
HAL Id: hal-00426664
https://hal.science/hal-00426664v2

Submitted on 5 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Program Performance Debugging with the
Pandore II Environment

Cyrille Bareau, Yves Mahéo, Jean-Louis Pazat

To cite this version:
Cyrille Bareau, Yves Mahéo, Jean-Louis Pazat. Parallel Program Performance Debugging with the
Pandore II Environment. International Conference on Parallel Computing (ParCo’93), Sep 1993,
Grenoble, France. pp.241-248. �hal-00426664v2�

https://hal.science/hal-00426664v2
https://hal.archives-ouvertes.fr


Parallel Program Performance Debuggingwith the Pandore II EnvironmentC. Bareau, Y. Mah�eo, J.-L. Pazataa PAMPA Team, IRISA, 35042 RENNES Cedex, France (pandore@irisa.fr)In this paper, we present the overall design of Pandore II, an environment dedicatedto the experimentation of distribution of sequential programs for their execution on dis-tributed memory parallel architectures. The emphasis is then put on two performanceanalysis tools integrated in this environment.1. INTRODUCTIONProgramming distributed memory parallel computers (dmpcs for short) is a di�culttask because of the management of parallel processes. The intricateness between compu-tation and interprocess communication is often very tight, leading to very cumbersomeprograms. So the wish of most users is to be freed from all these \low level" details.In many cases they do not want to take into account the distributed aspects of theirprograms, which they also want to be machine independent.A solution to this problem is given by the use of sequential programming languagesextended with data distribution features like High Performance Fortran [7]. In this case,the compiler is in charge of generating communicating parallel processes from the sequen-tial code and the data distribution speci�cation. This solution has been validated [4],and implemented in the Pandore II environment [1]. Yet, e�ciency issues necessitateto develop speci�c performance analysis tools.2. THE PANDORE II ENVIRONMENTPandore II is an environment designed for parallel execution of imperative sequentialprograms on dmpcs. It comprises a compiler, libraries for di�erent dmpcs and executionanalysis tools including a pro�ler and a trace generator.2.1. The source languageThe source language for this environment is a subset of C augmented with features fordata decomposition purpose { similar characteristics appear in the recently de�ned HighPerformance Fortran language. No speci�c knowledge of the target machine is requiredof the user: only the speci�cation of data decomposition is left to his duty.A Pandore II program is a collection of distributed phases which may be seen likefunctions. The speci�cation of data distribution is expressed as attributes of the formalparameters. Arrays can be partitioned into rectangular blocks and their mapping onprocessors can be regular or cyclic. For example :dist myphase(float A[N][N] by block(N,1) map wrapped(0,1) mode INOUT)



speci�es that the array A is to be partitioned into columns mapped cyclically onto theprocessors. The INOUT mode speci�es that A is to be read at the beginning of the phaseand written back at the end. Figure 1 shows an example of a Pandore II program.
#dene N 128

#dene P 4

oat A[N][N], oat V[N];

dist myphase(oat A[N][N] by block(N/P,N) map regular(0,1) mode INOUT,

oat V[N] by block(N/P) map regular(0) mode INOUT)

{ int i,j;

for (i=0; i<N; i++) /* */

for (j=0; j<N; j++) /* Instrumentation zone 1 */

V[i] = f(V[i],A[i][j]); /* __________________ */

for (j=0; j<N; j++) /* */

for (i=1; i<N-1; i++) /* Instrumentation zone 2 */

A[i][j] = g(A[i+1][j], A[i-1][j]); /* */

}

main()

{ myphase(A,V); }Figure 1. Example of Pandore II source program2.2. The compilerThe Pandore II compiler generates parallel processes according to the data decom-position speci�ed by the programmer. The compilation scheme is based on the locality ofwrites, on the host/node and the SPMD model. The host process executes the code of themain() part of the program, whereas node processes execute the SPMD code producedby the compiler from the distributed phases. A node process is in charge of its local vari-ables: it updates their values and sends them to other processes when needed, accordingto the original sequential program. For example the assignment A[i] = B[i+ 1] + C[i] istranslated into:refresh(ftmp1,tmp2g, fB[i+1],C[i]g, owner(A[i]))exec(owner(A[i]), tmp1+tmp2)free(ftmp1,tmp2g)When executing the refresh macro, owners of B[i + 1] and C[i] send their values tothe owner of A[i]. This process receives the values into bu�ers tmp1 and tmp2. Theexec macro is a guarded command that insures that only the owner of A[i] executes thestatement A[i] =tmp1+tmp2. If the assigned variable is replicated on all the processors(as scalars for example), distant values are broadcasted through the network.This basic translation scheme is not very e�cient but optimization techniques basedon the same model exist, for example [2] carries out a static domain analysis of loops togenerate e�cient code.



2.3. The runtime libraryThe runtime permits the execution of object code on di�erent dmpcs. Its goal is toimplement memory and process management, communication of data elements betweenprocesses, distributed data management and e�cient index translation. It relies on ma-chine dependent libraries and is implemented using macro de�nitions.The machine model is a fully connected network of processing elements, communicatingthrough reliable FIFO channels. Sends are non-blocking, whereas receives are blocking.The design and the implementation of this library increase the system portability andfacilitates the instrumentation of the code.2.4. Need for performance debuggingThe performances of the code generated by the Pandore II system are dependent onthe appropriateness of the chosen data distribution to the algorithm but also on strategiesdirecting the compiler and the runtime implementation. It appears that evaluating thein
uence of these parameters is necessary in order to guide the system designers and toprovide the user with tools helping him to distribute his data. A dynamic evaluation { asopposed to a static estimation [3, 6] { o�ers the advantage of being applicable to everytype of program and yields precise results.Two techniques are used for performance measurement in the Pandore II environ-ment: tracing and pro�ling. These two techniques di�er in their aim and in their imple-mentation. Tracing permits the recording of events to which are assigned at least a typeand a timestamp. With this method, the parallel activity can be recorded in order torebuild the program behavior; we present here an extension of usual tracing for extractinginformation on all the potential behaviors of the program. The counterpart of this methodis pro�ling, whose aim is to gather enough statistics for execution analysis. A number ofcounters related to events are updated during program execution. In Pandore II, anenhancement of mere pro�ling is used: in addition to their occurrences, the durations ofevents may also be cumulated [9].3. TRACE GENERATION AND ANALYSIS3.1. Principle of the Pandore II trace analyzerThe principle of performance analysis by trace generation is to study the causal struc-ture of the program that takes into account the load balancing induced by the chosendata distribution and the compilation scheme. Indeed, from an intuitive point of view, \adistributed program is very parallel when, most of the time, most processors can actuallyperform an action, i.e. are not blocked waiting for a message". Now these blockings, dueto the asynchronism of the communications, happen when an event is causally dependenton an event on a di�erent processor; thus, a tool that makes these dependences betweenprocessors clearly visible gives an estimation of their importance in terms of e�ciency.Moreover, by focusing on events rather than on relations between them, one may get anestimation of the load balance of the program.Our tool permits to visualize whether an action creates a bottleneck or can be performedin parallel with many other actions on other processors. For this purpose, we build thelattice of all the possible behaviors of the program: it is a graph in which each vertexrepresents an instant of the execution and the outgoing edges are the actions that may be



performed at this instant by the unblocked processors. Hence each path from the initialvertex to the �nal one corresponds to one of the interleaving of the actions of the program.For instance, from the following program, where x[i] and y[j] are placed on processorP1 and z[i] on processor P2,Source code execution on P1: on P2:z[i]:=y[j]+1; send(y[j],P2); (a) receive(y[j],P1); (e)x[i]:=5; x[i]:=5; (b) z[i]:=y[j]+1; (f)y[j]:=x[i]+3*z[i]; receive(z[i],P2); (c) send(z[i],P1); (g)z[i]:=z[i]-3; y[j]:=x[i]+3*z[i]; (d) z[i]:=z[i]-3; (h)we get, giving a direction to each processor, the lattice of executions of �gure 2(a).
a

b
c

c

d

e

g

h

h

h

h

gb

b

f

f

b

e

d

b

P2P1

f

h d

b

h

h

b

b

f

d

(a) (b)Figure 2. Lattices of executionsThe main drawback of the lattice of executions is its size. Furthermore, events arenot all interesting: for instance when an assignment always follows a reception, one ofthese two events could be abstracted without loss of precision. The user may also wantto analyze only parts of its program. In that respect, we allow him to include his ownobservation points either in the Pandore II source program or in the generated code. Inthe previous example, if we choose to observe only assignments, we obtain the new latticeshown in �gure 2(b).3.2. ConstructionThe construction of the lattice of executions is based on results of order theory, usingthe fact that a distributed execution can be seen as a partial order. An algorithm [10] thatcomputes vector timestamps coding this order has been implemented in ECHIDNA [8], aprogramming environment for execution of Estelle speci�cations on dmpcs, networks ofworkstations, or by simulation on monoprocessors1. In order to use this tool, an Estelle-1Estelle is an ISO language for protocol speci�cation.



code generator has been added as new back-end to the Pandore II environment. Theexecution times of the Estelle code are of course very di�erent from those obtained with theC code, but the notion of intrusion is here irrelevant for we focus on the very structure ofthe algorithm, on the causal dependences between events that ensue only from the source,not from the low-level mechanisms.The lattice of executions is actually the lattice of the ideals of an execution seen as apartial order, therefore it can be created from only one execution. We use an algorithmdescribed in [5]; this algorithm is online: during an execution, the observed events gen-erate traces with timestamps coding the partial order, and the lattice is incrementallyconstructed from these traces.3.3. Applications

(a)
• • • • •

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

•
•
•
•
•
•
•
•
•••••

••
••
••
••
••
•••
•••
•••
•

•
•
•
•
•••••

••
••
••
••

••••• •
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

•
•
•
•
•
•
•
•
•••••

••
••
••
••
••
•••
•••
•••
•

•
•
•
•
•••••

••
••
••
••

••••• •
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

•
•
•
•
•
•
•
•
•••••

••
••
••
••
••
•••
•••
•••
•

•
•
•
•
•••••

••
••
••
••

••••• •
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

(b)
• • • • • • • • •

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•• •

•
•
•
•
•
•
•
•
• • • • • • •

•
•
•
•
•
•
•

•
•
•
•
•
•
•
••
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•• •••••••••

•••••••••

•••••••••

•••••••••
•
•
•
•
•

•
•
•
•
•
•
•
•
••••••••

(c)
• • • • • • • • • • • • • • • • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•••
••
••
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •••••••••••••••••

Figure 3. Matrix product lattices of executionsWith our tool, the user is given an intuitive look over the performance of his distributedprogram. The lattice of executions highlights the bottlenecks as well as the \fully parallel"parts of the program, therefore it is possible to have an overall estimation of the perfor-mance, and thus to compare several data distributions. Furthermore, when a bottleneckappears in the lattice, the user immediately knows which events are causing it, and sowhich part of the program should be reconsidered.As an example, we show in �gure 3 the lattices corresponding to a matrix product onfour processors with three di�erent distributions. The observed events are the assignments



of the program. It can be seen that in the distribution (c) there are many points withonly one or two outgoing edges: parallelism is here very weak, especially at the beginningand at the end of the execution when only one processor achieves assignments, the othersperforming only communication actions. On the contrary, in (a), most points correspondto instants when three or four processors are \ready to work", leading to a greater amountof potential parallelism. This approach may seem unrealistic if we consider lattices withmany processors; however we observe that such lattices present the same overall shape(for example the juxtaposition of the same pattern in distribution (a)), so the observationsmade with few processors are pertinent.4. THE PANDORE II PROFILER4.1. InstrumentationThe Pandore II pro�ler allows the user to collect a number of quantitative measureson his program's execution with minimal intervention. The use of pro�ling restrains theamount of storage needed; the number of counters to be updated is of the order of thenumber of variables declared in the source program. This pro�ler has been implemented ona 32-node iPSC/2 but is easily portable. Sensors are inserted in modi�ed versions of someruntime macros, thus the compiler generates a similar code whether an instrumentationis demanded or not. Lapses of time are measured with a software microsecond clock.As most information for updating counters is available at compile time, the level ofintrusion remains low (limited to a few percent execution overhead). Measurements areperformed on each node and counters are brought back to the host at the end of theexecution and then written down into a �le that can be exploited by appropriate tools.The host code is not instrumented due to the lack of precision of time measurement on atime-shared multi-user system.The links between the source and the evaluation results are established two di�erentways: �rst the user bounds fragments of the distributed phases he wants to be evaluatedby de�ning some instrumentation zones, typically loop nests. Moreover, output �gures areassociated to objects of the source program such as arrays, scalars, conditional statementsor loops.4.2. ResultsBesides execution times and the load balance, the main results produced by a pro�ledexecution are related to communications and synchronizations. They may be classi�edin two categories: measures speci�c to distributed phases (communication with host atthe beginning and at the end of each phase, phase triggering) and measures concerningassignments within instrumentation zones.These statistics give information about the e�ciency of the runtime implementationespecially for message passing. Moreover, with the last class of results, data distributionfor a given algorithm can be evaluated. An assignment of a distributed array element inwhich another distributed array reference appears in the right hand side may generate amessage from the owner of the right hand side to the owner of the left hand side. Theaim of the measurement is to globally build a directed graph where vertices are arraypartitions and arcs describe the tra�c between partitions. Arcs are valued by the numberof messages, the transferred volume or the waiting time on reception. For example, the



assignment A[3; 5] = B[4] will increase the value of the arc (B1! A2) if element A[3; 5]is on processor 2 and B[4] on processor 1.In a similar way, an assignment of a replicated variable in which a distributed arrayreference appears in the right hand side will generate a broadcast message from the ownerof the array element. For the entire execution, broadcasting is described (number ofmessages, transferred volume, waiting time on reception) for each pair (var,part), wherethe partition part represents the source and var the assigned replicated variable. Forexample, the assignment x = A[3; 5] will increase the value of the counters related to thepair (x;A1) if A[3; 5] is located on processor 1.The produced results may be analyzed as such or treated by a speci�c tool that cangive partial and abstracted views (e.g. by selecting or grouping processors or variables).
V1V0 V3V2

A0 A1 A2 A3

A0 A1 A2 A3

A0 A2 A1 A3

V1V0 V3V2

(a) Row-wise

(b) Column-wise

(c) Block-wise

126 messages / arc

1024 messages / arc

2048 messages / arc (Ai, Vj)
64 messages / arc (Ai, Aj)

A0 A1 A2 A3

�

�� �

V1V0 V3V2

A0 A1

� � ��

��

��

A0 A2 A1 A3

V1 V3

�

�

�

�

�� ��

Number of messages Waiting time (1 u = 100 ms)

Figure 4. Communication graphs for 3 distributionsFor illustrating the use of the pro�ler, let us consider the Pandore II program in�gure 1 executed on 4 processors. After examining the �rst loop nest, vector V is decom-posed into blocks of N=P elements and matrixA into groups of N=P rows (distribution a).Another choice would be to �rst look at the second loop nest. This would lead to thedecomposition of A into groups of N=P columns (distribution b). One could also think toan intermediate solution: decomposition of A into (2�N=P; 2�N=P ) blocks (distribution c).Figure 4 gives the communication graphs for the three distributions. The row-wise distri-bution seems preferable. This is con�rmed by the waiting time graphs which show strongsynchronization for the column-wise and block-wise distributions.



5. CONCLUSIONThe approach of distribution of sequential programs by data distribution is now recog-nized. We have presented Pandore II, a complete environment for experimenting thismethod. As e�ciency is a key issue, there is a great need for performance evaluation.However, because of the speci�city of the codes generated by systems like Pandore II,usual performance debugging tools are not well adapted. Therefore, we have designednew tools and integrated them in our environment. They are based on two complemen-tary techniques of execution analysis (tracing and pro�ling) which permit qualitative andquantitative evaluation. They are aimed to help the user to distribute his program's dataand to give information to the system designers. They have already been employed toimprove the compiler and the runtime; nevertheless, experimentation must be pursued inorder to tune these tools as well as the compilation and runtime techniques involved inthe environment.REFERENCES1. F. Andr�e, O. Ch�eron, and J-L. Pazat. Compiling Sequential Programs for Dis-tributed Memory Parallel Computers with Pandore II. In Jack J. Dongarra andBernard Tourancheau, editors, Environments and Tools for Parallel Scienti�c Com-puting, Elsevier Science Publishers B.V., 1993.2. F. Andr�e, M. Le Fur, and J-L. Pazat. Static Data Domain Analysis for CompilingNested Commutative Loops. Technical Report to appear, IRISA, 1993.3. V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A Static Performance Estima-tor to Guide Data Partitioning Decisions. In The Third ACM SIGPLAN Symposiumon Principles and Practice of Parallel Programming, June 1991.4. C. Bareau, B. Caillaud, C. Jard, and R. Thoraval. Correctness of automated distri-bution of sequential programs. In Proc. PARLE'93, LNCS 694, Springer Verlag, June1993.5. C. Diehl, C. Jard, and J.X. Rampon. Reachability analysis on distributed executions.In Proc. TAPSOFT'93, LNCS 668, Springer{Verlag, April 1993.6. T. Fahringer and H.P. Zima. A Static Parameter based Performance Prediction Toolfor Parallel Programs. Technical Report APCP/TR 93-1, Austrian Center for ParallelComputation, University of Vienna, January 1993.7. High Performance Fortran Forum. High Performance Fortran Language Speci�cation.Technical Report Version 1.0, Rice University, May 1993.8. C. Jard and J-M. J�ez�equel. ECHIDNA, an Estelle-compiler to prototype protocols ondistributed computers. Concurrency Practice and Experience, 4(5), August 1992.9. C. Kesselman. Tools and Techniques for Performance Measurment and PerformanceImprovement in Parallel Programs. PhD thesis, UCLA, July 1991.10. F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quin-ton, Raynal, and Robert, editors, Proc. Int. Workshop on Parallel and DistributedAlgorithms, Bonas, France, Oct. 1988, North Holland, 1989.


