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Abstract

Embodiment Design (ED) is an early phase of product development. ED prob-
lems consist of finding solution principles that satisfy product requirements such
as physics behaviors and interactions between components. Constraint satisfaction
techniques are useful to solve constraint-based models that are often partial, hetero-
geneous, and uncertain in ED. In this paper, new constraint satisfaction techniques
are proposed to tackle piecewise defined physics phenomena or skill-based rules and
multiple categories of variables arising in design applications. New search heuristics
and a global piecewise constraint are introduced in the branch-and-prune framework.
The capabilities of these techniques are illustrated on both academic and real-world

problems. The latter have complete models presented in the appendix.
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1 Introduction

The design process is a sequence of phases from the definition of needs and
requirements to preliminary design and detailed design (Pahl & Beitz, 1996).
Preliminary design includes conceptual design (CD) and embodiment design
(ED). The ED phase investigates the feasibility of some product schemes ob-
tained from the CD phase. This phase mainly tackles physics behaviors and
interactions between the product, its components and environments. Product
modeling is based on the definition of the laws of physics, functional models,

economic criteria, etc.

In this paper we focus on robust ED taking into account variability, uncer-
tainty or imprecision in the design process. The goal is to determine the main
structuring characteristics of a product, such as the working structure, stan-
dard components, and the main dimensions, while no significant decisions have
been taken at that point. Several components may change during this phase.
Robust ED can be implemented in a constraint-based approach. Product mod-
els can be translated into numerical constraints. Uncertainty and imprecision
can be partially captured by interval computations. Heterogeneous models and
incomplete information can naturally be dealt with. These models are involved
in robust design approaches taking into account mathematical models during
the early phases of design process. Robustness may be regarded through its

meaning within the design community (Rothwell & Gardiner, 1990).

Product modeling leads to the definition of several types of constraints. Prod-
uct behavior laws relating to physics analysis are expressed through conserva-

tion law, which are easily translated into constraints. In some cases, behavior



laws are defined by sets of phenomenological relations, namely piecewise re-
lations depending on one or several parameters. Product modeling also leads
to the definition of several types of variables. Design variables are related to
the main dimensions and characteristics of the product. Designers are inter-
ested in finding out powerful solution principles, where design variable values
correspond to high performance criteria. Performance criteria may be repre-
sented by Performance variables. Other variables of the model are Auziliary
variables, maintained within the model to link design variables to performance
variables in order to preserve the model intelligibility. They are introduced by

the modeling phase (see Figure 1).

In this figure, the embodiment design knowledge of a product takes into ac-
count design variables, whose values identify each design solution. Designers
use also several criteria to observe and evaluate the design solutions. Several
diagrams and charts are used to identify the product functions and decomposi-
tion (technical organization charts) and to investigate the physics phenomena
regarding fluxes and induced effects (fluxes flow diagram and substance field
graph). In the modeling part of the embodiment design phase, these concepts
are translated into a mathematical representation. Obviously, the variables
already defined in the knowledge representation are also in the mathematical
model, and in most cases, criteria are easily expressed with constraints and
some variables to observe criteria values. But diagrams and charts must be
converted in a computable form. New variables are introduced and they do not
correspond to designers’ decision parameters. Thus, these new variables and
constraints describe physics phenomena, products geometry characteristics,

etc. Some functional variables are defined to preserve the model intelligibility



and to express, for instance, well-known physics dimensionless numbers char-
acterizing physics phenomena. Some of them are introduced after some steps

of model reductions.

Our purpose is to define new constraint satisfaction techniques in the interval-
based branch-and-prune framework to solve enriched models of ED applica-
tions. We investigate enriched robust ED models, since we consider various
knowledge about products: specifications and requirements, knowledge of de-
signers concerning the whole products life cycle, physics phenomena, etc. All
this knowledge is required to compute quite safe and robust values (from a
design point of view) for the main variables of an ED model. The first problem
is to handle specific physics phenomena. To this end a global piecewise con-
straint is defined at the modeling and the solving levels. The second problem is
to tackle the different types of variables. Existential quantifiers are introduced
in the constraint-based model to take into account the fact that auxiliary
variables are meaningless from a design point of view. New heuristics allow
the differentiation of the variables during search, according to their types. An
experimental study from a prototype and several benchmarks are reported.
Complete models are given in appendix for people who want to make their

own test with real world applications.

Section 2 introduces CSP modeling for ED. Solving principles are presented
and some search strategies are stated in Section 3. Experimentations on aca-
demic problems are carried out in Section 4. ED models derived from existing
engineering models are processed in Section 5. Our approach is compared to

some related work in Section 6.



2 Problem Modeling

We consider embodiment design problems defined as mixed models including
integer variables, real variables, constraints and piecewise constraints. The
main idea of this paper is to distinguish between variables according to ap-
plication requirements and to separate them in several sets during the search
phase of solutions. A model is defined by a set X of variables lying in some
domain D and a set of constraints C'. Each constraint is a restriction of D
given atomic formula over the usual structure of real numbers. Our goal is to

find values in D for the variables of X satisfying all the constraints in C'.

2.1 Types of Variables

In ED problems, two types of variables are highlighted: the auxiliary vari-
ables, and the main variables including the design variables and the perfor-
mance variables. The main variables must be computed at a given discernment
precision. The values of the auxiliary variables may be useless from the de-
signer’s point of view, no initial precision or carefully chosen precision may
be defined. The distinction between main variables and auxiliary variables is
always possible, since main variables are stated by the product specifications
and requirements. The main variables are shared by all design phases. They
identify the main characteristics of products, that’s why their domains and
precisions are well known on the contrary to the auxiliary variables, which are

specific to each design phases.

Notations: Given a variable or a set of variables x, a real number or a set

of real numbers r and a constraint or a conjunction of constraints C' on z, we



write C'(r) if C' is satisfied when x has value r.

Let X = (x1,...,2,) denote the main variables, let Y = (y1,...,y) denote
the auxiliary variables, and let Dy and Dy be their domain. To solve ED
problems may be seen as the computation of the set of solutions on the main

variables, where there is at least one solution for auxiliary variables:

{TX GD)(|E|TY GDy/\C(Tx,Ty)} (1)

where C stands for the constraints to be satisfied.

In other words, the main variables define a scheme of solution for designers,
namely, the main architectures of a product. The descriptions of the product
and its components concerning their behavior, geometry, etc. make these ar-
chitectures physically valid, if at least one solution is found on the auxiliary

variables for each architecture.

Several approaches can be used to tackle such problems. Search problems may
correspond to our ED problems, since solutions to ED problems are other than
yes or no, contrary to decision problems. But it can be seen in Beame et al.
(1995) that for each search problem an equivalent decision problem exists and

in an ED context, it may be expressed as:

{3r € D|C(r)} (2)

where all variables are linked with an existential quantifier. Efficient SAT
algorithms (Cook & Mitchell, 1997) can be used in this case, but since an
existential quantifier is applied to each variable, only one solution may be

found to be the yes answer.



The constraint satisfaction problem (CSP) approach defines a framework for
solving general problems expressed as a conjunction of constraints, where all

variables are free:

{reD|C(r)} (3)

All values r for variables satisfying C' are computed. This approach does not
match the formulation in (1), but the solving algorithms can be adjusted to

undertake an existential quantifier on some variables.

We implement our approach and its corresponding algorithms within a CSP
framework that uses continuous domains. This framework is suitable for the
ED problems (Zimmer & Zablit, 2001; Gelle & Faltings, 2003; Vareilles et al.,
2005). The CSP approach allows designers to make their models evolve very
quickly as opposed to other methods, where designers express the knowledge,
while carrying out its coding related to numerical solving methods similar to
the constraint satisfaction approach. Some examples based on an evolutionary
approach may be found in Sébastian et al. (2006). Moreover, the solving pro-
cess of a CSP guarantees the completeness of the set of approximate solutions,
whereas other methods are often linked with relaxations and approximations

of some stochastic solutions.

2.2 Intervals computations and variable precision

The problem of computing solutions for functions on real numbers is known
to be undecidable (Richardson, 1968; Wang, 1974). Computers arithmetic
(see IEEET54 standard) defines a subset of real numbers, called the floating-

point numbers. Without any other techniques, computations are made on the



floating-point numbers set and rounding errors may be important after several

computation steps.

Interval arithmetic (Moore, 1966) guarantees safe computations using floating-
point numbers as interval bounds. For each real number a, an interval hull(a) =
[a™, a*] may be used, corresponding to the smallest interval including it, where
a~ is the highest floating-point number smaller than a and a™ is the lowest
floating-point number higher than a. Furthermore every operator and function
must be extended from real numbers to intervals with real bounds and then
a hull with floating-point bounds may be computed. For example, the three

basic operators on real numbers can be extended as follows:

[a,b] + [c,d] =hull([a + ¢,b+ d]),
la,b] — [¢,d] =hull([a — d,b — ¢]) and

[a,b] - [e,d] = hull([min(a-c,a-d,b-c,b-d),max(a-c,a-d,b-c,b-d)]),

where hull([a,b]) = [a=,b"] and a~ and b™ are the closest floating-point num-
bers lower than a and upper than b.

Other notations: Given a variable x, an interval [ and a constraint C' on
x, we write C'([) if C is satisfied in the interval sense when x takes value I.
The size of an interval I = [a,b] is equal to w(I) = b — a. Given a set of
real numbers A, the hull of A, denoted by hull(A), is the smallest interval

enclosing A.

Real values in intervals cannot be enumerated as discrete domains, but inter-
vals are split to reduce their width since a smallest hull is computed or an

interval precision is reached. A precision p(z) may be defined for a variable x.



It defines the interval width, where we do not want any more computations to
be done. The precision on variables domain allow designers to define the tol-
erance authorized on some important variables, like the main variables of an
ED model. Auxiliary variable precisions may be difficult to agree on, It must
be highlighted that the set of auxiliary variables is often under-constrained,
since, in the ED phase, some uncertainties remain about some product char-
acteristics and its behavior.since physics phenomena are often complex. Two
types of precisions may be highlighted in ED. The precision on main variables
corresponds to the precision of discernment of design architectures, whereas
precisions on auxiliary variables define numerical precisions for computations.
To define precisions on all types of variables may increase the efficiency of
the computing process, since an interval precision is often achieved before the

smallest hull (or canonical hull) of a real number.

Suppose that p(zx) > 0 (the value 0 for a precision expresses the need of
a canonical interval box for a variable) is the desired precision of z; (k =

1,...,n). We now consider the finite set of approximate solutions:

{I C Dx|3J C Dy AC(I, J)} (4)

where [ =1 x ... x I, and J = J; x ... X Jp,, such that [ is precise enough,
e, w(ly) < p(xy) for k =1,...,n and each interval bounds are floating-point
numbers. The first goal is to compute a subset of (4) enclosing (1) having a
minimal cardinal. To this end the main variable values must be close to their
precisions, i.e., w(l) =~ p(x). The second goal is to prove the existence of a
solution (element from set 1) in every resulting box. Proofs of existence can
be implemented by interval analysis techniques and this will be detailed in the

next section.
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2.8 CSP notions

A CSP is defined by three sets corresponding to a set X of variables, a set D
corresponding to their domains and a set C of constraints restricting the vari-
ables values. The goal is to find every element of D that satisfies all constraints
at the same time. This problem is unsolvable given continuous domains and
transcendent functions. A more practical goal is to compute a finite approxi-
mation of the set of solutions (Lhomme, 1993). The most common approach

is to calculate a set of interval boxes of a given size enclosing the solution set.

The satisfaction of a numerical constraint is usually defined as follows: every
variable is interval-valued, every expression is evaluated using interval arith-
metic (Moore, 1966), and every relation between intervals is true whenever

there exist reals within intervals that satisfy the following relation:

{r € Dx : c(r) — C(hull(r))}, (5)

where C'is the interval extension of the constraint c on reals (i.e.: each variable
is replaced by its interval domain and each function or operator is extended

to the interval arithmetic).

The satisfaction of constraints is verified using consistency techniques. Vari-
ables’ domains are checked considering the whole constraints set. If a domain
is not consistent, then all unauthorized values (or intervals) are removed as
long as they do not satisfy at least one constraint. Applying a global consis-
tency is, in general, to expensive. Thus, local consistency algorithms, such as
2B and 3B-consistency (Lhomme, 1993) and box-consistency (Benhamou et

al., 1999), are used instead. For instance we can consider the following defini-

11



tion of box consistency:
Given C the interval extension of a constraint ¢ on reals and a box of interval
domains I; x ... X I, c is satisfied according to box consistency, if for each &

in {1,...,n}:

Iy = {ar € Li|C(L, . T—y, hull(ag), Trgr,s 1) } (6)

As soon as there are several solutions, consistency techniques are no longer
sufficient. Search algorithms are used to explore the totality of the search
space. Typically, a domain is chosen and is split into two disjoint intervals
using a bisection algorithm. Then two new smaller problems are solved with
the same iterative approach. The union of these two problems is equal to
the initial CSP which is finally split in many sub-problems. The choice of
the domain to split may take into account heuristics in order to optimize
the search phase (for instance: most constrained variables, greatest domain,
smallest domain, etc.). Then several algorithms may be used to explore such
hierarchy of problems like generate and test, backtrack search, back jumping,

dynamic backtracking, etc (Rossi et al., 2006).

Interval solvers implement branch-and-prune techniques (Hyvonen, 1989). The
search space is given by an interval box that is iteratively split and reduced us-
ing a fixed-point approach to guarantee that the solving process converges. Ef-
ficient pruning algorithms merge consistency techniques and numerical meth-
ods. In general, splits for real variables are based on bisection, whereas integer
variables are enumerated. Let us point out that integer variables can be pro-
cessed as real variables within interval pruning methods and further refined

using the integrality condition.
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2.4 Piecewise constraint

We consider a new type of constraints for modeling piecewise defined physics
phenomena. Behavior laws defining complex phenomena are often established
by experiments. These experiments are done under several hypotheses and
conditions defining the contexts of use for these stated laws. In many cases,
the main context of experiments can be managed by only one parameter,
which values identify the relation to apply. For instance, many models in fluid
mechanics involve the Reynolds dimensionless number. The Reynolds number
value points to different types of fluid flowing (laminar, transient, turbulent)

corresponding to fluid mechanics laws (see Figure 2).

Let this constraint be

Piecewise(a, Iy — Ch, ..., I, — C,)

Such that « is a variable, each I} is an interval, and each C}, is a constraint or
a set of constraints. The [} identify the different cases of the piecewise phe-
nomenon considering the parameter o and the Cj correspond to the relations
to use. The intersection I; N I must be empty for every j # k, otherwise
at least two constraints will apply for the same phenomenon. In other words,
all the I define a partition of the domain of a. The piecewise constraint is

satisfied if:

3k € [1..p], Do C I A Cl (7)

The piecewise constraint is equivalent to Cy, whenever a belongs to I. At most

one k must exists since the I, do not intersect, otherwise several constraints

13



are taken into account, which lead to an inconsistent set of constraints.

Interval constraint satisfaction techniques are used to reduce variable domains.

Let D, be the domain of «. Four cases can be identified:

1. If a k exists such that D, C I, then C} is solved. The domains of the
variables occurring in C}, can be reduced using, e.g., consistency techniques.

2. The domain of « can be reduced as follows:

Dy = hull <ij (Da N m) .

A failure must happen if no I, intersects the domain D,,.

3. If C} is violated for some k then every element of I, can be removed from
D,.

4. Otherwise, the constraint is satisfied in the interval sense but no domain

can be reduced and the problem is still being under-constrained.

Note that the solving process must not stop before D, takes its values in at
most one [, otherwise the piecewise phenomenon is not taken into account

and many non physics solutions may be found (case 4).
2.5 Search issues

The notions of auxiliary variables and piecewise constraints introduce several

difficulties and problems:

Problem 1. The splitting steps of domains of auxiliary variables may dupli-
cate the solutions on the main variables. For same values of the main vari-
ables, several solutions for auxiliary variables may satisfy all the constraints.

This is due to some incoherent precisions between auxiliary variables and

14



main variables. [t must also be highlighted that the set of auxiliary vari-
ables is often under-constrained, since, in the ED phase, some uncertainties
remain about some product characteristics and its behavior. Thus, many
solutions may be found for the same tuple of values for main variables.
That may lead to useless redundant computations and to a huge number of
approximate solutions corresponding to the same product architecture.

Problem 2. The main variables may not be reduced enough if the auxil-
iary variables are not split enough. Consistency techniques used on interval
domains are based on outer approximations, which may lead to an over-
estimation of variable domains. The solving process may be very long,
spending most of the time in pure search on main variables, whereas auxil-
iary variables may have wide domains.

Problem 3. It may be difficult to choose the auxiliary variables to be split
and to set precision thresholds. Proper precisions are required to efficiently
manage Problem 1 and Problem 2. Moreover, some auxiliary variables are
only present within the model, because they represent well-known properties
of some components, phenomena, etc. However they are not required to
express all the knowledge about a product. These variables and their values
improve the expressivity and comprehensibility of the product model, which
is important when this model may evolve as in the ED phase. Let call
them functional variables, as their values are directly computed using an
expression of other variables.

Problem 4. The piecewise constraints must be taken into account in order
to early reduce the search space. This clearly depends on the domain of the
« variables, which must be reduced to one of the I of the piecewise con-
straint to apply the constraint ¢; and take into account the corresponding

phenomenon.
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Other issues. The ED problems are under-constrained in general. We sup-
pose here that the precisions of main variables are well chosen enough ac-
cording to the domain sizes in order to avoid a huge number of approximate
solutions. Another well known approach is to specialize the search for integer

variables and real variables.

3 Problem Solving

New search heuristics will be introduced to tackle the issues raised above.
These heuristics will be embedded in the general interval-based branch-and-

prune model.

3.1  Branch-and-prune algorithm

The general branch-and-prune algorithm (Van-Hentenryck et al., 1997) is de-
fined in Algorithm 1. The input is a CSP model. The output is a set of ap-

proximate solutions enclosing the solution set.

The computation is as follows. Every domain is pruned provided that no so-
lution (element from set 1) is lost. Every approximate solution (element from
set 4) associated with the result of the proof of existence is inserted in the
computed approximation. Non-empty domains are split provided that at least
one of the main variables is not precise enough. The sub-problems are further

solved.

The algorithm for the proof of existence validates the box computed by the

Branch-and-Prune algorithm, and several techniques may be used according

16



Algorithm 1. General Branch-and-Prune Algorithm.
Solve(C : set of constraints, D : domains, (x,y) : vars) : a set of interval
approximate solutions

D := Prune(C, D)
if D is empty then
discard D
elsif D, is precise enough then
b := ProveExistence(C, D)
Insert(D,,b) in the computed approximation
else
Choose a splittable variable z in (z,y)
Split(D, z, D' U D?)
Solve(C, D', (z,y))
Solve(C, D?, (z,y))
endif

end

to the type of constraints:

e [nequality constraints can be tackled with interval computations.
e Equality constraint systems can be processed by fixed-point operators (Kear-

fott, 1996).

These techniques may not operate on heterogeneous and non-differentiable
problems. In this case, a search process can be used to prove the existence of
canonical approximate solutions, namely boxes of maximal precision satisfying
the constraints in the interval sense. We consider that this smallest interval

box, with closest floating-point numbers as bounds, is precise enough to claim
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that we have found a solution if no inconsistencies are detected. An other
approach is to apply a local search process, where the optimization function
should take into account the number of inconsistent constraints balanced by

the distance of violation of each one.

However, these algorithms can not always prove the existence of a solution in a
box in a reasonable time. All computed solutions may not be guaranteed, but
this is not the main goal for designers to have safe numerical solutions in the
ED phase. All the uncertainties relating to a model make the solutions near
guaranteed boxes also acceptable. However, guaranteed boxes may correspond
to more robust solutions than those for which the proof of existence has failed.
In the ED phase, designers are mainly interested in having an overview of
the global shape of the complete space of solutions, namely, having a better
insight of the feasible product architectures. When designers have an idea of
some robust solutions within a solution set, they can better define the more
interesting parts of this set relating to good performances criteria and robust

product architectures.

3.2 Search strategies

We propose to implement several search strategies to tackle the problems

described in the previous section.

Splitting ratio. The choice of variables may follow an intensification process
on the main variables and a diversification strategy on the auxiliary variables.
The idea is to limit the duplication of solutions (Problem 1) and to compute

efficient reductions on the whole system (Problem 2). A diversification process

18



aims at gathering some knowledge on the problem, whereas an intensification
process uses this knowledge to explore and to focus on interesting areas of the
search space (Blum & Roli, 2003). The intensification /diversification strategy
can be controlled by a ratio between the two types of variables to choose (see
Algorithm 2). Inside each group, a round robin strategy may be used to make
the algorithm robust. A high ratio corresponds to high intensification on main
variables and a small one increases diversification on auxiliary variables.
Algorithm 2. Search heuristic favoring main variables
SelectVariable(X : set of variables, D : domains, R : integer ratio)
X :={z € X : x is a main var., D, can be split}
X, :={z € X : D, can be split} \ X,,
let n be the number of carried out splits
let n,, be the number of splits on main var.
if X, is empty or n =0 or n,, < R(n — n,,)
Ny, = Ny, + 1
z := SelectRoundRobin(X,,)
else
x := SelectRoundRobin(X,)
endif
n=n+1
return x

end

This heuristic is applicable to any ED problem, since ED problems always
include some main variables (which values statements are the main objective

of the ED phase). Moreover, these variables are often useful to compute rel-
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evant values for auxiliary variables, since auxiliary variables have to express
some characteristics (physics phenomenon, geometry, etc.) of a specific product
architecture. Main variables are better defined (small domains and accurate
precisions according to the product specifications) than auxiliary variables (for
instance: complex phenomena with several simplifying assumptions). In this
way, the constraint propagation phase may be more interesting in reducing
domains of auxiliary variables than the splitting steps on this huge search

space.

Precision. Two types of auxiliary variables can be identified (Problem 3).
Auxiliary variables expressed as functions of other variables may not be split
since they correspond to intermediate computations. To this end, it suffices to
bind these variables to an infinite precision. Their values are computed using
the Prune algorithm (constraint propagation). The other auxiliary variables
may be split (Problem 2), but their precisions have to be as relevant as possible

to avoid too many useless splitting steps (Problem 1).

Piecewise constraint. The goal is to split the o variable according to the first
pruning case of the constraint in order to answer Problem 4. The domain of «
must be included in some I}, in order to enforce C}.. To this end the domain of «
can be split on the bounds of the intervals I instead of the classical bisection.
Let us note that even the auxiliary variables with infinite precision must be
considered here. Combining several piecewise constraints parametrized by the
same variable boils down to considering the set of bounds from all the intervals

I}, and to combine the constraints from the corresponding pieces.

Variable types. A common approach is to choose first integer variables and

then real variables, supposing that different integer values may correspond

20



to different product architectures. We then have several choice criteria to be
combined: type of variable (main, auxiliary), domain nature (discrete, con-
tinuous), and more usual criteria (round-robin strategy, largest continuous
domain, smallest discrete domain, most constrained variable, etc.). Integer

variables are supposed to be enumerated and real variables are bisected.

3.3  Representation

Several approximate solutions are redundant if the domains of the main vari-
ables intersect, because of the search on auxiliary variables. In this case, they
need to be merged in order to compute compact representations of the solu-
tion set. In the interval framework a set of merged boxes can be replaced by

their hull, namely the smallest box containing each element.

It must be verified that the main variables are still precise enough after merg-
ing. In particular, several boxes enclosing a continuum of solutions may share
only some bounds. The hull may not be computed to keep fine-grained ap-

proximations.

4 Empirical evaluation on academical problems

The techniques have been implemented in Realpaver (Granvilliers & Ben-
hamou, 2006). The pruning step is implemented by constraint propagation
using 2B consistency and box consistency. The next results do not take into
account the computations of any proof of existence algorithm, since only per-
formances of search heuristics are studied. These results are only concerned of

finding solutions which are coherent with precisions of variables. The presented
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curves show the number of splits made on domains of variables. Considering
one solving heuristic, this number does not vary on the contrary to the solving
time, which depends on the computer hardware, the operating system, other
running process, etc. Moreover, it unmistakably represents the performances

of each search heuristics, since we do not interfere with the pruning algorithm.

4.1  Functional variables

ED problems embody many variables expressed as functions of other variables.
They are maintained within the model to preserve the model intelligibility, al-
though they could be removed and replaced by their expression. The question
is whether these variables have to be split. Let us consider the following prob-

lem parametrized by n > 3:
x € [-100,100] 1 <k <n
ykai—%’iH 1<k<n (8)

yk_yk+1:k 1§]{?§TL

Let x,,.1 be z; and let y,.1 be y;. The goal is to prove that the problem has
no solution. The results are depicted in Figure 3. The e curve corresponds to a
round robin strategy on z and no split on y. This is clearly not efficient. The =
curve is obtained with a round robin strategy on x and y. The growth ratio is
almost the same (factor 2) but the number of splitting steps is decreased by a
factor 50. The A curve is derived by a more robust strategy such that z is split
twice more than y. Surprisingly the number of splitting steps decreases when

n increases. For instance, given n = 8, the number of bisections is respectively
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93183, 1791, and 93 for the three heuristics.

Let us consider another problem parametrized by n > 3:

xy € [—m/3,7/3] 1<k<n
Yk = Th+1 + T2 1<k<n (9)

tan(xy + yx) +tan(zy) = k/n 1<k <n

such that z,.; = x; and y,; = y; for every ¢ > 1. The goal is to compute the
solutions on z considering a precision of 107® (three solutions for 6 < n < 11).
The results are depicted in Figure 4. The e curve corresponds to a round robin
strategy on x and no split on y. The m curve is obtained with a round robin
strategy on x and y. We see that it is more efficient not to split y. The other
curves are obtained with a robust strategy such that x is split r times more
than y (r = 5 for A and r = 10 for 4). The improvement increases with ratio

r.

The previous results may lead to the following conclusions. In the first problem,
every reduction on functional variables is directly propagated through many
constraints, which is efficient since these variables occur in several constraints.
If such variables appear in only one constraint, splitting them is not efficient,
because they only represent intermediary computations. The second problem
shows that no split on functional variables gives bad performances. In fact,
every reduction on y; leads immediately to a reduction of z;,; and xy 9 since
the constraint is simple. This is a means for tackling two variables using only
one split. Finally, strategies using a ratio are more robust and efficient than

others on these types of problems.
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It can be noted that in ED models, functional variables often take part of
under-constrained network of constraints. Many splitting steps on them is
useless and a high ratio is better. If this ratio is too difficult to establish,
no splitting steps on functional variables is the easiest and the more efficient
approach. Moreover all splitting steps on functional variables do not have the
same impact on the pruning of the whole problem and the round robin strategy
does not take this factor into account. Perhaps, some other strategies, as for
instance to choose the most constrained variable, should be more efficient

especially with small ratios, where functional variables are often split.

4.2 Auziliary variables

Auxiliary variables are useless from an ED point of view but they have to be
efficiently managed during computation. Let us consider the following problem
where n is an integer main variable in [—108,10%], z,y, z are real variables in
[—10,10] with precision 107®, z is a main variable, y and z are auxiliary

variables:

r—y+z =1-n

T —yz =0 (10)

22 —y+22=2

The problem projected onto the auxiliary variables is hard to solve, since
this problem is dense. Local reasoning about projections may not compute
efficiently domains of variables. As a consequence these variables must often

be split. The curve in Figure 5 is obtained from a robust strategy that al-
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ternatively splits main and auxiliary variables with ratio r. We observe an
exponential behavior when r increases, i.e., when auxiliary variables are sel-
dom split. We also notice for this problem that labeling is better than bisection

on n. In fact n must be set before solving the whole problem.

The number of splitting steps on auxiliary variables should follow the hardness
of the problem on these variables. This theoretical criterion is implemented
here by a global ratio on the variable sets. This ratio aims at favoring main
variables according to the existential quantifier which is defined on auxiliary

variables, when considering an ED problem.

4.3 Piecewise constraints

We consider the following problem:

(z,y,2) € [-10,10?
y+yP=2"+2
xz=2>—-1

piecewise(z, I; : mid(I;) = 2* — y* + x,

L, mid(l,) =2 —y? +2)
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where n is the number of pieces of the piecewise constraint, each interval I is

defined by

k-1 k
Iy = |—10 + 20— 4+ 1, —10+ 20— —v| ,1 < k <n, (12)
n n

v > 0 is equal to the machine precision, and mid(/y) is the midpoint of Ij.

Let 10~® be the precision of every variable.

Figure 6 depicts the number of splitting steps required for solving the problem
parametrized by the number of pieces of the piecewise constraint. The variables
are chosen following a round robin strategy. The 4 curve is such that only the
first pruning case of the piecewise constraint is applied. A restricted pruning
algorithm is clearly not efficient. In this case, many approximate solutions
include piece bounds and the piecewise constraint is useless. The e curve
corresponds to a full pruning algorithm with classical bisection, the m one to
a full pruning algorithm with split on the first hole from the domain of z, and
the A one to a full pruning algorithm with split on the mid hole. Bisection is
more efficient than split on the first hole. It is known that bisection is more
efficient than labeling for continuous variables. Split on the mid hole is the
best heuristics. The corresponding function follows n” with 0 < p < 1. The

new technique seems effective even for huge piecewise constraints.

5 Empirical evaluation on real-world problems

In this section we evaluate our approach on models obtained for real world
applications in mechanical engineering. It may be noted that the next results

do not take into account the existence proof algorithm, because of the huge
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number of computation steps it adds. Moreover we are mainly interested in

studying our search heuristic results.

5.1 A basic batch-exchanger system

We first consider a batch exchanger model (see Figure 7). The solution princi-
ples are defined using five design variables (three catalogs related to lengths,
materials and diameters, the number of fins, and the gap between fins). In this
model, the variables relating to the choices within catalogs are design variables
instead of the length and materials of fins and the diameter of the tube, which
ones have their values directly defined by the catalog. This problem is inter-
esting from an ED point of view, since we have to choose several components
in a (small) catalogs, while dimensioning the gap between fins. In this sys-
tem, there is a coupling between fluid mechanics and the geometry of the heat
exchanger (namely the gap between fins). System modeling introduces five
auxiliary variables and five functional variables. The batch-exchanger is part
of a batch-cooler system for aperitif and this model investigates the feasibility

to cool down the aperitif from 25°C to 8°C in less than 25 seconds.

Figure 8 depicts the number of splitting steps using the robust strategy with
ratio r. The number of solutions is half of the number of splitting steps. The =
curve comes from labeling of integer domains and the A curve from bisections.
We see that a high splitting ratio allows to decrease the number of splitting
steps. Due to some orientation in the model the auxiliary variables are directly
computed from the design variable values. Splitting auxiliary variables leads to
duplicate solutions and consequently useless search steps. Bisection on integer

variables is better than labeling. That is explained by efficient reductions of
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the number of fins (integer in [5,20]) using some bound consistency method.

5.2 A pump and tank water circuit

This model takes into account three tanks (one upstream and two downstream )
and one water pump (see Figure 9). The objective is to study the feasibility of
dimensioning the two lines diameters after the downstream Y-branch. Before
the Y-branch, the lines diameter is 0.055 meter. All the lines lengths are fixed
and the two downstream tanks must receive the same flow, considering that
the sum of the global lines section is the same before and after the Y-branch.
The water pressures in the tanks are defined initially: the upstream tank is
at 40000 pascal and the two downstream tanks are open to the atmosphere
air and the pressure is 101325 pascal. The pump is standardized and has
characteristics (efficiency, manometric head and required net positive suction
head for a water flow, etc.) given by its manufacturer. The net positive suction
head is investigated to guarantee the safety of the pump. The solutions are
computed taking into account that the cavitation phenomenon in the pump
must not appear, otherwise it may be seriously damaged. The downstream
circuit (directly linked to the cavitation phenomenon) is coupled to the whole

circuit (pressure losses) and the Y-branch make the problem non trivial.

This model is made of two design variables (the two tube diameters after the
Y-branch), three auxiliary variables and thirty-five functional variables. The
figures 10, 11, 12, 13, 14 and 15 depict the results obtained when functional
variables are split considering a global varying precision. Since the three aux-
iliary variables have a fixed precision, a global precision can be defined on

the other variables, i.e. functional variables and they are split like auxiliary
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variables. Half of those pictures depicts the numbers of splits and the other
the numbers of solutions. The e curves show the results obtained with a clas-
sical round-robin strategy for the choices on all variables (main, auxiliary and
functional variables). The m curves express the results with a strategy always
starting with main variables. Once they reach the required precision, auxiliary
are variables split. The A curves represent the results with a choice strategy
with a ratio defining a priority of 3 for the main variables on the auxiliary
variables. Only results found within a reasonable time are written out on each
curve: results with a solving time exceeding one hour are not taken into ac-

count.

The figures 10 and 11 represent the most general case and all the functional
variables are defined with the same global precision. The different number of
solution between each run can be explained by the miscellany of the dupli-
cation of design solutions and the powerlessness of consistency algorithm on
intervals, which never remove real solutions, but have difficulty to prune accu-
rately some domains and to reject them if they are near a real solution. In this
context, the most accurate precision on functional variables given reasonable
solving time is 107!. The e curve seems to have the worst results, in particular
for the more accurate precision, but otherwise the results are fairly similar. It
may be noted that merging all the computed solutions gives only one design
architecture. Considering that fact, the best computing run is obtained by the
A curve with 3 solutions and 296 splits for a functional variables precision of
103. The best approach considering the whole curves seems to be the A curve,

where a robust strategy is applied.

After these first results, we can observe that the precision 10® and 10* for func-

tional variables give good results. These quantities are compatible with some
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functional variables values: losses in lines expressed in pascal and Reynolds
number values. So the figures 12 and 13 give results where these functional
variables have several fixed precisions. In this case, the most accurate precision
is 10710, Globally the e curve seems to be again the worst approach, although
it gives the smallest number of solutions after a precision of 1077 for the same
quantity of splits than others. The lowest number of solutions is given by the
» with 3 solutions for 148 splits for a precision of 10°. Previously the same

small number of solutions was found, but in 296 splits.

From the maximum precision to 10! the results stay the same, but until 10~2
the number of solutions and the number of splits decrease. We can conclude
that some other functional variables values are compatible with these preci-
sions. Then set precisions are also given for the net positive suction head and
the total manometric head and all surfaces. The figures 14 and 15 show the
results obtained with all these set precisions and with only a few still using the
varying global precision. In this case, the robust strategy fails to give all the
solutions within reasonable time after a precision of 1078, although it seems to
give the best results before a global precision of 1072, The two other curves al-
low a maximum precision of 107! and up to a precision of 10~7 the results are
interesting. The best run is obtained by the m curve with 3 solutions and 148
splits for precisions of 10° and 10~!, which is not better than in the previous

case.

With these results, we can conclude that functional variables have to be split
(using CSP based on interval arithmetic). But it is difficult to define carefully
the precision on each functional variable. If the quantities represented by their
values are known by designers, well defined precisions can be set, but otherwise

few splits are better not to duplicate main variables solutions.
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5.8 A bootstrap problem

A basic model of an aircraft conditioning system is investigated (see Figure 16).
Air coming from a turbo-reactor and from the atmosphere is used to produce
cold air. The atmosphere air cools down the air coming from the turbo-reactor
through a heat exchanger where complex piecewise defined physics phenomena
are studied (Fanning friction factor and Nusselt number). Turbo-reactor air
flow passes through a compressor to improve the heat transfer phenomenon
inside the exchanger. Before exiting the air conditioning system, a turbine
releases its pressure and makes its temperature decrease. A coupling shaft
conveys the turbine mechanical energy to the compressor. This problem is dif-
ficult to solve since many physics phenomena interfere. The loop corresponding
to the bootstrap make its components coupled according to the temperatures
and pressures of the air flux. These temperatures and pressures are also linked

to the heat exchanger geometry (gap between plates).

In this model, the compressor, the turbine and the coupling shaft are stan-
dardized components and only the heat exchanger has to be embodied as it
mainly determines the air-conditioning performances. The main objective of
the system is to bring air to the passengers and the crew of the aircraft and to
control the air temperature and pressure inside the cockpit. But some other
criteria are important in an aircraft, as the air flow taken from the turbo-
reactor (that decreases its efficiency), the increase of the aircraft drag, the
weight of the air-conditioning system, etc. This problem is efficiently solved
with piecewise constraints: 6734 splitting steps and 1262 approximate solu-
tions with respect to 36978 splitting steps and 18860 approximate solutions

without piecewise constraints.
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Moreover this problem cannot be solved within reasonable time with classical
round-robin strategies on all the variables. The search space is so wide, that
if the embodiment design knowledge about main variables is not used, the
solving process becomes very long. The use of functional variables with infinite
precision is the easiest way, since the model is complex and functional variables
values quantities can change. For instance, the Reynolds number takes its

values from 100 to 200000.

It may be noted in the solution set of these real problems, that auxiliary
variables precision are often large. Indeed the interval approach may compute
interval solutions, where each one may contain several solutions over the real
numbers. If the model is very sensitive to main variables values and if their
precisions are not small enough, auxiliary variables may have large domains
since they correspond to the several main variables real values, which are
contained in one interval. From the designers’ point of view and in the context
of ED, it does not matter, because the main goal is to investigate the feasibility
of design concepts. Designers’ first interest is to know where there is no solution
in the search space. If they want to have more precise auxiliary variables values
for one specific design architecture, they just have to change all variables
domains corresponding to one or several computing solution values and then
to increase main variables precision. They can start a new solving step on this

more restricted search space and find more accurate values.

6 Related work

Constraint techniques may be used at two successive stages of preliminary de-

sign. Discrete constraints may lead to determine the architecture of a product
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during the conceptual design phase (O’Sullivan, 2001). CD using components
from the shelf is known as configuration. These problems can be represented by
dynamic constraint satisfaction problems (Mittal & Falkenhainer, 1990) such
that the involved components are activated and the corresponding constraints
are solved. The notion of component (or variable) activation can be tackled by
conditional constraints (Gelle & Faltings, 2003; Sabin et al., 2003). Larger and
more complex problems are also tackled by (Stumptuer et al., 1998; Mailharro
, 1998). From a solving point of view the main goal is to efficiently traverse
the tree of architectures. Numerical nonlinear constraints are more involved in
the ED phase. The frontier between CD and ED may be thin because mixed
constraints can be considered (Gelle & Faltings, 2003) to tackle both phases

at the same time. But the ED physics models are in general more complex.

Sam-Haroud & Faltings (1996) have proposed to represent numerical con-
straints by 2*-trees, namely decompositions of the feasible regions using in-
terval boxes. Strong consistency techniques have been defined through the
combination of 2*-trees. Design applications such as bridge design have been
efficiently solved. In this framework, constraint systems are decomposed in
binary and ternary constraints in order to limit the size of 2*-trees (quadtrees

if k = 2 and octrees if k = 3).

Classical interval techniques have been implemented in the ED platform Con-
straint Explorer (Zimmer & Zablit, 2001). The solving engine combines in-
terval arithmetic, constraint propagation and search. An important feature is
the analysis of the constraint network using graph decomposition (Bliek et al.,
1998). The result of this analysis is an ordering of variables to be fixed before
solving the associated constraint blocks. Recent developments can be found

in (Neveu et al., 2006). Our approach can be directly integrated for solving
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one block. In particular large blocks may arise in ED models, for instance in

the study of the equilibrium of a system.

Piecewise constraints can be implemented by means of conditional constraints
(Zimmer & Zablit, 2001). This method amounts to the first case of our pruning
algorithm. More recently, binary piecewise constraints with pieces in the form
of (z,y) € Iy x Jy : Ci(x,y) have been represented by quadtrees (Vareilles et
al., 2005). It seems difficult to extend this approach to constraints of higher

arities, which is required for solving the problems described in this paper.

Solution sets with nonzero volumes may be characterized by inner approxima-
tions, namely interval boxes of which every point is a solution. Several works
have tackled specific cases: inequality constraints by means of 2F-trees (Sam-
Haroud & Faltings, 1996), interval boxes (Collavizza et al., 1999) or the ex-
treme vertex representation (Vu et al., 2005), and equality constraint systems
with at least as many existential quantifiers as equations (Goldsztejn & Jaulin,
2006). The study of such techniques for more heterogeneous constraint systems

1S an issue.

Other works have taken into account relations that are not described by an-
alytical expressions (Yannou et al., 2003; Fischer et al., 2004), exploiting in
the constraint framework simulation results or data from black box numerical
tools. The main idea is to compute approximate constraint-based models of

these relations.
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7 Conclusion

ED problems have been represented by constraint satisfaction problems with
existential quantifiers. ED knowledge on types of variables and precisions has
been used to improve the solver efficiency. New search heuristics based on a
splitting ratio have been introduced to tackle the quantified variables. Dupli-
cated solutions of main variables disappear and decisions on the design solu-
tion principles set are easier to make for designers. A global constraint has
been defined for piecewise defined physics phenomena. Experimental results
from academic and real-world problems are promising. Embodiment design
goals are better taken into account since the main purpose is to investigate

the feasibility of the search space.

There are many directions for future research. The notion of splitting ratio
could be refined to tackle the hardness of every variable. The hardness of a vari-
able should be clearly defined. For instance, dependencies between variables
may also indicate variables relevancy in the model and possibly participate to
their hardness. Auxiliary variables precision and solutions validation could be
more studied. The notion of precision is essential in numerical computations.
The precision on auxiliary variables is not often chosen appropriately and it
induced many useless computations steps in all heuristic search. The precision
on main variables is easily defined considering the design knowledge about the
model: epistemic knowledge about main variables values. On the other hand,
auxiliary variables are often part of complex mathematical expression. In fact,
the sensitivity of each variable should be investigated and precision should be
defined considering the numerical analysis of each constraint in which variables

are involved. Nevertheless in practice, it is very difficult to apply and designers
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have no time to investigate in those fastidious calculations. Moreover, the in-
tegration of our techniques in a block solving approach could be explored. The
block decomposition of a CSP takes into account the constraints network and
established an order or a causality on variables or blocks of variables based on
this network. In most design models, starting variables are needed to compute
a relevant order, since models are often under-constrained. Several orders on
variables may be defined for the same constraint graph, and the choice of the
optimal one is undecidable within reasonable time(Jégou & Terrioux, 2003),
but the main variables heuristic may help in this ordering task, taking into

account design knowledge.
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A Batch-exchanger model

Constants names and values:

The batch volume (cl): Vo=
Fin thickness (mm): €ail := 0.5
Initial temperature of the aperitif (°C): | T} := 20

Final temperature of the aperitif (°C): | Ty := 8

Volume of aperitif to cool down (cl): dose :=4

Design Variables names, domains and precisions:

Catalog for the fins materials (-): | mater € {1,2}
Catalog for the fins length (-): ail € {1,2}

Catalog for the tube diameter (-): | diam € {1, 2}
Number of fins (-): N € [5..20]: integer
Space between fins (mm): e € [1.4]: p(e) = 1071

Auziliary variables names and domains:

Time to cool down the aperitif (s): | ¢ € [11..15]: p(t) = 107!

Tube diameter (mm): d € [0..50]: Integer

fins length (mm): L € [0..50]: Integer

Fin conductivity (W/m/K): A € [1..200]: Integer
Saturation temperature (°C'): Toat € [—15..2]: p(Tyes) = 1071

Functional Variables names and definition:

2 2
L2-T.d

Surface of a semi fin (m?): Adil = To50600



(2-A a4 -—Ted . Jhse
Exchanger surface (m?): A=N0C A“”Jr‘l/““““““) d
Exchange coefficient int the batch-exchanger (-): | h = 2%
L—d 2000-h
Efficiency coeflicient for a fin (-): fi= 350 "\ o
e(Q'fi),l
. . 2-f;
Fin efficiency (-): n = %
Constraints:
—h-Atn
Balance of heat energy Ty =Tsar + (1) — Tsat) - € dose
Batch volume V=e-Ay -N-100
Catalog of tube diameters | diam =1 — d = 16
diam = 2 — d = 18
Catalog of fin materials mater =1 — A = 200
mater =2 — A\ =20
Catalog of fin length ail =1— L =40
ail =2 — L =50
B Pump and tank water circuit model
Constants names and values:
Pressure in the upstream tank (pa): Poont := 40000
Pressure in the downstream tanks (pa): Poa = 101325

Height of the vertical downstream line H.,:=5
before the Y-branch (m):
Height of the vertical downstream line H.o:=2
after the Y-branch (m):
Height of the vertical upstream line (m): H,:=2

Height of water in the upstream tank (m): | H, := 0.5

Water density (kg/m?): p:=le3



Water viscosity (m?/s):

Acceleration due to gravity (m/s?)

Lines diameter before the Y-branch(m):
Losses coefficient in entry of upstream line:

Losses coefficient exiting downstream lines:

1

9
D

S|

§3:

=1le—3
:=9.81
= 0.055
=05

the first downstream tank:

the second downstream tank:

Water temperature (°C'):

Losses coefficient in the Y-branch towards | &, := 0.5

Losses coefficient in the Y-branch towards | & := 0.1

Design Variables names, domains and precisions:

Line diameter after the Y-branch towards
the first downstream tank (m):

Line diameter after the Y-branch towards

the second downstream tank (m):

D,y € [0.02,0.1]: p(D,,) = 1073

D,5 €[0.03,0.1): p(D,s) = 1073

Auziliary variables names and domains:

Flow in the lines before the Y-branch: | Qy € [17/3600, 96/3600]: p(Qo) = 107°

Flow in the lines after the Y-branch | Q.1 € [0,96/3600]: p(Q,1) = 107°

towards the first downstream tank:

Flow in the lines after the Y-branch | Q2 € [0,96/3600]: p(Q,2) = 107°

towards the second downstream tank:

Functional Variables names and definition:

Section of cylindrical upstream lines




(m?):

Section of cylindrical downstream lines
towards the first tank (m?):

Section of cylindrical downstream lines
towards the second tank (m?):

Surface of the vertical upstream line
(m?):

Surface of the horizontal upstream line
(m?):

Surface of the vertical downstream line
before the Y-branch (m?):

Surface of the horizontal line towards
the first downstream tank (m?):
Surface of the vertical downstream line
towards the second tank (m?):

Surface of the horizontal line towards
the second downstream tank (m?):
Flowing speed in the lines before the
Y-branch (m/s):

Reynolds number for the water before the
Y-branch (-):

Piecewise definition of Fanning friction

factor for flowing before the Y-branch:

Reynolds number for the water between the
Y-branch and the first downstream tank(-):

Definition of Fanning friction factor for

Srl = W.i)gl
STQ — W'gzz
Ael =x-D- Ha
A =7m-D- L,

Az =m-D-Hpy
Ay =m- Dy - Ly
Ay =7 Dyg- Hyo
A =7 Dyg - Ly
V=%

Vo-D
R61 = _P::;)u

Rey € [0,2100] — f; = 25

Re; € [2100,50000] — f; =
0.10512 - Rel1 0244

Re; € [50000, 1000000] — f1 =

0.04234 - Rey %164
Re2 = 585 77

Rey € [0,2100] — fo = 22




flowing between the Y-branch and the tank 1:

Reynolds number for the water between the
Y-branch and the second downstream tank (-):
Definition of Fanning friction factor for

flowing between the Y-branch and the tank 1:

Losses coefficient in the upstream elbow

(pa):

Losses coefficient in the downstream elbow

(pa):

Total manometric head (m):

Net positive suction head required:

Net positive suction head available:

Water saturation vapour pressure (pa):

Total losses in the circuit (pa):

Losses in entry of the vertical upstream line

(pa):

Re, € [2100,50000] — f, =
0.10512 - Re; 24
Res € [50000, 1000000] — f, =
0.04234 - Re; 164

9ra ‘D'r2

P
R€3 = :Zu

Res € [0,2100] — f5 = 25
Res € [2100,50000] — f5 =
0.10512 - Rez 4

Res € [50000, 1000000] — f3 =
0.04234 - Rez %164

£, =0.1540.0175-4- f,-2-90

€6 =0.154+0.0175-4- f3-2-90

H = —1.1763-107° - (Qo - 3600)*
—2.2052 - 107 - (Qo - 3600)*+
1.4384 - 1072 - (Qo - 3600) + 21.554
NPSH, =1.2144-1075 - (Q,-
3600)? — 1.2301 - 1073 - (Qo-
3600)2 + 4.9136 - 1072 - (Qq - 3600)
+0.49957

NPSH, = fament=Fsat 4 (] 4

Py
DP0+DP1+DP2+DP3
2-D)— s

3802.7 472.68 |2
Psat = 623'3265_ Tr275.18 ~(T4273.18)

AP = APy + AP, + AP, + AP;
+AP, + APs + APs + AP

0 V2
APy = 2%




Losses in the vertical upstream line (pa):
Losses in the upstream elbow (pa):

Losses in the horizontal upstream line (pa):
Losses in the vertical downstream line before
the Y-branch (pa):

Losses in the Y-branch towards the first
downstream tank (pa):

Losses in the horizontal line towards the
first downstream tank (pa):

Losses exiting the line in the first
downstream tank (pa):

Losses in the Y-branch towards the second
downstream tank (pa):

Losses in the vertical downstream line after
the Y-branch (pa):

Losses in the elbow towards the second
downstream tank (pa):

Losses in the horizontal line towards the
second downstream tank (pa):

Losses exiting the line in the second

downstream tank (pa):

AP, = [14a , pQu?

=75 2

_ &pVf
APy = =5+
APg — fl"sfge2 . p'ng

2
A, Q32
AP4:fls 3 . Qg

AP, — GopCE )

APGZT

AP7 = —rl—

Apgzir.. r2

APQ — fS'Ae5 . P‘Q22




Constraints:

Y-branch water flow equality Q1+ Q= Qo
er = QT’2
Downstream tubes section equality | S, + So = S
Total manometric head H = W —
AP
p-g

Downstream energy balance

NPSH, < NPSH,

No cavitation phenomenon

(Hw + Ha) + Hr1+

AP; + APs + AP, == APy + APy+
AP+ AP+ AP+ Heo-p-g

C Bootstrap model

Constants names and values:

Flying altitude (m):

Calorific capacity difference (J/kg/K):

Mass capacity ratio (-):

Plate conductivity (W/m/K):

Plate thickness (m):

Mass flow (kg/s):

Isentropic efficiency of the turboreactor’s diffuser (-):

Compresion ratio of the turboreactor (-):

Isentropic efficiency of the compressor (-):
Isentropic efficiency of the coupling shaft (-):
Isentropic efficiency of the turbine (-):

Heat capacity ratio (-):

Mach number (-):

Isentropic efficiency of the turboreactor’s compressor (-):

Z = 10500
r =287
T=10

k, = 20

t, = 0.001
q=0.7
Nrrd = 0.9
TCrr =28
Nrre = 0.8
ne = 0.75
nar = 0.95
= 0.8
vy=14
M =0.8




Design Variables names, domains and precisions:

Width of the exchanger (m):

Spacing between plates in the exchanger (m):

L, € [0.1..1]: p(L,)
r, € [0.001..0.1]: p(ry) = 1073

=102

Auziliary variables names and domains:

Temperature between the compressor and the exchanger (K):

Temperature between the exchanger and the turbine (K):

Temperature after the turbine (K):

Pressure between the compressor and the exchanger (pa):

Pressure between the exchanger and the turbine (pa):

Pressure after the turbine (pa):

Mass flow in the bootstrap (kg/s):

€|
€ [0..1000]
€

0..1000]

230..500]

pa € [0..10000000]
ps € [0..10000000]
pa € [0..10000000]
€ [0..1]

Functional Variables names and definition:

Length of the exchanger (m):
Height of the exchanger (m):
Temperature of the atmosphere (K):

Pressure of the atmosphere (pa):

Temperature between the diffuser and the

compressor of the turboreactor (K):
Pressure between the diffuser and the
compressor of the turboreactor (pa):
Temperature between the turboreactor
and the compressor (K):

Pressure between the turboreactor and
the compressor (pa):

Porosity (-):

L,=L,
L.=025-L,

T, = 288.2 —0.00649 - Z

Pa = 101290 - (5pmte

2. (y—
T():Ta'(l—‘_iM (27 D

)5.256

)

2. (y— a_
po :pa . (/r/TRd . (w + ]_)'yfl

T1 - T(] . (1 +
p1=TCrr - po
7= (T’:itp>

y—1

77T1Rc ' ((;;—;)T o 1))




Reynolds number (-):
Prandtl number (-):

Nusselt number (-) piecewise definition :

Fanning factor (-) piecewise definition:

Air viscosity (kg/m/s):

Air thermal conductivity (W/m.K):

Air density between the turboreator and
the compressor (kg/m3:

Air density between the compressor and
the exchanger (kg/m3):

Air density between the exchanger and the

turbine (kg/m3):

Re = 4-r,-G

“w
Pr = 0.825 — 0.00054 - Ty + 5-
1077 . T2

Re € [0,2100] — Nu = 1.86-

( Pr-Re-2-rp, )0,33

Ly

Re € [2100,8000] — Nu = 0.116-
(R60'66 _ 125) . P,r,O.33

Re € [8000, 10000] — Nu = 22000-fc .
0.116 - (Re%% — 125) - Pro-33+
TS0 - 0.023 - Re®8 - Pro33

Re € [10000, 1000000] — Nu = 0.023-
ReO.S . PTO'33)

Re € 10,2100] — f =16 - Re™*

Re € [2100,100000] — f = 0.10512-
R6_0'243

Re € [100000, 10000000] — f =
0.04234 - Re~0:161)
p=—1.075-10"%—2.225- 1072 - To+
1.725- 1070 - /T

A = ((—2.620052386818974 - 1076).
(L2 4 (9.169307749941458 - 1073)-
(Zt12) 4 1.075874105919108 - 1071)-

(1072)

p1

P = r-T
b2
P2 = rTh
b3
P3 = rT3




Number of transfer units (-):
Exchanger effciency (-):

Exchanger inlet pressure loss

coefficient (-):

Exchanger outlet pressure loss

coefficient (-):
Mass velocity (kg/m2/s):

Exchange surface (m2):

Flowing section (m2):

Nut = £4
q-Cp

ce=1—¢e" NUtO'm.(e%l-NutOVS_l)

K. = ((—0.00496672650332) - 02+

(0.00113607587171) - o+
(—0.00001379297260)) - ln(Re)2+
((0.06612031387891) - o
(0.03340063900613) - o+

(—0. 00178687092114)) - In(Re)+
(0.96233612367662) - &
(—2.55595501972796) - o+
1.01310287017856)

K. = ((0.00505236835109) - 02+
(—0.00414707431984) - o+
(0.00347507173062)) - ln(Re)2+
((—0.08548307647633) - o
(0.06740608329495) - o+
(—0.09241949837272)) - In(Re)+
(—0.18282301765817) - 0+
(—0.17962391485785) - o+
1.00333194877608)

G=1

Ag
A — Lg-Ly- (Lz—2 rR—tp)
T}L+ 2

A;=1L,- L.

_ Nu-)\

Convective transfer coefficient (W/m2/K):

Global heat transfer coefficient (W/m2/K):

Pressure loss in the exchanger (pa):

10

Th

1

71/h+2 5

Ape:(

(4@

) (K. +1—0%)+ f-
Y+ (K, +0%—=1)-(

2:p2

' P2 +P3

Ps)




Exchanger pressure loss:

Echanger efficiency

Turbine energy conservation:

Coupling shaft energy conservation:

1— T3 __

A106 =P2—DP3

€ = L=Ts
To—Th

Exchanger volume (m3): V=L, -L,- L,
Plate volume: Vo = é tp
: : : _ oy
Air flowing speed in the exchanger (m/s): | C = T
Iron plate mass (kg): me = V), - 7800
Constraints:
Compressor energy conservation: Ne (% 1) = (ij—f)v_zl -1

11




1 Figures

ED knowledge

ED mathematical model

Design Variables

Design Criteria

Modeling Variables

Design Variables

Functional Variables

Design Criteria :

Fig. 1. Variables kind in the Embodiment Design phase.




Fanning friction factor
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Fig. 2. Friction factor as a function of Reynolds number.
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4 5 6 7 8 n

Fig. 3. Search heuristics for functional variables.



7 8 9 10 11 n

Fig. 4. Search heuristics for functional variables.



103 split

w

Fig. 5. Search heuristics for auxiliary variables.



1 2 3 4 5 6 7 logy(n)

Fig. 6. Search heuristics for piecewise constraints.



Fig. 7. Batch-exchanger.

o
| 2 n

1 ) 10 15 r

Fig. 8. Solving the batch-exchanger problem.
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Fig. 9. Pump and tanks water circuit.




= log(split)

w

+oo 105 10 10? 1 1072 107 | 10‘_6 | 10‘_8 ‘10‘_10‘ Precision

Fig. 10. Solving the pump problem with varying precision on functional variables.

Nb solutions

— =
() ot
o (=)

Ut
o

164 162 1 ‘10‘—2‘10‘—4‘10‘—6‘10‘—8‘10‘—10‘ Precision

+bo 166

Fig. 11. Solving the pump problem with varying precision on functional variables.



log(split)
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+oo 106 10° 102 1 1072 10~* 107 10® 10-'° Precision
Fig. 12. Solving the pump problem with several fixed and varying precisions on

functional variables.

Nb solutions

7507+

50071

2507
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L. ‘
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104 102 1 107 10~* 10°° 10~ 1010 Precision
Fig. 13. Solving the pump problem with several fixed and varying precisions on

functional variables.

10



log(split)

=~

too 106 10* 10 1 1072 10~* 107 10~° 10-'0 Precision
Fig. 14. Solving the pump problem with more fixed and fewer varying precisions on

functional variables than those shown in figure 12 and 13.

Nb solutions

500 1

2501

100+

A

400 106

10° 102 1 1072 107* 107 10-° 10-'0 Precision
Fig. 15. Solving the pump problem with more fixed and fewer varying precisions on

functional variables than those shown in figure 12 and 13.
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Fig. 16. Bootstrap flux flow diagram in an aircraft.
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