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AbstratEmbodiment Design (ED) is an early phase of produt development. ED prob-lems onsist of �nding solution priniples that satisfy produt requirements suhas physis behaviors and interations between omponents. Constraint satisfationtehniques are useful to solve onstraint-based models that are often partial, hetero-geneous, and unertain in ED. In this paper, new onstraint satisfation tehniquesare proposed to takle pieewise de�ned physis phenomena or skill-based rules andmultiple ategories of variables arising in design appliations. New searh heuristisand a global pieewise onstraint are introdued in the branh-and-prune framework.The apabilities of these tehniques are illustrated on both aademi and real-worldproblems. The latter have omplete models presented in the appendix.Key words: searh, heuristi, embodiment design, onstraint satisfation
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1 IntrodutionThe design proess is a sequene of phases from the de�nition of needs andrequirements to preliminary design and detailed design (Pahl & Beitz, 1996).Preliminary design inludes oneptual design (CD) and embodiment design(ED). The ED phase investigates the feasibility of some produt shemes ob-tained from the CD phase. This phase mainly takles physis behaviors andinterations between the produt, its omponents and environments. Produtmodeling is based on the de�nition of the laws of physis, funtional models,eonomi riteria, et.In this paper we fous on robust ED taking into aount variability, uner-tainty or impreision in the design proess. The goal is to determine the mainstruturing harateristis of a produt, suh as the working struture, stan-dard omponents, and the main dimensions, while no signi�ant deisions havebeen taken at that point. Several omponents may hange during this phase.Robust ED an be implemented in a onstraint-based approah. Produt mod-els an be translated into numerial onstraints. Unertainty and impreisionan be partially aptured by interval omputations. Heterogeneous models andinomplete information an naturally be dealt with. These models are involvedin robust design approahes taking into aount mathematial models duringthe early phases of design proess. Robustness may be regarded through itsmeaning within the design ommunity (Rothwell & Gardiner, 1990).Produt modeling leads to the de�nition of several types of onstraints. Prod-ut behavior laws relating to physis analysis are expressed through onserva-tion law, whih are easily translated into onstraints. In some ases, behavior3



laws are de�ned by sets of phenomenologial relations, namely pieewise re-lations depending on one or several parameters. Produt modeling also leadsto the de�nition of several types of variables. Design variables are related tothe main dimensions and harateristis of the produt. Designers are inter-ested in �nding out powerful solution priniples, where design variable valuesorrespond to high performane riteria. Performane riteria may be repre-sented by Performane variables. Other variables of the model are Auxiliaryvariables, maintained within the model to link design variables to performanevariables in order to preserve the model intelligibility. They are introdued bythe modeling phase (see Figure 1).
In this �gure, the embodiment design knowledge of a produt takes into a-ount design variables, whose values identify eah design solution. Designersuse also several riteria to observe and evaluate the design solutions. Severaldiagrams and harts are used to identify the produt funtions and deomposi-tion (tehnial organization harts) and to investigate the physis phenomenaregarding �uxes and indued e�ets (�uxes �ow diagram and substane �eldgraph). In the modeling part of the embodiment design phase, these oneptsare translated into a mathematial representation. Obviously, the variablesalready de�ned in the knowledge representation are also in the mathematialmodel, and in most ases, riteria are easily expressed with onstraints andsome variables to observe riteria values. But diagrams and harts must beonverted in a omputable form. New variables are introdued and they do notorrespond to designers' deision parameters. Thus, these new variables andonstraints desribe physis phenomena, produts geometry harateristis,et. Some funtional variables are de�ned to preserve the model intelligibility4



and to express, for instane, well-known physis dimensionless numbers har-aterizing physis phenomena. Some of them are introdued after some stepsof model redutions.
Our purpose is to de�ne new onstraint satisfation tehniques in the interval-based branh-and-prune framework to solve enrihed models of ED applia-tions. We investigate enrihed robust ED models, sine we onsider variousknowledge about produts: spei�ations and requirements, knowledge of de-signers onerning the whole produts life yle, physis phenomena, et. Allthis knowledge is required to ompute quite safe and robust values (from adesign point of view) for the main variables of an ED model. The �rst problemis to handle spei� physis phenomena. To this end a global pieewise on-straint is de�ned at the modeling and the solving levels. The seond problem isto takle the di�erent types of variables. Existential quanti�ers are introduedin the onstraint-based model to take into aount the fat that auxiliaryvariables are meaningless from a design point of view. New heuristis allowthe di�erentiation of the variables during searh, aording to their types. Anexperimental study from a prototype and several benhmarks are reported.Complete models are given in appendix for people who want to make theirown test with real world appliations.
Setion 2 introdues CSP modeling for ED. Solving priniples are presentedand some searh strategies are stated in Setion 3. Experimentations on aa-demi problems are arried out in Setion 4. ED models derived from existingengineering models are proessed in Setion 5. Our approah is ompared tosome related work in Setion 6. 5



2 Problem ModelingWe onsider embodiment design problems de�ned as mixed models inludinginteger variables, real variables, onstraints and pieewise onstraints. Themain idea of this paper is to distinguish between variables aording to ap-pliation requirements and to separate them in several sets during the searhphase of solutions. A model is de�ned by a set X of variables lying in somedomain D and a set of onstraints C. Eah onstraint is a restrition of Dgiven atomi formula over the usual struture of real numbers. Our goal is to�nd values in D for the variables of X satisfying all the onstraints in C.2.1 Types of VariablesIn ED problems, two types of variables are highlighted: the auxiliary vari-ables, and the main variables inluding the design variables and the perfor-mane variables. The main variables must be omputed at a given disernmentpreision. The values of the auxiliary variables may be useless from the de-signer's point of view, no initial preision or arefully hosen preision maybe de�ned. The distintion between main variables and auxiliary variables isalways possible, sine main variables are stated by the produt spei�ationsand requirements. The main variables are shared by all design phases. Theyidentify the main harateristis of produts, that's why their domains andpreisions are well known on the ontrary to the auxiliary variables, whih arespei� to eah design phases.Notations: Given a variable or a set of variables x, a real number or a setof real numbers r and a onstraint or a onjuntion of onstraints C on x, we6



write C(r) if C is satis�ed when x has value r.Let X = (x1, . . . , xn) denote the main variables, let Y = (y1, . . . , ym) denotethe auxiliary variables, and let DX and DY be their domain. To solve EDproblems may be seen as the omputation of the set of solutions on the mainvariables, where there is at least one solution for auxiliary variables:
{rX ∈ DX |∃rY ∈ DY ∧ C(rX , rY )} (1)where C stands for the onstraints to be satis�ed.In other words, the main variables de�ne a sheme of solution for designers,namely, the main arhitetures of a produt. The desriptions of the produtand its omponents onerning their behavior, geometry, et. make these ar-hitetures physially valid, if at least one solution is found on the auxiliaryvariables for eah arhiteture.Several approahes an be used to takle suh problems. Searh problems mayorrespond to our ED problems, sine solutions to ED problems are other thanyes or no, ontrary to deision problems. But it an be seen in Beame et al.(1995) that for eah searh problem an equivalent deision problem exists andin an ED ontext, it may be expressed as:
{∃r ∈ D|C(r)} (2)where all variables are linked with an existential quanti�er. E�ient SATalgorithms (Cook & Mithell, 1997) an be used in this ase, but sine anexistential quanti�er is applied to eah variable, only one solution may befound to be the yes answer. 7



The onstraint satisfation problem (CSP) approah de�nes a framework forsolving general problems expressed as a onjuntion of onstraints, where allvariables are free:
{r ∈ D|C(r)} (3)All values r for variables satisfying C are omputed. This approah does notmath the formulation in (1), but the solving algorithms an be adjusted toundertake an existential quanti�er on some variables.We implement our approah and its orresponding algorithms within a CSPframework that uses ontinuous domains. This framework is suitable for theED problems (Zimmer & Zablit, 2001; Gelle & Faltings, 2003; Vareilles et al.,2005). The CSP approah allows designers to make their models evolve veryquikly as opposed to other methods, where designers express the knowledge,while arrying out its oding related to numerial solving methods similar tothe onstraint satisfation approah. Some examples based on an evolutionaryapproah may be found in Sébastian et al. (2006). Moreover, the solving pro-ess of a CSP guarantees the ompleteness of the set of approximate solutions,whereas other methods are often linked with relaxations and approximationsof some stohasti solutions.2.2 Intervals omputations and variable preisionThe problem of omputing solutions for funtions on real numbers is knownto be undeidable (Rihardson, 1968; Wang, 1974). Computers arithmeti(see IEEE754 standard) de�nes a subset of real numbers, alled the �oating-point numbers. Without any other tehniques, omputations are made on the8



�oating-point numbers set and rounding errors may be important after severalomputation steps.Interval arithmeti (Moore, 1966) guarantees safe omputations using �oating-point numbers as interval bounds. For eah real number a, an interval hull(a) =

[a−, a+] may be used, orresponding to the smallest interval inluding it, where
a− is the highest �oating-point number smaller than a and a+ is the lowest�oating-point number higher than a. Furthermore every operator and funtionmust be extended from real numbers to intervals with real bounds and thena hull with �oating-point bounds may be omputed. For example, the threebasi operators on real numbers an be extended as follows:

[a, b] + [c, d] =hull([a + c, b + d]),

[a, b] − [c, d] =hull([a − d, b − c]) and
[a, b] · [c, d] = hull([min(a · c, a · d, b · c, b · d), max(a · c, a · d, b · c, b · d)]),where hull([a, b]) = [a−, b+] and a− and b+ are the losest �oating-point num-bers lower than a and upper than b.Other notations: Given a variable x, an interval I and a onstraint C on

x, we write C(I) if C is satis�ed in the interval sense when x takes value I.The size of an interval I = [a, b] is equal to w(I) = b − a. Given a set ofreal numbers A, the hull of A, denoted by hull(A), is the smallest intervalenlosing A.Real values in intervals annot be enumerated as disrete domains, but inter-vals are split to redue their width sine a smallest hull is omputed or aninterval preision is reahed. A preision p(x) may be de�ned for a variable x.9



It de�nes the interval width, where we do not want any more omputations tobe done. The preision on variables domain allow designers to de�ne the tol-erane authorized on some important variables, like the main variables of anED model. Auxiliary variable preisions may be di�ult to agree on, It mustbe highlighted that the set of auxiliary variables is often under-onstrained,sine, in the ED phase, some unertainties remain about some produt har-ateristis and its behavior.sine physis phenomena are often omplex. Twotypes of preisions may be highlighted in ED. The preision on main variablesorresponds to the preision of disernment of design arhitetures, whereaspreisions on auxiliary variables de�ne numerial preisions for omputations.To de�ne preisions on all types of variables may inrease the e�ieny ofthe omputing proess, sine an interval preision is often ahieved before thesmallest hull (or anonial hull) of a real number.Suppose that p(xk) ≥ 0 (the value 0 for a preision expresses the need ofa anonial interval box for a variable) is the desired preision of xk (k =

1, . . . , n). We now onsider the �nite set of approximate solutions:
{I ⊆ DX |∃J ⊆ DY ∧ C(I, J)} (4)where I = I1 × . . . × In and J = J1 × . . .× Jm, suh that I is preise enough,i.e., w(Ik) ≤ p(xk) for k = 1, . . . , n and eah interval bounds are �oating-pointnumbers. The �rst goal is to ompute a subset of (4) enlosing (1) having aminimal ardinal. To this end the main variable values must be lose to theirpreisions, i.e., w(Ik) ≈ p(xk). The seond goal is to prove the existene of asolution (element from set 1) in every resulting box. Proofs of existene anbe implemented by interval analysis tehniques and this will be detailed in thenext setion. 10



2.3 CSP notionsA CSP is de�ned by three sets orresponding to a set X of variables, a set Dorresponding to their domains and a set C of onstraints restriting the vari-ables values. The goal is to �nd every element of D that satis�es all onstraintsat the same time. This problem is unsolvable given ontinuous domains andtransendent funtions. A more pratial goal is to ompute a �nite approxi-mation of the set of solutions (Lhomme, 1993). The most ommon approahis to alulate a set of interval boxes of a given size enlosing the solution set.The satisfation of a numerial onstraint is usually de�ned as follows: everyvariable is interval-valued, every expression is evaluated using interval arith-meti (Moore, 1966), and every relation between intervals is true wheneverthere exist reals within intervals that satisfy the following relation:
{r ∈ DX : c(r) → C(hull(r))}, (5)where C is the interval extension of the onstraint c on reals (i.e.: eah variableis replaed by its interval domain and eah funtion or operator is extendedto the interval arithmeti).The satisfation of onstraints is veri�ed using onsisteny tehniques. Vari-ables' domains are heked onsidering the whole onstraints set. If a domainis not onsistent, then all unauthorized values (or intervals) are removed aslong as they do not satisfy at least one onstraint. Applying a global onsis-teny is, in general, to expensive. Thus, loal onsisteny algorithms, suh as2B and 3B-onsisteny (Lhomme, 1993) and box-onsisteny (Benhamou etal., 1999), are used instead. For instane we an onsider the following de�ni-11



tion of box onsisteny:Given C the interval extension of a onstraint c on reals and a box of intervaldomains I1 × ... × In, c is satis�ed aording to box onsisteny, if for eah kin {1, ..., n}:
Ik = {ak ∈ Ik|C(I1, ..., Ik−1, hull(ak), Ik+1, ...In)} (6)

As soon as there are several solutions, onsisteny tehniques are no longersu�ient. Searh algorithms are used to explore the totality of the searhspae. Typially, a domain is hosen and is split into two disjoint intervalsusing a bisetion algorithm. Then two new smaller problems are solved withthe same iterative approah. The union of these two problems is equal tothe initial CSP whih is �nally split in many sub-problems. The hoie ofthe domain to split may take into aount heuristis in order to optimizethe searh phase (for instane: most onstrained variables, greatest domain,smallest domain, et.). Then several algorithms may be used to explore suhhierarhy of problems like generate and test, baktrak searh, bak jumping,dynami baktraking, et (Rossi et al., 2006).Interval solvers implement branh-and-prune tehniques (Hyvönen, 1989). Thesearh spae is given by an interval box that is iteratively split and redued us-ing a �xed-point approah to guarantee that the solving proess onverges. Ef-�ient pruning algorithms merge onsisteny tehniques and numerial meth-ods. In general, splits for real variables are based on bisetion, whereas integervariables are enumerated. Let us point out that integer variables an be pro-essed as real variables within interval pruning methods and further re�nedusing the integrality ondition. 12



2.4 Pieewise onstraintWe onsider a new type of onstraints for modeling pieewise de�ned physisphenomena. Behavior laws de�ning omplex phenomena are often establishedby experiments. These experiments are done under several hypotheses andonditions de�ning the ontexts of use for these stated laws. In many ases,the main ontext of experiments an be managed by only one parameter,whih values identify the relation to apply. For instane, many models in �uidmehanis involve the Reynolds dimensionless number. The Reynolds numbervalue points to di�erent types of �uid �owing (laminar, transient, turbulent)orresponding to �uid mehanis laws (see Figure 2).Let this onstraint be
Piecewise(α, I1 → C1, . . . , Ip → Cp)Suh that α is a variable, eah Ik is an interval, and eah Ck is a onstraint ora set of onstraints. The Ik identify the di�erent ases of the pieewise phe-nomenon onsidering the parameter α and the Ck orrespond to the relationsto use. The intersetion Ij ∩ Ik must be empty for every j 6= k, otherwiseat least two onstraints will apply for the same phenomenon. In other words,all the Ik de�ne a partition of the domain of α. The pieewise onstraint issatis�ed if:
∃k ∈ [1..p], Dα ⊆ Ik ∧ Ck (7)The pieewise onstraint is equivalent to Ck whenever α belongs to Ik. At mostone k must exists sine the Ik do not interset, otherwise several onstraints13



are taken into aount, whih lead to an inonsistent set of onstraints.Interval onstraint satisfation tehniques are used to redue variable domains.Let Dα be the domain of α. Four ases an be identi�ed:1. If a k exists suh that Dα ⊆ Ik then Ck is solved. The domains of thevariables ourring in Ck an be redued using, e.g., onsisteny tehniques.2. The domain of α an be redued as follows:
Dα = hull

(

p
⋃

k=1

(Dα ∩ Ik)

)

.A failure must happen if no Ik intersets the domain Dα.3. If Ck is violated for some k then every element of Ik an be removed from
Dα.4. Otherwise, the onstraint is satis�ed in the interval sense but no domainan be redued and the problem is still being under-onstrained.Note that the solving proess must not stop before Dα takes its values in atmost one Ik, otherwise the pieewise phenomenon is not taken into aountand many non physis solutions may be found (ase 4).2.5 Searh issuesThe notions of auxiliary variables and pieewise onstraints introdue severaldi�ulties and problems:Problem 1. The splitting steps of domains of auxiliary variables may dupli-ate the solutions on the main variables. For same values of the main vari-ables, several solutions for auxiliary variables may satisfy all the onstraints.This is due to some inoherent preisions between auxiliary variables and14



main variables. It must also be highlighted that the set of auxiliary vari-ables is often under-onstrained, sine, in the ED phase, some unertaintiesremain about some produt harateristis and its behavior. Thus, manysolutions may be found for the same tuple of values for main variables.That may lead to useless redundant omputations and to a huge number ofapproximate solutions orresponding to the same produt arhiteture.Problem 2. The main variables may not be redued enough if the auxil-iary variables are not split enough. Consisteny tehniques used on intervaldomains are based on outer approximations, whih may lead to an over-estimation of variable domains. The solving proess may be very long,spending most of the time in pure searh on main variables, whereas auxil-iary variables may have wide domains.Problem 3. It may be di�ult to hoose the auxiliary variables to be splitand to set preision thresholds. Proper preisions are required to e�ientlymanage Problem 1 and Problem 2. Moreover, some auxiliary variables areonly present within the model, beause they represent well-known propertiesof some omponents, phenomena, et. However they are not required toexpress all the knowledge about a produt. These variables and their valuesimprove the expressivity and omprehensibility of the produt model, whihis important when this model may evolve as in the ED phase. Let allthem funtional variables, as their values are diretly omputed using anexpression of other variables.Problem 4. The pieewise onstraints must be taken into aount in orderto early redue the searh spae. This learly depends on the domain of the
α variables, whih must be redued to one of the Ik of the pieewise on-straint to apply the onstraint ck and take into aount the orrespondingphenomenon. 15



Other issues. The ED problems are under-onstrained in general. We sup-pose here that the preisions of main variables are well hosen enough a-ording to the domain sizes in order to avoid a huge number of approximatesolutions. Another well known approah is to speialize the searh for integervariables and real variables.
3 Problem SolvingNew searh heuristis will be introdued to takle the issues raised above.These heuristis will be embedded in the general interval-based branh-and-prune model.3.1 Branh-and-prune algorithmThe general branh-and-prune algorithm (Van-Hentenryk et al., 1997) is de-�ned in Algorithm 1. The input is a CSP model. The output is a set of ap-proximate solutions enlosing the solution set.The omputation is as follows. Every domain is pruned provided that no so-lution (element from set 1) is lost. Every approximate solution (element fromset 4) assoiated with the result of the proof of existene is inserted in theomputed approximation. Non-empty domains are split provided that at leastone of the main variables is not preise enough. The sub-problems are furthersolved.The algorithm for the proof of existene validates the box omputed by theBranh-and-Prune algorithm, and several tehniques may be used aording16



Algorithm 1. General Branh-and-Prune Algorithm.
Solve(C : set of onstraints, D : domains, (x, y) : vars) : a set of intervalapproximate solutions

D := Prune(C, D)

if D is empty thendisard D

elsif Dx is preise enough then

b := ProveExistence(C, D)

Insert(Dx, b) in the omputed approximation
else

Choose a splittable variable z in (x, y)

Split(D, z, D1 ∪ D2)

Solve(C, D1, (x, y))

Solve(C, D2, (x, y))

endif

endto the type of onstraints:
• Inequality onstraints an be takled with interval omputations.
• Equality onstraint systems an be proessed by �xed-point operators (Kear-fott, 1996).These tehniques may not operate on heterogeneous and non-di�erentiableproblems. In this ase, a searh proess an be used to prove the existene ofanonial approximate solutions, namely boxes of maximal preision satisfyingthe onstraints in the interval sense. We onsider that this smallest intervalbox, with losest �oating-point numbers as bounds, is preise enough to laim17



that we have found a solution if no inonsistenies are deteted. An otherapproah is to apply a loal searh proess, where the optimization funtionshould take into aount the number of inonsistent onstraints balaned bythe distane of violation of eah one.However, these algorithms an not always prove the existene of a solution in abox in a reasonable time. All omputed solutions may not be guaranteed, butthis is not the main goal for designers to have safe numerial solutions in theED phase. All the unertainties relating to a model make the solutions nearguaranteed boxes also aeptable. However, guaranteed boxes may orrespondto more robust solutions than those for whih the proof of existene has failed.In the ED phase, designers are mainly interested in having an overview ofthe global shape of the omplete spae of solutions, namely, having a betterinsight of the feasible produt arhitetures. When designers have an idea ofsome robust solutions within a solution set, they an better de�ne the moreinteresting parts of this set relating to good performanes riteria and robustprodut arhitetures.
3.2 Searh strategiesWe propose to implement several searh strategies to takle the problemsdesribed in the previous setion.Splitting ratio. The hoie of variables may follow an intensi�ation proesson the main variables and a diversi�ation strategy on the auxiliary variables.The idea is to limit the dupliation of solutions (Problem 1) and to omputee�ient redutions on the whole system (Problem 2). A diversi�ation proess18



aims at gathering some knowledge on the problem, whereas an intensi�ationproess uses this knowledge to explore and to fous on interesting areas of thesearh spae (Blum & Roli, 2003). The intensi�ation/diversi�ation strategyan be ontrolled by a ratio between the two types of variables to hoose (seeAlgorithm 2). Inside eah group, a round robin strategy may be used to makethe algorithm robust. A high ratio orresponds to high intensi�ation on mainvariables and a small one inreases diversi�ation on auxiliary variables.Algorithm 2. Searh heuristi favoring main variables
SelectVariable(X : set of variables, D : domains, R : integer ratio)

Xm := {x ∈ X : x is a main var., Dx can be split}

Xa := {x ∈ X : Dx can be split} \ Xm

let n be the number of carried out splits

let nm be the number of splits on main var.

if Xa is empty or n = 0 or nm < R(n − nm)

nm := nm + 1

x := SelectRoundRobin(Xm)

else

x := SelectRoundRobin(Xa)

endif

n := n + 1

return x

end

This heuristi is appliable to any ED problem, sine ED problems alwaysinlude some main variables (whih values statements are the main objetiveof the ED phase). Moreover, these variables are often useful to ompute rel-19



evant values for auxiliary variables, sine auxiliary variables have to expresssome harateristis (physis phenomenon, geometry, et.) of a spei� produtarhiteture. Main variables are better de�ned (small domains and auratepreisions aording to the produt spei�ations) than auxiliary variables (forinstane: omplex phenomena with several simplifying assumptions). In thisway, the onstraint propagation phase may be more interesting in reduingdomains of auxiliary variables than the splitting steps on this huge searhspae.Preision. Two types of auxiliary variables an be identi�ed (Problem 3).Auxiliary variables expressed as funtions of other variables may not be splitsine they orrespond to intermediate omputations. To this end, it su�es tobind these variables to an in�nite preision. Their values are omputed usingthe Prune algorithm (onstraint propagation). The other auxiliary variablesmay be split (Problem 2), but their preisions have to be as relevant as possibleto avoid too many useless splitting steps (Problem 1).Pieewise onstraint.The goal is to split the α variable aording to the �rstpruning ase of the onstraint in order to answer Problem 4. The domain of αmust be inluded in some Ik in order to enfore Ck. To this end the domain of αan be split on the bounds of the intervals Ik instead of the lassial bisetion.Let us note that even the auxiliary variables with in�nite preision must beonsidered here. Combining several pieewise onstraints parametrized by thesame variable boils down to onsidering the set of bounds from all the intervals
Ik and to ombine the onstraints from the orresponding piees.Variable types. A ommon approah is to hoose �rst integer variables andthen real variables, supposing that di�erent integer values may orrespond20



to di�erent produt arhitetures. We then have several hoie riteria to beombined: type of variable (main, auxiliary), domain nature (disrete, on-tinuous), and more usual riteria (round-robin strategy, largest ontinuousdomain, smallest disrete domain, most onstrained variable, et.). Integervariables are supposed to be enumerated and real variables are biseted.3.3 RepresentationSeveral approximate solutions are redundant if the domains of the main vari-ables interset, beause of the searh on auxiliary variables. In this ase, theyneed to be merged in order to ompute ompat representations of the solu-tion set. In the interval framework a set of merged boxes an be replaed bytheir hull, namely the smallest box ontaining eah element.It must be veri�ed that the main variables are still preise enough after merg-ing. In partiular, several boxes enlosing a ontinuum of solutions may shareonly some bounds. The hull may not be omputed to keep �ne-grained ap-proximations.4 Empirial evaluation on aademial problemsThe tehniques have been implemented in Realpaver (Granvilliers & Ben-hamou, 2006). The pruning step is implemented by onstraint propagationusing 2B onsisteny and box onsisteny. The next results do not take intoaount the omputations of any proof of existene algorithm, sine only per-formanes of searh heuristis are studied. These results are only onerned of�nding solutions whih are oherent with preisions of variables. The presented21



urves show the number of splits made on domains of variables. Consideringone solving heuristi, this number does not vary on the ontrary to the solvingtime, whih depends on the omputer hardware, the operating system, otherrunning proess, et. Moreover, it unmistakably represents the performanesof eah searh heuristis, sine we do not interfere with the pruning algorithm.4.1 Funtional variablesED problems embody many variables expressed as funtions of other variables.They are maintained within the model to preserve the model intelligibility, al-though they ould be removed and replaed by their expression. The questionis whether these variables have to be split. Let us onsider the following prob-lem parametrized by n ≥ 3:






















































xk ∈ [−100, 100] 1 ≤ k ≤ n

yk = x2
k − x2

k+1 1 ≤ k ≤ n

yk − yk+1 = k 1 ≤ k ≤ n

(8)
Let xn+1 be x1 and let yn+1 be y1. The goal is to prove that the problem hasno solution. The results are depited in Figure 3. The • urve orresponds to around robin strategy on x and no split on y. This is learly not e�ient. The �urve is obtained with a round robin strategy on x and y. The growth ratio isalmost the same (fator 2) but the number of splitting steps is dereased by afator 50. The N urve is derived by a more robust strategy suh that x is splittwie more than y. Surprisingly the number of splitting steps dereases when
n inreases. For instane, given n = 8, the number of bisetions is respetively22



93183, 1791, and 93 for the three heuristis.Let us onsider another problem parametrized by n ≥ 3:






















































xk ∈ [−π/3, π/3] 1 ≤ k ≤ n

yk = xk+1 + xk+2 1 ≤ k ≤ n

tan(xk + yk) + tan(xk) = k/n 1 ≤ k ≤ n

(9)
suh that xn+i = xi and yn+i = yi for every i ≥ 1. The goal is to ompute thesolutions on x onsidering a preision of 10−8 (three solutions for 6 ≤ n ≤ 11).The results are depited in Figure 4. The • urve orresponds to a round robinstrategy on x and no split on y. The � urve is obtained with a round robinstrategy on x and y. We see that it is more e�ient not to split y. The otherurves are obtained with a robust strategy suh that x is split r times morethan y (r = 5 for N and r = 10 for �). The improvement inreases with ratio
r.The previous results may lead to the following onlusions. In the �rst problem,every redution on funtional variables is diretly propagated through manyonstraints, whih is e�ient sine these variables our in several onstraints.If suh variables appear in only one onstraint, splitting them is not e�ient,beause they only represent intermediary omputations. The seond problemshows that no split on funtional variables gives bad performanes. In fat,every redution on yk leads immediately to a redution of xk+1 and xk+2 sinethe onstraint is simple. This is a means for takling two variables using onlyone split. Finally, strategies using a ratio are more robust and e�ient thanothers on these types of problems. 23



It an be noted that in ED models, funtional variables often take part ofunder-onstrained network of onstraints. Many splitting steps on them isuseless and a high ratio is better. If this ratio is too di�ult to establish,no splitting steps on funtional variables is the easiest and the more e�ientapproah. Moreover all splitting steps on funtional variables do not have thesame impat on the pruning of the whole problem and the round robin strategydoes not take this fator into aount. Perhaps, some other strategies, as forinstane to hoose the most onstrained variable, should be more e�ientespeially with small ratios, where funtional variables are often split.4.2 Auxiliary variablesAuxiliary variables are useless from an ED point of view but they have to bee�iently managed during omputation. Let us onsider the following problemwhere n is an integer main variable in [−108, 108], x, y, z are real variables in
[−10, 10] with preision 10−8, x is a main variable, y and z are auxiliaryvariables:























































x − y + z = 1 − n

x − yz = 0

x2 − y + z2 = 2

(10)
The problem projeted onto the auxiliary variables is hard to solve, sinethis problem is dense. Loal reasoning about projetions may not omputee�iently domains of variables. As a onsequene these variables must oftenbe split. The urve in Figure 5 is obtained from a robust strategy that al-24



ternatively splits main and auxiliary variables with ratio r. We observe anexponential behavior when r inreases, i.e., when auxiliary variables are sel-dom split. We also notie for this problem that labeling is better than bisetionon n. In fat n must be set before solving the whole problem.The number of splitting steps on auxiliary variables should follow the hardnessof the problem on these variables. This theoretial riterion is implementedhere by a global ratio on the variable sets. This ratio aims at favoring mainvariables aording to the existential quanti�er whih is de�ned on auxiliaryvariables, when onsidering an ED problem.
4.3 Pieewise onstraints
We onsider the following problem:



































































































































(x, y, z) ∈ [−10, 10]3

y + y2 = z2 + 2

xz = z2 − 1

piecewise(x, I1 : mid(I1) = x2 − y2 + x,... ...
In : mid(In) = x2 − y2 + x )

(11)
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where n is the number of piees of the pieewise onstraint, eah interval Ik isde�ned by
Ik =

[

−10 + 20
k − 1

n
+ ν,−10 + 20

k

n
− ν

]

, 1 ≤ k ≤ n, (12)
ν > 0 is equal to the mahine preision, and mid(Ik) is the midpoint of Ik.Let 10−8 be the preision of every variable.Figure 6 depits the number of splitting steps required for solving the problemparametrized by the number of piees of the pieewise onstraint. The variablesare hosen following a round robin strategy. The � urve is suh that only the�rst pruning ase of the pieewise onstraint is applied. A restrited pruningalgorithm is learly not e�ient. In this ase, many approximate solutionsinlude piee bounds and the pieewise onstraint is useless. The • urveorresponds to a full pruning algorithm with lassial bisetion, the � one toa full pruning algorithm with split on the �rst hole from the domain of x, andthe N one to a full pruning algorithm with split on the mid hole. Bisetion ismore e�ient than split on the �rst hole. It is known that bisetion is moree�ient than labeling for ontinuous variables. Split on the mid hole is thebest heuristis. The orresponding funtion follows np with 0 < p < 1. Thenew tehnique seems e�etive even for huge pieewise onstraints.
5 Empirial evaluation on real-world problemsIn this setion we evaluate our approah on models obtained for real worldappliations in mehanial engineering. It may be noted that the next resultsdo not take into aount the existene proof algorithm, beause of the huge26



number of omputation steps it adds. Moreover we are mainly interested instudying our searh heuristi results.5.1 A basi bath-exhanger systemWe �rst onsider a bath exhanger model (see Figure 7). The solution prini-ples are de�ned using �ve design variables (three atalogs related to lengths,materials and diameters, the number of �ns, and the gap between �ns). In thismodel, the variables relating to the hoies within atalogs are design variablesinstead of the length and materials of �ns and the diameter of the tube, whihones have their values diretly de�ned by the atalog. This problem is inter-esting from an ED point of view, sine we have to hoose several omponentsin a (small) atalogs, while dimensioning the gap between �ns. In this sys-tem, there is a oupling between �uid mehanis and the geometry of the heatexhanger (namely the gap between �ns). System modeling introdues �veauxiliary variables and �ve funtional variables. The bath-exhanger is partof a bath-ooler system for aperitif and this model investigates the feasibilityto ool down the aperitif from 25◦C to 8◦C in less than 25 seonds.Figure 8 depits the number of splitting steps using the robust strategy withratio r. The number of solutions is half of the number of splitting steps. The �urve omes from labeling of integer domains and the N urve from bisetions.We see that a high splitting ratio allows to derease the number of splittingsteps. Due to some orientation in the model the auxiliary variables are diretlyomputed from the design variable values. Splitting auxiliary variables leads todupliate solutions and onsequently useless searh steps. Bisetion on integervariables is better than labeling. That is explained by e�ient redutions of27



the number of �ns (integer in [5, 20]) using some bound onsisteny method.5.2 A pump and tank water iruitThis model takes into aount three tanks (one upstream and two downstream)and one water pump (see Figure 9). The objetive is to study the feasibility ofdimensioning the two lines diameters after the downstream Y-branh. Beforethe Y-branh, the lines diameter is 0.055 meter. All the lines lengths are �xedand the two downstream tanks must reeive the same �ow, onsidering thatthe sum of the global lines setion is the same before and after the Y-branh.The water pressures in the tanks are de�ned initially: the upstream tank isat 40000 pasal and the two downstream tanks are open to the atmosphereair and the pressure is 101325 pasal. The pump is standardized and hasharateristis (e�ieny, manometri head and required net positive sutionhead for a water �ow, et.) given by its manufaturer. The net positive sutionhead is investigated to guarantee the safety of the pump. The solutions areomputed taking into aount that the avitation phenomenon in the pumpmust not appear, otherwise it may be seriously damaged. The downstreamiruit (diretly linked to the avitation phenomenon) is oupled to the wholeiruit (pressure losses) and the Y-branh make the problem non trivial.This model is made of two design variables (the two tube diameters after theY-branh), three auxiliary variables and thirty-�ve funtional variables. The�gures 10, 11, 12, 13, 14 and 15 depit the results obtained when funtionalvariables are split onsidering a global varying preision. Sine the three aux-iliary variables have a �xed preision, a global preision an be de�ned onthe other variables, i.e. funtional variables and they are split like auxiliary28



variables. Half of those pitures depits the numbers of splits and the otherthe numbers of solutions. The • urves show the results obtained with a las-sial round-robin strategy for the hoies on all variables (main, auxiliary andfuntional variables). The � urves express the results with a strategy alwaysstarting with main variables. One they reah the required preision, auxiliaryare variables split. The N urves represent the results with a hoie strategywith a ratio de�ning a priority of 3 for the main variables on the auxiliaryvariables. Only results found within a reasonable time are written out on eahurve: results with a solving time exeeding one hour are not taken into a-ount.The �gures 10 and 11 represent the most general ase and all the funtionalvariables are de�ned with the same global preision. The di�erent number ofsolution between eah run an be explained by the misellany of the dupli-ation of design solutions and the powerlessness of onsisteny algorithm onintervals, whih never remove real solutions, but have di�ulty to prune au-rately some domains and to rejet them if they are near a real solution. In thisontext, the most aurate preision on funtional variables given reasonablesolving time is 10−1. The • urve seems to have the worst results, in partiularfor the more aurate preision, but otherwise the results are fairly similar. Itmay be noted that merging all the omputed solutions gives only one designarhiteture. Considering that fat, the best omputing run is obtained by the
N urve with 3 solutions and 296 splits for a funtional variables preision of
103. The best approah onsidering the whole urves seems to be the N urve,where a robust strategy is applied.After these �rst results, we an observe that the preision 103 and 104 for fun-tional variables give good results. These quantities are ompatible with some29



funtional variables values: losses in lines expressed in pasal and Reynoldsnumber values. So the �gures 12 and 13 give results where these funtionalvariables have several �xed preisions. In this ase, the most aurate preisionis 10−10. Globally the • urve seems to be again the worst approah, althoughit gives the smallest number of solutions after a preision of 10−7 for the samequantity of splits than others. The lowest number of solutions is given by the
� with 3 solutions for 148 splits for a preision of 100. Previously the samesmall number of solutions was found, but in 296 splits.From the maximum preision to 101 the results stay the same, but until 10−2the number of solutions and the number of splits derease. We an onludethat some other funtional variables values are ompatible with these prei-sions. Then set preisions are also given for the net positive sution head andthe total manometri head and all surfaes. The �gures 14 and 15 show theresults obtained with all these set preisions and with only a few still using thevarying global preision. In this ase, the robust strategy fails to give all thesolutions within reasonable time after a preision of 10−8, although it seems togive the best results before a global preision of 10−3. The two other urves al-low a maximum preision of 10−11 and up to a preision of 10−7 the results areinteresting. The best run is obtained by the � urve with 3 solutions and 148splits for preisions of 100 and 10−1, whih is not better than in the previousase.With these results, we an onlude that funtional variables have to be split(using CSP based on interval arithmeti). But it is di�ult to de�ne arefullythe preision on eah funtional variable. If the quantities represented by theirvalues are known by designers, well de�ned preisions an be set, but otherwisefew splits are better not to dupliate main variables solutions.30



5.3 A bootstrap problemA basi model of an airraft onditioning system is investigated (see Figure 16).Air oming from a turbo-reator and from the atmosphere is used to produeold air. The atmosphere air ools down the air oming from the turbo-reatorthrough a heat exhanger where omplex pieewise de�ned physis phenomenaare studied (Fanning frition fator and Nusselt number). Turbo-reator air�ow passes through a ompressor to improve the heat transfer phenomenoninside the exhanger. Before exiting the air onditioning system, a turbinereleases its pressure and makes its temperature derease. A oupling shaftonveys the turbine mehanial energy to the ompressor. This problem is dif-�ult to solve sine many physis phenomena interfere. The loop orrespondingto the bootstrap make its omponents oupled aording to the temperaturesand pressures of the air �ux. These temperatures and pressures are also linkedto the heat exhanger geometry (gap between plates).In this model, the ompressor, the turbine and the oupling shaft are stan-dardized omponents and only the heat exhanger has to be embodied as itmainly determines the air-onditioning performanes. The main objetive ofthe system is to bring air to the passengers and the rew of the airraft and toontrol the air temperature and pressure inside the okpit. But some otherriteria are important in an airraft, as the air �ow taken from the turbo-reator (that dereases its e�ieny), the inrease of the airraft drag, theweight of the air-onditioning system, et. This problem is e�iently solvedwith pieewise onstraints: 6734 splitting steps and 1262 approximate solu-tions with respet to 36978 splitting steps and 18860 approximate solutionswithout pieewise onstraints. 31



Moreover this problem annot be solved within reasonable time with lassialround-robin strategies on all the variables. The searh spae is so wide, thatif the embodiment design knowledge about main variables is not used, thesolving proess beomes very long. The use of funtional variables with in�nitepreision is the easiest way, sine the model is omplex and funtional variablesvalues quantities an hange. For instane, the Reynolds number takes itsvalues from 100 to 200000.It may be noted in the solution set of these real problems, that auxiliaryvariables preision are often large. Indeed the interval approah may omputeinterval solutions, where eah one may ontain several solutions over the realnumbers. If the model is very sensitive to main variables values and if theirpreisions are not small enough, auxiliary variables may have large domainssine they orrespond to the several main variables real values, whih areontained in one interval. From the designers' point of view and in the ontextof ED, it does not matter, beause the main goal is to investigate the feasibilityof design onepts. Designers' �rst interest is to know where there is no solutionin the searh spae. If they want to have more preise auxiliary variables valuesfor one spei� design arhiteture, they just have to hange all variablesdomains orresponding to one or several omputing solution values and thento inrease main variables preision. They an start a new solving step on thismore restrited searh spae and �nd more aurate values.6 Related workConstraint tehniques may be used at two suessive stages of preliminary de-sign. Disrete onstraints may lead to determine the arhiteture of a produt32



during the oneptual design phase (O'Sullivan, 2001). CD using omponentsfrom the shelf is known as on�guration. These problems an be represented bydynami onstraint satisfation problems (Mittal & Falkenhainer, 1990) suhthat the involved omponents are ativated and the orresponding onstraintsare solved. The notion of omponent (or variable) ativation an be takled byonditional onstraints (Gelle & Faltings, 2003; Sabin et al., 2003). Larger andmore omplex problems are also takled by (Stumptner et al., 1998; Mailharro, 1998). From a solving point of view the main goal is to e�iently traversethe tree of arhitetures. Numerial nonlinear onstraints are more involved inthe ED phase. The frontier between CD and ED may be thin beause mixedonstraints an be onsidered (Gelle & Faltings, 2003) to takle both phasesat the same time. But the ED physis models are in general more omplex.Sam-Haroud & Faltings (1996) have proposed to represent numerial on-straints by 2k-trees, namely deompositions of the feasible regions using in-terval boxes. Strong onsisteny tehniques have been de�ned through theombination of 2k-trees. Design appliations suh as bridge design have beene�iently solved. In this framework, onstraint systems are deomposed inbinary and ternary onstraints in order to limit the size of 2k-trees (quadtreesif k = 2 and otrees if k = 3).Classial interval tehniques have been implemented in the ED platform Con-straint Explorer (Zimmer & Zablit, 2001). The solving engine ombines in-terval arithmeti, onstraint propagation and searh. An important feature isthe analysis of the onstraint network using graph deomposition (Bliek et al.,1998). The result of this analysis is an ordering of variables to be �xed beforesolving the assoiated onstraint bloks. Reent developments an be foundin (Neveu et al., 2006). Our approah an be diretly integrated for solving33



one blok. In partiular large bloks may arise in ED models, for instane inthe study of the equilibrium of a system.
Pieewise onstraints an be implemented by means of onditional onstraints(Zimmer & Zablit, 2001). This method amounts to the �rst ase of our pruningalgorithm. More reently, binary pieewise onstraints with piees in the formof (x, y) ∈ Ik × Jk : Ck(x, y) have been represented by quadtrees (Vareilles etal., 2005). It seems di�ult to extend this approah to onstraints of higherarities, whih is required for solving the problems desribed in this paper.
Solution sets with nonzero volumes may be haraterized by inner approxima-tions, namely interval boxes of whih every point is a solution. Several workshave takled spei� ases: inequality onstraints by means of 2k-trees (Sam-Haroud & Faltings, 1996), interval boxes (Collavizza et al., 1999) or the ex-treme vertex representation (Vu et al., 2005), and equality onstraint systemswith at least as many existential quanti�ers as equations (Goldsztejn & Jaulin,2006). The study of suh tehniques for more heterogeneous onstraint systemsis an issue.
Other works have taken into aount relations that are not desribed by an-alytial expressions (Yannou et al., 2003; Fisher et al., 2004), exploiting inthe onstraint framework simulation results or data from blak box numerialtools. The main idea is to ompute approximate onstraint-based models ofthese relations. 34



7 ConlusionED problems have been represented by onstraint satisfation problems withexistential quanti�ers. ED knowledge on types of variables and preisions hasbeen used to improve the solver e�ieny. New searh heuristis based on asplitting ratio have been introdued to takle the quanti�ed variables. Dupli-ated solutions of main variables disappear and deisions on the design solu-tion priniples set are easier to make for designers. A global onstraint hasbeen de�ned for pieewise de�ned physis phenomena. Experimental resultsfrom aademi and real-world problems are promising. Embodiment designgoals are better taken into aount sine the main purpose is to investigatethe feasibility of the searh spae.There are many diretions for future researh. The notion of splitting ratioould be re�ned to takle the hardness of every variable. The hardness of a vari-able should be learly de�ned. For instane, dependenies between variablesmay also indiate variables relevany in the model and possibly partiipate totheir hardness. Auxiliary variables preision and solutions validation ould bemore studied. The notion of preision is essential in numerial omputations.The preision on auxiliary variables is not often hosen appropriately and itindued many useless omputations steps in all heuristi searh. The preisionon main variables is easily de�ned onsidering the design knowledge about themodel: epistemi knowledge about main variables values. On the other hand,auxiliary variables are often part of omplex mathematial expression. In fat,the sensitivity of eah variable should be investigated and preision should bede�ned onsidering the numerial analysis of eah onstraint in whih variablesare involved. Nevertheless in pratie, it is very di�ult to apply and designers35
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A Bath-exhanger modelConstants names and values:The bath volume (l): V := 6Fin thikness (mm): eail := 0.5Initial temperature of the aperitif (◦C): Ti := 20Final temperature of the aperitif (◦C): Tf := 8Volume of aperitif to ool down (l): dose := 4Design Variables names, domains and preisions:Catalog for the �ns materials (-): mater ∈ {1, 2}Catalog for the �ns length (-): ail ∈ {1, 2}Catalog for the tube diameter (-): diam ∈ {1, 2}Number of �ns (-): N ∈ [5..20]: integerSpae between �ns (mm): e ∈ [1..4]: p(e) = 10−1Auxiliary variables names and domains:Time to ool down the aperitif (s): t ∈ [11..15]: p(t) = 10−1Tube diameter (mm): d ∈ [0..50]: Integer�ns length (mm): L ∈ [0..50]: IntegerFin ondutivity (W/m/K): λ ∈ [1..200]: IntegerSaturation temperature (◦C): Tsat ∈ [−15..2]: p(Tsat) = 10−1Funtional Variables names and de�nition:Surfae of a semi �n (m2): Aail =
L2

−
π
4
·d2

10000001



Exhanger surfae (m2): A =
N ·(2·Aail+

π·e·d
1000000

)·dose

VExhange oe�ient int the bath-exhanger (-): h = 1200
eE�ieny oe�ient for a �n (-): fi = L−d

2000
·
√

2000·h
λ

eailFin e�ieny (-): η =
e(2·fi)−1

e(2·fi)+1

fiConstraints:Balane of heat energy Tf = Tsat + (Ti − Tsat) · e
−h·A·t·η

39
doseBath volume V = e · Aail · N · 100Catalog of tube diameters diam = 1 → d = 16

diam = 2 → d = 18Catalog of �n materials mater = 1 → λ = 200

mater = 2 → λ = 20Catalog of �n length ail = 1 → L = 40

ail = 2 → L = 50B Pump and tank water iruit modelConstants names and values:Pressure in the upstream tank (pa): Pamont := 40000Pressure in the downstream tanks (pa): Paval := 101325Height of the vertial downstream line Hr1 := 5before the Y-branh (m):Height of the vertial downstream line Hr2 := 2after the Y-branh (m):Height of the vertial upstream line (m): Ha := 2Height of water in the upstream tank (m): Hw := 0.5Water density (kg/m3): ρ := 1e32



Water visosity (m2/s): µ := 1e − 3Aeleration due to gravity (m/s2) g := 9.81Lines diameter before the Y-branh(m): D := 0.055Losses oe�ient in entry of upstream line: ξ1 := 0.5Losses oe�ient exiting downstream lines: ξ3 := 1Losses oe�ient in the Y-branh towards ξ4 := 0.5the �rst downstream tank:Losses oe�ient in the Y-branh towards ξ5 := 0.1the seond downstream tank:Water temperature (◦C): T := 13Design Variables names, domains and preisions:Line diameter after the Y-branh towards Dr1 ∈ [0.02, 0.1]: p(Dr1) = 10−3the �rst downstream tank (m):Line diameter after the Y-branh towards Dr2 ∈ [0.03, 0.1]: p(Dr2) = 10−3the seond downstream tank (m):Auxiliary variables names and domains:Flow in the lines before the Y-branh: Q0 ∈ [17/3600, 96/3600]: p(Q0) = 10−5Flow in the lines after the Y-branh Qr1 ∈ [0, 96/3600]: p(Qr1) = 10−5towards the �rst downstream tank:Flow in the lines after the Y-branh Qr2 ∈ [0, 96/3600]: p(Qr2) = 10−5towards the seond downstream tank:Funtional Variables names and de�nition:Setion of ylindrial upstream lines S = π·D2

43



(m2):Setion of ylindrial downstream lines Sr1 =
π·D2

r1

4towards the �rst tank (m2):Setion of ylindrial downstream lines Sr2 =
π·D2

r2

4towards the seond tank (m2):Surfae of the vertial upstream line Ae1 = π · D · Ha(m2):Surfae of the horizontal upstream line Ae2 = π · D · La(m2):Surfae of the vertial downstream line Ae3 = π · D · Hr1before the Y-branh (m2):Surfae of the horizontal line towards Ae4 = π · Dr1 · Lr1the �rst downstream tank (m2):Surfae of the vertial downstream line Ae5 = π · Dr2 · Hr2towards the seond tank (m2):Surfae of the horizontal line towards Ae6 = π · Dr2 · L2the seond downstream tank (m2):Flowing speed in the lines before the V0 = Q0

SY-branh (m/s):Reynolds number for the water before the Re1 = ρ·V0·D
muY-branh (-):Pieewise de�nition of Fanning frition Re1 ∈ [0, 2100] → f1 = 16

Re1fator for �owing before the Y-branh: Re1 ∈ [2100, 50000] → f1 =

0.10512 · Re1−0.244

Re1 ∈ [50000, 1000000] → f1 =

0.04234 · Re−0.164
1Reynolds number for the water between the Re2 =

ρ·
Qr1
Sr1

·Dr1

muY-branh and the �rst downstream tank(-):De�nition of Fanning frition fator for Re2 ∈ [0, 2100] → f2 = 16
Re24



�owing between the Y-branh and the tank 1: Re2 ∈ [2100, 50000] → f2 =

0.10512 · Re−0.244
2

Re2 ∈ [50000, 1000000] → f2 =

0.04234 · Re−0.164
2Reynolds number for the water between the Re3 =

ρ·
Qr2
Sr2

·Dr2

muY-branh and the seond downstream tank (-):De�nition of Fanning frition fator for Re3 ∈ [0, 2100] → f3 = 16
Re3�owing between the Y-branh and the tank 1: Re3 ∈ [2100, 50000] → f3 =

0.10512 · Re−0.244
3

Re3 ∈ [50000, 1000000] → f3 =

0.04234 · Re−0.164
3Losses oe�ient in the upstream elbow ξ2 = 0.15 + 0.0175 · 4 · f1 · 2 · 90(pa):Losses oe�ient in the downstream elbow ξ6 = 0.15 + 0.0175 · 4 · f3 · 2 · 90(pa):Total manometri head (m): H = −1.1763 · 10−5 · (Q0 · 3600)3

−2.2052 · 10−4 · (Q0 · 3600)2+

1.4384 · 10−2 · (Q0 · 3600) + 21.554Net positive sution head required: NPSHr = 1.2144 · 10−5 · (Q0·
3600)3 − 1.2301 · 10−3 · (Q0·
3600)2 + 4.9136 · 10−2 · (Q0 · 3600)

+0.49957Net positive sution head available: NPSHa = Pamont−Psat

ρ·g
+ (Ha+

2 · D) − DP0+DP1+DP2+DP3
Ro·gWater saturation vapour pressure (pa): Psat = e23.3265− 3802.7
T+273.18

−( 472.68
T+273.18

)2Total losses in the iruit (pa): ∆P = ∆P0 + ∆P1 + ∆P2 + ∆P3

+∆P4 + ∆P5 + ∆P6 + ∆P7Losses in entry of the vertial upstream line ∆P0 =
ξ1·ρ·V 2

0

2(pa):
5



Losses in the vertial upstream line (pa): ∆P1 = f1·Ae1

S3 · ρ·Q02

2Losses in the upstream elbow (pa): ∆P2 =
ξ2·ρ·V 2

0

2Losses in the horizontal upstream line (pa): ∆P3 = f1·Ae2

S3 · ρ·Q2
0

2Losses in the vertial downstream line before ∆P4 = f1·Ae3

S3
r1

· ρ·Q2
0

2the Y-branh (pa):Losses in the Y-branh towards the �rst ∆P5 =
ξ4·ρ(

Qr1
S

)2

2downstream tank (pa):Losses in the horizontal line towards the ∆P6 = f2·Ae4

S3
r1

· ρ·Q2
r1

2�rst downstream tank (pa):Losses exiting the line in the �rst ∆P7 =
ξ3·ρ·(

Qr1
Sr1

)2

2downstream tank (pa):Losses in the Y-branh towards the seond ∆P8 =
ξ5·ρ·(

Qr2
Sr2

)2

2downstream tank (pa):Losses in the vertial downstream line after ∆P9 = f3·Ae5

S3
r2

· ρ·Q2
r2

2the Y-branh (pa):Losses in the elbow towards the seond ∆P10 =
ξ6·ρ·(

Qr2
Sr2

)2

2downstream tank (pa):Losses in the horizontal line towards the ∆P11 = f3·Ae6

S3
r2

· ρ·Q2
r2

2seond downstream tank (pa):Losses exiting the line in the seond ∆P12 =
ξ3·ρ·(

Qr2
Sr2

)2

2downstream tank (pa):

6



Constraints:Y-branh water �ow equality Qr1 + Qr2 = Q0

Qr1 = Qr2Downstream tubes setion equality Sr1 + Sr2 = STotal manometri head H = Paval−Pamont

ρ·g
− (Hw + Ha) + Hr1+

∆P
ρ·gDownstream energy balane ∆P5 + ∆P6 + ∆P7 == ∆P8 + ∆P9+

∆P10 + ∆P11 + ∆P12 + Hr2 · ρ · gNo avitation phenomenon NPSHa < NPSHrC Bootstrap modelConstants names and values:Flying altitude (m): Z = 10500Calori� apaity di�erene (J/kg/K): r = 287Mass apaity ratio (-): τ = 10Plate ondutivity (W/m/K): kp = 20Plate thikness (m): tp = 0.001Mass �ow (kg/s): q = 0.7Isentropi e�ieny of the turboreator's di�user (-): ηTRd = 0.9Compresion ratio of the turboreator (-): TCTR = 8Isentropi e�ieny of the turboreator's ompressor (-): ηTRc = 0.8Isentropi e�ieny of the ompressor (-): ηc = 0.75Isentropi e�ieny of the oupling shaft (-): ηAT = 0.95Isentropi e�ieny of the turbine (-): ηt = 0.8Heat apaity ratio (-): γ = 1.4Mah number (-): M = 0.87



Design Variables names, domains and preisions:Width of the exhanger (m): Lx ∈ [0.1..1]: p(Lx) = 10−2Spaing between plates in the exhanger (m): rh ∈ [0.001..0.1]: p(rh) = 10−3Auxiliary variables names and domains:Temperature between the ompressor and the exhanger (K): T2 ∈ [0..1000]Temperature between the exhanger and the turbine (K): T3 ∈ [0..1000]Temperature after the turbine (K): T4 ∈ [230..500]Pressure between the ompressor and the exhanger (pa): p2 ∈ [0..10000000]Pressure between the exhanger and the turbine (pa): p3 ∈ [0..10000000]Pressure after the turbine (pa): p4 ∈ [0..10000000]Mass �ow in the bootstrap (kg/s): q ∈ [0..1]Funtional Variables names and de�nition:Length of the exhanger (m): Ly = LxHeight of the exhanger (m): Lz = 0.25 · LxTemperature of the atmosphere (K): Ta = 288.2 − 0.00649 · ZPressure of the atmosphere (pa): pa = 101290 · ( Ta

288.08
)5.256Temperature between the di�user and the T0 = Ta · (1 + M2

·(γ−1)
2

)ompressor of the turboreator (K):Pressure between the di�user and the p0 = pa · (ηTRd · (M2
·(γ−1)
2

+ 1)
γ

γ−1ompressor of the turboreator (pa):Temperature between the turboreator T1 = T0 · (1 + 1
ηTRc

· ((p1

p0
)

γ−1
γ − 1))and the ompressor (K):Pressure between the turboreator and p1 = TCTR · p0the ompressor (pa):Porosity (-): σ = rh

(rh+tp
)8



Reynolds number (-): Re = 4·rh·G
µPrandtl number (-): Pr = 0.825 − 0.00054 · T2 + 5·

10−7 · T 2
2Nusselt number (-) pieewise de�nition : Re ∈ [0, 2100] → Nu = 1.86·

(Pr·Re·2·rh

Lx
)0.33

Re ∈ [2100, 8000] → Nu = 0.116·
(Re0.66 − 125) · Pr0.33

Re ∈ [8000, 10000] → Nu = 10000−Re
10000−8000

·
0.116 · (Re0.66 − 125) · Pr0.33+

Re−8000
10000−8000

· 0.023 · Re0.8 · Pr0.33

Re ∈ [10000, 1000000] → Nu = 0.023·
Re0.8 · Pr0.33)Fanning fator (-) pieewise de�nition: Re ∈ [0, 2100] → f = 16 · Re−1

Re ∈ [2100, 100000] → f = 0.10512·
Re−0.243

Re ∈ [100000, 10000000] → f =

0.04234 · Re−0.164)Air visosity (kg/m/s): µ = −1.075 · 10−5 − 2.225 · 10−9 · T2+

1.725 · 10−6 ·
√

T2Air thermal ondutivity (W/m.K): λ = ((−2.620052386818974 · 10−6)·
(T3+T2

2
)2 + (9.169307749941458 · 10−3)·

(T3+T2

2
) + 1.075874105919108 · 10−1)·

(10−2)Air density between the turboreator and ρ1 = p1

r·T1the ompressor (kg/m3:Air density between the ompressor and ρ2 = p2

r·T2the exhanger (kg/m3):Air density between the exhanger and the ρ3 = p3

r·T3turbine (kg/m3):
9



Number of transfer units (-): Nut = H·A
q·CpExhanger e�ieny (-): ǫ = 1 − eτ ·Nut0.22

·(e
−1
τ ·Nut0.78

−1)Exhanger inlet pressure loss Ke = ((−0.00496672650332) · σ2+

(0.00113607587171) · σ+

(−0.00001379297260)) · ln(Re)2+

((0.06612031387891) · σ2+

(0.03340063900613) · σ+

(−0.00178687092114)) · ln(Re)+

(0.96233612367662) · σ2+

(−2.55595501972796) · σ+

1.01310287017856)oe�ient (-):Exhanger outlet pressure loss Kc = ((0.00505236835109) · σ2+

(−0.00414707431984) · σ+

(0.00347507173062)) · ln(Re)2+

((−0.08548307647633) · σ2+

(0.06740608329495) · σ+

(−0.09241949837272)) · ln(Re)+

(−0.18282301765817) · σ2+

(−0.17962391485785) · σ+

1.00333194877608)oe�ient (-):Mass veloity (kg/m2/s): G = q
AfExhange surfae (m2): A = Lx·Ly·(Lz−2·rh−tp)

rh+
tp
2Flowing setion (m2): Af = Ly · LzConvetive transfer oe�ient (W/m2/K): h = Nu·λ

rhGlobal heat transfer oe�ient (W/m2/K): H = 1

1/h+
2·tp
kpPressure loss in the exhanger (pa): ∆pe = ( G2

2·ρ2
) · (Kc + 1 − σ2) + f ·

( A
Af

) · (2 · ρ2

ρ2+ρ3
) + (Ke + σ2 − 1) · (ρ2

ρ3
)10



Exhanger volume (m3): V = Lx · Ly · LzPlate volume: Vp = A
2
· tpAir �owing speed in the exhanger (m/s): C = q

Af ·ρ2Iron plate mass (kg): me = Vp · 7800Constraints:Compressor energy onservation: ηc · (T2

T1
− 1) = (p2

p1
)

γ

γ−1 − 1Coupling shaft energy onservation: (T2 − T1) = ηAT · (T3 − T4)Turbine energy onservation: 1 − T3

T4
= ηt · (1 − (p3

p4
)

γ−1
γ )Exhanger pressure loss: ∆pe = p2 − p3Ehanger e�ieny ǫ = T2−T3

T2−T0

11



1 Figures

Fig. 1. Variables kind in the Embodiment Design phase.
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Fig. 7. Bath-exhanger.
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Fig. 8. Solving the bath-exhanger problem.
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Fig. 9. Pump and tanks water iruit.

8



b b
b

b

b b

b

b

b

r r r

r

r

r
r r

r

u u u

u

u

u

u u

u

Precision

lo
g
(s

p
li
t)

+∞ 106 104 102 1 10−2 10−4 10−6 10−8 10−10

2

3

4

Fig. 10. Solving the pump problem with varying preision on funtional variables.

b b b

b

b b

b b

b

r r r

r r

r r

r

r

u u u
u

u

u u
u

u

Precision

N
b

so
lu

tio
ns

+∞ 106 104 102 1 10−2 10−4 10−6 10−8 10−10

50

100

150

Fig. 11. Solving the pump problem with varying preision on funtional variables.

9



b b
b

b b
b b

b

b

b
b

b

b

r r r r r
r

r
r

r

r

r

r

r

u u u

u u

u
u

u

u

u

u u

u

Precision

lo
g
(s

p
li
t)

+∞ 106 104 102 1 10−2 10−4 10−6 10−8 10−10

2

3

4

2

3
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Fig. 16. Bootstrap �ux �ow diagram in an airraft.
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