
HAL Id: hal-00426694
https://hal.science/hal-00426694

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SIMULATION OF RAINFALL EVENTS AND
OVERLAND FLOW

Olivier Delestre, Francois James

To cite this version:
Olivier Delestre, Francois James. SIMULATION OF RAINFALL EVENTS AND OVERLAND
FLOW. X International Conference Zaragoza-Pau on Applied Mathematics and Statistics, Sep 2008,
Jaca, Spain. pp.125-135. �hal-00426694�

https://hal.science/hal-00426694
https://hal.archives-ouvertes.fr


SIMULATION OF RAINFALL EVENTS AND

OVERLAND FLOW

Olivier Delestre and François James

Abstract. We are interested in simulating overland flow on agricultural fields during rain-

fall events. The model considered is the shallow water system (or Saint-Venant equations)

without infiltration, complemented with a friction term. In this context, we definitely

have to cope with dry/wet interfaces and water inflow on dry soil. We present a simpli-

fied one-dimensional model, discretized with a well-balanced finite volume method, and

we describe the specific additional features needed to deal with dry/wet transitions and

steady-state solutions due to topography and friction. The method as well as the choice

of the friction term are tested and discussed both on analytical solutions and experimental

results.
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Introduction

Rain on agricultural fields can yield to overland flow. This flow may have some undesirable

effects. At the field scale, we can have soil erosion and pollutant transport. Downstream the

fields, roads and houses may be damaged. To prevent these effects, control measures can be

taken, such as grass strips. But one must know how the water is flowing in order to place

efficiently these developments. In the spirit of [6, 7], we try to model these phenomenon by

using the shallow water (or Saint-Venant) equations. Efficient numerical simulations are of

great help in this context, because field measurements, such as velocities or water heights,

are very difficult to obtain, especially during the rain event, which is quite unpredictible.

The aim of this paper is not to give a complete account on the problem, which has to be

thaught of as a multi-scale problem: one has to deal with roughness induced at the decimeter

scale (e.g. by furrows on agricultural surfaces), flows at the scale of ten square meters, which

is the scale of the numerical topography data, and also the agricultural field itself, whose

surface is of the order of the hectare. We give here a short review of the shallow water

equations, with emphasis on some specific aspects in this context. Namely, since the rain is

an intermittent phenomenon, we definitely have to cope with dry/wet transitions, a problem

analogous to the vacuum apparition in gas dynamics. More classically in shallow water

problems, we have to take into account carefully the interactions between the soil topography
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and the friction of water on the soil, which eventually lead to steady-state solutions that have

to be computed accurately.

For this introduction to the topic, we deliberately use a simplified model, firstly by con-

sidering one-dimensional flows. This is enough to understand the ideas of the numerical

methods, which can be developed in two space dimensions on a rectangular mesh. Next,

from a more practical viewpoint, we neglect importants phenomena, which deserve a com-

plete modelling: infiltration and soil erosion. Infiltration appears as a supplementary source

term in the shallow water equations, and can be treated quite easily, when a relevant model is

chosen. Erosion is a much more complex problem.

We begin by a short review of the shallow water system, recalling a few basic properties.

Next, we describe numerical methods adapted to the situation, in particular we discuss briefly

the discretization of the friction terms. Finally, we give several illustrations of the results.

First we justify the choice of the method by comparison with analytical solutions. Next, we

show an attempt of recovering experimental results, with a clear evidence that the choice of

the friction laws is not obvious. The last section is devoted to an unstability phenomenon

wich occurs when perturbating steady-state solutions (with rain for instance): the so-called

roll-waves.

§1. Model

The model we consider here are the so-called shallow-water equations, which are convenient

for small heights of water, according to the following scheme

xO

h(t,x)

z(x)

u(t,x)

z+hz

The unknowns are here the velocity of the water u(t, x), and its height h(t, x). The shape of the

bottom is also called the topography, it is a given function z. For our specific application, the

model has to be complemented by taking int account friction on the soil and rain. Therefore

the equations are

∂th + ∂x(hu) = R(t), ∂t(hu) + ∂x

(

hu2 +
gh2

2

)

= −gh

(

∂xz + S f

)

, (1)

where g is the gravity constant, R(t) the rain intensity, assumed constant in space, and S f (h, u)

the friction term. Notice that infiltration in the soil can be accounted by a source term in the

first equation like R(t) − I(t, x), where I is a given function. We shall denote by q = hu the

water flow, or discharge. The typical practical configuration we consider is a channel with
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finite length L, so that the system must be set on the interval ]0, L[, and complemented with

boundary conditions at inflow and outflow we do not detail here, see an example in Section

3.

Concerning the friction term, it is a given function of h and u, two examples widely used

in hydrology (see for instance [6, 7, 8, 9]) are the Manning and the Darcy-Weisbach friction

laws, which are given respectively by

S f = −
k2u|u|

h4/3
= −

k2q|q|

h10/3
, S f = −

ku|u|

8gh
= −

kq|q|

8gh3
, (2)

where k > 0 stands for the roughness coefficient. Both laws are derived from empirical

considerations, in particular in the context of pipelines. The problem of their relevance in the

present context of overland flow is difficult.

The system can be rewritten in a more compact form by setting

U =

(

h

q

)

, F(U) =

(

q

q2/h + gh2/2

)

, B =

(

R

−gh
(

∂xz + S f

)

)

.

We obtain therefore

∂tU + ∂xF(U) = ∂tU + F′(U)∂xU = B.

The system is by definition hyperbolic if the matrix F′(U) admits a basis of eigenvectors

with real eigenvalues, strictly hyperbolic if the eigenvalues are distinct. An easy computation

shows that the shallow water system is strictly hyperbolic provided h > 0, with eigenvalues

λ−(U) = u −
√

gh, λ+(U) = u +
√

gh. When h = 0, the system is no longer hyperbolic,

actually it is rather meaningless, since h = 0 means that there is no water, so that the velocity

u cannot be defined. This is exactly the problem of the vacuum in the Euler equations of fluid

mechanics, and leads to severe numerical problems, which cannot be avoided in our context

since we consider rain on dry soils.

At this point, we introduce an important quantity, the so-called Froude number

Fr =
u

√

gh
. (3)

This dimensionless number plays the same role as the Mach number in fluid mechanics, and

allows to classify the flows:

– Fr < 1 subcritical flow, as in a river (corresponding to subsonic flow in fluid mechanics);

– Fr > 1 supercritical flow, as in a torrent (subsonic flow);

– Fr = 1 critical flow (transonic flow).

The differences between these flows can be easily experimented by observing the surface

waves obtained by throwing a stone in a river.

§2. Numerical method

The shallow water system is discretized by a finite volume method on a fixed time-space

grid. A time step ∆t > 0 and a space step ∆x > 0 are fixed, we set xi = i∆x, and the interval
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]xi−∆x/2, xi+∆x/2[ will be referred to as the cell i. The finite volume scheme can be written

in a compact form as
d

dt
Ui +

1

∆t
(Fi+1/2 − Fi−1/2) = S i, (4)

where the vector Ui is an approximation of the conservative variables in the cell i, Fi+1/2 is

the numerical flux at the interface between cells i and i + 1, and S i a discretization of the

source term. Boundary conditions are treated by the method of characteristics (see [4]). The

scheme is completely determined once the numerical flux and the source term discretization

have been fixed. These choices are not independant one from the other.

Indeed it is well-known that source terms in hyperbolic systems of conservation laws

give rise to serious problems. The main difficulty is to find schemes that preserve equilibria

(steady-states solutions). In system (1), the main problems are due to

– topography: pools, lakes;

– friction terms: balance between kinematics and friction.

The rain source term can be treated by a second-order accurate Strang type splitting.

Schemes that preserve equilibria are known as well-balanced schemes. The strategy to

obtain such schemes consists in choosing first a consistent numerical flux for the system

without source terms. Next, a correction is given to take into account equilibria. The reader

can find all the details and a large bibliography in the book [3]. We merely give a sketch of the

method here, with emphasis on the problem of friction. The numerical flux is the so-called

HLL flux, and the order 2 is obtained in space by a MUSCL type reconstruction, in time

by Runge Kutta (Heun) (see [3] for details). Notice that dry/wet transitions imply a specific

reconstruction for the water height, not only for the velocity as usual (see [1]).

First we consider the equilibria for topography. They are given by

hu = Cst, u2/2 + g(h + z) = Cst.

However a complete resolution of these equations would lead to a far too time consuming

scheme. Thus, following [3, 1, 2], we limit ourselves to the equibria at rest:

u = 0, g(h + z) = Cst.

This procedure is known as the (second order) hydrostatic reconstruction, and it turns out to

give good results at an acceptable numerical cost. We refer the reader interested into details

to the preceding references.

Now we turn to friction terms, which can be treated by two different means. The first one

aims at building a well-balanced scheme for friction as well as topography, is the apparent

topography method, introduced by [3]. It consists in building an modified topography zapp

which takes into account the friction, as follows:

zapp = z − b, with ∂xb = S f .

We proceed then exactly as before, with this new topography (detailed computations for the

friction laws (2) can be found in [5]). This gives rise to a scheme which computes neatly

equilibrium states, but is not completely satisfactory on transition solutions, as we shall see

in the next section.
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Therefore we turned to a splitting method, and we chose the semi-implicit treatment pro-

posed in [4], not only because it preserves steady states at rest, but also for its stability. For

the Darcy-Weisbach friction law (2)-right, it writes

qn+1
i +

f |qn
i
|qn+1

i

8hn
i
hn+1

i

∆t = qn
i +
∆t

∆xi

(Fi+1/2G − Fi−1/2D),

where the right-hand side is nothing more than the discharge obtained at each step of the

second order in time Runge-Kutta reconstruction. Notice also the simplicity of the method,

which gives an explicit value for qn+1
i

. Now we illustrate these ideas on a set of analytical

solutions.

§3. Analytical solutions

Here we present briefly an adaptation to the 1-d case and our friction laws of an idea presented

in [8, 9] for pseudo two dimensional cases. At steady states, we have ∂th = ∂tu = ∂tq = 0,

thus the mass-conservation equation gives q = cst and we get the equation

∂xz =

(

q2

gh3
− 1

)

∂xh + S f (q, h) (5)

where S f (q, h) depends on the friction law chosen, for instance (2). For any given value of

the constants k and q, once we are given an explicit expression for h(x), then formula (5)

allows us to compute the topography corresponding to this steady state and this water height.

Other friction laws can of course be chosen.

As an example, we consider a channel of length 1000 m, with a specified water height

h(x) given by

h(x) =

(

4

g

)1/3














1 +
1

2
exp















−16

(

x

1000
−

1

2

)2




























.

The friction model is the Manning law, with roughness coefficient k = 0.033. The topography

is calculated iteratively thanks to (5). To make use of the shallow water system, we have now

to impose boundary conditions. Since the flow is subcritical both at inflow x = 0 and outflow

x = 1000, we have to impose the value of one quantity at inflow and one at outflow. We

choose to put a discharge of q = 2 m2/s at inflow and a water height corresponding to the

value of h(1000) downstream.

We first compare the results obtained by the apparent topography and the semi-implicit

scheme in preserving the equilibrium state. It turns out that both methods preserve correctly

the steady state along time, as is evidenced by fig. 1.

Since for our application we are particularly interested in non-stationary solutions, we

have considered an initially dry soil and the upstream discharge q = 2 m2/s, and computed the

unsteady solution up to equilibrium. Both methods (apparent topography and semi-implicit

treatment) converge towards the steady state, with slightly better results with the apparent

topography method. However, before the steady state is reached, we have a wet/dry transition

(fig. 2). We note that the apparent topography method is not adapted to this transition: we



6 Olivier Delestre and François James

Figure 1: Steady state solution, subcritical inflow and outflow: apparent topography +, semi-

implicit ×, analytical −.

Figure 2: Left: water front velocities at t = 200 s: apparent topography (+), semi-implicit

treatment (×). Right: water front height at t = 200s., semi-implicit
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have a peak in the velocity profile (fig. 2-left), which appears also in the water height profile.

With the semi-implicit treatment, the water height profile is very clean (fig. 2-right).

In figure 3, two more examples of computation of steady states are displayed, both with

sub- and supercritical inflows and outflows, and using the semi-implicit method. The nu-

merical scheme deals in particular with transition from one regime to the other, including

hydraulic jumps (fig. 3-right).
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Figure 3: Steady state solution, numerical (symbols) vs analytical (lines). Left: subcritical

inflow and supercritical outflow, right: supercritical inflow and subcritical outflow.

§4. Rainfall hydrograph test

Figure 4: Experimental configuration.

In this section we present another test case, based on experimental measurements realised

thanks to the ANR project METHODE in a flume at the rain simulation facility at INRA-
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Orléans. The flume is 4 m long with a slope of 5% (fig. 4). The simulation duration is 250 s.

The rainfall intensity R(x, t) is described by

R(x, t) =

{

50 mm/h if (x, t) ∈ [0, 3.95 m] × [5, 125 s],

0 otherwise.

For this test, dry/wet transitions are involved, since on the one hand there is no rain on the

last 5 cm of the flume, on the other hand rain falls on a dry soil. The measured output is an

hydrograph, that is a plot of the discharge versus time (see fig. 5).

Figure 5: Comparison between experimental measures (+) and numerical results (−).

The mathematical model for this ideal overland flow is the following. We consider a

uniform plane catchment whose overall length in the direction of flow is L. The surface

roughness and slope are assumed to be constant in space and time. The friction law is the

Darcy-Weisbach one. We consider a constant rainfall excess such that

R(x, t) =

{

I for 0 ≤ t ≤ td, 0 ≤ x ≤ L,

0 otherwise,

where I is the rainfall intensity and td is the duration of the rainfall excess. First we com-

pute some explicit “naive” analytical solution to the problem. We notice that three phases

can clearly be identified on the hydrograph: a first non-steady step at the beginning of the

rainfall event, then a steady-state and lastly another non-steady step when rain stops. The

first and the second step solutions can be computed explicitly, and the “naive” solution is

obtained by assuming a simple concatenation of the two parts (we refer to [5] for the detailed

computations).

At first we compare numerical results with the analytical “naive” solution. Once again,

with (fig. 6-a) we show that with the apparent topography method, we get a peak on the

discharge downstream that we do not get far from this transition. With the semi-implicit

method, we do not have this peak (fig. 6-b). This treatment gives good results close to the

“naive” exact solution. The hydrograph is well calculated (fig. 6-b), notice here the computed

hydrograph at the middle of the flume, a quantity hardly accessible by experiment.
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Figure 6: Computed rainfall hydrographs for Darcy-Weisbach’s law (DW). Left: apparent

topography method (AT). Right: semi-implicit scheme.

Next, we propose a comparison between experimental measurements and numerical sim-

ulation (fig. 5), obtained with the Darcy-Weisbach friction law. We obtain a reasonable agree-

ment, but it turns out that it is impossible to fit correctly the shape of both the increasing and

decreasing parts of the hydrograph. This indicates clearly that the model has to be modified,

for instance by choosing alternative friction laws, but this is beyond the scope of this paper.

§5. Roll waves

This section is devoted to some examples of the so-called “roll-waves”, a phenomenon which

results from the competition between topography and friction. Several steady regimes turn

out to be unstable, a slight perturbation generating a periodic travelling wave with shocks

(hydraulic jumps). In ref [10], Que and Xu gather a set of explicit computations in the simple

case of a constant steady states in inclined open channels with constant slope. They provide a

precise analysis for the linear stability, proving in particular the following criterion: the initial

constant state is linearly stable if and only if the Froude number (3) is smaller than 2.

We recover here these results, using the semi-implicit scheme described above, together

with hydrostatic reconstruction. The initial height of water is different for each case, but

the amplitude of the perturbation is the same. The “final states” showed here are computed

at time t = 200s., since it turns out that the solution is stabilized at this time. All cases are

perfectly computed, the convergence rates for different values of the Froude number are given

in figure 8.

Comparisons between the initial perturbation and the final state are displayed in fig. 7.

For Fr = 2, the initial state is supposed to be exactly stable, the smaller amplitude of the

final result is due to the numerical diffusion. Notice the nonlinear effects (fig. 7, top right).

For Fr < 2 (top left), the initial perturbation completely disappears, for Fr > 2 (bottom), a

roll-wave appears, whose amplitude depends on the initial state (see fig. 8).
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Figure 7: Perturbed initial and final (t = 200s.) states for Fr=1.5 (top left), Fr=2 (top right),

Fr=3.7 (bottom).
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Conclusion

This preliminary study of overland flow due to rainfall events clearly enlights several specific

difficulties. First, from the numerical point of view, it seems that the apparent topography

method, which was designed in order to catch steady states, is not adapted for wet/dry transi-

tions. The semi-implicit treatment seems to be better in the problems we consider and gives

good results compared to experimental data. Next, the model itself has to be improved, in

particular regarding the empirical friction laws we used, which were not developed in this hy-

drological context. Finally, more realistic situations require infiltration and two-dimensional

simulations, which are in progress and already validated on analytical solutions. This will be

again compared with experimental data, as for the flume test.
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