
HAL Id: hal-00426664
https://hal.science/hal-00426664v1

Submitted on 27 Oct 2009 (v1), last revised 5 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Program Performance Debugging with the
Pandore II Environment

Cyrille Bareau, Yves Mahéo, Jean-Louis Pazat

To cite this version:
Cyrille Bareau, Yves Mahéo, Jean-Louis Pazat. Parallel Program Performance Debugging with the
Pandore II Environment. International Conference on Parallel Computing (ParCo’93), Sep 1993,
Grenoble, France. pp.241-248. �hal-00426664v1�

https://hal.science/hal-00426664v1
https://hal.archives-ouvertes.fr


Parallel Program Performance Debugging

with the Pandore II Environment

C. Bareau, Y. Mah�eo, J.-L. Pazata

a PAMPA Team, IRISA, 35042 RENNES Cedex, France (pandore@irisa.fr)

In this paper, we present the overall design of Pandore II, an environment dedicated

to the experimentation of distribution of sequential programs for their execution on dis-

tributed memory parallel architectures. The emphasis is then put on two performance

analysis tools integrated in this environment.

1. INTRODUCTION

Programming distributed memory parallel computers (dmpcs for short) is a di�cult

task because of the management of parallel processes. The intricateness between compu-

tation and interprocess communication is often very tight, leading to very cumbersome

programs. So the wish of most users is to be freed from all these \low level" details.

In many cases they do not want to take into account the distributed aspects of their

programs, which they also want to be machine independent.

A solution to this problem is given by the use of sequential programming languages

extended with data distribution features like High Performance Fortran [7]. In this case,

the compiler is in charge of generating communicating parallel processes from the sequen-

tial code and the data distribution speci�cation. This solution has been validated [4],

and implemented in the Pandore II environment [1]. Yet, e�ciency issues necessitate

to develop speci�c performance analysis tools.

2. THE PANDORE II ENVIRONMENT

Pandore II is an environment designed for parallel execution of imperative sequential

programs on dmpcs. It comprises a compiler, libraries for di�erent dmpcs and execution

analysis tools including a pro�ler and a trace generator.

2.1. The source language

The source language for this environment is a subset of C augmented with features for

data decomposition purpose { similar characteristics appear in the recently de�ned High

Performance Fortran language. No speci�c knowledge of the target machine is required

of the user: only the speci�cation of data decomposition is left to his duty.

A Pandore II program is a collection of distributed phases which may be seen like

functions. The speci�cation of data distribution is expressed as attributes of the formal

parameters. Arrays can be partitioned into rectangular blocks and their mapping on

processors can be regular or cyclic. For example :

dist myphase(float A[N][N] by block(N,1) map wrapped(0,1) mode INOUT)



Figure 1. Example of Pandore II source program

2.2. The compiler

The Pandore II compiler generates parallel processes according to the data decom-

position speci�ed by the programmer. The compilation scheme is based on the locality of

writes, on the host/node and the SPMD model. The host process executes the code of the

main() part of the program, whereas node processes execute the SPMD code produced

by the compiler from the distributed phases. A node process is in charge of its local vari-

ables: it updates their values and sends them to other processes when needed, according

to the original sequential program. For example the assignment A[i] = B[i+ 1] + C[i] is

translated into:

refresh(ftmp1,tmp2g, fB[i+1],C[i]g, owner(A[i]))

exec(owner(A[i]), tmp1+tmp2)

free(ftmp1,tmp2g)

When executing the refresh macro, owners of B[i + 1] and C[i] send their values to

the owner of A[i]. This process receives the values into bu�ers tmp1 and tmp2. The

exec macro is a guarded command that insures that only the owner of A[i] executes the

statement A[i] =tmp1+tmp2. If the assigned variable is replicated on all the processors

(as scalars for example), distant values are broadcasted through the network.

This basic translation scheme is not very e�cient but optimization techniques based

on the same model exist, for example [2] carries out a static domain analysis of loops to

generate e�cient code.



2.3. The runtime library

The runtime permits the execution of object code on di�erent dmpcs. Its goal is to

implement memory and process management, communication of data elements between

processes, distributed data management and e�cient index translation. It relies on ma-

chine dependent libraries and is implemented using macro de�nitions.

The machine model is a fully connected network of processing elements, communicating

through reliable FIFO channels. Sends are non-blocking, whereas receives are blocking.

The design and the implementation of this library increase the system portability and

facilitates the instrumentation of the code.

2.4. Need for performance debugging

The performances of the code generated by the Pandore II system are dependent on

the appropriateness of the chosen data distribution to the algorithm but also on strategies

directing the compiler and the runtime implementation. It appears that evaluating the

inuence of these parameters is necessary in order to guide the system designers and to

provide the user with tools helping him to distribute his data. A dynamic evaluation { as

opposed to a static estimation [3, 6] { o�ers the advantage of being applicable to every

type of program and yields precise results.

Two techniques are used for performance measurement in the Pandore II environ-

ment: tracing and pro�ling. These two techniques di�er in their aim and in their imple-

mentation. Tracing permits the recording of events to which are assigned at least a type

and a timestamp. With this method, the parallel activity can be recorded in order to

rebuild the program behavior; we present here an extension of usual tracing for extracting

information on all the potential behaviors of the program. The counterpart of this method

is pro�ling, whose aim is to gather enough statistics for execution analysis. A number of

counters related to events are updated during program execution. In Pandore II, an

enhancement of mere pro�ling is used: in addition to their occurrences, the durations of

events may also be cumulated [9].

3. TRACE GENERATION AND ANALYSIS

3.1. Principle of the Pandore II trace analyzer

The principle of performance analysis by trace generation is to study the causal struc-

ture of the program that takes into account the load balancing induced by the chosen

data distribution and the compilation scheme. Indeed, from an intuitive point of view, \a

distributed program is very parallel when, most of the time, most processors can actually

perform an action, i.e. are not blocked waiting for a message". Now these blockings, due

to the asynchronism of the communications, happen when an event is causally dependent

on an event on a di�erent processor; thus, a tool that makes these dependences between

processors clearly visible gives an estimation of their importance in terms of e�ciency.

Moreover, by focusing on events rather than on relations between them, one may get an

estimation of the load balance of the program.

Our tool permits to visualize whether an action creates a bottleneck or can be performed

in parallel with many other actions on other processors. For this purpose, we build the

lattice of all the possible behaviors of the program: it is a graph in which each vertex

represents an instant of the execution and the outgoing edges are the actions that may be



performed at this instant by the unblocked processors. Hence each path from the initial

vertex to the �nal one corresponds to one of the interleaving of the actions of the program.

For instance, from the following program, where x[i] and y[j] are placed on processor

P1 and z[i] on processor P2,

Source code execution on P1: on P2:

z[i]:=y[j]+1; send(y[j],P2); (a) receive(y[j],P1); (e)

x[i]:=5; x[i]:=5; (b) z[i]:=y[j]+1; (f)

y[j]:=x[i]+3*z[i]; receive(z[i],P2); (c) send(z[i],P1); (g)

z[i]:=z[i]-3; y[j]:=x[i]+3*z[i]; (d) z[i]:=z[i]-3; (h)

we get, giving a direction to each processor, the lattice of executions of �gure 2(a).

a

b
c

c

d

e

g

h

h

h

h

gb

b

f

f

b

e

d

b

P2P1

f

h d

b

h

h

b

b

f

d

(a) (b)

Figure 2. Lattices of executions

The main drawback of the lattice of executions is its size. Furthermore, events are

not all interesting: for instance when an assignment always follows a reception, one of

these two events could be abstracted without loss of precision. The user may also want

to analyze only parts of its program. In that respect, we allow him to include his own

observation points either in the Pandore II source program or in the generated code. In

the previous example, if we choose to observe only assignments, we obtain the new lattice

shown in �gure 2(b).

3.2. Construction

The construction of the lattice of executions is based on results of order theory, using

the fact that a distributed execution can be seen as a partial order. An algorithm [10] that

computes vector timestamps coding this order has been implemented in ECHIDNA [8], a

programming environment for execution of Estelle speci�cations on dmpcs, networks of

workstations, or by simulation on monoprocessors1. In order to use this tool, an Estelle-

1Estelle is an ISO language for protocol speci�cation.



code generator has been added as new back-end to the Pandore II environment. The

execution times of the Estelle code are of course very di�erent from those obtained with the

C code, but the notion of intrusion is here irrelevant for we focus on the very structure of

the algorithm, on the causal dependences between events that ensue only from the source,

not from the low-level mechanisms.

The lattice of executions is actually the lattice of the ideals of an execution seen as a

partial order, therefore it can be created from only one execution. We use an algorithm

described in [5]; this algorithm is online: during an execution, the observed events gen-

erate traces with timestamps coding the partial order, and the lattice is incrementally

constructed from these traces.

3.3. Applications

(a)
• • • • •

•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

•
•
•
•
•
•
•
•
•••••

••
••
••
••
••
•••
•••
•••
•

•
•
•
•
•••••

••
••
••
••

••••• •
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

•
•
•
•
•
•
•
•
•••••

••
••
••
••
••
•••
•••
•••
•

•
•
•
•
•••••

••
••
••
••

••••• •
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

•
•
•
•
•
•
•
•
•••••

••
••
••
••
••
•••
•••
•••
•

•
•
•
•
•••••

••
••
••
••

••••• •
•
•
•
•

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

••

•
•
•
•
•••

(b)
• • • • • • • • •

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•• •

•
•
•
•
•
•
•
•
• • • • • • •

•
•
•
•
•
•
•

•
•
•
•
•
•
•
••
•

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•• •••••••••

•••••••••

•••••••••

•••••••••
•
•
•
•
•

•
•
•
•
•
•
•
•
••••••••

(c)
• • • • • • • • • • • • • • • • •

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•••
••
••
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •••••••••••••••••

Figure 3. Matrix product lattices of executions

With our tool, the user is given an intuitive look over the performance of his distributed

program. The lattice of executions highlights the bottlenecks as well as the \fully parallel"

parts of the program, therefore it is possible to have an overall estimation of the perfor-

mance, and thus to compare several data distributions. Furthermore, when a bottleneck

appears in the lattice, the user immediately knows which events are causing it, and so

which part of the program should be reconsidered.

As an example, we show in �gure 3 the lattices corresponding to a matrix product on

four processors with three di�erent distributions. The observed events are the assignments



of the program. It can be seen that in the distribution (c) there are many points with

only one or two outgoing edges: parallelism is here very weak, especially at the beginning

and at the end of the execution when only one processor achieves assignments, the others

performing only communication actions. On the contrary, in (a), most points correspond

to instants when three or four processors are \ready to work", leading to a greater amount

of potential parallelism. This approach may seem unrealistic if we consider lattices with

many processors; however we observe that such lattices present the same overall shape

(for example the juxtaposition of the same pattern in distribution (a)), so the observations

made with few processors are pertinent.

4. THE PANDORE II PROFILER

4.1. Instrumentation

The Pandore II pro�ler allows the user to collect a number of quantitative measures

on his program's execution with minimal intervention. The use of pro�ling restrains the

amount of storage needed; the number of counters to be updated is of the order of the

number of variables declared in the source program. This pro�ler has been implemented on

a 32-node iPSC/2 but is easily portable. Sensors are inserted in modi�ed versions of some

runtime macros, thus the compiler generates a similar code whether an instrumentation

is demanded or not. Lapses of time are measured with a software microsecond clock.

As most information for updating counters is available at compile time, the level of

intrusion remains low (limited to a few percent execution overhead). Measurements are

performed on each node and counters are brought back to the host at the end of the

execution and then written down into a �le that can be exploited by appropriate tools.

The host code is not instrumented due to the lack of precision of time measurement on a

time-shared multi-user system.

The links between the source and the evaluation results are established two di�erent

ways: �rst the user bounds fragments of the distributed phases he wants to be evaluated

by de�ning some instrumentation zones, typically loop nests. Moreover, output �gures are

associated to objects of the source program such as arrays, scalars, conditional statements

or loops.

4.2. Results

Besides execution times and the load balance, the main results produced by a pro�led

execution are related to communications and synchronizations. They may be classi�ed

in two categories: measures speci�c to distributed phases (communication with host at

the beginning and at the end of each phase, phase triggering) and measures concerning

assignments within instrumentation zones.

These statistics give information about the e�ciency of the runtime implementation

especially for message passing. Moreover, with the last class of results, data distribution

for a given algorithm can be evaluated. An assignment of a distributed array element in

which another distributed array reference appears in the right hand side may generate a

message from the owner of the right hand side to the owner of the left hand side. The

aim of the measurement is to globally build a directed graph where vertices are array

partitions and arcs describe the tra�c between partitions. Arcs are valued by the number

of messages, the transferred volume or the waiting time on reception. For example, the



Figure 4. Communication graphs for 3 distributions

For illustrating the use of the pro�ler, let us consider the Pandore II program in

�gure 1 executed on 4 processors. After examining the �rst loop nest, vector V is decom-

posed into blocks of N=P elements and matrixA into groups of N=P rows (distribution a).

Another choice would be to �rst look at the second loop nest. This would lead to the

decomposition of A into groups of N=P columns (distribution b). One could also think to

an intermediate solution: decomposition of A into (2�N=P; 2�N=P ) blocks (distribution c).
Figure 4 gives the communication graphs for the three distributions. The row-wise distri-

bution seems preferable. This is con�rmed by the waiting time graphs which show strong

synchronization for the column-wise and block-wise distributions.



5. CONCLUSION

The approach of distribution of sequential programs by data distribution is now recog-

nized. We have presented Pandore II, a complete environment for experimenting this

method. As e�ciency is a key issue, there is a great need for performance evaluation.

However, because of the speci�city of the codes generated by systems like Pandore II,

usual performance debugging tools are not well adapted. Therefore, we have designed

new tools and integrated them in our environment. They are based on two complemen-

tary techniques of execution analysis (tracing and pro�ling) which permit qualitative and

quantitative evaluation. They are aimed to help the user to distribute his program's data

and to give information to the system designers. They have already been employed to

improve the compiler and the runtime; nevertheless, experimentation must be pursued in

order to tune these tools as well as the compilation and runtime techniques involved in

the environment.

REFERENCES

1. F. Andr�e, O. Ch�eron, and J-L. Pazat. Compiling Sequential Programs for Dis-

tributed Memory Parallel Computers with Pandore II. In Jack J. Dongarra and

Bernard Tourancheau, editors, Environments and Tools for Parallel Scienti�c Com-

puting, Elsevier Science Publishers B.V., 1993.

2. F. Andr�e, M. Le Fur, and J-L. Pazat. Static Data Domain Analysis for Compiling

Nested Commutative Loops. Technical Report to appear, IRISA, 1993.

3. V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A Static Performance Estima-

tor to Guide Data Partitioning Decisions. In The Third ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, June 1991.

4. C. Bareau, B. Caillaud, C. Jard, and R. Thoraval. Correctness of automated distri-

bution of sequential programs. In Proc. PARLE'93, LNCS 694, Springer Verlag, June

1993.

5. C. Diehl, C. Jard, and J.X. Rampon. Reachability analysis on distributed executions.

In Proc. TAPSOFT'93, LNCS 668, Springer{Verlag, April 1993.

6. T. Fahringer and H.P. Zima. A Static Parameter based Performance Prediction Tool

for Parallel Programs. Technical Report APCP/TR 93-1, Austrian Center for Parallel

Computation, University of Vienna, January 1993.

7. High Performance Fortran Forum. High Performance Fortran Language Speci�cation.

Technical Report Version 1.0, Rice University, May 1993.

8. C. Jard and J-M. J�ez�equel. ECHIDNA, an Estelle-compiler to prototype protocols on

distributed computers. Concurrency Practice and Experience, 4(5), August 1992.

9. C. Kesselman. Tools and Techniques for Performance Measurment and Performance

Improvement in Parallel Programs. PhD thesis, UCLA, July 1991.

10. F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quin-

ton, Raynal, and Robert, editors, Proc. Int. Workshop on Parallel and Distributed

Algorithms, Bonas, France, Oct. 1988, North Holland, 1989.


