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Abstra
tEmbodiment Design (ED) is an early phase of produ
t development. ED prob-lems 
onsist of �nding solution prin
iples that satisfy produ
t requirements su
has physi
s behaviors and intera
tions between 
omponents. Constraint satisfa
tionte
hniques are useful to solve 
onstraint-based models that are often partial, hetero-geneous, and un
ertain in ED. In this paper, new 
onstraint satisfa
tion te
hniquesare proposed to ta
kle pie
ewise de�ned physi
s phenomena or skill-based rules andmultiple 
ategories of variables arising in design appli
ations. New sear
h heuristi
sand a global pie
ewise 
onstraint are introdu
ed in the bran
h-and-prune framework.The 
apabilities of these te
hniques are illustrated on both a
ademi
 and real-worldproblems. The latter have 
omplete models presented in the appendix.Key words: sear
h, heuristi
, embodiment design, 
onstraint satisfa
tion
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1 Introdu
tionThe design pro
ess is a sequen
e of phases from the de�nition of needs andrequirements to preliminary design and detailed design (Pahl & Beitz, 1996).Preliminary design in
ludes 
on
eptual design (CD) and embodiment design(ED). The ED phase investigates the feasibility of some produ
t s
hemes ob-tained from the CD phase. This phase mainly ta
kles physi
s behaviors andintera
tions between the produ
t, its 
omponents and environments. Produ
tmodeling is based on the de�nition of the laws of physi
s, fun
tional models,e
onomi
 
riteria, et
.In this paper we fo
us on robust ED taking into a

ount variability, un
er-tainty or impre
ision in the design pro
ess. The goal is to determine the mainstru
turing 
hara
teristi
s of a produ
t, su
h as the working stru
ture, stan-dard 
omponents, and the main dimensions, while no signi�
ant de
isions havebeen taken at that point. Several 
omponents may 
hange during this phase.Robust ED 
an be implemented in a 
onstraint-based approa
h. Produ
t mod-els 
an be translated into numeri
al 
onstraints. Un
ertainty and impre
ision
an be partially 
aptured by interval 
omputations. Heterogeneous models andin
omplete information 
an naturally be dealt with. These models are involvedin robust design approa
hes taking into a

ount mathemati
al models duringthe early phases of design pro
ess. Robustness may be regarded through itsmeaning within the design 
ommunity (Rothwell & Gardiner, 1990).Produ
t modeling leads to the de�nition of several types of 
onstraints. Prod-u
t behavior laws relating to physi
s analysis are expressed through 
onserva-tion law, whi
h are easily translated into 
onstraints. In some 
ases, behavior3



laws are de�ned by sets of phenomenologi
al relations, namely pie
ewise re-lations depending on one or several parameters. Produ
t modeling also leadsto the de�nition of several types of variables. Design variables are related tothe main dimensions and 
hara
teristi
s of the produ
t. Designers are inter-ested in �nding out powerful solution prin
iples, where design variable values
orrespond to high performan
e 
riteria. Performan
e 
riteria may be repre-sented by Performan
e variables. Other variables of the model are Auxiliaryvariables, maintained within the model to link design variables to performan
evariables in order to preserve the model intelligibility. They are introdu
ed bythe modeling phase (see Figure 1).
In this �gure, the embodiment design knowledge of a produ
t takes into a
-
ount design variables, whose values identify ea
h design solution. Designersuse also several 
riteria to observe and evaluate the design solutions. Severaldiagrams and 
harts are used to identify the produ
t fun
tions and de
omposi-tion (te
hni
al organization 
harts) and to investigate the physi
s phenomenaregarding �uxes and indu
ed e�e
ts (�uxes �ow diagram and substan
e �eldgraph). In the modeling part of the embodiment design phase, these 
on
eptsare translated into a mathemati
al representation. Obviously, the variablesalready de�ned in the knowledge representation are also in the mathemati
almodel, and in most 
ases, 
riteria are easily expressed with 
onstraints andsome variables to observe 
riteria values. But diagrams and 
harts must be
onverted in a 
omputable form. New variables are introdu
ed and they do not
orrespond to designers' de
ision parameters. Thus, these new variables and
onstraints des
ribe physi
s phenomena, produ
ts geometry 
hara
teristi
s,et
. Some fun
tional variables are de�ned to preserve the model intelligibility4



and to express, for instan
e, well-known physi
s dimensionless numbers 
har-a
terizing physi
s phenomena. Some of them are introdu
ed after some stepsof model redu
tions.
Our purpose is to de�ne new 
onstraint satisfa
tion te
hniques in the interval-based bran
h-and-prune framework to solve enri
hed models of ED appli
a-tions. We investigate enri
hed robust ED models, sin
e we 
onsider variousknowledge about produ
ts: spe
i�
ations and requirements, knowledge of de-signers 
on
erning the whole produ
ts life 
y
le, physi
s phenomena, et
. Allthis knowledge is required to 
ompute quite safe and robust values (from adesign point of view) for the main variables of an ED model. The �rst problemis to handle spe
i�
 physi
s phenomena. To this end a global pie
ewise 
on-straint is de�ned at the modeling and the solving levels. The se
ond problem isto ta
kle the di�erent types of variables. Existential quanti�ers are introdu
edin the 
onstraint-based model to take into a

ount the fa
t that auxiliaryvariables are meaningless from a design point of view. New heuristi
s allowthe di�erentiation of the variables during sear
h, a

ording to their types. Anexperimental study from a prototype and several ben
hmarks are reported.Complete models are given in appendix for people who want to make theirown test with real world appli
ations.
Se
tion 2 introdu
es CSP modeling for ED. Solving prin
iples are presentedand some sear
h strategies are stated in Se
tion 3. Experimentations on a
a-demi
 problems are 
arried out in Se
tion 4. ED models derived from existingengineering models are pro
essed in Se
tion 5. Our approa
h is 
ompared tosome related work in Se
tion 6. 5



2 Problem ModelingWe 
onsider embodiment design problems de�ned as mixed models in
ludinginteger variables, real variables, 
onstraints and pie
ewise 
onstraints. Themain idea of this paper is to distinguish between variables a

ording to ap-pli
ation requirements and to separate them in several sets during the sear
hphase of solutions. A model is de�ned by a set X of variables lying in somedomain D and a set of 
onstraints C. Ea
h 
onstraint is a restri
tion of Dgiven atomi
 formula over the usual stru
ture of real numbers. Our goal is to�nd values in D for the variables of X satisfying all the 
onstraints in C.2.1 Types of VariablesIn ED problems, two types of variables are highlighted: the auxiliary vari-ables, and the main variables in
luding the design variables and the perfor-man
e variables. The main variables must be 
omputed at a given dis
ernmentpre
ision. The values of the auxiliary variables may be useless from the de-signer's point of view, no initial pre
ision or 
arefully 
hosen pre
ision maybe de�ned. The distin
tion between main variables and auxiliary variables isalways possible, sin
e main variables are stated by the produ
t spe
i�
ationsand requirements. The main variables are shared by all design phases. Theyidentify the main 
hara
teristi
s of produ
ts, that's why their domains andpre
isions are well known on the 
ontrary to the auxiliary variables, whi
h arespe
i�
 to ea
h design phases.Notations: Given a variable or a set of variables x, a real number or a setof real numbers r and a 
onstraint or a 
onjun
tion of 
onstraints C on x, we6



write C(r) if C is satis�ed when x has value r.Let X = (x1, . . . , xn) denote the main variables, let Y = (y1, . . . , ym) denotethe auxiliary variables, and let DX and DY be their domain. To solve EDproblems may be seen as the 
omputation of the set of solutions on the mainvariables, where there is at least one solution for auxiliary variables:
{rX ∈ DX |∃rY ∈ DY ∧ C(rX , rY )} (1)where C stands for the 
onstraints to be satis�ed.In other words, the main variables de�ne a s
heme of solution for designers,namely, the main ar
hite
tures of a produ
t. The des
riptions of the produ
tand its 
omponents 
on
erning their behavior, geometry, et
. make these ar-
hite
tures physi
ally valid, if at least one solution is found on the auxiliaryvariables for ea
h ar
hite
ture.Several approa
hes 
an be used to ta
kle su
h problems. Sear
h problems may
orrespond to our ED problems, sin
e solutions to ED problems are other thanyes or no, 
ontrary to de
ision problems. But it 
an be seen in Beame et al.(1995) that for ea
h sear
h problem an equivalent de
ision problem exists andin an ED 
ontext, it may be expressed as:
{∃r ∈ D|C(r)} (2)where all variables are linked with an existential quanti�er. E�
ient SATalgorithms (Cook & Mit
hell, 1997) 
an be used in this 
ase, but sin
e anexistential quanti�er is applied to ea
h variable, only one solution may befound to be the yes answer. 7



The 
onstraint satisfa
tion problem (CSP) approa
h de�nes a framework forsolving general problems expressed as a 
onjun
tion of 
onstraints, where allvariables are free:
{r ∈ D|C(r)} (3)All values r for variables satisfying C are 
omputed. This approa
h does notmat
h the formulation in (1), but the solving algorithms 
an be adjusted toundertake an existential quanti�er on some variables.We implement our approa
h and its 
orresponding algorithms within a CSPframework that uses 
ontinuous domains. This framework is suitable for theED problems (Zimmer & Zablit, 2001; Gelle & Faltings, 2003; Vareilles et al.,2005). The CSP approa
h allows designers to make their models evolve veryqui
kly as opposed to other methods, where designers express the knowledge,while 
arrying out its 
oding related to numeri
al solving methods similar tothe 
onstraint satisfa
tion approa
h. Some examples based on an evolutionaryapproa
h may be found in Sébastian et al. (2006). Moreover, the solving pro-
ess of a CSP guarantees the 
ompleteness of the set of approximate solutions,whereas other methods are often linked with relaxations and approximationsof some sto
hasti
 solutions.2.2 Intervals 
omputations and variable pre
isionThe problem of 
omputing solutions for fun
tions on real numbers is knownto be unde
idable (Ri
hardson, 1968; Wang, 1974). Computers arithmeti
(see IEEE754 standard) de�nes a subset of real numbers, 
alled the �oating-point numbers. Without any other te
hniques, 
omputations are made on the8



�oating-point numbers set and rounding errors may be important after several
omputation steps.Interval arithmeti
 (Moore, 1966) guarantees safe 
omputations using �oating-point numbers as interval bounds. For ea
h real number a, an interval hull(a) =

[a−, a+] may be used, 
orresponding to the smallest interval in
luding it, where
a− is the highest �oating-point number smaller than a and a+ is the lowest�oating-point number higher than a. Furthermore every operator and fun
tionmust be extended from real numbers to intervals with real bounds and thena hull with �oating-point bounds may be 
omputed. For example, the threebasi
 operators on real numbers 
an be extended as follows:

[a, b] + [c, d] =hull([a + c, b + d]),

[a, b] − [c, d] =hull([a − d, b − c]) and
[a, b] · [c, d] = hull([min(a · c, a · d, b · c, b · d), max(a · c, a · d, b · c, b · d)]),where hull([a, b]) = [a−, b+] and a− and b+ are the 
losest �oating-point num-bers lower than a and upper than b.Other notations: Given a variable x, an interval I and a 
onstraint C on

x, we write C(I) if C is satis�ed in the interval sense when x takes value I.The size of an interval I = [a, b] is equal to w(I) = b − a. Given a set ofreal numbers A, the hull of A, denoted by hull(A), is the smallest intervalen
losing A.Real values in intervals 
annot be enumerated as dis
rete domains, but inter-vals are split to redu
e their width sin
e a smallest hull is 
omputed or aninterval pre
ision is rea
hed. A pre
ision p(x) may be de�ned for a variable x.9



It de�nes the interval width, where we do not want any more 
omputations tobe done. The pre
ision on variables domain allow designers to de�ne the tol-eran
e authorized on some important variables, like the main variables of anED model. Auxiliary variable pre
isions may be di�
ult to agree on, It mustbe highlighted that the set of auxiliary variables is often under-
onstrained,sin
e, in the ED phase, some un
ertainties remain about some produ
t 
har-a
teristi
s and its behavior.sin
e physi
s phenomena are often 
omplex. Twotypes of pre
isions may be highlighted in ED. The pre
ision on main variables
orresponds to the pre
ision of dis
ernment of design ar
hite
tures, whereaspre
isions on auxiliary variables de�ne numeri
al pre
isions for 
omputations.To de�ne pre
isions on all types of variables may in
rease the e�
ien
y ofthe 
omputing pro
ess, sin
e an interval pre
ision is often a
hieved before thesmallest hull (or 
anoni
al hull) of a real number.Suppose that p(xk) ≥ 0 (the value 0 for a pre
ision expresses the need ofa 
anoni
al interval box for a variable) is the desired pre
ision of xk (k =

1, . . . , n). We now 
onsider the �nite set of approximate solutions:
{I ⊆ DX |∃J ⊆ DY ∧ C(I, J)} (4)where I = I1 × . . . × In and J = J1 × . . .× Jm, su
h that I is pre
ise enough,i.e., w(Ik) ≤ p(xk) for k = 1, . . . , n and ea
h interval bounds are �oating-pointnumbers. The �rst goal is to 
ompute a subset of (4) en
losing (1) having aminimal 
ardinal. To this end the main variable values must be 
lose to theirpre
isions, i.e., w(Ik) ≈ p(xk). The se
ond goal is to prove the existen
e of asolution (element from set 1) in every resulting box. Proofs of existen
e 
anbe implemented by interval analysis te
hniques and this will be detailed in thenext se
tion. 10



2.3 CSP notionsA CSP is de�ned by three sets 
orresponding to a set X of variables, a set D
orresponding to their domains and a set C of 
onstraints restri
ting the vari-ables values. The goal is to �nd every element of D that satis�es all 
onstraintsat the same time. This problem is unsolvable given 
ontinuous domains andtrans
endent fun
tions. A more pra
ti
al goal is to 
ompute a �nite approxi-mation of the set of solutions (Lhomme, 1993). The most 
ommon approa
his to 
al
ulate a set of interval boxes of a given size en
losing the solution set.The satisfa
tion of a numeri
al 
onstraint is usually de�ned as follows: everyvariable is interval-valued, every expression is evaluated using interval arith-meti
 (Moore, 1966), and every relation between intervals is true wheneverthere exist reals within intervals that satisfy the following relation:
{r ∈ DX : c(r) → C(hull(r))}, (5)where C is the interval extension of the 
onstraint c on reals (i.e.: ea
h variableis repla
ed by its interval domain and ea
h fun
tion or operator is extendedto the interval arithmeti
).The satisfa
tion of 
onstraints is veri�ed using 
onsisten
y te
hniques. Vari-ables' domains are 
he
ked 
onsidering the whole 
onstraints set. If a domainis not 
onsistent, then all unauthorized values (or intervals) are removed aslong as they do not satisfy at least one 
onstraint. Applying a global 
onsis-ten
y is, in general, to expensive. Thus, lo
al 
onsisten
y algorithms, su
h as2B and 3B-
onsisten
y (Lhomme, 1993) and box-
onsisten
y (Benhamou etal., 1999), are used instead. For instan
e we 
an 
onsider the following de�ni-11



tion of box 
onsisten
y:Given C the interval extension of a 
onstraint c on reals and a box of intervaldomains I1 × ... × In, c is satis�ed a

ording to box 
onsisten
y, if for ea
h kin {1, ..., n}:
Ik = {ak ∈ Ik|C(I1, ..., Ik−1, hull(ak), Ik+1, ...In)} (6)

As soon as there are several solutions, 
onsisten
y te
hniques are no longersu�
ient. Sear
h algorithms are used to explore the totality of the sear
hspa
e. Typi
ally, a domain is 
hosen and is split into two disjoint intervalsusing a bise
tion algorithm. Then two new smaller problems are solved withthe same iterative approa
h. The union of these two problems is equal tothe initial CSP whi
h is �nally split in many sub-problems. The 
hoi
e ofthe domain to split may take into a

ount heuristi
s in order to optimizethe sear
h phase (for instan
e: most 
onstrained variables, greatest domain,smallest domain, et
.). Then several algorithms may be used to explore su
hhierar
hy of problems like generate and test, ba
ktra
k sear
h, ba
k jumping,dynami
 ba
ktra
king, et
 (Rossi et al., 2006).Interval solvers implement bran
h-and-prune te
hniques (Hyvönen, 1989). Thesear
h spa
e is given by an interval box that is iteratively split and redu
ed us-ing a �xed-point approa
h to guarantee that the solving pro
ess 
onverges. Ef-�
ient pruning algorithms merge 
onsisten
y te
hniques and numeri
al meth-ods. In general, splits for real variables are based on bise
tion, whereas integervariables are enumerated. Let us point out that integer variables 
an be pro-
essed as real variables within interval pruning methods and further re�nedusing the integrality 
ondition. 12



2.4 Pie
ewise 
onstraintWe 
onsider a new type of 
onstraints for modeling pie
ewise de�ned physi
sphenomena. Behavior laws de�ning 
omplex phenomena are often establishedby experiments. These experiments are done under several hypotheses and
onditions de�ning the 
ontexts of use for these stated laws. In many 
ases,the main 
ontext of experiments 
an be managed by only one parameter,whi
h values identify the relation to apply. For instan
e, many models in �uidme
hani
s involve the Reynolds dimensionless number. The Reynolds numbervalue points to di�erent types of �uid �owing (laminar, transient, turbulent)
orresponding to �uid me
hani
s laws (see Figure 2).Let this 
onstraint be
Piecewise(α, I1 → C1, . . . , Ip → Cp)Su
h that α is a variable, ea
h Ik is an interval, and ea
h Ck is a 
onstraint ora set of 
onstraints. The Ik identify the di�erent 
ases of the pie
ewise phe-nomenon 
onsidering the parameter α and the Ck 
orrespond to the relationsto use. The interse
tion Ij ∩ Ik must be empty for every j 6= k, otherwiseat least two 
onstraints will apply for the same phenomenon. In other words,all the Ik de�ne a partition of the domain of α. The pie
ewise 
onstraint issatis�ed if:
∃k ∈ [1..p], Dα ⊆ Ik ∧ Ck (7)The pie
ewise 
onstraint is equivalent to Ck whenever α belongs to Ik. At mostone k must exists sin
e the Ik do not interse
t, otherwise several 
onstraints13



are taken into a

ount, whi
h lead to an in
onsistent set of 
onstraints.Interval 
onstraint satisfa
tion te
hniques are used to redu
e variable domains.Let Dα be the domain of α. Four 
ases 
an be identi�ed:1. If a k exists su
h that Dα ⊆ Ik then Ck is solved. The domains of thevariables o

urring in Ck 
an be redu
ed using, e.g., 
onsisten
y te
hniques.2. The domain of α 
an be redu
ed as follows:
Dα = hull

(

p
⋃

k=1

(Dα ∩ Ik)

)

.A failure must happen if no Ik interse
ts the domain Dα.3. If Ck is violated for some k then every element of Ik 
an be removed from
Dα.4. Otherwise, the 
onstraint is satis�ed in the interval sense but no domain
an be redu
ed and the problem is still being under-
onstrained.Note that the solving pro
ess must not stop before Dα takes its values in atmost one Ik, otherwise the pie
ewise phenomenon is not taken into a

ountand many non physi
s solutions may be found (
ase 4).2.5 Sear
h issuesThe notions of auxiliary variables and pie
ewise 
onstraints introdu
e severaldi�
ulties and problems:Problem 1. The splitting steps of domains of auxiliary variables may dupli-
ate the solutions on the main variables. For same values of the main vari-ables, several solutions for auxiliary variables may satisfy all the 
onstraints.This is due to some in
oherent pre
isions between auxiliary variables and14



main variables. It must also be highlighted that the set of auxiliary vari-ables is often under-
onstrained, sin
e, in the ED phase, some un
ertaintiesremain about some produ
t 
hara
teristi
s and its behavior. Thus, manysolutions may be found for the same tuple of values for main variables.That may lead to useless redundant 
omputations and to a huge number ofapproximate solutions 
orresponding to the same produ
t ar
hite
ture.Problem 2. The main variables may not be redu
ed enough if the auxil-iary variables are not split enough. Consisten
y te
hniques used on intervaldomains are based on outer approximations, whi
h may lead to an over-estimation of variable domains. The solving pro
ess may be very long,spending most of the time in pure sear
h on main variables, whereas auxil-iary variables may have wide domains.Problem 3. It may be di�
ult to 
hoose the auxiliary variables to be splitand to set pre
ision thresholds. Proper pre
isions are required to e�
ientlymanage Problem 1 and Problem 2. Moreover, some auxiliary variables areonly present within the model, be
ause they represent well-known propertiesof some 
omponents, phenomena, et
. However they are not required toexpress all the knowledge about a produ
t. These variables and their valuesimprove the expressivity and 
omprehensibility of the produ
t model, whi
his important when this model may evolve as in the ED phase. Let 
allthem fun
tional variables, as their values are dire
tly 
omputed using anexpression of other variables.Problem 4. The pie
ewise 
onstraints must be taken into a

ount in orderto early redu
e the sear
h spa
e. This 
learly depends on the domain of the
α variables, whi
h must be redu
ed to one of the Ik of the pie
ewise 
on-straint to apply the 
onstraint ck and take into a

ount the 
orrespondingphenomenon. 15



Other issues. The ED problems are under-
onstrained in general. We sup-pose here that the pre
isions of main variables are well 
hosen enough a
-
ording to the domain sizes in order to avoid a huge number of approximatesolutions. Another well known approa
h is to spe
ialize the sear
h for integervariables and real variables.
3 Problem SolvingNew sear
h heuristi
s will be introdu
ed to ta
kle the issues raised above.These heuristi
s will be embedded in the general interval-based bran
h-and-prune model.3.1 Bran
h-and-prune algorithmThe general bran
h-and-prune algorithm (Van-Hentenry
k et al., 1997) is de-�ned in Algorithm 1. The input is a CSP model. The output is a set of ap-proximate solutions en
losing the solution set.The 
omputation is as follows. Every domain is pruned provided that no so-lution (element from set 1) is lost. Every approximate solution (element fromset 4) asso
iated with the result of the proof of existen
e is inserted in the
omputed approximation. Non-empty domains are split provided that at leastone of the main variables is not pre
ise enough. The sub-problems are furthersolved.The algorithm for the proof of existen
e validates the box 
omputed by theBran
h-and-Prune algorithm, and several te
hniques may be used a

ording16



Algorithm 1. General Bran
h-and-Prune Algorithm.
Solve(C : set of 
onstraints, D : domains, (x, y) : vars) : a set of intervalapproximate solutions

D := Prune(C, D)

if D is empty thendis
ard D

elsif Dx is pre
ise enough then

b := ProveExistence(C, D)

Insert(Dx, b) in the 
omputed approximation
else

Choose a splittable variable z in (x, y)

Split(D, z, D1 ∪ D2)

Solve(C, D1, (x, y))

Solve(C, D2, (x, y))

endif

endto the type of 
onstraints:
• Inequality 
onstraints 
an be ta
kled with interval 
omputations.
• Equality 
onstraint systems 
an be pro
essed by �xed-point operators (Kear-fott, 1996).These te
hniques may not operate on heterogeneous and non-di�erentiableproblems. In this 
ase, a sear
h pro
ess 
an be used to prove the existen
e of
anoni
al approximate solutions, namely boxes of maximal pre
ision satisfyingthe 
onstraints in the interval sense. We 
onsider that this smallest intervalbox, with 
losest �oating-point numbers as bounds, is pre
ise enough to 
laim17



that we have found a solution if no in
onsisten
ies are dete
ted. An otherapproa
h is to apply a lo
al sear
h pro
ess, where the optimization fun
tionshould take into a

ount the number of in
onsistent 
onstraints balan
ed bythe distan
e of violation of ea
h one.However, these algorithms 
an not always prove the existen
e of a solution in abox in a reasonable time. All 
omputed solutions may not be guaranteed, butthis is not the main goal for designers to have safe numeri
al solutions in theED phase. All the un
ertainties relating to a model make the solutions nearguaranteed boxes also a

eptable. However, guaranteed boxes may 
orrespondto more robust solutions than those for whi
h the proof of existen
e has failed.In the ED phase, designers are mainly interested in having an overview ofthe global shape of the 
omplete spa
e of solutions, namely, having a betterinsight of the feasible produ
t ar
hite
tures. When designers have an idea ofsome robust solutions within a solution set, they 
an better de�ne the moreinteresting parts of this set relating to good performan
es 
riteria and robustprodu
t ar
hite
tures.
3.2 Sear
h strategiesWe propose to implement several sear
h strategies to ta
kle the problemsdes
ribed in the previous se
tion.Splitting ratio. The 
hoi
e of variables may follow an intensi�
ation pro
esson the main variables and a diversi�
ation strategy on the auxiliary variables.The idea is to limit the dupli
ation of solutions (Problem 1) and to 
omputee�
ient redu
tions on the whole system (Problem 2). A diversi�
ation pro
ess18



aims at gathering some knowledge on the problem, whereas an intensi�
ationpro
ess uses this knowledge to explore and to fo
us on interesting areas of thesear
h spa
e (Blum & Roli, 2003). The intensi�
ation/diversi�
ation strategy
an be 
ontrolled by a ratio between the two types of variables to 
hoose (seeAlgorithm 2). Inside ea
h group, a round robin strategy may be used to makethe algorithm robust. A high ratio 
orresponds to high intensi�
ation on mainvariables and a small one in
reases diversi�
ation on auxiliary variables.Algorithm 2. Sear
h heuristi
 favoring main variables
SelectVariable(X : set of variables, D : domains, R : integer ratio)

Xm := {x ∈ X : x is a main var., Dx can be split}

Xa := {x ∈ X : Dx can be split} \ Xm

let n be the number of carried out splits

let nm be the number of splits on main var.

if Xa is empty or n = 0 or nm < R(n − nm)

nm := nm + 1

x := SelectRoundRobin(Xm)

else

x := SelectRoundRobin(Xa)

endif

n := n + 1

return x

end

This heuristi
 is appli
able to any ED problem, sin
e ED problems alwaysin
lude some main variables (whi
h values statements are the main obje
tiveof the ED phase). Moreover, these variables are often useful to 
ompute rel-19



evant values for auxiliary variables, sin
e auxiliary variables have to expresssome 
hara
teristi
s (physi
s phenomenon, geometry, et
.) of a spe
i�
 produ
tar
hite
ture. Main variables are better de�ned (small domains and a

uratepre
isions a

ording to the produ
t spe
i�
ations) than auxiliary variables (forinstan
e: 
omplex phenomena with several simplifying assumptions). In thisway, the 
onstraint propagation phase may be more interesting in redu
ingdomains of auxiliary variables than the splitting steps on this huge sear
hspa
e.Pre
ision. Two types of auxiliary variables 
an be identi�ed (Problem 3).Auxiliary variables expressed as fun
tions of other variables may not be splitsin
e they 
orrespond to intermediate 
omputations. To this end, it su�
es tobind these variables to an in�nite pre
ision. Their values are 
omputed usingthe Prune algorithm (
onstraint propagation). The other auxiliary variablesmay be split (Problem 2), but their pre
isions have to be as relevant as possibleto avoid too many useless splitting steps (Problem 1).Pie
ewise 
onstraint.The goal is to split the α variable a

ording to the �rstpruning 
ase of the 
onstraint in order to answer Problem 4. The domain of αmust be in
luded in some Ik in order to enfor
e Ck. To this end the domain of α
an be split on the bounds of the intervals Ik instead of the 
lassi
al bise
tion.Let us note that even the auxiliary variables with in�nite pre
ision must be
onsidered here. Combining several pie
ewise 
onstraints parametrized by thesame variable boils down to 
onsidering the set of bounds from all the intervals
Ik and to 
ombine the 
onstraints from the 
orresponding pie
es.Variable types. A 
ommon approa
h is to 
hoose �rst integer variables andthen real variables, supposing that di�erent integer values may 
orrespond20



to di�erent produ
t ar
hite
tures. We then have several 
hoi
e 
riteria to be
ombined: type of variable (main, auxiliary), domain nature (dis
rete, 
on-tinuous), and more usual 
riteria (round-robin strategy, largest 
ontinuousdomain, smallest dis
rete domain, most 
onstrained variable, et
.). Integervariables are supposed to be enumerated and real variables are bise
ted.3.3 RepresentationSeveral approximate solutions are redundant if the domains of the main vari-ables interse
t, be
ause of the sear
h on auxiliary variables. In this 
ase, theyneed to be merged in order to 
ompute 
ompa
t representations of the solu-tion set. In the interval framework a set of merged boxes 
an be repla
ed bytheir hull, namely the smallest box 
ontaining ea
h element.It must be veri�ed that the main variables are still pre
ise enough after merg-ing. In parti
ular, several boxes en
losing a 
ontinuum of solutions may shareonly some bounds. The hull may not be 
omputed to keep �ne-grained ap-proximations.4 Empiri
al evaluation on a
ademi
al problemsThe te
hniques have been implemented in Realpaver (Granvilliers & Ben-hamou, 2006). The pruning step is implemented by 
onstraint propagationusing 2B 
onsisten
y and box 
onsisten
y. The next results do not take intoa

ount the 
omputations of any proof of existen
e algorithm, sin
e only per-forman
es of sear
h heuristi
s are studied. These results are only 
on
erned of�nding solutions whi
h are 
oherent with pre
isions of variables. The presented21




urves show the number of splits made on domains of variables. Consideringone solving heuristi
, this number does not vary on the 
ontrary to the solvingtime, whi
h depends on the 
omputer hardware, the operating system, otherrunning pro
ess, et
. Moreover, it unmistakably represents the performan
esof ea
h sear
h heuristi
s, sin
e we do not interfere with the pruning algorithm.4.1 Fun
tional variablesED problems embody many variables expressed as fun
tions of other variables.They are maintained within the model to preserve the model intelligibility, al-though they 
ould be removed and repla
ed by their expression. The questionis whether these variables have to be split. Let us 
onsider the following prob-lem parametrized by n ≥ 3:

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



xk ∈ [−100, 100] 1 ≤ k ≤ n

yk = x2
k − x2

k+1 1 ≤ k ≤ n

yk − yk+1 = k 1 ≤ k ≤ n

(8)
Let xn+1 be x1 and let yn+1 be y1. The goal is to prove that the problem hasno solution. The results are depi
ted in Figure 3. The • 
urve 
orresponds to around robin strategy on x and no split on y. This is 
learly not e�
ient. The �
urve is obtained with a round robin strategy on x and y. The growth ratio isalmost the same (fa
tor 2) but the number of splitting steps is de
reased by afa
tor 50. The N 
urve is derived by a more robust strategy su
h that x is splittwi
e more than y. Surprisingly the number of splitting steps de
reases when
n in
reases. For instan
e, given n = 8, the number of bise
tions is respe
tively22



93183, 1791, and 93 for the three heuristi
s.Let us 
onsider another problem parametrized by n ≥ 3:

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
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xk ∈ [−π/3, π/3] 1 ≤ k ≤ n

yk = xk+1 + xk+2 1 ≤ k ≤ n

tan(xk + yk) + tan(xk) = k/n 1 ≤ k ≤ n

(9)
su
h that xn+i = xi and yn+i = yi for every i ≥ 1. The goal is to 
ompute thesolutions on x 
onsidering a pre
ision of 10−8 (three solutions for 6 ≤ n ≤ 11).The results are depi
ted in Figure 4. The • 
urve 
orresponds to a round robinstrategy on x and no split on y. The � 
urve is obtained with a round robinstrategy on x and y. We see that it is more e�
ient not to split y. The other
urves are obtained with a robust strategy su
h that x is split r times morethan y (r = 5 for N and r = 10 for �). The improvement in
reases with ratio
r.The previous results may lead to the following 
on
lusions. In the �rst problem,every redu
tion on fun
tional variables is dire
tly propagated through many
onstraints, whi
h is e�
ient sin
e these variables o

ur in several 
onstraints.If su
h variables appear in only one 
onstraint, splitting them is not e�
ient,be
ause they only represent intermediary 
omputations. The se
ond problemshows that no split on fun
tional variables gives bad performan
es. In fa
t,every redu
tion on yk leads immediately to a redu
tion of xk+1 and xk+2 sin
ethe 
onstraint is simple. This is a means for ta
kling two variables using onlyone split. Finally, strategies using a ratio are more robust and e�
ient thanothers on these types of problems. 23



It 
an be noted that in ED models, fun
tional variables often take part ofunder-
onstrained network of 
onstraints. Many splitting steps on them isuseless and a high ratio is better. If this ratio is too di�
ult to establish,no splitting steps on fun
tional variables is the easiest and the more e�
ientapproa
h. Moreover all splitting steps on fun
tional variables do not have thesame impa
t on the pruning of the whole problem and the round robin strategydoes not take this fa
tor into a

ount. Perhaps, some other strategies, as forinstan
e to 
hoose the most 
onstrained variable, should be more e�
ientespe
ially with small ratios, where fun
tional variables are often split.4.2 Auxiliary variablesAuxiliary variables are useless from an ED point of view but they have to bee�
iently managed during 
omputation. Let us 
onsider the following problemwhere n is an integer main variable in [−108, 108], x, y, z are real variables in
[−10, 10] with pre
ision 10−8, x is a main variable, y and z are auxiliaryvariables:
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x − y + z = 1 − n

x − yz = 0

x2 − y + z2 = 2

(10)
The problem proje
ted onto the auxiliary variables is hard to solve, sin
ethis problem is dense. Lo
al reasoning about proje
tions may not 
omputee�
iently domains of variables. As a 
onsequen
e these variables must oftenbe split. The 
urve in Figure 5 is obtained from a robust strategy that al-24



ternatively splits main and auxiliary variables with ratio r. We observe anexponential behavior when r in
reases, i.e., when auxiliary variables are sel-dom split. We also noti
e for this problem that labeling is better than bise
tionon n. In fa
t n must be set before solving the whole problem.The number of splitting steps on auxiliary variables should follow the hardnessof the problem on these variables. This theoreti
al 
riterion is implementedhere by a global ratio on the variable sets. This ratio aims at favoring mainvariables a

ording to the existential quanti�er whi
h is de�ned on auxiliaryvariables, when 
onsidering an ED problem.
4.3 Pie
ewise 
onstraints
We 
onsider the following problem:
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(x, y, z) ∈ [−10, 10]3

y + y2 = z2 + 2

xz = z2 − 1

piecewise(x, I1 : mid(I1) = x2 − y2 + x,... ...
In : mid(In) = x2 − y2 + x )

(11)
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where n is the number of pie
es of the pie
ewise 
onstraint, ea
h interval Ik isde�ned by
Ik =

[

−10 + 20
k − 1

n
+ ν,−10 + 20

k

n
− ν

]

, 1 ≤ k ≤ n, (12)
ν > 0 is equal to the ma
hine pre
ision, and mid(Ik) is the midpoint of Ik.Let 10−8 be the pre
ision of every variable.Figure 6 depi
ts the number of splitting steps required for solving the problemparametrized by the number of pie
es of the pie
ewise 
onstraint. The variablesare 
hosen following a round robin strategy. The � 
urve is su
h that only the�rst pruning 
ase of the pie
ewise 
onstraint is applied. A restri
ted pruningalgorithm is 
learly not e�
ient. In this 
ase, many approximate solutionsin
lude pie
e bounds and the pie
ewise 
onstraint is useless. The • 
urve
orresponds to a full pruning algorithm with 
lassi
al bise
tion, the � one toa full pruning algorithm with split on the �rst hole from the domain of x, andthe N one to a full pruning algorithm with split on the mid hole. Bise
tion ismore e�
ient than split on the �rst hole. It is known that bise
tion is moree�
ient than labeling for 
ontinuous variables. Split on the mid hole is thebest heuristi
s. The 
orresponding fun
tion follows np with 0 < p < 1. Thenew te
hnique seems e�e
tive even for huge pie
ewise 
onstraints.
5 Empiri
al evaluation on real-world problemsIn this se
tion we evaluate our approa
h on models obtained for real worldappli
ations in me
hani
al engineering. It may be noted that the next resultsdo not take into a

ount the existen
e proof algorithm, be
ause of the huge26



number of 
omputation steps it adds. Moreover we are mainly interested instudying our sear
h heuristi
 results.5.1 A basi
 bat
h-ex
hanger systemWe �rst 
onsider a bat
h ex
hanger model (see Figure 7). The solution prin
i-ples are de�ned using �ve design variables (three 
atalogs related to lengths,materials and diameters, the number of �ns, and the gap between �ns). In thismodel, the variables relating to the 
hoi
es within 
atalogs are design variablesinstead of the length and materials of �ns and the diameter of the tube, whi
hones have their values dire
tly de�ned by the 
atalog. This problem is inter-esting from an ED point of view, sin
e we have to 
hoose several 
omponentsin a (small) 
atalogs, while dimensioning the gap between �ns. In this sys-tem, there is a 
oupling between �uid me
hani
s and the geometry of the heatex
hanger (namely the gap between �ns). System modeling introdu
es �veauxiliary variables and �ve fun
tional variables. The bat
h-ex
hanger is partof a bat
h-
ooler system for aperitif and this model investigates the feasibilityto 
ool down the aperitif from 25◦C to 8◦C in less than 25 se
onds.Figure 8 depi
ts the number of splitting steps using the robust strategy withratio r. The number of solutions is half of the number of splitting steps. The �
urve 
omes from labeling of integer domains and the N 
urve from bise
tions.We see that a high splitting ratio allows to de
rease the number of splittingsteps. Due to some orientation in the model the auxiliary variables are dire
tly
omputed from the design variable values. Splitting auxiliary variables leads todupli
ate solutions and 
onsequently useless sear
h steps. Bise
tion on integervariables is better than labeling. That is explained by e�
ient redu
tions of27



the number of �ns (integer in [5, 20]) using some bound 
onsisten
y method.5.2 A pump and tank water 
ir
uitThis model takes into a

ount three tanks (one upstream and two downstream)and one water pump (see Figure 9). The obje
tive is to study the feasibility ofdimensioning the two lines diameters after the downstream Y-bran
h. Beforethe Y-bran
h, the lines diameter is 0.055 meter. All the lines lengths are �xedand the two downstream tanks must re
eive the same �ow, 
onsidering thatthe sum of the global lines se
tion is the same before and after the Y-bran
h.The water pressures in the tanks are de�ned initially: the upstream tank isat 40000 pas
al and the two downstream tanks are open to the atmosphereair and the pressure is 101325 pas
al. The pump is standardized and has
hara
teristi
s (e�
ien
y, manometri
 head and required net positive su
tionhead for a water �ow, et
.) given by its manufa
turer. The net positive su
tionhead is investigated to guarantee the safety of the pump. The solutions are
omputed taking into a

ount that the 
avitation phenomenon in the pumpmust not appear, otherwise it may be seriously damaged. The downstream
ir
uit (dire
tly linked to the 
avitation phenomenon) is 
oupled to the whole
ir
uit (pressure losses) and the Y-bran
h make the problem non trivial.This model is made of two design variables (the two tube diameters after theY-bran
h), three auxiliary variables and thirty-�ve fun
tional variables. The�gures 10, 11, 12, 13, 14 and 15 depi
t the results obtained when fun
tionalvariables are split 
onsidering a global varying pre
ision. Sin
e the three aux-iliary variables have a �xed pre
ision, a global pre
ision 
an be de�ned onthe other variables, i.e. fun
tional variables and they are split like auxiliary28



variables. Half of those pi
tures depi
ts the numbers of splits and the otherthe numbers of solutions. The • 
urves show the results obtained with a 
las-si
al round-robin strategy for the 
hoi
es on all variables (main, auxiliary andfun
tional variables). The � 
urves express the results with a strategy alwaysstarting with main variables. On
e they rea
h the required pre
ision, auxiliaryare variables split. The N 
urves represent the results with a 
hoi
e strategywith a ratio de�ning a priority of 3 for the main variables on the auxiliaryvariables. Only results found within a reasonable time are written out on ea
h
urve: results with a solving time ex
eeding one hour are not taken into a
-
ount.The �gures 10 and 11 represent the most general 
ase and all the fun
tionalvariables are de�ned with the same global pre
ision. The di�erent number ofsolution between ea
h run 
an be explained by the mis
ellany of the dupli-
ation of design solutions and the powerlessness of 
onsisten
y algorithm onintervals, whi
h never remove real solutions, but have di�
ulty to prune a

u-rately some domains and to reje
t them if they are near a real solution. In this
ontext, the most a

urate pre
ision on fun
tional variables given reasonablesolving time is 10−1. The • 
urve seems to have the worst results, in parti
ularfor the more a

urate pre
ision, but otherwise the results are fairly similar. Itmay be noted that merging all the 
omputed solutions gives only one designar
hite
ture. Considering that fa
t, the best 
omputing run is obtained by the
N 
urve with 3 solutions and 296 splits for a fun
tional variables pre
ision of
103. The best approa
h 
onsidering the whole 
urves seems to be the N 
urve,where a robust strategy is applied.After these �rst results, we 
an observe that the pre
ision 103 and 104 for fun
-tional variables give good results. These quantities are 
ompatible with some29



fun
tional variables values: losses in lines expressed in pas
al and Reynoldsnumber values. So the �gures 12 and 13 give results where these fun
tionalvariables have several �xed pre
isions. In this 
ase, the most a

urate pre
isionis 10−10. Globally the • 
urve seems to be again the worst approa
h, althoughit gives the smallest number of solutions after a pre
ision of 10−7 for the samequantity of splits than others. The lowest number of solutions is given by the
� with 3 solutions for 148 splits for a pre
ision of 100. Previously the samesmall number of solutions was found, but in 296 splits.From the maximum pre
ision to 101 the results stay the same, but until 10−2the number of solutions and the number of splits de
rease. We 
an 
on
ludethat some other fun
tional variables values are 
ompatible with these pre
i-sions. Then set pre
isions are also given for the net positive su
tion head andthe total manometri
 head and all surfa
es. The �gures 14 and 15 show theresults obtained with all these set pre
isions and with only a few still using thevarying global pre
ision. In this 
ase, the robust strategy fails to give all thesolutions within reasonable time after a pre
ision of 10−8, although it seems togive the best results before a global pre
ision of 10−3. The two other 
urves al-low a maximum pre
ision of 10−11 and up to a pre
ision of 10−7 the results areinteresting. The best run is obtained by the � 
urve with 3 solutions and 148splits for pre
isions of 100 and 10−1, whi
h is not better than in the previous
ase.With these results, we 
an 
on
lude that fun
tional variables have to be split(using CSP based on interval arithmeti
). But it is di�
ult to de�ne 
arefullythe pre
ision on ea
h fun
tional variable. If the quantities represented by theirvalues are known by designers, well de�ned pre
isions 
an be set, but otherwisefew splits are better not to dupli
ate main variables solutions.30



5.3 A bootstrap problemA basi
 model of an air
raft 
onditioning system is investigated (see Figure 16).Air 
oming from a turbo-rea
tor and from the atmosphere is used to produ
e
old air. The atmosphere air 
ools down the air 
oming from the turbo-rea
torthrough a heat ex
hanger where 
omplex pie
ewise de�ned physi
s phenomenaare studied (Fanning fri
tion fa
tor and Nusselt number). Turbo-rea
tor air�ow passes through a 
ompressor to improve the heat transfer phenomenoninside the ex
hanger. Before exiting the air 
onditioning system, a turbinereleases its pressure and makes its temperature de
rease. A 
oupling shaft
onveys the turbine me
hani
al energy to the 
ompressor. This problem is dif-�
ult to solve sin
e many physi
s phenomena interfere. The loop 
orrespondingto the bootstrap make its 
omponents 
oupled a

ording to the temperaturesand pressures of the air �ux. These temperatures and pressures are also linkedto the heat ex
hanger geometry (gap between plates).In this model, the 
ompressor, the turbine and the 
oupling shaft are stan-dardized 
omponents and only the heat ex
hanger has to be embodied as itmainly determines the air-
onditioning performan
es. The main obje
tive ofthe system is to bring air to the passengers and the 
rew of the air
raft and to
ontrol the air temperature and pressure inside the 
o
kpit. But some other
riteria are important in an air
raft, as the air �ow taken from the turbo-rea
tor (that de
reases its e�
ien
y), the in
rease of the air
raft drag, theweight of the air-
onditioning system, et
. This problem is e�
iently solvedwith pie
ewise 
onstraints: 6734 splitting steps and 1262 approximate solu-tions with respe
t to 36978 splitting steps and 18860 approximate solutionswithout pie
ewise 
onstraints. 31



Moreover this problem 
annot be solved within reasonable time with 
lassi
alround-robin strategies on all the variables. The sear
h spa
e is so wide, thatif the embodiment design knowledge about main variables is not used, thesolving pro
ess be
omes very long. The use of fun
tional variables with in�nitepre
ision is the easiest way, sin
e the model is 
omplex and fun
tional variablesvalues quantities 
an 
hange. For instan
e, the Reynolds number takes itsvalues from 100 to 200000.It may be noted in the solution set of these real problems, that auxiliaryvariables pre
ision are often large. Indeed the interval approa
h may 
omputeinterval solutions, where ea
h one may 
ontain several solutions over the realnumbers. If the model is very sensitive to main variables values and if theirpre
isions are not small enough, auxiliary variables may have large domainssin
e they 
orrespond to the several main variables real values, whi
h are
ontained in one interval. From the designers' point of view and in the 
ontextof ED, it does not matter, be
ause the main goal is to investigate the feasibilityof design 
on
epts. Designers' �rst interest is to know where there is no solutionin the sear
h spa
e. If they want to have more pre
ise auxiliary variables valuesfor one spe
i�
 design ar
hite
ture, they just have to 
hange all variablesdomains 
orresponding to one or several 
omputing solution values and thento in
rease main variables pre
ision. They 
an start a new solving step on thismore restri
ted sear
h spa
e and �nd more a

urate values.6 Related workConstraint te
hniques may be used at two su

essive stages of preliminary de-sign. Dis
rete 
onstraints may lead to determine the ar
hite
ture of a produ
t32



during the 
on
eptual design phase (O'Sullivan, 2001). CD using 
omponentsfrom the shelf is known as 
on�guration. These problems 
an be represented bydynami
 
onstraint satisfa
tion problems (Mittal & Falkenhainer, 1990) su
hthat the involved 
omponents are a
tivated and the 
orresponding 
onstraintsare solved. The notion of 
omponent (or variable) a
tivation 
an be ta
kled by
onditional 
onstraints (Gelle & Faltings, 2003; Sabin et al., 2003). Larger andmore 
omplex problems are also ta
kled by (Stumptner et al., 1998; Mailharro, 1998). From a solving point of view the main goal is to e�
iently traversethe tree of ar
hite
tures. Numeri
al nonlinear 
onstraints are more involved inthe ED phase. The frontier between CD and ED may be thin be
ause mixed
onstraints 
an be 
onsidered (Gelle & Faltings, 2003) to ta
kle both phasesat the same time. But the ED physi
s models are in general more 
omplex.Sam-Haroud & Faltings (1996) have proposed to represent numeri
al 
on-straints by 2k-trees, namely de
ompositions of the feasible regions using in-terval boxes. Strong 
onsisten
y te
hniques have been de�ned through the
ombination of 2k-trees. Design appli
ations su
h as bridge design have beene�
iently solved. In this framework, 
onstraint systems are de
omposed inbinary and ternary 
onstraints in order to limit the size of 2k-trees (quadtreesif k = 2 and o
trees if k = 3).Classi
al interval te
hniques have been implemented in the ED platform Con-straint Explorer (Zimmer & Zablit, 2001). The solving engine 
ombines in-terval arithmeti
, 
onstraint propagation and sear
h. An important feature isthe analysis of the 
onstraint network using graph de
omposition (Bliek et al.,1998). The result of this analysis is an ordering of variables to be �xed beforesolving the asso
iated 
onstraint blo
ks. Re
ent developments 
an be foundin (Neveu et al., 2006). Our approa
h 
an be dire
tly integrated for solving33



one blo
k. In parti
ular large blo
ks may arise in ED models, for instan
e inthe study of the equilibrium of a system.
Pie
ewise 
onstraints 
an be implemented by means of 
onditional 
onstraints(Zimmer & Zablit, 2001). This method amounts to the �rst 
ase of our pruningalgorithm. More re
ently, binary pie
ewise 
onstraints with pie
es in the formof (x, y) ∈ Ik × Jk : Ck(x, y) have been represented by quadtrees (Vareilles etal., 2005). It seems di�
ult to extend this approa
h to 
onstraints of higherarities, whi
h is required for solving the problems des
ribed in this paper.
Solution sets with nonzero volumes may be 
hara
terized by inner approxima-tions, namely interval boxes of whi
h every point is a solution. Several workshave ta
kled spe
i�
 
ases: inequality 
onstraints by means of 2k-trees (Sam-Haroud & Faltings, 1996), interval boxes (Collavizza et al., 1999) or the ex-treme vertex representation (Vu et al., 2005), and equality 
onstraint systemswith at least as many existential quanti�ers as equations (Goldsztejn & Jaulin,2006). The study of su
h te
hniques for more heterogeneous 
onstraint systemsis an issue.
Other works have taken into a

ount relations that are not des
ribed by an-alyti
al expressions (Yannou et al., 2003; Fis
her et al., 2004), exploiting inthe 
onstraint framework simulation results or data from bla
k box numeri
altools. The main idea is to 
ompute approximate 
onstraint-based models ofthese relations. 34



7 Con
lusionED problems have been represented by 
onstraint satisfa
tion problems withexistential quanti�ers. ED knowledge on types of variables and pre
isions hasbeen used to improve the solver e�
ien
y. New sear
h heuristi
s based on asplitting ratio have been introdu
ed to ta
kle the quanti�ed variables. Dupli-
ated solutions of main variables disappear and de
isions on the design solu-tion prin
iples set are easier to make for designers. A global 
onstraint hasbeen de�ned for pie
ewise de�ned physi
s phenomena. Experimental resultsfrom a
ademi
 and real-world problems are promising. Embodiment designgoals are better taken into a

ount sin
e the main purpose is to investigatethe feasibility of the sear
h spa
e.There are many dire
tions for future resear
h. The notion of splitting ratio
ould be re�ned to ta
kle the hardness of every variable. The hardness of a vari-able should be 
learly de�ned. For instan
e, dependen
ies between variablesmay also indi
ate variables relevan
y in the model and possibly parti
ipate totheir hardness. Auxiliary variables pre
ision and solutions validation 
ould bemore studied. The notion of pre
ision is essential in numeri
al 
omputations.The pre
ision on auxiliary variables is not often 
hosen appropriately and itindu
ed many useless 
omputations steps in all heuristi
 sear
h. The pre
isionon main variables is easily de�ned 
onsidering the design knowledge about themodel: epistemi
 knowledge about main variables values. On the other hand,auxiliary variables are often part of 
omplex mathemati
al expression. In fa
t,the sensitivity of ea
h variable should be investigated and pre
ision should bede�ned 
onsidering the numeri
al analysis of ea
h 
onstraint in whi
h variablesare involved. Nevertheless in pra
ti
e, it is very di�
ult to apply and designers35



have no time to investigate in those fastidious 
al
ulations. Moreover, the in-tegration of our te
hniques in a blo
k solving approa
h 
ould be explored. Theblo
k de
omposition of a CSP takes into a

ount the 
onstraints network andestablished an order or a 
ausality on variables or blo
ks of variables based onthis network. In most design models, starting variables are needed to 
omputea relevant order, sin
e models are often under-
onstrained. Several orders onvariables may be de�ned for the same 
onstraint graph, and the 
hoi
e of theoptimal one is unde
idable within reasonable time(Jégou & Terrioux, 2003),but the main variables heuristi
 may help in this ordering task, taking intoa
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A Bat
h-ex
hanger modelConstants names and values:The bat
h volume (
l): V := 6Fin thi
kness (mm): eail := 0.5Initial temperature of the aperitif (◦C): Ti := 20Final temperature of the aperitif (◦C): Tf := 8Volume of aperitif to 
ool down (
l): dose := 4Design Variables names, domains and pre
isions:Catalog for the �ns materials (-): mater ∈ {1, 2}Catalog for the �ns length (-): ail ∈ {1, 2}Catalog for the tube diameter (-): diam ∈ {1, 2}Number of �ns (-): N ∈ [5..20]: integerSpa
e between �ns (mm): e ∈ [1..4]: p(e) = 10−1Auxiliary variables names and domains:Time to 
ool down the aperitif (s): t ∈ [11..15]: p(t) = 10−1Tube diameter (mm): d ∈ [0..50]: Integer�ns length (mm): L ∈ [0..50]: IntegerFin 
ondu
tivity (W/m/K): λ ∈ [1..200]: IntegerSaturation temperature (◦C): Tsat ∈ [−15..2]: p(Tsat) = 10−1Fun
tional Variables names and de�nition:Surfa
e of a semi �n (m2): Aail =
L2

−
π
4
·d2

10000001



Ex
hanger surfa
e (m2): A =
N ·(2·Aail+

π·e·d
1000000

)·dose

VEx
hange 
oe�
ient int the bat
h-ex
hanger (-): h = 1200
eE�
ien
y 
oe�
ient for a �n (-): fi = L−d

2000
·
√

2000·h
λ

eailFin e�
ien
y (-): η =
e(2·fi)−1

e(2·fi)+1

fiConstraints:Balan
e of heat energy Tf = Tsat + (Ti − Tsat) · e
−h·A·t·η

39
doseBat
h volume V = e · Aail · N · 100Catalog of tube diameters diam = 1 → d = 16

diam = 2 → d = 18Catalog of �n materials mater = 1 → λ = 200

mater = 2 → λ = 20Catalog of �n length ail = 1 → L = 40

ail = 2 → L = 50B Pump and tank water 
ir
uit modelConstants names and values:Pressure in the upstream tank (pa): Pamont := 40000Pressure in the downstream tanks (pa): Paval := 101325Height of the verti
al downstream line Hr1 := 5before the Y-bran
h (m):Height of the verti
al downstream line Hr2 := 2after the Y-bran
h (m):Height of the verti
al upstream line (m): Ha := 2Height of water in the upstream tank (m): Hw := 0.5Water density (kg/m3): ρ := 1e32



Water vis
osity (m2/s): µ := 1e − 3A

eleration due to gravity (m/s2) g := 9.81Lines diameter before the Y-bran
h(m): D := 0.055Losses 
oe�
ient in entry of upstream line: ξ1 := 0.5Losses 
oe�
ient exiting downstream lines: ξ3 := 1Losses 
oe�
ient in the Y-bran
h towards ξ4 := 0.5the �rst downstream tank:Losses 
oe�
ient in the Y-bran
h towards ξ5 := 0.1the se
ond downstream tank:Water temperature (◦C): T := 13Design Variables names, domains and pre
isions:Line diameter after the Y-bran
h towards Dr1 ∈ [0.02, 0.1]: p(Dr1) = 10−3the �rst downstream tank (m):Line diameter after the Y-bran
h towards Dr2 ∈ [0.03, 0.1]: p(Dr2) = 10−3the se
ond downstream tank (m):Auxiliary variables names and domains:Flow in the lines before the Y-bran
h: Q0 ∈ [17/3600, 96/3600]: p(Q0) = 10−5Flow in the lines after the Y-bran
h Qr1 ∈ [0, 96/3600]: p(Qr1) = 10−5towards the �rst downstream tank:Flow in the lines after the Y-bran
h Qr2 ∈ [0, 96/3600]: p(Qr2) = 10−5towards the se
ond downstream tank:Fun
tional Variables names and de�nition:Se
tion of 
ylindri
al upstream lines S = π·D2

43



(m2):Se
tion of 
ylindri
al downstream lines Sr1 =
π·D2

r1

4towards the �rst tank (m2):Se
tion of 
ylindri
al downstream lines Sr2 =
π·D2

r2

4towards the se
ond tank (m2):Surfa
e of the verti
al upstream line Ae1 = π · D · Ha(m2):Surfa
e of the horizontal upstream line Ae2 = π · D · La(m2):Surfa
e of the verti
al downstream line Ae3 = π · D · Hr1before the Y-bran
h (m2):Surfa
e of the horizontal line towards Ae4 = π · Dr1 · Lr1the �rst downstream tank (m2):Surfa
e of the verti
al downstream line Ae5 = π · Dr2 · Hr2towards the se
ond tank (m2):Surfa
e of the horizontal line towards Ae6 = π · Dr2 · L2the se
ond downstream tank (m2):Flowing speed in the lines before the V0 = Q0

SY-bran
h (m/s):Reynolds number for the water before the Re1 = ρ·V0·D
muY-bran
h (-):Pie
ewise de�nition of Fanning fri
tion Re1 ∈ [0, 2100] → f1 = 16

Re1fa
tor for �owing before the Y-bran
h: Re1 ∈ [2100, 50000] → f1 =

0.10512 · Re1−0.244

Re1 ∈ [50000, 1000000] → f1 =

0.04234 · Re−0.164
1Reynolds number for the water between the Re2 =

ρ·
Qr1
Sr1

·Dr1

muY-bran
h and the �rst downstream tank(-):De�nition of Fanning fri
tion fa
tor for Re2 ∈ [0, 2100] → f2 = 16
Re24



�owing between the Y-bran
h and the tank 1: Re2 ∈ [2100, 50000] → f2 =

0.10512 · Re−0.244
2

Re2 ∈ [50000, 1000000] → f2 =

0.04234 · Re−0.164
2Reynolds number for the water between the Re3 =

ρ·
Qr2
Sr2

·Dr2

muY-bran
h and the se
ond downstream tank (-):De�nition of Fanning fri
tion fa
tor for Re3 ∈ [0, 2100] → f3 = 16
Re3�owing between the Y-bran
h and the tank 1: Re3 ∈ [2100, 50000] → f3 =

0.10512 · Re−0.244
3

Re3 ∈ [50000, 1000000] → f3 =

0.04234 · Re−0.164
3Losses 
oe�
ient in the upstream elbow ξ2 = 0.15 + 0.0175 · 4 · f1 · 2 · 90(pa):Losses 
oe�
ient in the downstream elbow ξ6 = 0.15 + 0.0175 · 4 · f3 · 2 · 90(pa):Total manometri
 head (m): H = −1.1763 · 10−5 · (Q0 · 3600)3

−2.2052 · 10−4 · (Q0 · 3600)2+

1.4384 · 10−2 · (Q0 · 3600) + 21.554Net positive su
tion head required: NPSHr = 1.2144 · 10−5 · (Q0·
3600)3 − 1.2301 · 10−3 · (Q0·
3600)2 + 4.9136 · 10−2 · (Q0 · 3600)

+0.49957Net positive su
tion head available: NPSHa = Pamont−Psat

ρ·g
+ (Ha+

2 · D) − DP0+DP1+DP2+DP3
Ro·gWater saturation vapour pressure (pa): Psat = e23.3265− 3802.7
T+273.18

−( 472.68
T+273.18

)2Total losses in the 
ir
uit (pa): ∆P = ∆P0 + ∆P1 + ∆P2 + ∆P3

+∆P4 + ∆P5 + ∆P6 + ∆P7Losses in entry of the verti
al upstream line ∆P0 =
ξ1·ρ·V 2

0

2(pa):
5



Losses in the verti
al upstream line (pa): ∆P1 = f1·Ae1

S3 · ρ·Q02

2Losses in the upstream elbow (pa): ∆P2 =
ξ2·ρ·V 2

0

2Losses in the horizontal upstream line (pa): ∆P3 = f1·Ae2

S3 · ρ·Q2
0

2Losses in the verti
al downstream line before ∆P4 = f1·Ae3

S3
r1

· ρ·Q2
0

2the Y-bran
h (pa):Losses in the Y-bran
h towards the �rst ∆P5 =
ξ4·ρ(

Qr1
S

)2

2downstream tank (pa):Losses in the horizontal line towards the ∆P6 = f2·Ae4

S3
r1

· ρ·Q2
r1

2�rst downstream tank (pa):Losses exiting the line in the �rst ∆P7 =
ξ3·ρ·(

Qr1
Sr1

)2

2downstream tank (pa):Losses in the Y-bran
h towards the se
ond ∆P8 =
ξ5·ρ·(

Qr2
Sr2

)2

2downstream tank (pa):Losses in the verti
al downstream line after ∆P9 = f3·Ae5

S3
r2

· ρ·Q2
r2

2the Y-bran
h (pa):Losses in the elbow towards the se
ond ∆P10 =
ξ6·ρ·(

Qr2
Sr2

)2

2downstream tank (pa):Losses in the horizontal line towards the ∆P11 = f3·Ae6

S3
r2

· ρ·Q2
r2

2se
ond downstream tank (pa):Losses exiting the line in the se
ond ∆P12 =
ξ3·ρ·(

Qr2
Sr2

)2

2downstream tank (pa):

6



Constraints:Y-bran
h water �ow equality Qr1 + Qr2 = Q0

Qr1 = Qr2Downstream tubes se
tion equality Sr1 + Sr2 = STotal manometri
 head H = Paval−Pamont

ρ·g
− (Hw + Ha) + Hr1+

∆P
ρ·gDownstream energy balan
e ∆P5 + ∆P6 + ∆P7 == ∆P8 + ∆P9+

∆P10 + ∆P11 + ∆P12 + Hr2 · ρ · gNo 
avitation phenomenon NPSHa < NPSHrC Bootstrap modelConstants names and values:Flying altitude (m): Z = 10500Calori�
 
apa
ity di�eren
e (J/kg/K): r = 287Mass 
apa
ity ratio (-): τ = 10Plate 
ondu
tivity (W/m/K): kp = 20Plate thi
kness (m): tp = 0.001Mass �ow (kg/s): q = 0.7Isentropi
 e�
ien
y of the turborea
tor's di�user (-): ηTRd = 0.9Compresion ratio of the turborea
tor (-): TCTR = 8Isentropi
 e�
ien
y of the turborea
tor's 
ompressor (-): ηTRc = 0.8Isentropi
 e�
ien
y of the 
ompressor (-): ηc = 0.75Isentropi
 e�
ien
y of the 
oupling shaft (-): ηAT = 0.95Isentropi
 e�
ien
y of the turbine (-): ηt = 0.8Heat 
apa
ity ratio (-): γ = 1.4Ma
h number (-): M = 0.87



Design Variables names, domains and pre
isions:Width of the ex
hanger (m): Lx ∈ [0.1..1]: p(Lx) = 10−2Spa
ing between plates in the ex
hanger (m): rh ∈ [0.001..0.1]: p(rh) = 10−3Auxiliary variables names and domains:Temperature between the 
ompressor and the ex
hanger (K): T2 ∈ [0..1000]Temperature between the ex
hanger and the turbine (K): T3 ∈ [0..1000]Temperature after the turbine (K): T4 ∈ [230..500]Pressure between the 
ompressor and the ex
hanger (pa): p2 ∈ [0..10000000]Pressure between the ex
hanger and the turbine (pa): p3 ∈ [0..10000000]Pressure after the turbine (pa): p4 ∈ [0..10000000]Mass �ow in the bootstrap (kg/s): q ∈ [0..1]Fun
tional Variables names and de�nition:Length of the ex
hanger (m): Ly = LxHeight of the ex
hanger (m): Lz = 0.25 · LxTemperature of the atmosphere (K): Ta = 288.2 − 0.00649 · ZPressure of the atmosphere (pa): pa = 101290 · ( Ta

288.08
)5.256Temperature between the di�user and the T0 = Ta · (1 + M2

·(γ−1)
2

)
ompressor of the turborea
tor (K):Pressure between the di�user and the p0 = pa · (ηTRd · (M2
·(γ−1)
2

+ 1)
γ

γ−1
ompressor of the turborea
tor (pa):Temperature between the turborea
tor T1 = T0 · (1 + 1
ηTRc

· ((p1

p0
)

γ−1
γ − 1))and the 
ompressor (K):Pressure between the turborea
tor and p1 = TCTR · p0the 
ompressor (pa):Porosity (-): σ = rh

(rh+tp
)8



Reynolds number (-): Re = 4·rh·G
µPrandtl number (-): Pr = 0.825 − 0.00054 · T2 + 5·

10−7 · T 2
2Nusselt number (-) pie
ewise de�nition : Re ∈ [0, 2100] → Nu = 1.86·

(Pr·Re·2·rh

Lx
)0.33

Re ∈ [2100, 8000] → Nu = 0.116·
(Re0.66 − 125) · Pr0.33

Re ∈ [8000, 10000] → Nu = 10000−Re
10000−8000

·
0.116 · (Re0.66 − 125) · Pr0.33+

Re−8000
10000−8000

· 0.023 · Re0.8 · Pr0.33

Re ∈ [10000, 1000000] → Nu = 0.023·
Re0.8 · Pr0.33)Fanning fa
tor (-) pie
ewise de�nition: Re ∈ [0, 2100] → f = 16 · Re−1

Re ∈ [2100, 100000] → f = 0.10512·
Re−0.243

Re ∈ [100000, 10000000] → f =

0.04234 · Re−0.164)Air vis
osity (kg/m/s): µ = −1.075 · 10−5 − 2.225 · 10−9 · T2+

1.725 · 10−6 ·
√

T2Air thermal 
ondu
tivity (W/m.K): λ = ((−2.620052386818974 · 10−6)·
(T3+T2

2
)2 + (9.169307749941458 · 10−3)·

(T3+T2

2
) + 1.075874105919108 · 10−1)·

(10−2)Air density between the turboreator and ρ1 = p1

r·T1the 
ompressor (kg/m3:Air density between the 
ompressor and ρ2 = p2

r·T2the ex
hanger (kg/m3):Air density between the ex
hanger and the ρ3 = p3

r·T3turbine (kg/m3):
9



Number of transfer units (-): Nut = H·A
q·CpEx
hanger e�
ien
y (-): ǫ = 1 − eτ ·Nut0.22

·(e
−1
τ ·Nut0.78

−1)Ex
hanger inlet pressure loss Ke = ((−0.00496672650332) · σ2+

(0.00113607587171) · σ+

(−0.00001379297260)) · ln(Re)2+

((0.06612031387891) · σ2+

(0.03340063900613) · σ+

(−0.00178687092114)) · ln(Re)+

(0.96233612367662) · σ2+

(−2.55595501972796) · σ+

1.01310287017856)
oe�
ient (-):Ex
hanger outlet pressure loss Kc = ((0.00505236835109) · σ2+

(−0.00414707431984) · σ+

(0.00347507173062)) · ln(Re)2+

((−0.08548307647633) · σ2+

(0.06740608329495) · σ+

(−0.09241949837272)) · ln(Re)+

(−0.18282301765817) · σ2+

(−0.17962391485785) · σ+

1.00333194877608)
oe�
ient (-):Mass velo
ity (kg/m2/s): G = q
AfEx
hange surfa
e (m2): A = Lx·Ly·(Lz−2·rh−tp)

rh+
tp
2Flowing se
tion (m2): Af = Ly · LzConve
tive transfer 
oe�
ient (W/m2/K): h = Nu·λ

rhGlobal heat transfer 
oe�
ient (W/m2/K): H = 1

1/h+
2·tp
kpPressure loss in the ex
hanger (pa): ∆pe = ( G2

2·ρ2
) · (Kc + 1 − σ2) + f ·

( A
Af

) · (2 · ρ2

ρ2+ρ3
) + (Ke + σ2 − 1) · (ρ2

ρ3
)10



Ex
hanger volume (m3): V = Lx · Ly · LzPlate volume: Vp = A
2
· tpAir �owing speed in the ex
hanger (m/s): C = q

Af ·ρ2Iron plate mass (kg): me = Vp · 7800Constraints:Compressor energy 
onservation: ηc · (T2

T1
− 1) = (p2

p1
)

γ

γ−1 − 1Coupling shaft energy 
onservation: (T2 − T1) = ηAT · (T3 − T4)Turbine energy 
onservation: 1 − T3

T4
= ηt · (1 − (p3

p4
)

γ−1
γ )Ex
hanger pressure loss: ∆pe = p2 − p3E
hanger e�
ien
y ǫ = T2−T3

T2−T0
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1 Figures

Fig. 1. Variables kind in the Embodiment Design phase.
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Fig. 7. Bat
h-ex
hanger.
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Fig. 12. Solving the pump problem with several �xed and varying pre
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Fig. 16. Bootstrap �ux �ow diagram in an air
raft.

12


