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Abstract

This paper is concerned with solving Cauchy problem for elliptic equation by minimizing an
energy-like error functional and by taking into account noisy Cauchy data. After giving some
fundamental results, Cauchy problem is presented as an optimal control problem. Numerical
convergence analysis is carried out and leads to an adapted stopping criteria for the minimiza-
tion process depending on noise rate. Numerical examples involving smooth and singular data
are presented.

1 Introduction

The Cauchy problem considered here consists of solving a partial differential equation on a domain
for which over-specified boundary conditions are given on a part of its boundary, which means to
solve a data completion problem and recover the missing boundary conditions on the remaining
part of the boundary. This kind of problem arises in many industrial, engineering or biomedical
applications.

Since J.Hadamard’s works [1], the Cauchy problem is known to be ill-posed and an important
numerical instability may occur during the numerical resolution of this kind of problem. It pro-
vides researchers with an interesting challenge to carry out numerical procedure approximating
the solution of Cauchy problem in the particular case of noisy data. Much theoretical and applied
works were proposed about this subject, using Steklov-Poincaré theory (see [2, 3, 4]), regularization
methods (see [5, 6]), quasi-reversibility method (see [7]) or minimal error methods (see [8, 9, 10]).

In this paper, we propose to perform mathematical and numerical convergence analysis of a
method based on minimization of an energy-like functional introduced in [11, 12, 13]. The objective
is to establish a stopping criteria for the minimization process in order to avoid numerical implosion
due to noisy Cauchy data.

The outline of the paper is as follows. In section 2, we give the Cauchy problem and report
classical theoretical results. In section 3, we formulate the Cauchy problem as a data completion
problem and introduce the related minimization problem, which can be written as an optimal con-
trol problem. In section 4, the finite element discretisation and convergence analysis are presented.
Section 5 is devoted to the study of noisy data effects. We give a priori error estimates taking into
account data noise and propose a stopping criteria to control instability of minimization process.
Finally, the numerical procedure and results are presented.
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2 Statement of problem

We consider a Lipschitz bounded domain Ω in R
d, d = 2, 3 with n the outward unit normal to

the boundary Γ = ∂Ω. Assume that Γ is partitioned into two parts Γu and Γm, of non-vanishing
measure and such that Γu ∩ Γm = ∅.

Γm

Γu

Ω

Figure 1: An example of geometry

The more common problem consists of temperature recovering in a given domain Ω assuming
temperature distribution and heat flux are given over the accessible region of the boundary. Given
a source term f and a contuctivity field k in Ω, a flux φ and the corresponding temperature T on
Γm, we would like to recover the corresponding flux and temperature on Γu. The Cauchy problem
is then written as :







−∇ ·
(

k(x)∇u
)

= f in Ω
k(x)∇u · n = φ on Γm

u = T on Γm

(1)

A problem is well-posed in the sense of Hadamard (see [1, 14, 5]) if it fulfills the three follow-
ing properties : uniqeness and existence of the solution and stability. The extended Holmgren’s
theorem to the Sobolev spaces (see [14]) guarantees uniqueness under regularity assumptions on
a solution of the Cauchy problem. The well known Cauchy-Kowalevsky theorem (see [15]) being
applicable only in the case of analytic data, the existence of this solution is then caution to a veri-
fication of a compatibility condition which can hardly be explicitly formulated. This compatibility
condition added to the fact that, for one fixed data, the set of compatible data is dense in the
set of all data (see [16]), imply that the stability assumption is not satisfied in the sense that the
dependence of the solution u of (1) on the data (φ, T ) is not continuous. Hereafter, we assume that
data (φ, T ) are compatible.

Some notations : Let x be a generic point of Ω. The space of squared integrable functions L2(Ω)
is endowed by natural inner product written (·, ·)L2(Ω). The associated norm is written ‖ · ‖0,Ω.
We note H1(Ω) the Sobolev space of functions of L2(Ω) for which their first order derivatives are
also in L2(Ω). Its norm and semi norm are written ‖ · ‖1,Ω and | · |1,Ω respectively. Let γ ⊂ Γ,

we define the space H1
0,γ(Ω) = {v ∈ H1(Ω); v|γ = 0} and H

1/2
00 (γ) is the space of restrictions to γ

of the functions of H1/2(Ω) = tr
(

H1(Ω)
)

. Its topological dual is written H
−1/2
00 (γ) =

(

H
1/2
00 (γ)

)′
.

The associated norms are written ‖ · ‖1/2,00,γ and ‖ · ‖−1/2,00,γ respectively and 〈·, ·〉1/2,00,γ states
for the duality inner product.

3 Weak formulation

3.1 Weak formulation of the Cauchy problem

Let f ∈ L2(Ω), k(x) ∈ L∞(Ω) positive, φ ∈ H
−1/2
00 (Γm) and T ∈ H

1/2
00 (Γm). The Cauchy problem

can be written as a data completion problem :
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Find (ϕ, t) ∈ H
−1/2
00 (Γu) × H

1/2
00 (Γu) such that there exists u ∈ H1(Ω) solution of






−∇ ·
(

k(x)∇u
)

= f in Ω
u = T, k(x)∇u · n = φ on Γm

u = t, k(x)∇u · n = ϕ on Γu

(2)

The functional spaces being given, we introduce more precisely the concept of density mentioned
in the previous section. We recall the following theorem :

Theorem 3.1 (i) For a fixed T ∈ H
1/2
00 (Γm), the set of data φ for which there exists a solution

u ∈ H1(Ω) to the Cauchy problem (1) is everywhere dense in H
−1/2
00 (Γm).

(ii) For a fixed φ ∈ H
−1/2
00 (Γm), the set of data T for which there exists a solution u ∈ H1(Ω) to

the Cauchy problem (1) is everywhere dense in H
1/2
00 (Γm).

Two proofs of this theorem, based on Hahn-Banach theorem and penalty method, are given in [16].

We introduce now two distinct fields u1 and u2 solution of well posed problems which differ by
their boundary conditions. We attribute to each of them one data on Γm and one unknown on Γu.
Then, we have :







−∇ ·
(

k(x)∇u1

)

= f in Ω
u1 = T on Γm

k(x)∇u1 · n = η on Γu

(3)







−∇ ·
(

k(x)∇u2

)

= f in Ω
u2 = τ on Γu

k(x)∇u2 · n = φ on Γm

(4)

We denote ai(·, ·) and li(·), i = 1, 2 the bilinear and linear forms associated to problems (3)
and (4) respectively. Then, we have by summation the following weak problem :

Find u = (u1, u2) ∈ V such that

a(u, v) = l(v), ∀ v = (v1, v2) ∈ V (5)

with a(u, v) = a1(u1, v1) + a2(u2, v2)

and l(v) = l1(v1) + l2(v2)

where V = H1
0,Γm

(Ω)×H1
0,Γu

(Ω) and ‖v‖V = (‖v1‖2
1,Ω + ‖v2‖2

1,Ω)1/2 is the norm associated to the
space V . It is easy to show that the linear form l(·) is continuous and that the bilinear form a(·, ·)
is continuous and V -elliptic. Then, by the Lax-Milgram theorem, the weak problem (5) admits a
unique solution.

3.2 Energy-like minimization problem

We consider now the following energy-like functional in order to compare the fields u1 and u2 :

E(η, τ) =
1

2

∫

Ω

k(x)
(

∇u1(η) −∇u2(τ)
)2

dx (6)

and the following minimization problem :
{

(ϕ, t) = argmin(η,τ)∈U E(η, τ), U = H
−1/2
00 (Γu) × H

1/2
00 (Γu)

with u1 and u2 solutions of (3) and (4) respectively.
(7)

Using convexity of the space U , existence and uniqueness of the Cauchy problem solution in
the case of compatible data, we are able to prove that the solution (η∗, τ∗) of the minimization
problem (7), if it exists and is unique, is solution of the data completion problem up to an arbitrary
additive constant for the Dirichlet unknown τ . In other words, if (ηd, τd) ∈ U is solution of the
data completion problem, η∗ = ηd, τ∗ = τd + κ, where κ is a constant.

Remarks :

(i) When E(η, τ) reaches its minimum, ∇u1(η
∗) = ∇u2(τ

∗).

(ii) Cauchy problem can be formulated as a minimization of the energy-like functional with fields
u1 and u2 solutions of problems (3) and (4) respectively (see [11]).
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3.3 Optimal control

In this part, we re-formulate the problem (7) as an optimal control problem as defined in [17].
We assume more regularity on the field u2, say u2 ∈ H2(Ω) ∩ H1

0,Γm
(Ω). Thereby, we define the

operators A ∈ L (V ′, V ) and B ∈ L (U , V ′) given by :

(Au, v)V ′,V = a(u, v) and
(

B(η, τ), v
)

V ′,V
= 〈η, v〉1/2,00,Γu

− 〈k(x)∇v · n, τ〉1/2,00,Γu
(8)

and F ∈ V ′ such that (F, v)V ′,V = (f, v)L2(Ω). Then, the weak problem (5) can be written as

Au(η, τ) = F + B(η, τ). (9)

Furthermore, we define an operator C ∈ L
(

V, L2(Ω)
)

such that the energy-like functional could
be written as follows :

E(η, τ) = ‖Cu(η, τ)‖L2(Ω) (10)

The functional being convex, it can be proven that, if it exists, the optimal control is unique.
However, it is well known that conditions that guarantee existence can be hardly described. Nev-
ertheless, it appears not as restrictive. Indeed, as seen later, even without this condition one can
produce a stable algorithm for finding numerical solution (see [14]).

This formulation enables us to characterize the optimal control. We introduce the adjoint state
v = (v1, v2) ∈ V . If (η, τ) is the optimal control, v1 and v2 are solution of the two following adjoint
problems :







∇ ·
(

k(x)∇v1

)

= 0 in Ω
v1 = 0 on Γm

k(x)∇v1 · n = η − k(x)∇u2 · n on Γu

(11)







∇ ·
(

k(x)∇v2

)

= 0 in Ω
v2 = 0 on Γu

k(x)∇v2 · n = φ − k(x)∇u1 · n on Γm

(12)

The gradient of the related functional is then given by :

∇E(η, τ) =
(

v1|Γu
,−k(x)∇v2 · n|Γu

)

(13)

Remark : This optimal control problem is equivalent to a constrained optimization problem (see
[18]) by introducing the following Lagrangian :

L (η, τ, u, v) = E(η, τ) − 〈v, Au − F − B(η, τ)〉V ′,V (14)

4 Finite element discretisation and error estimation

4.1 Finite element discretisation

Let Xh be the finite element space for which the following classical assumptions are verified :

(i) Ω is polyhedral domain in R
d, d = 2, 3.

(ii) Th is a regular triangulation of Ω̄ i.e. h = max
K∈Th

hK → 0 and max
K∈Th

hK

ρK
≤ c whith c indepen-

dent constant on h, hK the element K diameter and ρK the K inscribed circle diameter.

(iii) Γu and Γm can be written exactly as union of faces of some finite elements K ∈ Th.

(iv) The family (K, PK , ΣK), K ∈ Th for all h is affine-equivalent to a unique reference finite
element (K̂, P̂ , Σ̂) of class C 0.

(v) The following inclusion is satisfied : Pl(K̂) ⊂ P̂ ⊂ H1(K̂) for l ≥ 1.
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These assumptions imply that Xh ⊂ H1(Ω). We define the following spaces :

Xuh = {vh ∈ Xh; vh|Γu
= 0}

Xmh = {vh ∈ Xh; vh|Γm
= 0}

and Vh = Xuh × Xmh ⊂ V the finite dimensional approximation space. So, we have the discrete
problem associated to the weak problem (5) :

Find uh ∈ Vh such that

a(uh, vh) = l(vh), ∀ vh ∈ Vh (15)

The Lax-Milgram theorem guarantees that (15) admits a unique solution.

4.2 Convergence analysis

Using standard procedure (see [19], Theorem 3.2.2.), we report the following error estimate :

Proposition 4.1 In addition to the assumptions stated above, assume that there exists an integer
l ≥ 1 such that the following inclusion is satisfied :

H l+1(K̂) ⊂ C
s(K̂) with continuous injection (16)

where s is the maximal order of partial derivatives occuring in the definition of the set Σ̂.

Then if the solution u ∈ V of the variational problem (5) is also in the space
(

H l+1(K̂)
)2

, there
exists a constant C independent on h such that

‖u − uh‖V ≤ Chl(|u1|
2
l+1,Ω + |u2|

2
l+1,Ω)1/2 (17)

where uh ∈ Vh is the discrete solution.

5 Noisy data, apriori error estimates and stopping criteria

5.1 A priori error estimates and data noise effects

In the case of given perturbed data, say (φδ, T δ), problem (15) writes as:

Find uδ
h = (uδ

1h, uδ
2h) ∈ Vh such that

a(uδ
h, vh) = lδ(vh), ∀ vh ∈ Vh (18)

where lδ(·) is the linear form with noisy data (φδ, T δ)

Proposition 5.1 Under assumptions of proposition 4.1, if the solution u ∈ V of the variational

problem (5) is also in the space
(

H l+1(K̂)
)2

, then there exist two constants C1 and C2 independent
on h and data such that

‖u− uδ
h‖V ≤ C1h

l(|u1|
2
l+1,Ω + |u2|

2
l+1,Ω)1/2 + C2(‖T − T δ‖2

1/2,00,Γm
+ ‖φ− φδ‖2

−1/2,00,Γm
)1/2 (19)

where uδ
h is the solution of the discrete problem (18) associated to the noisy Cauchy problem.

Proof Using the V -ellipticity property of the bilinear form a(·, ·), we have

α‖uh − uδ
h‖

2
V ≤ l(uh − uδ

h) − lδ(uh − uδ
h) (20)

According to trace theorem (see [20]), the trace operator is continuous and there exists two lifting

operators R1 : H
1/2
00 (Γm) → H1(Ω) and R2 : H

−1/2
00 (Γm) → H1(Ω) which are continuous and

linear. Then, there exists a constant C > 0 such that

α‖uh − uδ
h‖

2
V ≤ C‖uh − uδ

h‖V

(

‖R1(T − T δ)‖2
1,Ω + ‖R2(φ − φδ)‖2

1,Ω

)1/2
(21)
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and by continuity, there exists two constants M1, M2 such that

‖uh − uδ
h‖V ≤

C

α

(

M1‖T − T δ‖2
1/2,00,Γm

+ M2‖φ − φδ‖2
−1/2,00,Γm

)1/2
(22)

Using the triangular inequality, we have

‖u − uδ
h‖V = ‖u − uh + uh − uδ

h‖V ≤ ‖u − uh‖V + ‖uh − uδ
h‖V (23)

We obtain (19) by applying (17) and (22) on (23).

5.2 Stopping criteria for the minimization process

When noise is introduced on the Cauchy data, we observe during the optimization process that the
error reaches a minimum before increasing very fastly and leading to a numerical implosion. At
the same time, the energy-like functional attains asymptotically a minimal threshold, which is a
strictly positive constant depending on the noise. Notice that this constants vanishes for compatible
Cauchy data. Now, the aim is to theoritically determine this threshold in order to propose a
stopping criteria depending on the noise rate. This criteria will allow to stop the minimization
process just before numerical implosion. Let

Eδ
h(η, τ) =

1

2

∫

Ω

k(x)
(

∇uδ
1h(η) −∇uδ

2h(τ)
)2

dx (24)

be the perturbed discrete functional.

Proposition 5.2 Under assumptions of proposition 4.1, if the solution u ∈ V of the variational

problem (15) is also in the space
(

H l+1(K̂)
)2

and if (η∗, τ∗) is the solution of the minimization
problem (7), then there exists two constants C1 and C2 independent on h and data such that

Eδ
h(η∗, τ∗) ≤ C1h

2l(|u1|
2
l+1,Ω + |u2|

2
l+1,Ω) + C2(‖T − T δ‖2

1/2,00,Γm
+ ‖φ − φδ‖2

−1/2,00,Γm
) (25)

Proof Let (η∗, τ∗) be the solution of the minimization problem (7) with compatible Cauchy data.
After some algebraic operations and taking into account the fact that ∇u1(η

∗) = ∇u2(τ
∗), we can

write :

Eδ
h(η∗, τ∗) − E(η∗, τ∗) =

1

2

∫

Ω

k(x)
[(

∇uδ
1h(η∗) −∇u1(η

∗)
)

−
(

∇uδ
2h(τ∗) −∇u2(τ

∗)
)]2

dx (26)

As seen previously E(η∗, τ∗) = 0. Consequently :

Eδ
h(η∗, τ∗) ≤ ‖k‖L∞(Ω)

(

|∇uδ
1h(η∗) −∇u1(η

∗)|21,Ω + |∇uδ
2h(τ∗) −∇u2(τ

∗)|21,Ω

)

(27)

and then
Eδ

h(η∗, τ∗) ≤ ‖k‖L∞(Ω)‖u − uδ
h‖

2
V (28)

Therefore, using proposition 5.1, we derive (25).

Thus we can define a stopping criteria based on this last proposition. Indeed, when the discrete
functional with noisy data (24) reaches its minimum, for h sufficiently small, we have by (25) :

Eδ
h(η∗, τ∗) ∼ O

(

‖T − T δ‖2
1/2,00,Γm

+ ‖φ − φδ‖2
−1/2,00,Γm

)

(29)

Then, we stop the optimization algorithm when the relative variation of Eδ
h becomes smaller than

noise norm. We write Ej the value of the discrete functional at the j-th iteration of the optimization
algorithm. We propose then the following stopping criteria :

|Ej − Ej−1| ≤ Cj(‖T − T δ‖2
1/2,00,Γm

+ ‖φ − φδ‖2
−1/2,00,Γm

) (30)

where

Cj <
Ej−1

Ej
(31)

which is consistent with (25).
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6 Numerical issues

6.1 Numerical procedure

Let us describe the calculation method of the required elements for the optimization procedure,
specifically the adjoint states and the gradient of the functional. Assume that the triangulation Th

of Ω is characterized by n nodes. Let p and q denote the number of nodes on the boundaries Γu and
Γm repectively and (ωi)1≤i≤n = (ω1i, ω2i)1≤i≤n the canonical basis of Vh. We write Xη and Xτ the
unknowns. The vectors U1 and U2 correspond to the fields u1 and u2. We introduce the following
notations, (K1)kl = a1(ω1k, ω1l), (K2)kl = a2(ω2k, ω2l), (F1)k = l1(ω1k), (F2)k = l2(ω2k). The
bilinear forms being similar, we note K = K1 = K2.

Laying down Dirichlet conditions, we obtain the following linear systems :

{

KU1 + LT
mp1 = F1(Xη)

LmU1 = Tδ (32)

{

KU2 + LT
u p2 = F2(Φ

δ)
LuU2 = Xτ

(33)

The matrices Lu ∈ Mp×n(R) and Lm ∈ Mq×n(R) contain only 0 and 1.

Based on (6) and (14), we can write the discrete functional :

E(Xη, Xτ ) =
1

2
(U1 − U2)

T K(U1 − U2) (34)

and the discrete lagrangian :

L (U1, U2, λ1, λ2; Xη, Xτ ) = E(Xη, Xτ ) −

[

λ1

q1

]T [

KU1 + LT
mp1 − F1

LmU1 − Tδ

]

(35)

−

[

λ2

q2

]T [

KU2 + LT
u p2 − F2

LuU2 − Xτ

]

(36)

Let (X∗
η , X∗

τ ) be the otpimum. Derivating this lagrangian and given that ∂L

∂Xη
(X∗

η ) = 0 and
∂L

∂Xτ
(X∗

τ ) = 0, we have by identification the discrete adjoint problems :

{

Kλ1 + LT
mq1 = K(U1 − U2)

Lmλ1 = 0
(37)

{

Kλ2 + LT
u q2 = K(U2 − U1)

Luλ2 = 0
(38)

and the gradient of the discrete functional is then given by :

∇E(Xη, Xτ ) =

[

Luλ1

Lu[K(U2 − U1) − Kλ2]

]

(39)

We assume that data (Tδ, Φδ) are given with a noise rate 0 < a < 1. The stopping criteria (30)
can be written as follows :

|Ej − Ej−1| ≤
Ej−1

Ej

(

a2

(1 − a)2
(

‖Tδ‖2
1/2,00,Γm

+ ‖Φδ‖2
−1/2,00,Γm

)

)

(40)

6.2 Numerical results

We consider the following Cauchy problem on the domain Ω given by figure (2) :







△u = 0 in Ω
u = fD on Γm
∂u
∂n = fN on Γm

(41)

where fD and fN are the Cauchy data extracted from the exact solution which we intend to
approximate.
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Γu

Γm

Ω

r2 = 1

r1 = 0.5

Figure 2: Ring

6.2.1 Analytic example :

The figure 3 represents the exact analytic solution u(x, y) = ex cos(y) and the finite element solution
of the data completion problem obtained by energy-like functional minimization. We can see that
the recovered temperature and heat flux are close to the exact ones. The figure 6 represents the
finite element discretisation error with respect to the maximum edge size of the mesh. This result
is in agreement with the theoretical error estimates (17).

(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 3: Exact (�) and identified (#) boundary conditions, h = 0.03

u

uh

∇u · n

∇uh · n

We introduce a gaussian random noise on data with an amplitude which depends on a rate a.
The figures 4 and 5 represent the error and the energy-like functional at each iteration for different
noise rates. These behaviors make it necessary to introduce a criteria to stop the optimization
process.

Figure 4: Evolution of ‖u − uh‖1,Ω during
the optimization procedure for different

noise rates

Figure 5: Evolution of E(η, τ) during the
optimization procedure for different noise

rates

a = 6 %

a = 4 %

a = 2 %

a = 6 %

a = 4 %

a = 2 %
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Next we choose h such that finite element error could be negligible in comparison with error due to
noise and we observe error and functional behaviors with respect to the noise norm. These results,
presented in the figure 7, are in agreement with the error estimates (19) and (25).

Figure 6: Evolution of ‖u − uh‖1,Ω with
respect to h

Figure 7: Evolution of ‖u − uh‖1,Ω and
E(η, τ) with respect to the noise norm.

‖u − uh‖1,Ω

Slope = 1

‖u − uh‖1,Ω

Slope = 1

Eh(η∗, τ∗)

Slope = 2

The stopping criteria defined by (30) allows to identify a consistent solution, as shown in figure 8,
otherwise the solution of the optimization algorithm numerically implodes.

(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 8: Exact (�) and identified (#) boundary conditions with noisy data, a = 4%, h = 0.03

u

uh

∇u · n

∇uh · n

6.2.2 Source point and stratified inner fluid examples :

The next source point example deals with the reconstruction of singular data, coming from

u(x, y) = Re
( 1

z − r

)

, where z = x + iy (42)

where r is the position of the point source on the abscissa axis. Numerical results are illustrated
by figure 9 in case that the source point is in the vicinity of the inner boundary and figure 10 if
the source point is in the vicinity of the outer boundary.
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(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 9: Exact (�) and identified (#) boundary conditions with noisy data, r = 0.4, a = 4%,
h = 0.02

u

uh

∇u · n

∇uh · n

(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 10: Exact (�) and identified (#) boundary conditions with noisy data, r = 1.1, a = 4%,
h = 0.02
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Now, we explore the efficiency of proposed stopping criteria on the so-called stratified inner
fluid case. We consider therefore the reconstruction of temperature and flux in a pipeline of infinite
length. This application arises in several industrial processes. Indeed, knowledge of temperature
on internal wall of a pipeline is necessary for controlling the material safety : stratified inner
fluid generates mechanical stresses, which may cause damages such as cracks. We assume that
the temperature does not depend on the longitudinal coordinate. We consider then the following
problem on the geometry defined by figure 2 :

{

∇ · (k∇u) = 0 in Ω
k∇u · n + αu = T on Γ

(43)

where k = 17 W.m−1.◦C−1 is the constant thermal conductivity, T is the temperature, α is the
Fourier coefficient, Γu is partitioned into two parts, the lower half circle Γu,lo = {(x, y) ∈ Γu; y < 0}
and the upper half one Γu,up = {(x, y) ∈ Γu; y ≥ 0}. The coefficients values are given in table 1.

Table 1: Coefficients values for stratified inner fluid test

H T (◦C) α (W.m
−2

.
◦C−1)

Γm 20 12
Γu,up 250 1000
Γu,lo 50 1000
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The Cauchy data are generated by solving the forward problem defined by (43). Then, a random
noise is applied on Dirichlet data and we assume that the flux is exactly known on Γm. The figure
11 shows the recovered temperature and heat flux in comparison to the data given by numerical
resolution of (43). Notice that reconstructed field is close to the solution to be recovered. nl

(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 11: Identified temperature (△) and flux (⋄) on Γu with noisy data, a = 4%, h = 0.1
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Finally, in order to illustrate the efficiency of the given stopping criteria, we increase the noise
rate up to 10% and perform numerical experiments. Figure 12 shows the solution of the generic
optimization algorithm. However figure 13 shows the solution of the optimization algorithm with
the stopping criteria defined by (30). The numerical implosion without the proposed stopping
criteria is then clearly observed.

(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 12: Identified temperature (△) and flux (⋄) on Γu with noisy data and classical stopping
criteria, a = 10%, h = 0.1.
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(a) Dirichlet condition on Γu (b) Neumann condition on Γu

Figure 13: Identified temperature (△) and flux (⋄) on Γu with noisy data, a = 10%, h = 0.1
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7 Conclusion

In this work, we considered Cauchy problem as a minimization problem and presented classical
theoretical results. Then, we gave the finite element discretisation and performed convergence
analysis. We derived a priori error estimates taking into account noisy data. Then we proposed a
stopping criteria depending on the noise rate in order to control numerical instability of the mini-
mization process due to noisy data. We proposed a numerical procedure and performed numerical
experiments in agreement with error estimates. We illustrated robustness and efficiency of the
proposed stopping criteria, especially in the case of singular data. The numerical analysis of noise
effects and derivation of stopping minimization criteria for parabolic (see [21, 22]) and hyperbolic
problem is under consideration. It will be a subject of forthcoming paper.
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