
HAL Id: hal-00426635
https://hal.science/hal-00426635

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Array Management for HPF Compilers
Yves Mahéo, Jean-Louis Pazat

To cite this version:
Yves Mahéo, Jean-Louis Pazat. Distributed Array Management for HPF Compilers. 9th International
Symposium on High Performance Computing Systems, Jul 1995, Montreal, Canada. pp.119-129. �hal-
00426635�

https://hal.science/hal-00426635
https://hal.archives-ouvertes.fr

Distributed Array Management for HPF Compilers

Yves Mah�eo, Jean-Louis Pazat

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

pazat@irisa.fr

http://www.irisa.fr/EXTERNE/projet/pampa/pampa.html

Abstract

High Performance Fortran and other similar languages have been designed as a

means to express portable data parallel programs for distributed memory machines.

As data distribution is a key-feature for exploiting the parallelism of applications, a

crucial point for HPF compilers is their ability to manage e�ciently distributed arrays.

We present in this paper an innovative method to allocate local blocks and temporaries

for received values and to manage the associated access mechanisms. The performance

of these access mechanisms is measured and experimental results on the use of this

array management within an existing compiler are shown.

1 Introduction

In order to alleviate the task of programmingDistributed Memory Parallel Computers, new

features have been added to sequential programming languages such as Fortran. In the �eld

of scienti�c programming, two main axes are currently followed. The �rst one uses explicit

parallel constructs and loop partitioning, it relies on a shared virtual memory [2]; the second

one is based on a user-de�ned data distributions which are used as a guideline to generate

communicating processes [7].

In recent years, many projects have focused on the data distribution approach and it has

been demonstrated that \aggressive" optimizing compilers and e�cient runtime systems

are mandatory to achieve reasonable speedups. Most compilers allow the user to specify

a decomposition of arrays and use the owner write rule [4] to distribute the code. This

distribution can be done using the runtime resolution technique in which each statement of

the source program is guarded and where communication is performed elementwise. This

scheme is always applicable but rather ine�cient, so that many compilers integrate optimiza-

tion techniques for compiling loops. Roughly speaking, these techniques aim at reducing

iteration domains and performing vectorized communications [14, 12, 11, 10].

However, runtime resolution as well as optimization techniques require a speci�c and

e�cient runtime system to allocate local parts of arrays and to perform e�cient communi-

cations.

In this paper we present a new method for e�ciently managing distributed arrays (allo-

cation and access) in parallelizing compilers based on data distribution. This paper focuses

on the local management of blocks and temporary storage for distant values. Communica-

tion optimizations such as message coalescing and vectorization are supported by this array

management but are not addressed here.

The paper is organized as follows: next section discusses the essential requirements for

managing distributed arrays. Section 3 details the page-driven array management proposed.

Section 4 presents in more details the implementation of this array management whose

overall performance is presented in section 5. Future work is discussed in the conclusion.

2 Management of Distributed Arrays

2.1 Key issues

The aim of a distributed array management is to de�ne the way distributed arrays are

stored in the local memories and the way elements of these arrays are accessed. These

tasks involve both the compiler and the runtime support. It is clear that a trade-o� must

be achieved between the speed of accesses and the memory overhead induced from the

array representation. The extreme solution consisting in allocating the entire array on each

processor is obviously not applicable. Conversely, minimal allocation (typically achieved

by translating an array declaration A(N) into a local allocation A(N=P) where P is the

number of processors) associated with global-to-local index conversion involving several

costly operations such as mod and div must be avoided.

In addition to the \classical" concerns that are the memory use and the speed of accesses,

we de�ne in the following some properties that we claim to be useful for a distributed array

management.

Uniformity

Two kinds of data are to be considered on a given processor: local elements { i.e. elements

assigned to it by the distribution { and received elements that are temporarily stored in the

local memory after communication with another processor. We say that an array manage-

ment scheme is uniform when the representation as well as the access mechanism associated

with a distributed array makes no distinction between local and received elements. The

main advantage of a uniform scheme is that the compiler does not have to separate purely

local computation (involving only local data) from computation that needs distant data.

Indeed, even if such a separation is sometimes possible at compile-time, it may induce an

important code fragmentation in the case of multiple right-hand-side references; performing

the separation at runtime brings about costly ownership computation.

Furthermore, de�ning a non-uniform scheme that gives too great an importance to local

elements, at the expense of received elements is not a good solution because it is likely to

be harmful not only for accesses but also for communication of non-local data.

Independence

An independent array management is only de�ned from distribution parameters and in par-

ticular does not depend on the code itself nor on compiler analysis on the code. A distributed

array management scheme independent from the compilation scheme facilitates the coexis-

tence of di�erent compilation techniques. On the contrary, if the choice of a representation

is guided by the analysis of a program part (typically a loop), it may happen that several

layouts (and associated access methods) are used within the scope of one distribution, possi-

bly necessitating data rearrangement or additional computation at runtime. Moreover, this

independence facilitates the use of di�erent compilation techniques within a code fragment

that contains several loops. One way to achieve this independence (as well as uniformity)

is to consider that only global indices appear in the generated code.

Contiguity Preservation

Another useful property concerning the layout of distributed arrays is the conservation of

memory contiguity. Indeed, if contiguous elements of the original array are still contiguous

in the local representation, it makes it possible to take advantage of direct communications

(in this case no copying nor packing/unpacking is needed between local representations

and communication bu�ers), vector processors, target code optimization and better cache

behavior.

2.2 Related Work

To our knowledge, management of distributed arrays have not been studied independently

from compilation techniques in existing HPF compilers.

The �rst technique of storage for distributed arrays, the overlap [13] has been imple-

mented both in the Vienna Fortran Compilation System [14] and in the Fortran D com-

piler [8, 12]: a single sub-array is allocated for local data as well as for received data. This

technique provides uniform accesses and preserves memory contiguity but it can be applied

to a restricted number of distributions and access patterns and may lead prohibitive al-

location when distant data location is not close to the local partition. In this case, the

Fortran D compiler may select an alternative storage method (bu�ers) for received values

if it can separate purely local computation and computation needing received values. In

Vienna Fortran and in an extended version of Fortran D, a speci�c management related to

loops with irregular array accesses is performed through the use of the inspector/executor

technique: the local partition is dynamically extended during the inspector phase so that

uniform indirect accesses can be used during the executor phase [6, 3, 14].

Other array management schemes, closely related to compilation techniques, have been

proposed. Their common characteristic is that they try to minimize memory overhead.

Among them, in the compilation scheme de�ned by Ancourt et al [9], local elements and

temporaries are packed according to the array distribution and alignment, the loop bounds

and the array subscripts by changing the basis of the original index space. Accesses to ele-

ments are performed in a non-uniform way with index conversion evaluating a�ne functions

and possibly integer division. Chatterjee et al. [5] propose an access mechanism for local

elements based on a Finite State Machine (FSM). These elements are accessed by executing

a FSM that has to be computed at runtime for each loop nest even if the same distribution

applies.

All of these methods not only take into account the array distribution parameters but

necessitate also a static analysis of code fragments (loop bounds and array subscripts)

in order to de�ne the layouts of the local arrays and the associated access mechanisms.

Therefore, independence from the compilation scheme is not achieved by these systems.

3 A Page-driven Array Management

We present here a new management scheme for distributed arrays based on software paging.

This management is designed in order to achieve e�cient accesses while avoiding unaccept-

able memory overhead. It also aims at satisfying the properties of uniformity, independence

and contiguity preservation aforementioned. In the following, we will consider only direct

HPF distributions, the mechanisms described can be easily extended to aligned distributions

(as a �rst step, by applying paging to templates).

3.1 Principle

The page-driven data management we propose follows the main addressing scheme of classic

paging systems for memory management. In such systems, logical memory space is broken

into groups of contiguous elements (pages). Pages have a �xed predetermined size. A

hardware support divides a logical address in two parts: a page number and a page o�set.

The page number is used as an index into a page table that contains the base address of

each page in physical memory. This base address is combined with the page o�set to de�ne

the physical memory address. If the page size is S, a logical address � produces a page

number PG and an o�set OF by PG = � div S and OF = � mod S. If the logical address

space is larger than the physical address space, virtual memory management features may

be added. In this case, accessed pages may not be present all the time in physical memory

but temporarily loaded from a secondary storage system by a swapping device.

As for our concern, we manage variables |i.e. distributed arrays| and not memory; our

aim is not to build a shared virtual memory. Moreover, we only consider compiler-generated

code, hence we stay at the software level rather than relying on hardware components.

Contrarily to system-level paging,

� the notion of page fault is here irrelevant because all distant accesses are solved by

prior communications. Besides, data are not necessarily communicated page-wise.

� The original address space is multidimensional; therefore we apply a multi to one-

dimensional transformation before splitting the resulting space into pages.

This allows us to de�ne a speci�c access mechanism for each distributed array, in particular

the page size may be di�erent for each array.

3.2 Paging Distributed Arrays

We de�ne a representation and its access mechanism for each distributed array by a couple

(L; S). The multidimensional index space of a given array is linearized by a function L. The

linear address space obtained is split into pages of �xed size S. A processor stores only those

pages that contain at least one element assigned to it by the distribution or one received

element. Depending on the distribution of the array, L and S, a page may be possessed by

one or several processors.

One of the main advantages of this method is that accesses to local and received elements

are performed the same way. Indeed, as far as accesses are concerned, a processor acts as

if the entire array was allocated locally, no matter if the element it needs to access is truly

local or has been received from another processor. The di�erence between pages containing

local elements and pages containing received elements lies in the way they are allocated and

�lled, not in the way they are accessed. A tuple (PG,OF) is computed from the initial index

vector (i0; : : : ; in�1) with the linearization function L and the page size S:

PG = L(i0; : : : ; in�1) div S OF = L(i0; : : : ; in�1) mod S

A table of pages is stored on each processor. It indicates the base address of each page

present in local memory. The o�set is added to this base address to obtain the exact location

of the element. The page partitioning is also used for computing owners of elements. A

similar table, present in the local memory of each processor, stores for each page the numbers

of the physical processors that own this page.

3.3 Tuning Parameters

For a given distributed array, the parameters we can tune for paging are the page size S and

the linearization function L. The value of these parameters are de�ned in order to achieve

good performance in terms of time and memory space.

As speed of access is our prior motivation, time consuming operations (division, modulo

and multiplication) are avoided in the computation of the tuple (PG,OF) but also in the

application of function L. This is achieved by introducing powers of two, turning integer

division, modulo and multiplication into simple logical operations. Moreover, the array de-

composition can be taken into account when �xing the actual value of S and L. Intuitively,

we choose S and L so that pages \follow" the blocks, and are owned by as few processors

as possible.

For a more formal de�nition, let us consider the following HPF array distribution:

REAL V(0 : h0 � 1; � � � ; 0 : hn�1 � 1)

!HPF$ DISTRIBUTE V(CYCLIC(s0),: : :,CYCLIC(sn�1))

and the access to an element of V noted V(i0; � � � ; in�1). This distribution decomposes the

array V into rectangular blocks of size s0�; � � � ;�sn�1. We consider the most general distri-

bution directive CYCLIC(k). Note that BLOCK(k) and CYCLIC(k) distributions are strictly

equivalent as far as decomposition is concerned.

Prior to the de�nition of S and L, we choose a particular dimension �, the dimension in

which the block size is the largest. If there are several such dimensions, the one corresponding

to a non-distributed array dimension or a block size equal to a power of two is chosen. The

page size S is then given by:

if s� = h� or s� = 2�

then S = �sup(s�)

else S = �inf (s�)

where �sup(x) (resp. �inf (x)) extends an integer to the smallest (resp. largest) power of two

greater (resp. less) than or equal to x.

L is the C linearization function for multidimensional arrays applied to a permutation

of the index vector. This permutation puts the index corresponding to dimension � in last

position. Moreover, the array dimensions (coe�cients of L) are extended to the next power

of two. L is de�ned by

L(i0; : : : ; in�1) =

n�1X
k=0

i0
k

n�1Y
l=k+1

h0
l

!

where i0
k
is the kth access index after permutation, i.e:

i0
n�1 = i�

8k 2 0; : : : ; ��1 i0
k
= ik

8k 2 �; : : : ; n�2 i0
k
= ik+1

and h0
k
is the extended size of the array in the kth dimension, i.e:

h0
n�1 = �sup

��
h�

S

��
� S

if n > 1

h00 = h0 if � > 0; else h1

8k 2 1; : : : ; ��1 h0
k
= �sup(hk)

8k 2 �; : : : ; n�2 h0
k
= �sup(hk+1)

Here are two examples of de�nition of S and L; �rst when there is one non-distributed

dimension and second when all the dimensions are distributed:

REAL A(0:199, 0:99, 0:50)

!HPF$ DISTRIBUTE A(CYCLIC(5), � , CYCLIC(10))
)

n
S = 128

L(i; j; k) = (64� 128)i+ 128k + j

REAL B(0:499, 0:199)

!HPF$ DISTRIBUTE B(CYCLIC(100), CYCLIC(10))
)

n
S = 64
L(i; j) = 512j + i

3.4 Optimizing the Computation of (PG,OF)

Unlike with a classic paging mechanism, the explicit computation of the linear address

L(i0; : : : ; in�1) before its splitting into (PG,OF) is not mandatory because we do not rely

on a hardware support that needs a memory address. Besides, this intermediate result may

lead to unnecessary operations as in the following example:

REAL A(0:99, 0:199)

!HPF$ DISTRIBUTE A(CYCLIC(10),�)
)

�
S = 256

L(i; j) = 256i+ j

The page number and the o�set will be obtained by

PG = (256i+ j) div 256

OF = (256i+ j) mod 256

These expressions could obviously be simpli�ed in PG = i and OF = j. To make the

simpli�cations clearly visible, we express directly PG and OF as a function of the index

vector.

page(i0; : : : ; in�1) = (PG;OF)

with

PG =

n�2X
k=0

i0
k

n�1Y
l=k+1

np0
l

!
+ i0

n�1 div S

OF = i0
n�1 mod S

where np0
k
is the number of pages in the kth dimension after permutation:

np0
n�1 =

h0
n�1

S

8k 2 0; : : : ; n�2 np0
k
= h0

k

When dimension � is not distributed, that is to say when h� = s� , index i0
n�1 (i.e i�) is

always less than or equal to S, div and mod can be removed:

PG =

n�2X
k=0

i0
k

n�1Y
l=k+1

np0
l

!

OF = i0
n�1

Here is the result of these optimizations for the two examples presented in the previous

section:

REAL A(0:199, 0:99, 0:49)

!HPF$ DISTRIBUTE A(CYCLIC(5), �, CYCLIC(10))
)

8>><
>>:

PG = (8192i + 128k + j) div 128

= 64i+ k

OF = (8192i + 128k + j) mod 128

= j

REAL B(0:499, 0:199)

!HPF$ DISTRIBUTE B(CYCLIC(100), CYCLIC(10))
)

8>><
>>:

PG = (512j + i) div 64
= 8j + (i div 64)

OF = (512j + i) mod 64

= i mod 64

3.5 Page Ownership

Each processor stores a table of owners that indicates, for each page, the number of the phys-

ical processor that owns this page. This table can be �lled using the function owner(PG,OF)

that returns the owner of an element.

owner(PG;OF) = map � page
�1(PG;OF)

Function page
�1, the reverse function of page, returns the index vector corresponding to a

page number and an o�set.

page
�1(PG;OF) = (i0; : : : ; in�1)

with

i� = S �

�
PG mod np0

n�1

�
+ OF

8k 2 0; : : : ; ��1 ik = i0
k

8k 2 �+1; : : : ; n�1 ik = i0
k�1

8k 2 0; : : : ; n�2 i0
k
=

PG mod

n�1Y
l=k

np0
l

!
div

n�1Y
l=k+1

np0
l

!!

Function map(i0; : : : ; in�1) associates a physical processor number with an index vector. It

can be easily computed for each mapping that can be expressed in HPF. We do not give

here the general formulae as it cannot be induced from the HPF norm and depends on im-

plementation choices. As an example if the abstract processor array is of size (p0; � � � ; pn�1)

and the number of physical processors is P , the mapping function may be the following:

map(i0; :::; in�1) =

n�1X
k=0

(ik div sk)

n�1Y
l=k+1

pl

!!
mod P

In the case data elements are replicated (by application of alignment directives), this func-

tion could return a set of processors.

The de�nitions adopted for S and L allow the number of owners of a page to be less

than or equal to two. If the owner of a page is always unique, any valid value of OF can

be used for determining the owner of a page. In the case the owner of a page is not unique,

we can compute OFlm, the o�set from which the owner changes. In this case, the table of

owners stores for each page, the two processor numbers plus the limit OFlm:

OF lm = if ' < S then ' else 0

with

' = ((PG mod np0
n�1) � (s� � S)) mod s�

4 Implementation

A full implementation of the data management mechanisms described above has been real-

ized within the Pandore environment [1]. In the Pandore language, the scope of array

distributions is con�ned within procedures referred to as distributed phases.

Management of tables, pages and accesses to array elements are shared out among the

compiler and the runtime library. As all the tables and pages are needed only during the

execution of a distributed phase (no inter-phase analysis is performed at this time), the

entire memory space allocated is freed at the end of the phase.

4.1 Tables and Pages

All the information needed to �ll the tables of owners and the tables of o�set-limits is known

at compile-time; these tables could therefore be statically de�ned. However, in order not to

lengthen the size of the generated code, the compiler produces functions that allocate and

�ll the tables at runtime, at the beginning of each distributed phase. For each distributed

array V , a table of owners TO V is de�ned. If a page may be possessed by two processors,

three tables are needed: the table of the owners of the �rst part of pages TO1 V, the table

of the owners of the second part of pages TO2 V and the table containing the o�set-limits

TL V.

The runtime library is also in charge of allocating and �lling the tables of pages and

pages themselves. The tables of pages and pages that contain local elements are allocated

at the beginning of the distributed phase. The management of pages containing received

elements depends on the compilation scheme. Basic operations provided by the runtime

library are the page allocation and the placement of elements (single elements or segments)

into pages.

4.2 Accesses

It is clear that the part of the access process that is done at compile-time must be as large

as possible. The compiler translates a reference to an array element V [I], where I is an

index vector, into a call to a runtime macro access(desc V, PG, OF) where PG and OF

are expressions of I. All constant subexpressions have been computed and the optimization

described in section 3.4 has been performed. As expected, these expressions contain only

additions and constant logical shifts and maskings. The work that remains at runtime is

therefore to evaluate the expressions and use the table of pages associated with V (TP V) to

produce the right reference. This can be noted by the C expression *(TP V[PG]+OF). The

runtime library contains cpp macros that prevent from the computation of the address of

the page table corresponding to V , so we can actually generate this code.

4.3 Owner

Determining the owner of an element V [I] is carried out a similar way. The compiler

generates a call to a runtime macro owner(desc V, PG, OF). An access to a table TO V[PG]

is su�cient at runtime to �nd the processor number in the case the owner of a page is

unique. If a page may be possessed by two processors, a call to a slightly di�erent macro

is produced. The execution of this macro will issue a comparison between OF and the

o�set-limit corresponding to page PG:

if (OF < TL_V[PG])

then TO1_V[PG]

else TO2_V[PG]

5 Performances

5.1 Performances of the Distributed Array Management

It is quite obvious that the executed code for distributed accesses involves only few basic

operations that generate a very small overhead and may even be more e�cient thanks to

better optimizations.

In the experiment whose results are reported in table 1, we measured the time taken by

several kinds of read accesses:

� ts : a reference to an element as it may appear in a sequential program;

� tp : a call to the macro that uses the paged access mechanism;

� tb : a call to a macro that uses a block-oriented access mechanism1.

The array is a two-dimensional array of
oats; reported times are in �s. Best and worst

cases have been considered, depending on whether the sizes of the array were powers of two

or not. Experiments have been carried out on a SparcStation 2, on a node of the iPSC/2

and on a node of the Intel Paragon XP/S.

1This mechanism was used in a previous version of Pandore; it performs at runtime a modulo and an

integer division to �nd the block number and the o�set in the block.

Sparcstation iPSC/2 Paragon
best worst best worst best worst

ts 0.30 0.42 0.94 2.05 0.16 0.26

tp 0.34 0.38 2.14 2.26 0.22 0.25

tb 0.48 1.58 3.52 9.86 0.21 2.68

Table 1: Speed of page-driven access

Array Number Minimal Local Space Local

Distribution of Pages Partition for Tables Overhead

REAL(KIND=8) A(0:99999)

!HPF$ DISTRIBUTE A(CYCLIC(1000))
196 25000 1960 �1:08

REAL(KIND=8) A(0:99999)

!HPF$ DISTRIBUTE A(CYCLIC(1024))
98 25000 588 �1:02

REAL(KIND=8) A(0:999, 0:999)

!HPF$ DISTRIBUTE A(CYCLIC(1), �)
1000 250000 6000 �1:02

REAL(KIND=8) A(0:999, 0:1999)

!HPF$ DISTRIBUTE A(CYCLIC(50), CYCLIC(500))
8000 500000 80000 �1:16

REAL(KIND=8) A(0:999, 0:1999)

!HPF$ DISTRIBUTE A(CYCLIC(50), CYCLIC(512))
4000 500000 24000 �1:05

REAL(KIND=8) A(0:99, 0:99, 0:99)

!HPF$ DISTRIBUTE A(�, CYCLIC(1), CYCLIC(50))
10000 250000 60000 �1:24

Table 2: Memory overhead for some common distributions

Likewise, the determination of the owner of an array element requires only a few simple

operations, so its cost remains very low. It is also preferable to exploit the page decompo-

sition, although it seems to be more natural to base the computation of the owner of an

element on the computation of the corresponding block number.

The price to pay for speed of access and speed of ownership computation is the need for a

larger amount of memory. Overhead is only due to tables because no additional space is

required for pages. When a page contains elements that will never be accessed because of

the extension of array dimensions, or because the page is shared by two processors, only the

potentially accessed part of the page is actually allocated. A translation of the corresponding

pointer in the table of pages is performed if the end of the page is allocated.

The memory overhead due to tables is directly linked to the number of pages, which

is in general at least of an order of magnitude less than the size of the array. Table 2

gives memory requirements for a few common distributions of arrays on 32 processors. For

each distribution, we indicate the total number of pages, the theoretical minimal memory

space required on each processor, the actual space allocated for tables on each processor and

�nally the overhead as compared with the minimal partition. Memory needs are expressed

in bytes. It can be noticed that replacing some block sizes (or array dimensions) by powers of

two notably decreases the memory overhead. We believe that overall memory requirements

remain acceptable when considering most commonly used distributions.

5.2 Integration in the Pandore Environment

The page-driven management for distributed arrays has been integrated in the Pandore

environment and is used with the two compilation schemes of the compiler. The basic

compilation scheme, that relies on a runtime resolution technique, can be applied to every

input program. The optimized scheme is based on integer programming and linear algebra

results; it performs an analysis of parallel loops[10].

We present in table 3 the results of the execution of a Red-Black Successive Over-

Relaxation algorithm run on a 1024x1024 matrix of
oats. Times have been measured on

the Intel iPSC/2 for the two compilation schemes. A comparison is made between a block-

oriented array management and the page-driven management. The table shows the speedup

obtained on P processors for each pair (compilation scheme, array management).

Basic scheme Optimized Scheme
P

Block Page Block Page

4 0.29 0.68 0.86 3.84

8 0.32 0.77 1.39 7.18

16 0.36 0.82 2.14 12.78

32 0.37 0.85 3.70 23.72

Table 3: Comparison between block-oriented and page-driven managements

The use of the page-driven management clearly improves performances of codes gener-

ated according to both compilation schemes. The joint use of the optimized scheme and the

page-driven array management leads to satisfactory performances (e�ciency of around 75%

for 32 processors) in spite of the unfavorably high ratio of memory operations to computation

of the Red-Black algorithm.

6 Conclusion

Management of distributed arrays is a crucial point for obtaining good performances when

using data parallel compilers. For this purpose, we have proposed a new scheme based on

parameterized software paging that proved e�cient in an existing compiler. This manage-

ment handles local and received data in an uniform way and it is independent from the

optimization techniques used in compilers. Moreover, it avoids using multiple representa-

tions of the same array in di�erent parts of a program and maintains some regularity in

local layouts. The page-driven array management also seems to be appropriate for irregular

computations and could be used together with the inspector/executor technique.

We are currently comparing our management scheme with shared virtual memory sys-

tems. One of our objectives is to �nd out which features should be added to existing shared

virtual memory systems so they can be e�ciently targeted by data-parallel compilers.

References

[1] F. Andr�e, M. Le Fur, Y. Mah�eo, and J.-L. Pazat. The Pandore Data Parallel Compiler

and its Portable Runtime. In HPCN Europe '95, LNCS, Springer Verlag, Milan, Italy,

May 1995. (to be published).

[2] F. Bodin, L. Kervella, and T. Priol. Fortran-S : A Fortran Interface for Shared Virtual

Memory Architectures. In Proc. of Supercomputing 1993, November 1993.

[3] P. Brezany, O. Ch�eron, K. Sanjari, and E. van Kronijnenburg. Processing Irregular

Codes Containing Arrays with Multidimensional Distributions by the PREPARE HPF

Compiler. In HPCN Europe '95, LNCS, Springer Verlag, Milan, Italy, May 1995. (to

be published).

[4] D. Calahan and K. Kennedy. Compiling Programs for Distributed Memory Multipro-

cessors. The Journal of Supercomputing, 2:151{169, October 1988.

[5] S. Chatterjee, J.R. Gilbert, F.J.E. Schreiber, and S.H. Teng. Generating Local Adresses

and Communication Sets for Data-Parallel Program. In The Fourth ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 149{158, July

1993.

[6] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed Memory Compiler

Methods for Irregular Problems { Data Copy Reuse and Runtime Partitioning. In

Third Workshop on Compilers for Parallel Computers, pages 185{219, Austrian Center

for Parallel Computation, July 1992.

[7] High Performance Fortran Forum. High Performance Fortran Language Speci�cation.

Technical Report Version 1.0, Rice University, may 1993.

[8] S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C.W. Tseng. An Overview of

the Fortran D Programming System. Technical Report TR91121, Center for Research

on Parallel Computation, Rice University, March 1991.

[9] F. Irigoin, C. Ancourt, F. Coelho, and R. Keryell. A Linear Algebra Framework for

Static HPF Code Distribution. In International Workshop on Compilers for Parallel

Computers, December 1993.

[10] M. Le Fur, J.-L. Pazat, and F. Andr�e. Commutative Loop Nests Distribution. In

H. J. Sips, editor, Fourth International Workshop on Compilers for Parallel Computers,

pages 345{350, TU Delft, The Netherlands, December 1993.

[11] Q. Ning, V. van Dongen, and G.R. Gao. Automatic Data and Computation Decom-

position for Distributed Memory Machines. In Proc. of the 28th Hawaii International

Conference on System Sciences, Wailea, Hawaii, January 1995.

[12] C.-W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Ma-

chines. PhD thesis, Rice University, January 1993. Also available as Rice COMP

TR93-199.

[13] H. P. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A Tool for Semi-Automatic

MIMD/SIMD Parallelization. Parallel Computing, (6):1{18, 1988.

[14] H. P. Zima and B. Chapman. Compiling for Distributed-Memory Systems. Techni-

cal Report APCP/TR 92-17, Austrian Center for Parallel Computation, University of

Vienna, November 1992.

