
HAL Id: hal-00426656
https://hal.science/hal-00426656v1

Submitted on 27 Oct 2009 (v1), last revised 5 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallelization of a wave propagation application using a
data parallel compiler

Françoise André, Marc Le Fur, Yves Mahéo, Jean-Louis Pazat

To cite this version:
Françoise André, Marc Le Fur, Yves Mahéo, Jean-Louis Pazat. Parallelization of a wave propagation
application using a data parallel compiler. 9th International Parallel Processing Symposium, Apr
1995, Santa Barbara, United States. pp.760-765. �hal-00426656v1�

https://hal.science/hal-00426656v1
https://hal.archives-ouvertes.fr

Parallelization of a Wave Propagation Application using a Data

Parallel Compiler

Fran�coise Andr�e, Marc Le Fur, Yves Mah�eo, Jean-Louis Pazat

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE

E-mail: pazat@irisa.fr

Abstract| This paper presents the parallelization

process of a Wave Propagation application using the

Pandore environment. Tools are brie
y described,

the stress is put on the description of the paralleliza-

tion by data distribution and performance results are

shown.

I. Introduction

The di�culty to program massively parallel architec-

tures with distributed memory is a severe impediment

to the use of these parallel machines. In the past few

years, the data parallel model has been used to de�ne

new languages such as HPF [7], tools and compilers:

the programmer is provided a familiar uniform logic

address space and a sequential
ow of control. He

controls the distributed aspect of the computation by

specifying the data distribution on the local memories

of the processors. The compiler generates code ac-

cording to the spmd model and the links between the

code execution and the data distribution is enforced

by the owner-writes rule.

To achieve good performance when following this

approach, several sophisticated compilation tech-

niques and run-time systems have been studied and

integrated into environments [10, 4, 1, 5, 12]. Among

these environments, the Pandore environment allows

the compilation of both HPF and Pandore programs

into spmd machine independent code [2]. A series of

experiments on classical kernels have already led to

satisfactory results. The next step is the validation of

the compiler and the run-time system on real appli-

cations; the Wave Propagation application presented

here is one of them.

The paper is organized as follows: we brie
y present

the Pandore environment and give an overview of the

C-Pandore language. The compilation schemes are

then expounded and the distribution of the well-known

Jacobi kernel is detailed. Finally, the di�erent steps

of the parallelization of the Wave Propagation appli-

cation are described and the results of this experiment

are discussed.

II. The Pandore Environment

The Pandore environment has been designed to fa-

cilitate the programming of data distributed applica-

tions for distributed memory computers or clusters of

workstations. Figure 1 shows the components of the

Pandore environment.

The source program can be written in HPF or in a

dialect of C (C-Pandore) augmented with data dis-

tribution features. In the �rst case, a source to source

translator is used to translate a subset of HPF into

C-Pandore. This translator [13] is built upon a For-

tran 90/HPF Front-end and a C-code generator writ-

ten at GMD-First with the Cocktail toolbox [8].

From the source program, the Pandore compiler

automatically generates a machine independent spmd

code according to the owner-writes rule. Optimiza-

tions are included in the compiler that is described

in section IV. For performance measurements we also

provide a pro�ler and a post-mortem analysis tool[3].

The Pandore run-time is in charge of the man-

agement of distributed arrays [15]; it uses a generic

message passing library called POM (Parallel Observ-

able Machine [9]). This library o�ers limited but e�-

cient services that makes it possible to run the same

program on a wide range of distributed memory com-

puters such as the iPSC or the Paragon; clusters of

workstations are also supported. This library is also

used by other compilers and tools developed in our

team.

III. The Pandore Language

The Pandore language is based on a sequential im-

perative language using a subset of C (excluding point-

ers) as a basis. We have added a small set of simple

and well-de�ned data distribution features in order to

describe frequently used decompositions. Alignments

can be easily included and we plan to handle them in

a near future.

A Pandore program is a sequential program

which calls distributed phases. The sequential

part is in charge of all I/O operations and is

Figure 1: The Pandore Environment

executed on the host processor (if exists) or on

one node of the distributed computer. Each dis-

tributed phase is spread over the processors of

the target machine and is executed in parallel ac-

cording to the owner-writes rule. The speci�ca-

tion of a distributed phase is described similarly

to the de�nition of a procedure by the statement

dist d-phase (distributed parameter list) fd-blockg

The distributed parameter list is used for specifying

the partitioning and the mapping of the data used in

the distributed phase. The array is the only data type

that may be partitioned. The means to decompose an

array is to split it into blocks. The number of blocks is

independent of the number of processors: both block

and cyclic(k) HPF distribution features [7] are han-

dled.

The speci�cation of the partitioning for a

d-dimensional array is given by the construct

block (t1; :::; td) where ti indicates the size of

the blocks in the ith dimension. For example:

B[N][N] by block (N;N=P) indicates that the ar-

ray B of N �N elements is decomposed into P blocks

of size N � N=P : the array is decomposed into P

blocks of contiguous columns. The following parti-

tioning A[N][N] by block (1; N) indicates that the

array A of N �N elements is decomposed into blocks

of size 1� N : the array is decomposed into N rows.

Then, the mapping of the blocks onto the archi-

tecture will be achieved by the compiler in a regular

or cyclic way according to the mapping parameters

(regular or wrapped). In Pandore, we consider

only one dimensional processor arrays whose size is

not speci�ed in the source code but used as a param-

eter by the compiler. As we allow the mapping of

multidimensional decompositions, it is needed to indi-

cate the order for the mapping of blocks: (1,0) states

for column �rst, (0,1) states for row �rst. For exam-

ple
oat A[N][N] by block(1;N)map wrapped(1; 0)

maps the N rows of A cyclically onto the pro-

cessors; it is equivalent to the HPF distribu-

tion CYCLIC(1,*). The distribution speci�cation

oat B[N][N] by block(N;N=P) map wrapped(1; 0)

maps the blocks of N=P columns onto the processors.

If there are P processors, the mapping is similar to a

HPF block decomposition BLOCK(N=P , *).

The last speci�cation given in the parameter list

concerns the transfer mode for values between the

caller and the distributed phase: allowed modes are

IN, OUT and INOUT. This speci�cation is similar

to the Fortran90 intent attribute. Figure 2 shows an

example of a distributed phase.

#define N 512

#define P 4

dist jacobi(double B[N][N] by block(N,N/P)

map regular(0,1) mode INOUT)

double A[N][N] by block(N,N/P) map regular(0,1);

{

int i,j;

for (j=1; j<N-1; j++)

for (i=1; i<N-1; i++)

A[i][j] = 0.5 * B[i][j] + 0.125 * (B[i-1][j]

+ B[i+1][j] + B[i][j-1] + B[i][j+1]);

for (j=1; j<N-1; j++)

for (i=1; i<N-1; i++)

B[i][j] = A[i][j];

}

SUBROUTINE JACOBI (B)

INTEGER, PARAMETER :: N = 512

REAL(KIND=8), DIMENSION(0:N-1,0:N-1) :: B

REAL(KIND=8), DIMENSION(0:N-1,0:N-1) :: A

!HPF$ PROCESSORS PROCS(4)

!HPF$ DISTRIBUTE (BLOCK, *) ONTO PROCS :: A, B

INTEGER I, J

DO J=1, N-2

DO I=1, N-2

A(I,J) = 0.5 * B(I,J) + 0.125 * (B(I-1,J)

+ B(I+1,J) + B(I,J-1) + B(I,J+1))

END DO

END DO

B(1:N-2, 1:N-2) = A(1:N-2, 1:N-2)

END SUBROUTINE JACOBI

Figure 2: Kernel of the Jacobi algorithm in C-

Pandore and HPF

Some other constructs have been added to the C

language, with no direct relation with distribution, to

improve the ease of programming. Ordinary C func-

tions are not allowed in the Pandore language but in

addition to distributed phases, two features are o�ered

to the programmer: macros and closed functions.

Macro declarations are similar to procedure de�ni-

tions but parameters are passed \by name" and calls

to a macro are in-lined by the compiler. Closed func-

tions are similar to C functions but cannot access

global variables nor modify distributed arrays. Close

functions are similar to HPF PURE functions.

IV. The Pandore Compiler

The compiler produce spmd code from the user-

supplied data decomposition according to the owner-

writes rule. Two compilation schemes are embedded

in the compiler. For reductions and parallel loops with

one statement, a�ne bounds and array references, the

compiler applies an optimized scheme [14] performing

loop bounds reduction and message vectorization.

For statements that cannot be optimized, the com-

piler relies on the well-known runtime resolution tech-

nique. Because distributed array management is a

critical point to achieve good performances, an orig-

inal distributed array management based on paging

[15] has been developed to support both schemes.

A. Compilation of Parallel Loops

For reductions and parallel loops, the compiler gener-

ates a code that comprises two parts: a communica-

tion part and then a computation part. Only one com-

putation code is generated so, no di�erence is made be-

tween local computations (that is those involving only

local data) and non-local computations (that need to

fetch data owned by other processors). Avoiding this

separation does not a�ect the performance of the gen-

erated code since our distributed array management

provides a uniform and e�cient access method for lo-

cal data and copies of distant data. Besides, perform-

ing this separation does not seem realistic in the gen-

eral case, with regard to compilation time and code

fragmentation.

Actually, the compiler generates a series of commu-

nication codes. One communication code is produced

for each right hand side reference to a distributed array

and is decomposed in its turn into a send part and a re-

ceive part. Loop bounds and array subscripts but also

the distribution of the arrays involved in the compu-

tation are analyzed by the compiler. For a given right

hand side reference to a distributed array, the associ-

ated set of data that must be exchanged between pro-

cessors is characterized by a polyhedron whose scan-

ning [11, 6] provides the spmd send code and receive

code for the reference. Then, the way arrays are rep-

resented in the local memories is taken into account

by the compiler so that the data to be moved from

one processor to another are scanned in the appropri-

ate direction. This permits the transfer of contigu-

ous zones (both on the sender and the receiver) and

so eliminates the need of coding/decoding and copy-

ing between message bu�ers and local memories. The

generation of the spmd computation code rely on the

same technique: according to the analysis of the left

hand side reference, the compiler constructs a polyhe-

dron which de�nes the set of iterations that must be

performed on each processor.

B. Management of Distributed Arrays

The distributed array management that completes the

two compilation schemes balances the memory re-

quirements and the speed of accesses to local data. It

provides a uniform representation for local data and

copies of distant data. Each block of a distributed

array is decomposed into pages thus an array is repre-

sented on a processor by a table of pages that contains

both local pages (pages of the blocks owned by the pro-

cessor) and distant pages (copies of pages owned by

other processors). For a given distributed array, the

direction and the size of its pages are determined by

the compiler so that the global to local index trans-

formation involves only low level operations (shifts,

masks) and the size of the table of pages is minimized.

V. The Jacobi Kernel

The Jacobi Relaxation Iterative Method can be used

to approximate the solution of a partial di�erential

equation discretized on a grid. At each time step, the

current approximation is updated by computing for

each grid point the weighted average of the values of

the neighboring points. We focus here on the kernel of

this algorithm that consists of two loop nests working

on two 2-D arrays A and B. The �rst loop nest one

computes in array A the current approximation from

the values stored in array B that represents the last

approximation. The second one transfers elements of

A into B.

The distributed phase corresponding to the ker-

nel is shown in �gure 2. Arrays A and B are both

distributed into P groups of columns (blocks of size

N � N=P), one group on each of the P processors.

The mapping is not signi�cant here as there is only

one block per processor. With such a distribution, the

workload is evenly distributed among the processors

and the second loop nest is executed without any com-

munication because arrays A and B are fully aligned.

Communication is needed in the �rst loop nest. In-

deed, computing elements of the boundaries of each

block necessitates accessing elements situated on the

neighboring processors. The symmetry of the accesses

would permit a row-wise distribution, leading to the

same cost of communication. However, as in both loop

nests elements are accessed column-wise (loop j is the

outer loop), locality is best exploited with a column-

wise distribution1.

As they conform with the restrictions of the appli-

cation of the polyhedron-based compilation scheme,

these two loop nests are fully optimized by the Pan-

dore compiler. Although its scope is wider, the joint

use of the optimized scheme and the run-time system

prove to be as e�cient as more classic compilation

methods such as the overlap [16]. Indeed, the following

optimizations automatically apply in this case: Itera-

tion domains are restricted, messages are fully vector-

ized, direct unbu�ered communications are used and

index conversions are reduced to the identity function

(the page number is the column number and the page

o�set is the row number).

The performances of the produced code for various

input sizes2 are summarized in table 1. They are al-

most optimal for small numbers of processors. For

a given array size, the number of operations needing

only local data performed by a processor is inversely

proportional to the number of processors. The bound-

aries are of �xed size, so performances decrease with

large numbers of processors. However, one can notice

that performances remain at a good level even with

small data sizes: for N = 128, the e�ciency |i.e.

the ratio tp

ts�p
where tp is the time for the parallel

Pandore program and ts the time for the sequential

C program| reaches 67% for 16 processors although

1=4 of the columns are exchanged in the �rst loop nest.

N 128 256 512

p time (s) e�. time (s) e�. time (s) e�.

2 0.242 86% 0.970 87% | |

4 0.128 81% 0.495 86% 1.961 86%

8 0.068 76% 0.253 84% 0.999 85%

16 0.039 67% 0.132 80% 0.503 84%

32 0.027 48% 0.075 70% 0.261 81%

Table 1: Performances results for the Jacobi Kernel

VI. Parallelization of a Wave Propagation

Application with Pandore

Several tests on classical algorithms such as matrix-

matrix multiplication, Gram-Schmidt or LU factor-

1The compilation process does not perturb the loop order

when restricting the computation loop domains
2The memory size on the ipsc/2 nodes did not allow the

program execution for N = 512 and P = 2

ization have already been conducted to evaluate the

Pandore compiler [2]; the next step of the validation

of the compiler goes through experimentations on real

applications.

A. The Wave Propagation Application

We describe here the parallelization/distribution with

Pandore of a wave propagation algorithm that has

been developed by the French Petroleum Institute for

use by seismology experts to analyze the impacts of

seismic shocks. The application, whose core is about

one thousand line long, simulates the wave propaga-

tion in a bounded 2D space. Waves are generated by

an explosion triggered at a given point of the consid-

ered space. The program studies the temporal evolu-

tion of the waves at several points of the space where

some sensors are located. It takes as input a number

of simulation parameters such as the time and space

steps, the frequency of the explosion source and the

positions of the sensors.

The numerical algorithm follows a discretized �-

nite element method. It corresponds to the second

order time discretization (V (t = n+ 1) = F (V (t� n),

V (t = n� 1))) and to the second order discretization

of the spatial partial derivatives from the continuous

system of PDE describing the waves propagation in an

heterogeneous domain.

The results of the algorithm are the values of the

horizontal and vertical movements at each time step,

for each sensor. The program is divided into two

phases:

� The initialization phase: it de�nes the initial con-

ditions of the explosion and the constraints asso-

ciated with the nature of the propagation domain.

� The computation phase: this phase consists of

a main loop representing the time evolution. At

each iteration step we compute the horizontal and

vertical movements at time t+1 and t+2, for each

point of the grid representing the 2D space.

The �nal results, i.e. the movements associated to

the sensors, correspond to a grid sampling. During the

computation phase, for each movement, four arrays

are used: Up and Um for the horizontal movements

and Wp and Wm for the vertical ones.

The body of the loop is composed of four similar

parts corresponding to the following computations:

8>><
>>:

Up(t+ 1) = f(Um(t); Up(t+ 1))

Wp(t + 1) = g(Wm(t);Wp(t+ 1))

Um(t + 2) = f(Up(t + 1); Um(t))

Wm(t+ 2) = g(Wp(t + 1);Wm(t))

Functions f and g comprises two series of nested

loops. The �rst one is a series of 2-deep loops operat-

ing on the inner part of the grid. These loops are com-

parable to the �rst part of the Jacobi kernel presented

earlier. The second series is made of several 1-deep

loops operating on the upper border of the grid.

B. Distribution of the Program

We describe here the steps to transform the initial se-

quential program into a C-Pandore one. Only one

distributed phase is needed for this application, cor-

responding to the initialization phase followed by the

computation phase. So, using the dist construct of

the C-Pandore language to encapsulate this phase,

all the computation will be automatically distributed

on the nodes of the target parallel computer.

Exchanges between the host (or a dedicated node)

and the computing nodes are only performed at the

beginning of the distributed phase (to send the simu-

lation parameters) and at the end of the computation

(to transfer the �nal results giving the movements as-

sociated with the sensors). These exchanges will be

automatically handled by the compiler according to

the parameters speci�cation of the distributed phase.

The body itself of the distributed phase has been

slightly modi�ed in order to exhibit parallel nested

loops which conform to the conditions under which

the compiler may perform loop optimization. We eas-

ily obtain that for the four main computation parts

described in A.because the loops naturally appear as

parallel loop nests with a�ne array references and loop

bounds.

The main task when writing the C-Pandore pro-

gram resides in the the choice of the array decom-

positions. The main arrays, described in A., are 2D

arrays representing the propagation space grid. They

are used together with a tenth of 2D coe�cient arrays

of the same type. Eight other 1D arrays are used for

the computation of the border of the grid.

For this algorithm, we chose a column-wise decom-

position for all the 2D arrays because

� in the computation of the values associated with

the inner part of the grid, the dependencies are

similar those found in the Jacobi leading to this

decomposition as one of the best choices;

� the 1-deep loops operating on the upper border

of the grid (�rst row of the arrays) necessitates a

column-wise decomposition in order to distribute

the workload evenly;

� the 2-deep loops are column oriented so a column

decomposition enforces the locality for the great-

est part of the computation.

Given P, the number of processors, each (N,N) array

is partitioned into blocks of size (N,N/P). So we obtain

a C-Pandore program that, except for the speci�ca-

tion of the distribution phase and the partitioning of

the arrays, corresponds almost exactly to the sequen-

tial one.

C. Performance Results

C.1. First Results

We ran the above described version of the Wave Prop-

agation program on the ipsc/2. The performance re-

sults are given in table 2. The overall performances

are satisfactory, considering that the parallel code has

been produced automatically. With a good adequa-

tion between the data size and the number of proces-

sors, an e�ciency around 70% is reached. Further-

more, it can be noticed that, for a given array size,

performances decrease few when adding processors.

N 128 256 512

p time (s) e�. time (s) e�. time (s) e�.

2 136 75% | | | |

4 71 72% 280 71% | |

8 38 66% 145 69% | |

16 22 56% 77 65% 289 68%

32 17 38% 42 59% 150 66%

Table 2: Performance results for the Wave Propaga-

tion Application

C.2. Further Optimizations

Sampling Associated with the Sensors

In the C-Pandore program obtained in section B.the

parallel loops performing the sampling lead to com-

munications that could be avoided. This is due only

to the fact that alignment cannot be expressed yet in

C-Pandore; hence, the arrays storing the movements

associated with the sensors are not aligned with the

arrays representing the space grid. However, a triv-

ial manual renumbering of the sensors points is pos-

sible to make the sampling arrays aligned with the

grid arrays. After this transformation, the sampling

loops are executed without communication. The per-

formances are not very much a�ected by this modi�-

cation as the sampling only represent 5% of the total

execution time.

Avoiding Multiple Transfers

During execution some array elements are sent sev-

eral times to the same processor without having been

modi�ed because loops are optimized independently

and there is no inter-loop def-use analysis for non-local

data. These unnecessary transfers may be avoided by

storing the data, after the �rst send, in auxiliary ar-

rays. We experimented this {non trivial{ optimization

which necessitates to declare new arrays. The perfor-

mances are improved by about 5% of the total execu-

tion time. This does not appear as a signi�cant gain,

considering that for this application the memory cost

is of great importance. In fact, the size of the memory

on each node of the parallel computer severely limits

the experiments that may be conducted.

VII. Conclusion

We have shown in this paper that the Pandore com-

piler is able to distribute e�ciently a real application,

without any signi�cant e�ort from the programmer.

Indeed, the �rst Pandore source of the Wave Propa-

gation program presented in the paper is very similar

to the sequential original program and produces cor-

rect performances. This tends to con�rm the viability

of the data-parallel approach for scienti�c computing

provided that general enough and non-naive compiling

and run-time techniques are applied.

To handle very large applications, in particular ap-

plications that comprise multiple modules or neces-

sitate intensive I/O, other techniques must be inte-

grated to existing environments. For this purpose, the

joint study of redistribution, procedures and separate

compilation is under way in the Pandore project.

References

[1] S. M. Amarasinghe and M. Lam. Communi-

cation Optimization and Code Generation for

Distributed Memory Machines. In ACM SIG-

PLAN'93 Conference on Programming Language

Design and Implementation, June 1993.

[2] F. Andr�e, M. Le Fur, Y. Mah�eo, and J.-L. Pazat.

The Pandore Compiler: Overview and Experi-

mental Results. Research Report 869, IRISA,

1994.

[3] C. Bareau, Y. Mah�eo, and J.-L. Pazat. Parallel

Program Performance Debugging with the Pan-

dore II Environment. In Parallel Computing '93,

pages 241{248, Parallel Computing Society, Else-

vier Science Publishers B.V., September 1993.

[4] P. Brezany, B.M. Chapman, and H.P. Zima. Au-

tomatic Parallelization for GENESIS. Research

Report ACPC/TR 92-16, Austrian Center for

Parallel Computation, November 1992.

[5] S. Chatterjee, J.R. Gilbert, F.J.E. Schreiber,

and S.H. Teng. Generating Local Adresses and

Communication Sets for Data-Parallel Program.

In The Fourth ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming,

pages 149{158, July 1993.

[6] J.F. Collard, P. Feautrier, and T. Risset. Con-

struction of DO Loops from Systems of A�ne

Constraints. Research Report 93-15, LIP, Lyon,

France, 1993.

[7] High Performance Fortran Forum. High Perfor-

mance Fortran Language Speci�cation. Technical

Report Version 1.0, Rice University, May 1993.

[8] J. Grosch and H. Emmelmann. A Tool Box for

Compiler Construction. Compiler Generation

Report No. 20, GMD Forschungsstelle an der Uni-

versit�at Karlsruhe, January 1990.

[9] F. Guidec and Y. Mah�eo. POM: a Virtual Paral-

lel Machine Featuring Observation Mechanisms.

Technical Report 902, IRISA, 1994.

[10] S. Hiranandani, K. Kennedy, and C.W. Tseng.

Compiling Fortran D for MIMD Distributed-

Memory Machines. Communications of the ACM,

35(8), August 1992.

[11] F. Irigoin and C. Ancourt. Scanning Polyhe-

dra with DO Loops. In Third ACM SIGPLAN

Symposium on Principles and Practice of Paral-

lel Programming, pages 39{50, April 1991.

[12] F. Irigoin, C. Ancourt, F. Coelho, and R. Keryell.

A Linear Algebra Framework for Static HPF

Code Distribution. In International Workshop

on Compilers for Parallel Computers, December

1993.

[13] L. Jerid, F. Andr�e, O. Ch�eron, J.-L. Pazat, and T.

Ernst. HPF to C-Pandore Translator. Technical

Report 2283, INRIA, May 1994.

[14] M. Le Fur, J.-L. Pazat, and F. Andr�e. Static Do-

main Analysis for Compiling Commutative Loop

Nests. Research Report 2067, INRIA, September

1993.

[15] Y. Mah�eo and J.-L. Pazat. Distributed Array

Management for HPF Compilers. Research Re-

port 2156, INRIA, December 1993.

[16] H. P. Zima, H.-J. Bast, and M. Gerndt. SUPERB:

a tool for semi-automatic MIMD/SIMD paral-

lelization. Parallel Computing, (6):1{18, 1988.

