2)Nω(φ1).

Moreover, by (3.7) and (3.4), one gets∣∣∣∣∫
Q
V (x)u2 · vdxdt

∣∣∣∣ =
∣∣∣∣∫
Q
A′(x)(A1 +A2)u2 · vdxdt

∣∣∣∣ ≤ C ∥∥A′∥∥L∞(Ω)
Nω(φ2)Nω(φ1). (3.12)
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and ∣∣∣∣∫
Q

2iA′ · ∇u2(t, x) · v(t, x)dxdt
∣∣∣∣ ≤ τ ∥∥A′∥∥L∞ Nω(φ2)Nω(φ1). (3.13)

By a trace inequality, we have∣∣∣∣∫
Σ

(ΛA1,q1 − ΛA2,q2) (fτ )(t, x)gτ (t, x)dσxdt
∣∣∣∣ ≤ ‖ΛA1,q1 − ΛA2,q2‖ ‖fτ‖H1(Σ) ‖gτ‖L2(Σ)

≤ Cτ3 ‖φ1‖H1(Rd) ‖φ2‖H2(Rd) ‖ΛA1,q1 − ΛA2,q2‖ . (3.14)

Thus, from (3.12), (3.13) and (3.14), we derive for τ sufficiently large∣∣∣∣∫ T

0

∫
Rn
q(x)φ2(x+ tω)φ1(x+ tω)b(t, x)dxdt

∣∣∣∣ ≤ τ3 ‖φ1‖H1 ‖φ2‖H2 ‖ΛA1,q1 − ΛA2,q2‖

+τ
∥∥A′∥∥

L∞(Ω)
Nω(φ1)Nω(φ2) +

C

τ
Nω(φ1)Nω(φ2). (3.15)

This completes the proof of the lemma. �

3.4 Stability of the ray transform

The x-ray transformP maps a function in Rd into the set of its line integrals. More precisely, if ω ∈ Sd−1

and x ∈ Rd,

P(f)(ω, x) :=
∫

R
f(x+ sω)ds,

is the integral of f over the straight line through x with the direction ω. It is easy to see that P(f)(ω, x)
does not change if x is moved in the direction ω. Therefore we normally restrict x to

ω⊥ =
{
θ ∈ Rd; θ · ω = 0

}
.

Lemma 3.3 Let f ∈ L1(Rd) and ω ∈ Sd−1. Then Pf(ω, .) ∈ L1(ω⊥) and

F(Pf(ω, .))(ξ) =
√

2πf̂(ξ) (3.16)

for all ξ ∈ ω⊥.

Let
D+
% = {x ∈ D%, x · ω > 0} . (3.17)

We sum up the result of this section in the following lemma.

Lemma 3.4 There exist constants C > 0 and τ0 > 0 such that for all ω ∈ Sd−1 and φ satisfying
supp(φ) ⊂ D+

% , the following estimate∣∣∣∣∫
Rd
φ2(x)P(q)(ω, x) exp

(
i

∫
R
ω ·A′(x− sω)ds

)
dx

∣∣∣∣ ≤ τ3 ‖φ‖2H2 ‖ΛA1,q1 − ΛA2,q2‖

+
C

τ
Nω(φ)2 + C

∥∥A′∥∥
L∞(Ω)

Nω(φ)2 (3.18)

holds for any τ ≥ τ0 and j ∈ {1, · · · , d}.
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Proof . Let φ1, φ2 ∈ H2
ω(D%) such that supp(φj) ⊂ D+

% , we have∫ T

0

∫
Rd
q(x)(φ2φ1)(x+ tω)b(t, x)dxdt

=
∫ T

0

∫
Rd
q(x)(φ2φ1)(x+ tω) exp

(
i

∫ t

0
ω · q(x+ sω)ds

)
dxdt

=
∫ T

0

∫
Rd
q(x− tω)(φ2φ1)(x)b(t, x− tω)dxdt

=
∫

Rd
(φ2φ1)(x)

∫ T

0
q(x− tω) exp

(
i

∫ t

0
ω ·A′(x− sω)ds

)
dxdt

=
∫

Rd
(φ2φ1)(x)

∫ T

0
q(x− tω) exp

(
i

∫ T

0
ω ·A′(x− sω)ds

)
dxdt

−
∫

Rd
(φ2φ1)

∫ T

0
q(x− tω)

(
b(T, x)− b(t, x)

)
dx. (3.19)

Where b(t, x) = exp
(
i
∫ t

0 ω ·A
′(x− sω)ds

)
. For x fixed, we denote

b(t, x) = bx(t).

Using the Mean Value Theorem in the interval [t, T ], there exists a ct ∈ [t, T ] such that

|bx(T )− bx(t)| ≤ C(T − t)
∣∣ω.A′(x− tω)

∣∣ . (3.20)

Choosing φ1 and φ2 such that φ2 = φ = φ1, (3.19) yields∫ T

0

∫
Rd
q(x)(φ2φ1)(x+ tω)b(t, x)dxdt

=
∫ T

0

∫
Rd
q(x)(φ2φ1)(x+ tω)b(T, x)dxdt+ I1

=
∫ T

0

∫
Rd
q(x)φ2(x+ tω)b(T, x)dxdt+ I1 (3.21)

where
‖I1‖L2 ≤ C

∥∥A′∥∥
L∞(Ω)

‖φ‖2L2(Ω) ≤ C
∥∥A′∥∥

L∞
Nω(φ)2.

Since the support of A′ and q are contained in B(0, T/2− 2%), then for x ∈ D+
% , we have∫ T

0
ω ·A(x− sω)ds =

∫
R
ω ·A(x− sω)ds

and (3.22)∫ T

0
q(x− sω)ds =

∫
R
q(x− sω)ds.

Indeed, for s ≥ T and x ∈ D% it is easy to see that (x− sω) /∈ B(0, T/2− %), so∫ T

0
ω ·A′(x− sω)ds =

∫ ∞
0

ω ·A′(x− sω)ds

and (3.23)∫ T

0
q(x− sω)ds =

∫ ∞
0

q(x− sω)ds.
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On the other hand, if s ≤ 0 and x ∈ D+
% , we get |x− sω|2 = |x|2 + s2 − 2sx · ω ≥ (T/2 − 2%)2 and

then A′(x− sω) = 0 and q(x− sω) = 0. This way, (3.22) is obtained.
Substituting (3.22) into the equation (3.21), we obtain∫ T

0

∫
Rd
q(x)(φ2φ1)(x+ tω)b(t, x)dxdt =

−
∫

Rd
φ2(x)P(q)(ω, x) exp

(
i

∫
R
ω ·A′(x− sω)ds

)
dx+ I1. (3.24)

By (3.24), (3.2) and the inequality given above, we conclude that for any τ ≥ τ0, it holds that∣∣∣∣∫
Rd
φ2(x)P(q)(ω, x) exp

(
i

∫
R
ω ·A′(x− sω)ds

)
dx

∣∣∣∣ ≤ τ3 ‖φ‖2H2 ‖ΛA1,q1 − ΛA2,q2‖

+
C

τ
Nω(φ)Nω(φ) + Cτ

∥∥A′∥∥
L∞(Ω)

‖φ‖2L2(Ω) . (3.25)

This completes the proof of Lemma 3.4. �

3.5 End of proof of Theorem 2

We shall use the following notations. For x0 ∈ ω⊥ ∩ B(0, T/2 − %) we have B(x0, %/4) ∩ ω⊥ ⊂
B(0, T/2− %/2) ∩ ω⊥. Let

η2
x0

=
(
T

2
− %

2

)2

− |x0|2 , (3.26)

we set
x1 = x0 + ηx0ω.

It is not difficult to check that B(x1, %/2) ⊂ D+
% . Now, we will get an estimate of the Fourier transform

of q.

Lemma 3.5 There exist constants C > 0 and τ0 > 0 such that the following estimate

|q̂(ξ)| ≤ Cτ3 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖+
C

τ
〈ξ〉4 + Cτ 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖

µ . (3.27)

holds for all τ ≥ τ0 and all ξ ∈ Rd.

Proof . We fix x0 ∈ ω⊥ ∩B(0, T/2− %). Let θ ∈ C∞0 ((0, %/4)) such that∫
R
θ2(t)dt = 1

and let φ0 ∈ C∞0 (ω⊥ ∩B(x0, %/4)) and φ0 ≥ 0.
Putting

φ(y) = θ(y · ω − ηx0)e−
i
2
y·ξφ

1/2
0 (y − (y · ω)ω) exp

(
− i

2

∫
R
ω ·A(y − sω)ds

)
. (3.28)

Then we have
supp(φ) ⊂ B(x1, %/2) ⊂ D+

% . (3.29)
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The change of variable y = x+ tω ∈ ω⊥ ⊕ Rω, dy = dσ dt yields, after noting that ξ ∈ ω⊥∫
Rd
φ2(y)P(q)(ω, y) exp

(
i

∫
R
ω ·A′(y − sω)ds

)
dy

=
∫

R

∫
ω⊥
φ2(x+ tω)P(q)(ω, x+ tω) exp

(
i

∫
R
ω ·A′(x− sω)ds

)
dσdt

=
∫

R

∫
ω⊥
θ2(t)e−ix·ξφ0(x)P(q)(ω, x)dσdt

=
∫
ω⊥
e−ix·ξφ0(x)P(q)(ω, x)dσ. (3.30)

Then, by (3.30) and (3.18), we conclude that for any τ ≥ τ0 it holds that∣∣∣∣∫
ω⊥
e−ix·ξφ0(x)P(q)(ω, x)dσ

∣∣∣∣ ≤ τ3 ‖φ‖2H2 ‖ΛA1,q1 − ΛA2,q2‖+
C

τ
Nω(φ)2 + Cτ

∥∥A′∥∥
L∞
Nω(φ)2.

(3.31)
On the other hand, by (3.28), there is a constant C > 0, which depends on ‖A‖W 3,∞ such that

‖φ‖H2(Rd) ≤ C 〈ξ〉
2 . (3.32)

We conclude that by (3.28), there is a constant C > 0 which depends also on ‖A‖W 3,∞ such that for any
ξ ∈ ω⊥ it holds that

Nω(φ)2 ≤ C 〈ξ〉4 . (3.33)

Thus, by (3.33)-(3.32), we conclude that for any τ ≥ τ0 and ξ ∈ ω⊥ it holds that∣∣∣∣∫
ω⊥
e−ix·ξP(q)(ω, x)dσ

∣∣∣∣ ≤ Cτ3 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖+
C

τ
〈ξ〉4 + Cτ

∥∥A′∥∥
L∞
〈ξ〉4 (3.34)

for some positive constant C which depends on ‖A‖W 3,∞ . Consequently, by (3.34), (3.16), (3.10) and
the result of Theorem 2, we see that for any τ ≥ τ0, µ ∈ (0, 1) and ξ ∈ ω⊥ it holds that

|q̂(ξ)| ≤ Cτ2 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖+
C

τ
〈ξ〉4 + Cτ 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖

µ . (3.35)

changing ω ∈ Sd−1, then for any ξ ∈ Rd, we get

|q̂(ξ)| ≤ Cτ3 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖+
C

τ
〈ξ〉4 + Cτ 〈ξ〉4 ‖ΛA1,q1 − ΛA2,q2‖

µ . (3.36)

This completes the proof of Lemma 3.5. �

We will now complete the proof of Theorem 2. Using (3.27) we get

‖q‖2H−1(Rd) =
∫
|ξ|≤R

|q̂(ξ)|2 〈ξ〉−2 dξ +
∫
|ξ|>R

|q̂(ξ)|2 〈ξ〉−2 dξ

≤ C

(
Rd ‖q̂‖2L∞(B(0,R)) +

1
R2
‖q‖2L2(Ω)

)
≤ C

(
τ6Rd+8 ‖ΛA1,q1 − ΛA2,q2‖

2 + τ2Rd+8 ‖ΛA1,q1 − ΛA2,q2‖
µ +

Rd+8

τ2
+

1
R2

)
.
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Choosing
τ2 = Rd+10 (3.37)

we obtain

‖q‖H−1(Rd) ≤ C
(
Rk ‖ΛA1,q1 − ΛA2,q2‖+Rk ‖ΛA1,q1 − ΛA2,q2‖

µ +
1
R

)
(3.38)

for some positive constant k. The argument above are valid if τ ≥ τ0. By (3.37) we need to take R suffi-
ciently large. So there exists a γ > 0 such that if ‖ΛA1,q1 − ΛA2,q2‖ < γ andR = ‖ΛA1,q1 − ΛA2,q2‖

− µ
k+1

we have τ ≥ τ0 and by (3.38) we obtain

‖q‖H−1(Rd) ≤ C ‖ΛA1,q1 − ΛA2,q2‖
µ′ , (3.39)

where µ′ = µ/(k + 1). Now if ‖ΛA1,q1 − ΛA2,q2‖ ≥ γ. Then we have

‖q‖H−1(Rd) ≤
2M

γ1/(k+1)
γ1/(k+1) ≤ 2M

γµ
‖ΛA1,q1 − ΛA2,q2‖

µ . (3.40)

This completes the proof of Theorem 2.

3.6 Proof of Theorem 3

Using the expression of fτ given by eiτ(x·ω+t)φ2(x+ t · ω)b2(t, x) we have the following estimate

∥∥∥∂(k)
t fτ

∥∥∥
L2((0,T ),H3/2(Γ))

≤ C

τk ‖φ‖H2(Rd) +
k∑
j=1

τk−j
∥∥(ω · ∇)jφ

∥∥
H2(Rd)

 , (3.41)

for any k ∈ {1, . . . , 2d+ 4}.
From (3.14),we have∣∣∣∣∫

Σ

(
Λ]A1,q1

− Λ]A2,q2

)
(fτ )(t, x)gτ (t, x)dσxdt

∣∣∣∣≤∥∥∥(Λ]A1,q1
− Λ]A2,q2

)
fτ

∥∥∥
L2(Σ)

‖gτ‖L2(Σ)

≤
∥∥∥Λ]A1,q1

− Λ]A2,q2

∥∥∥
s
‖fτ‖H2d+4(0,T,L2(Γ))‖gτ‖L2(Σ) .

Using the estimate (3.41), then we have

‖fτ‖H2d+4(0,T ;H3/2(Γ)) ≤ C

τ2d+4 ‖φ‖H2(Rd) +
2d+4∑
j=1

τ (2d+4)−j ∥∥(ω · ∇)jφ
∥∥
H2(Rd)

 . (3.42)

On the other hand Using (3.28) we obtain

‖φ‖H2(Rd) ≤ 〈ξ〉
2 and

∥∥(ω · ∇)jφ
∥∥
H2(Rd)

≤ 〈ξ〉2 for 1 ≤ j ≤ 2d+ 4.

Then
‖fτ‖H2d+4(0,T ;H3/2(Γ)) ≤ Cτ

2d+4 〈ξ〉2 .
Finally, combining the precedent result, we can show the following estimate∣∣∣∣∫

Σ

(
Λ]A1,q1

− Λ]A2,q2

)
(fτ )(t, x)gτ (t, x)dσxdt

∣∣∣∣ ≤ Cτ2d+5 〈ξ〉3 . (3.43)

The rest of the proof is similar to that of Theorem 2 and the proof given in article [3].
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A Appendix

A.1 Construction of solution with spectral data

We are interested to study the form of the solution for the wave equation.

Lemma A.1 Let Ω ⊂ Rn be an open bounded set, I = (0, T ) an interval include in R. Let F ∈
C0((0, T ), L2(Ω)). There exists a unique solution u ∈ C0((0, T ), H1

0 (Ω)) ∩ C0((0, T ), L2(Ω)) such
that, 

∂2
t u−∆Au+ qu = F (t, x) in (0, T )× Ω,
u(0, ·) = ∂tu(0, ·) = 0 in Ω,
u(t, x) = 0 on Σ.

(A.1)

This solution is given by

u(t, x) =
∞∑
k=1

uk(t)ϕk(x), (A.2)

where

uk(t) =
∫

Ω

∫ t

0
F (τ, y)sk(t− τ)ϕk(y)dτ dy

and

sk(t) =


sin
√
λkt√
λk

, if λk > 0,

t, if λk = 0,
sin
√
λkt√
λk

, if λk < 0.

Proof . The Fourier expansion of the wave u(t, x) is given by the formula

u(t, x) =
∞∑
k=1

uk(t)ϕk(x),

where uk is the Fourier coefficients. We want to determinate the expression of these coefficients, For
that, we have

d2

dt2
uk(t) =

∫
Ω

d2

dt2
u(t, x).ϕk(x)dx

=
∫

Ω
(∆A − q)u(t, x)ϕk(x)dx+

∫
Ω
F (t, x)ϕk(x)dx

= −λk
∫

Ω
u(t, x)ϕk(x)dx+

∫
Ω
F (t, x)ϕk(x)dx

= −λkuk(t) +
∫

Ω
F (t, x)ϕk(x)dx.

This equation is an ordinary differential equation for uk(t)

d2

dt2
uk(t) + λkuk(t) =

∫
Ω
F (t, x)ϕk(x)dx. (A.3)
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By using the standard resolution of the differential equation, we have

uk(t, x) =
∫ t

0

1√
λk

[
cos
√
λkτ . sin

√
λkt− sin

√
λkτ . cos

√
λkt
](∫

Ω
F (τ, x)ϕk(x)dx

)
dτ

=
∫ t

0

sin
√
λk(t− τ)√
λk

(∫
Ω
F (τ, x)ϕk(x)dx

)
dτ.

This completes the proof of the Lemma. �

Remark 3 In the general case,
if u solving 

−∆Au+ qu− λu = 0 in Ω,

u(x) = f on Γ

then u is given by u(x) =
∑
k≥1

ϕk(x)
λk − λ

∫
Γ
∂νyϕk(y)f(y)dSy.

If v solving 
−∆Av + qv − λv = F in Ω,

v(x) = 0 on Γ

then v is given by v(x) =
∑
k≥1

ϕk(x)
λk − λ

∫
Ω
ϕk(y)F (y)dy.

A.2 Estimates for ΠA,q and its relation with Λ]
A,q

Lemma A.2 Let 0 < s < 1
2 . We suppose that j is fixed. Then, we have∥∥∥∥∥

(
d

dλ

)j
(ΠA1,q1(λ)−ΠA2,q2(λ))

∥∥∥∥∥
3
2
,s

≤ C |λ|−j+
1
4

(1+2s) .

To prove this Lemma, we will use the elliptic result given by

Lemma A.3 Let v and w are the solution of
(−∆A + q − λ)v = g in Ω,

v = 0 on Γ
,


(−∆A + q − λ)w = 0 in Ω,

w = h on Γ.

We have the following estimates,

‖v‖Hs(Ω) ≤ C |λ|s/2−1 ‖g‖L2(Ω) , 0 ≤ s ≤ 2, (A.4)

‖w‖L2(Ω) ≤ C ‖h‖H1/2(Γ) and ‖w‖H1(Ω) ≤ C ‖h‖H1/2(Γ) . (A.5)
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Proof of Lemma A.2. Let ul the solution of the system (2.1) and Gl(λ, x, y) the Green function satisfy,
for l = 1, 2 

(−∆Al + ql − λ)G(λ, ., y) = δ(x− y) (x, y) ∈ Ω× Ω,

G(λ, x, y) = 0 (x, y) ∈ Γ× Ω.
(A.6)

We note by {ϕlk, k ≥ 1}, the eigenfunctions which satisfies
(−∆Al + ql)ϕlk = λlkϕ

l
k in Ω,

ϕlk = 0 on Γ.
(A.7)

Let {ϕlk, k ≥ 1} be a corresponding complete set of orthonormal eigenfunctions in L2(Ω) and the
orthogonal in H1(Ω). So we can show that

Gl(λ, x, y) =
∞∑
k=1

ϕlk(x)ϕlk(y)
(λlk − λ)

.

We note that u0
l is the solution of

(−∆Al + ql − λ)u0
l = 0 in Ω,

u0
l = f on Γ.

(A.8)

According to what is given above, we know that the solution u0
l is given by

u0
l (x) =

∫
Γ

∂Gl
∂νy

f(y)dSy

=
∞∑
k=1

ϕlk(x)
(λlk − λ)

∫
Γ
∂νyϕ

l
k(y)f(y)dSy

and that the D-to-N map ΠAl,ql(f) =
∂u0

l

∂ν
+ iAlν.u

0
l . We consider u1

l the solution of the following
boundary value problem 

(−∆Al + ql − λ)u1
l = u0

l in Ω,

u1
l = 0 on Γ.

(A.9)

First we will prove that u1
l =

d

dλ

(
u0
l

)
. According to what is given above, we know that the solution u1

l

is given by the following expression

u1
l (x) =

∫
Ω
G(λ, x, y)u0

l (y)dy

=
∞∑
k=1

ϕlk(x)
(λlk − λ)

∫
Ω
ϕlk(y)u0

l (y)dy.
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To obtain the desired result, it is necessary to find a relation between the two expressions:
∫

Ω
ϕlk(y)u0

l (y)dy

and
∫

Γ
∂νyϕ

l
k(y)f(y)dSy. For that, we notice that HAl,ql(ϕ

l
k) = λlkϕ

l
k, so

HAl,(ql−λ)ϕ
l
k = (λlk − λ)ϕlk,

as a consequence ϕlk =
1

(λlk − λ)
HAl,(ql−λ)ϕ

l
k. By replacing the expression of ϕlk in

∫
Ω
ϕlk(y)u0

l (y)dy

and using the integration by part, we obtain∫
Ω
ϕlk(y)u0

l (y)dy =
∫

Ω

1
(λlk − λ)

HAl,(ql−λ)ϕ
l
k(y)u0

l (y)dy

=
1

(λlk − λ)

(∫
Ω
ϕlk(y)HAl,(ql−λ)u

0
l (y)dy −

∫
Γ
∂νyϕ

l
k(y)f(y)dSy

)
.

Finally, we have ∫
Ω
ϕlk(y)u0

l (y)dy = − 1
(λlk − λ)

∫
Γ
∂νyϕ

l
k(y)f(y)dSy. (A.10)

So

u1
l (x) =

∞∑
k=1

ϕlk(x)
(λlk − λ)

∫
Ω
ϕlk(y)u0

l (y)dy

= −
∞∑
k=1

ϕlk(x)
(λlk − λ)2

∫
Γ
∂νyϕ

l
k(y)f(y)dSy

=
d

dλ

(
u0
l

)
. (A.11)

We have (
d

dλ

)j
ΠAl,ql(λ)(f) =

(
∂

∂ν
+ iAl.ν

)
ujl |Γ, (A.12)

where ujl is the solution of
(−∆Al + ql − λ)ujl = uj−1

l in Ω,

ujl = 0 on Γ, for j ≥ 1.
(A.13)

We remark that, for j ≥ 1, we have
(
d

dλ

)j
ΠAl,ql(λ)(f) =

(
∂

∂ν

)
ujl |Γ.

Let vj = uj1 − u
j
2, It is easy to show that(

d

dλ

)j (
ΠA1,q1(λ)−ΠA2,q2(λ)

)
(f) =

(
∂

∂ν

)
vj |Γ, for j 6= 0. (A.14)

We note that v0 is the solution of
(−∆A1 + q1 − λ)v0 = 2iA(x).∇u0

2 + V (x)u0
2 in Ω,

v0 = 0 on Γ,
(A.15)
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where V (x) = V1(x)− V2(x), Vl = idiv(Al)− Al.Al − ql, for l = 1, 2 and vj satisfied, for j ≥ 1, the
following problem (−∆A1 + q1 − λ)vj = 2iA(x).∇uj2 + V (x)uj2 + vj−1 in Ω,

vj = 0 on Γ.
(A.16)

Using lemma A.3, we have for 0 ≤ s ≤ 2 and j ≥ 1, the following estimates∥∥∥ujl ∥∥∥
Hs(Ω)

≤ |λ|s/2−1
∥∥∥uj−1

l

∥∥∥
L2(Ω)

and
∥∥∥uj−1

l

∥∥∥
L2(Ω)

≤ C |λ|−(j−1) ‖f‖H1/2(Γ) .

So ∥∥∥ujl ∥∥∥
Hs(Ω)

≤ |λ|s/2−j ‖f‖H1/2(Γ) . (A.17)

Using the result (A.4) to the solution vj , we have∥∥vj∥∥
Hs(Ω)

≤ |λ|s/2−1
∥∥∥uj2∥∥∥

H1(Ω)
+ |λ|s/2−1

∥∥vj−1
∥∥
L2(Ω)

. (A.18)

Substituting (A.17) in (A.18), we obtain∥∥vj∥∥
Hs(Ω)

≤ |λ|(s−1)/2−j ‖f‖H1/2(Γ) + |λ|s/2−1
∥∥vj−1

∥∥
L2(Ω)

. (A.19)

According to (A.4), we have the following estimate∥∥vj−1
∥∥
L2(Ω)

≤ |λ|−1
∥∥∥uj−1

2

∥∥∥
H1(Ω)

+ |λ|−1
∥∥vj−2

∥∥
L2(Ω)

≤ |λ|(1/2−j) ‖f‖H1/2(Γ) + |λ|−1
∥∥vj−2

∥∥
L2(Ω)

.

We repeat the same work, we show that, for j ≥ 1, we have∥∥vj∥∥
Hs(Ω)

≤ C |λ|(s−1)/2−j ‖f‖H1/2(Γ) 0 ≤ s ≤ 2,

where C depend only on Ω.
So, by theorem of traces, we have for j ≥ 1∥∥∥∥ ∂∂ν vj

∥∥∥∥
Hs(Γ)

≤ C
∥∥vj∥∥

Hs+3/2(Ω)

≤ |λ|(1+2s)/4−j ‖f‖H1/2(Γ)

and ∥∥v0
∥∥
Hs(Γ)

≤ C
∥∥v0
∥∥
H1/2+s(Ω)

≤ |λ|−1/4+s/2 ‖f‖H1/2(Γ) ≤ |λ|
−(1−2s)/4 ‖f‖H1/2(Γ) .

This completes the proof of the Lemma. �
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Lemma A.4 For all f ∈ H2(d+2)(0, T,H1/2(Γ)) satisfies(
∂

∂t

)j
f(0, .) = 0 pour j = 0, 1, . . . , 2d+ 3.

We have

Λ]A,q(f) =
d+1∑
j=0

[(
d

dλ

)j
ΠA,q(λ)

]
λ=0

(
− ∂2

∂t2

)j
f + RA,q(f),

where

RA,q(f) =
∞∑
k=1

(λk)
−d−5/2 ∂ϕk

∂ν

∫ t

0
sin
√
λk(t−s)

(∫
Γ

(
− ∂2

∂s2

)d+2

f(s, y)∂νyϕk(y)dSy

)
ds+iA.νf.

Proof . We consider solution u of the system
∂2
t u(t, x)−∆Au(t, x) + q(x)u(t, x) = 0 in Q = (0, T )× Ω,
u(0, ·) = ∂tu(0, ·) = 0 in Ω,
u(t, x) = f on Σ.

(A.20)

Let u the solution given by the following expression

u(t, x) =
d+1∑
j=0

uj(t, x) + h(t, x),

where u0 satisfy 
∆Au

0(t, x) + q(x)u0(t, x) = 0 in Q,

u0(t, x) = f on Σ.
(A.21)

For all 1 ≤ j ≤ d+ 1, we have uj verify
∆Au

j(t, x) + q(x)uj(t, x) =
(
− ∂2

∂t2

)
uj−1(t, x) in Q,

uj(t, x) = 0 on Σ.

(A.22)

and h the solution of

∂2
t h(t, x)−∆Ah(t, x) + q(x)h(t, x) =

(
− ∂2

∂t2

)
ud+1(t, x) in Q,

h(0, x) = ∂th(0, x) = 0 in Ω,

h(t, x) = 0 on Σ.

(A.23)

Using the remak 3, we obtain the expression of u0 and u1 given by

u0(t, x) =
∑
k≥1

ϕk(x)
λk − λ

∫
Γ
∂νyϕk(y)f(t, y)dSy|λ=0.
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u1(t, x) =
∑
k≥1

ϕk(x)
λk − λ

∫
Ω
ϕk(y)

(
− ∂2

∂t2

)
u0(t, y)dy|λ=0.

Furthermore, we know that ϕk = 1
λk

HA,qϕk, so by integrating by part, we have∫
Ω
ϕk(y)

(
− ∂2

∂t2

)
u0(t, y)dy = − 1

λk − λ

∫
Γ
ϕk(y)

(
− ∂2

∂t2

)
f(t, y)dSy. (A.24)

Thus

u1(t, x) = −
∑
k≥1

ϕk(x)
(λk − λ)2

∫
Γ
ϕk(y)

(
− ∂2

∂t2

)
f(t, y)dSy.

By applying the lemma A.1, where F (t, x) =
(
− ∂2

∂t2

)
ud+1(t, x), h is given by

h(t, x) =
∑
k≥1

ϕk(x)
[∫ t

0

sin
√
λk(t− s)√
λk

(∫
Ω

(
− ∂2

∂s2

)
ud+1(s, y)ϕk(y)dy

)
ds

]
. (A.25)

Now we will show that∫
Ω

(
− ∂2

∂t2

)
ud+1(t, y)ϕk(y)dy = (λk)

−(d+2)
∫

Γ

(
− ∂2

∂t2

)(d+2)

f∂νyϕk(y)dSy.

Indeed, we know that ud+1 solving the following equation
∆Au

d+1 + qud+1 =
(
− ∂2

∂t2

)
ud in Q,

ud+1(t, x) = 0 on Σ.
(A.26)

Furthermore ϕk = λ
−(d+2)
k (HA,q)(d+2)ϕk, so we can rewrite the expression

∫
Ω

(
− ∂2

∂t2

)
ud+1ϕkdx as

follows ∫
Ω

(
− ∂2

∂t2

)
ud+1ϕkdx = λd+2

k

∫
Ω

(
− ∂2

∂t2

)
ud+1(HA,q)(d+2)ϕkdx

= λd+2
k

∫
Ω

(
− ∂2

∂t2

)((
− ∂2

∂t2

)
ud
)

(HA,q)(d+1)ϕkdx

we repeat the same calculus , we find

λd+2
k

∫
Ω

(
− ∂2

∂t2

)((
− ∂2

∂t2

)
ud
)

(HA,q)(d+1)ϕkdx = λd+2
k

∫
Ω

(
− ∂2

∂t2

)(3)

ud(HA,q)(d+1)ϕkdx.

Finally, we have

λd+2
k

∫
Ω

(
− ∂2

∂t2

)
ud+1(HA,q)(d+2)ϕkdx =

∫
Γ

(
− ∂2

∂t2

)(d+2)

f(t, y).∂νyϕk(y)dSy.

Therefore

h(t, x) =
∫ t

0

∫
Γ

∂

∂νy
Γ(t− s, x, y)

(
− ∂2

∂s2

)(d+2)

f(s, y)dSy ds, (A.27)
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where

Γ(t, x, y) =
∞∑
k=1

(λk)−d−5/2ϕk(x).ϕk(y) sin
√
λkt.

�
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