Yves Mah

Jean-Louis Pazat
email: pazat@irisa.fr

Distributed Array Management for HPF Compilers

High Performance Fortran and other similar languages have been designed as a means to express portable data parallel programs for distributed memory machines. As data distribution is a key-feature for exploiting the parallelism of applications, a crucial point for HPF compilers is their ability to manage e ciently distributed arrays. We p r e s e n t in this paper an innovative method to allocate local blocks and temporaries for received values and to manage the associated access mechanisms. The performance of these access mechanisms is measured and experimental results on the use of this array management within an existing compiler are shown.

Introduction

In order to alleviate the task of programming Distributed Memory Parallel Computers, new features have been added to sequential programming languages such a s F ortran. In the eld of scienti c programming, two main axes are currently followed. The rst one uses explicit parallel constructs and loop partitioning, it relies on a shared virtual memory 2] the second one is based on a user-de ned data distributions which are used as a guideline to generate communicating processes 7].

In recent y ears, many projects have focused on the data distribution approach and it has been demonstrated that \aggressive" optimizing compilers and e cient r u n time systems are mandatory to achieve reasonable speedups. Most compilers allow the user to specify a decomposition of arrays and use the owner write rule 4] to distribute the code. This distribution can be done using the runtime resolution technique in which e a c h statement o f the source program is guarded and where communication is performed elementwise. This scheme is always applicable but rather ine cient, so that many compilers integrate optimization techniques for compiling loops. Roughly speaking, these techniques aim at reducing iteration domains and performing vectorized communications 14, 1 2 , 1 1 , 1 0] .

However, runtime resolution as well as optimization techniques require a speci c and e cient runtime system to allocate local parts of arrays and to perform e cient communications.

In this paper we present a new method for e ciently managing distributed arrays (allocation and access) in parallelizing compilers based on data distribution. This paper focuses on the local management o f b l o c ks and temporary storage for distant v alues. Communication optimizations such as message coalescing and vectorization are supported by this array management but are not addressed here.

The paper is organized as follows: next section discusses the essential requirements for managing distributed arrays. Section 3 details the page-driven array management proposed. Section 4 presents in more details the implementation of this array management w h o s e overall performance is presented in section 5. Future work is discussed in the conclusion.

2 Management of Distributed Arrays

Key issues

The aim of a distributed array management is to de ne the way distributed arrays are stored in the local memories and the way elements of these arrays are accessed. These tasks involve both the compiler and the runtime support. It is clear that a trade-o must be achieved between the speed of accesses and the memory overhead induced from the array representation. The extreme solution consisting in allocating the entire array o n e a c h processor is obviously not applicable. Conversely, m i n i m al allocation (typically achieved by translating an array declaration A(N) i n to a local allocation A(N=P) where P is the number of processors) associated with global-to-local index conversion involving several costly operations such a s mod and div must be avoided.

In addition to the \classical" concerns that are the memory use and the speed of accesses, we de ne in the following some properties that we claim to be useful for a distributed array management.

Uniformity

Two kinds of data are to be considered on a given processor: local elements { i.e. elements assigned to it by the distribution { and received elements that are temporarily stored in the local memory after communication with another processor. We s a y that an array management s c heme is uniform when the representation as well as the access mechanism associated with a distributed array m a k es no distinction between local and received elements. The main advantage of a uniform scheme is that the compiler does not have to separate purely local computation (involving only local data) from computation that needs distant d a t a . Indeed, even if such a separation is sometimes possible at compile-time, it may induce an important code fragmentation in the case of multiple right-hand-side references performing the separation at runtime brings about costly ownership computation.

Furthermore, de ning a non-uniform scheme that gives too great an importance to local elements, at the expense of received elements is not a good solution because it is likely to be harmful not only for accesses but also for communication of non-local data.

Independence

An independent array management is only de ned from distribution parameters and in particular does not depend on the code itself nor on compiler analysis on the code. A distributed array management s c heme independent from the compilation scheme facilitates the coexistence of di erent compilation techniques. On the contrary, i f t h e c hoice of a representation is guided by the analysis of a program part (typically a loop), it may h a p p e n t h a t s e v eral layouts (and associated access methods) are used within the scope of one distribution, possibly necessitating data rearrangement or additional computation at runtime. Moreover, this independence facilitates the use of di erent compilation techniques within a code fragment that contains several loops. One way t o a c hieve this independence (as well as uniformity) is to consider that only global indices appear in the generated code.

Contiguity Preservation

Another useful property concerning the layout of distributed arrays is the conservation of memory contiguity. Indeed, if contiguous elements of the original array are still contiguous in the local representation, it makes it possible to take a d v antage of direct communications (in this case no copying nor packing/unpacking is needed between local representations and communication bu ers), vector processors, target code optimization and better cache behavior.

Related Work

To our knowledge, management of distributed arrays have not been studied independently from compilation techniques in existing HPF compilers.

The rst technique of storage for distributed arrays, the overlap 13] has been implemented both in the Vienna Fortran Compilation System 14] and in the Fortran D compiler 8, 12]: a single sub-array is allocated for local data as well as for received data. This technique provides uniform accesses and preserves memory contiguity but it can be applied to a restricted number of distributions and access patterns and may lead prohibitive allocation when distant data location is not close to the local partition. In this case, the Fortran D compiler may select an alternative storage method (bu ers) for received values if it can separate purely local computation and computation needing received values. In Vienna Fortran and in an extended version of Fortran D, a speci c management related to loops with irregular array accesses is performed through the use of the inspector/executor technique: the local partition is dynamically extended during the inspector phase so that uniform indirect accesses can be used during the executor phase [START_REF] Chatterjee | Generating Local Adresses and Communication Sets for Data-Parallel Program[END_REF][START_REF] Bodin | Fortran-S : A Fortran Interface for Shared Virtual Memory Architectures[END_REF][START_REF] Zima | SUPERB: A Tool for Semi-Automatic MIMD/SIMD Parallelization[END_REF].

Other array management s c hemes, closely related to compilation techniques, have been proposed. Their common characteristic is that they try to minimize memory overhead. Among them, in the compilation scheme de ned by Ancourt et al 9], local elements and temporaries are packed according to the array distribution and alignment, the loop bounds and the array subscripts by c hanging the basis of the original index space. Accesses to elements are performed in a non-uniform way with index conversion evaluating a ne functions and possibly integer division. Chatterjee et al. 5] propose an access mechanism for local elements based on a Finite State Machine (FSM). These elements are accessed by executing a FSM that has to be computed at runtime for each l o o p n e s t e v en if the same distribution applies.

All of these methods not only take i n to account the array distribution parameters but necessitate also a static analysis of code fragments (loop bounds and array subscripts) in order to de ne the layouts of the local arrays and the associated access mechanisms. Therefore, independence from the compilation scheme is not achieved by these systems.

A P age-driven Array Management

We present here a new management s c heme for distributed arrays based on software paging. This management is designed in order to achieve e cient accesses while avoiding unacceptable memory overhead. It also aims at satisfying the properties of uniformity, independence and contiguity preservation aforementioned. In the following, we will consider only direct HPF distributions, the mechanisms described can be easily extended to aligned distributions (as a rst step, by applying paging to templates).

Principle

The page-driven data management w e propose follows the main addressing scheme of classic paging systems for memory management. In such systems, logical memory space is broken into groups of contiguous elements (pages). Pages have a xed predetermined size. A hardware support divides a logical address in two parts: a page number and a page o set. The page number is used as an index into a page table that contains the base address of each page in physical memory. This base address is combined with the page o set to de ne the physical memory address. If the page size is S, a logical address produces a page number PG and an o set OF by PG = d i v S and OF = m o d S . If the logical address space is larger than the physical address space, virtual memory management features may be added. In this case, accessed pages may not be present all the time in physical memory but temporarily loaded from a secondary storage system by a s w apping device.

As for our concern, we manage variables |i.e. distributed arrays| and not memory our aim is not to build a shared virtual memory. Moreover, we only consider compiler-generated code, hence we stay at the software level rather than relying on hardware components. Contrarily to system-level paging, the notion of page fault is here irrelevant because all distant accesses are solved by prior communications. Besides, data are not necessarily communicated page-wise. The original address space is multidimensional therefore we apply a multi to onedimensional transformation before splitting the resulting space into pages. This allows us to de ne a speci c access mechanism for each distributed array, in particular the page size may be di erent for each a r r a y.

Paging Distributed Arrays

We de ne a representation and its access mechanism for each distributed array b y a c o u p l e (L S). The multidimensional index space of a given array is linearized by a function L. T h e linear address space obtained is split into pages of xed size S. A processor stores only those pages that contain at least one element a s s i g n e d t o i t b y the distribution or one received element. Depending on the distribution of the array, L and S, a page may be possessed by one or several processors.

One of the main advantages of this method is that accesses to local and received elements are performed the same way. Indeed, as far as accesses are concerned, a processor acts as if the entire array w as allocated locally, no matter if the element it needs to access is truly local or has been received from another processor. The di erence between pages containing local elements and pages containing received elements lies in the way they are allocated and lled, not in the way they are accessed. A tuple (PG,OF) is computed from the initial index vector (i 0 : : : i n;1) with the linearization function L and the page size S: PG = L(i 0 : : : i n;1) div S OF = L(i 0 : : : i n;1) mod S A table of pages is stored on each processor. It indicates the base address of each p a g e present in local memory. The o set is added to this base address to obtain the exact location of the element. The page partitioning is also used for computing owners of elements. A similar table, present in the local memory of each processor, stores for each page the numbers of the physical processors that own this page.

Tuning Parameters

For a given distributed array, the parameters we can tune for paging are the page size S and the linearization function L. The value of these parameters are de ned in order to achieve good performance in terms of time and memory space.

As speed of access is our prior motivation, time consuming operations (division, modulo and multiplication) are avoided in the computation of the tuple (PG,OF) but also in the application of function L. T h i s i s a c hieved by i n troducing powers of two, turning integer division, modulo and multiplication into simple logical operations. Moreover, the array d ecomposition can be taken into account when xing the actual value of S and L. I n tuitively, we c hoose S and L so that pages \follow" the blocks, and are owned by as few processors as possible.

For a more formal de nition, let us consider the following HPF array distribution: REAL V(0 : h 0 ; 1 0 : h n;1 ; 1) !HPF$ DISTRIBUTE V(CYCLIC(s 0),: : : ,CYCLIC(s n;1)) and the access to an element o f V noted V(i 0 i n;1). This distribution decomposes the array V into rectangular blocks of size s 0 s n;1 . W e consider the most general distribution directive CYCLIC(k). Note that BLOCK(k) and CYCLIC(k) distributions are strictly equivalent as far as decomposition is concerned.

Prior to the de nition of S and L, w e c hoose a particular dimension , the dimension in which the block size is the largest. If there are several such dimensions, the one corresponding to a non-distributed array dimension or a block size equal to a power of two i s c hosen. The page size S is then given by: if s = h or s = 2 then S = sup (s) else S = inf (s) where sup (x) (resp. inf (x)) extends an integer to the smallest (resp. largest) power of two greater (resp. less) than or equal to x.

L is the C linearization function for multidimensional arrays applied to a permutation of the index vector. This permutation puts the index corresponding to dimension in last position. Moreover, the array dimensions (coe cients of L) are extended to the next power of two. L is de ned by L(i 0 : :

: i n;1) = n;1 X k=0 i 0 k n;1 Y l=k+1 h 0 l !
where i 0 k is the k th access index after permutation, i.e: i 0 n;1 = i 8k 2 0 : : : ;1 i 0 k = i k 8k 2 : : : n ;2 i 0 k = i k+1 and h 0 k is the extended size of the array i n t h e k th dimension, i.e:

h 0 n;1 = sup h S S if n > 1 h 0 0 = h 0 if > 0 else h 1 8k 2 1 : : : ;1 h 0 k = sup (h k) 8k 2 : : : n ;2 h 0 k = sup (h k+1)
Here are two examples of de nition of S and L rst when there is one non-distributed dimension and second when all the dimensions are distributed: L(i j) = 512j + i

Optimizing the Computation of (PG,OF)

Unlike with a classic paging mechanism, the explicit computation of the linear address L(i 0 : : : i n;1) before its splitting into (PG,OF) is not mandatory because we do not rely on a hardware support that needs a memory address. Besides, this intermediate result may lead to unnecessary operations as in the following example:

REAL A(0:99, 0:199) !HPF$ DISTRIBUTE A(CYCLIC(10),)) S = 2 5 6 L(i j) = 256i + j

The page number and the o set will be obtained by PG = (256i + j) div 256 OF = (256i + j) mod 256 These expressions could obviously be simpli ed in PG = i and OF = j. To m a k e t h e simpli cations clearly visible, we express directly PG and OF as a function of the index vector.

page(i 0 : : : i n;1) = (PG OF) with PG = n;2 X k=0 i 0 k n;1 Y l=k+1 np 0 l ! + i 0 n;1 div S OF = i 0 n;1 mod S where np 0 k is the number of pages in the k th dimension after permutation: np 0 n;1 = h 0 n;1 S 8k 2 0 : : : n ;2 np 0 k = h 0 k When dimension is not distributed, that is to say w h e n h = s , index i 0 n;1 (i.e i) i s always less than or equal to S, div and mod can be removed: Each processor stores a table of owners that indicates, for each p a g e , t h e n umber of the physical processor that owns this page. This table can be lled using the function owner(PG,OF) that returns the owner of an element. owner(PG OF) = map page ;1 (PG OF) Function page ;1 , the reverse function of page, returns the index vector corresponding to a page number and an o set.

page ;1 (PG OF) = (i 0 : : : i n;1) with i = S ; PG mod np 0 n;1 + OF 8k 2 0 : : : ;1 i k = i 0 k 8k 2 +1 : : : n ;1 i k = i 0 k;1 8k 2 0 : : : n ;

2 i 0 k = PG mod n;1 Y l=k np 0 l ! div n;1 Y l=k+1 np 0 l !!
Function map(i 0 : : : i n;1) associates a physical processor number with an index vector. It can be easily computed for each mapping that can be expressed in HPF. We do not give here the general formulae as it cannot be induced from the HPF norm and depends on implementation choices. As an example if the abstract processor array i s o f s i z e (p 0 p n;1) and the number of physical processors is P, the mapping function may be the following:

map(i 0 : : : i n;1) = n;1 X k=0 (i k div s k) n;1 Y l=k+1 p l !! mod P
In the case data elements are replicated (by application of alignment directives), this function could return a set of processors. The de nitions adopted for S and L allow t h e n umb e r o f o wners of a page to be less than or equal to two. If the owner of a page is always unique, any v alid value of OF can be used for determining the owner of a page. In the case the owner of a page is not unique, we can compute OF lm , the o set from which the owner changes. In this case, the table of owners stores for each page, the two processor numbers plus the limit OF lm :

OF lm = i f ' < S then ' else 0 with ' = ((PG mod np 0 n;1) (s ; S)) mod s

Implementation

A full implementation of the data management m e c hanisms described above has been realized within the Pandore environment 1]. In the Pandore language, the scope of array distributions is con ned within procedures referred to as distributed phases.

Management of tables, pages and accesses to array e l e m e n ts are shared out among the compiler and the runtime library. As all the tables and pages are needed only during the execution of a distributed phase (no inter-phase analysis is performed at this time), the entire memory space allocated is freed at the end of the phase.

Tables and Pages

All the information needed to ll the tables of owners and the tables of o set-limits is known at compile-time these tables could therefore be statically de ned. However, in order not to lengthen the size of the generated code, the compiler produces functions that allocate and ll the tables at runtime, at the beginning of each distributed phase. For each distributed array V , a table of owners TO V is de ned. If a page may be possessed by t wo processors, three tables are needed: the table of the owners of the rst part of pages TO1 V, the table of the owners of the second part of pages TO2 V and the table containing the o set-limits TL V.

The runtime library is also in charge of allocating and lling the tables of pages and pages themselves. The tables of pages and pages that contain local elements are allocated at the beginning of the distributed phase. The management of pages containing received elements depends on the compilation scheme. Basic operations provided by the runtime library are the page allocation and the placement of elements (single elements or segments) into pages.

Accesses

It is clear that the part of the access process that is done at compile-time m ust be as large as possible. The compiler translates a reference to an array element V I], where I is an index vector, into a call to a runtime macro access(desc V, PG, OF) where PG and OF are expressions of I. All constant subexpressions have been computed and the optimization described in section 3.4 has been performed. As expected, these expressions contain only additions and constant logical shifts and maskings. The work that remains at runtime is therefore to evaluate the expressions and use the table of pages associated with V (TP V) t o produce the right reference. This can be noted by the C expression *(TP V PG]+OF). T h e runtime library contains cpp macros that prevent from the computation of the address of the page table corresponding to V , s o w e can actually generate this code.

Owner

Determining the owner of an element V I] is carried out a similar way. The compiler generates a call to a runtime macro owner(desc V, PG, OF). An access to a table TO V PG] is su cient a t r u n time to nd the processor number in the case the owner of a page is unique. If a page may be possessed by t wo processors, a call to a slightly di erent m a c r o is produced. The execution of this macro will issue a comparison between OF and the o set-limit corresponding to page PG: if (OF < TL_V PG]) then TO1_V PG] else TO2_V PG] 5 Performances

Performances of the Distributed Array Management

It is quite obvious that the executed code for distributed accesses involves only few basic operations that generate a very small overhead and may e v en be more e cient thanks to better optimizations. In the experiment whose results are reported in table 1, we measured the time taken by several kinds of read accesses: t s : a reference to an element a s i t m a y appear in a sequential program t p : a call to the macro that uses the paged access mechanism t b : a call to a macro that uses a block-oriented access mechanism1 . The array i s a t wo-dimensional array of oats reported times are in s. Best and worst cases have been considered, depending on whether the sizes of the array w ere powers of two or not. Experiments have been carried out on a SparcStation 2, on a node of the iPSC/2 and on a node of the Intel Paragon XP/S. Likewise, the determination of the owner of an array element requires only a few simple operations, so its cost remains very low. It is also preferable to exploit the page decomposition, although it seems to be more natural to base the computation of the owner of an element on the computation of the corresponding block n umber.

The price to pay for speed of access and speed of ownership computation is the need for a larger amount of memory. O v erhead is only due to tables because no additional space is required for pages. When a page contains elements that will never be accessed because of the extension of array dimensions, or because the page is shared by t wo processors, only the potentially accessed part of the page is actually allocated. A translation of the corresponding pointer in the table of pages is performed if the end of the page is allocated.

The memory overhead due to tables is directly linked to the number of pages, which is in general at least of an order of magnitude less than the size of the array. Table 2 gives memory requirements for a few common distributions of arrays on 32 processors. For each distribution, we indicate the total number of pages, the theoretical minimal memory space required on each processor, the actual space allocated for tables on each processor and nally the overhead as compared with the minimal partition. Memory needs are expressed in bytes. It can be noticed that replacing some block sizes (or array dimensions) by p o wers of two notably decreases the memory overhead. We believe t h a t o verall memory requirements remain acceptable when considering most commonly used distributions.

Integration in the Pandore Environment

The page-driven management for distributed arrays has been integrated in the Pandore environment and is used with the two compilation schemes of the compiler. The basic compilation scheme, that relies on a runtime resolution technique, can be applied to every input program. The optimized scheme is based on integer programming and linear algebra results it performs an analysis of parallel loops 10].

We p r e s e n t in table 3 the results of the execution of a Red-Black Successive O v er-Relaxation algorithm run on a 1024x1024 matrix of oats. Times have been measured on the Intel iPSC/2 for the two compilation schemes. A comparison is made between a blockoriented array management and the page-driven management. The table shows the speedup obtained on P processors for each pair (compilation scheme, array management). The use of the page-driven management clearly improves performances of codes generated according to both compilation schemes. The joint use of the optimized scheme and the page-driven array management leads to satisfactory performances (e ciency of around 75% for 32 processors) in spite of the unfavorably high ratio of memory operations to computation of the Red-Black algorithm.

Conclusion

Management of distributed arrays is a crucial point for obtaining good performances when using data parallel compilers. For this purpose, we h a ve proposed a new scheme based on parameterized software paging that proved e cient in an existing compiler. This management handles local and received data in an uniform way and it is independent f r o m t h e optimization techniques used in compilers. Moreover, it avoids using multiple representations of the same array in di erent parts of a program and maintains some regularity i n local layouts. The page-driven array management also seems to be appropriate for irregular computations and could be used together with the inspector/executor technique.

We are currently comparing our management s c heme with shared virtual memory systems. One of our objectives is to nd out which features should be added to existing shared virtual memory systems so they can be e ciently targeted by data-parallel compilers.

 is the result of these optimizations for the two examples presented in the previous section:REAL A(0:199, 0:99, 0:49) !HPF$ DISTRIBUTE A(CYCLIC(5), , CYCLIC(10))) 8192i + 128k + j) div 128 = 64i + k OF = (8192i + 128k + j) mod 128

Table 1 :

 1 Speed of page-driven access

	Sparcstation best worst best worst best worst iPSC/2 Paragon ts 0.30 0.42 0.94 2.05 0.16 0.26 tp 0.34 0.38 2.14 2.26 0.22 0.25 tb 0.48 1.58 3.52 9.86 0.21 2.68
	Array Distribution REAL(KIND=8) A(0:99999) !HPF$ DISTRIBUTE A(CYCLIC(1000)) REAL(KIND=8) A(0:99999) !HPF$ DISTRIBUTE A(CYCLIC(1024)) REAL(KIND=8) A(0:999, 0:999) !HPF$ DISTRIBUTE A(CYCLIC(1),) REAL(KIND=8) A(0:999, 0:1999) !HPF$ DISTRIBUTE A(CYCLIC(50), CYCLIC(500)) REAL(KIND=8) A(0:999, 0:1999) !HPF$ DISTRIBUTE A(CYCLIC(50), CYCLIC(512)) REAL(KIND=8) A(0:99, 0:99, 0:99) !HPF$ DISTRIBUTE A(, CYCLIC(1), CYCLIC(50))	Number Minimal Local Space of Pages Partition for Tables Overhead Local 196 25000 1960 1:08 98 25000 588 1:02 1000 250000 6000 1:02 8000 500000 80000 1:16 4000 500000 24000 1:05 10000 250000 60000 1:24

Table 2 :

 2 Memory overhead for some common distributions

Table 3 :

 3 Comparison between block-oriented and page-driven managements

	Basic scheme Optimized Scheme P Block Page Block Page
	4 0.29 0.68 0.86 8 0.32 0.77 1.39 16 0.36 0.82 2.14 32 0.37 0.85 3.70	3.84 7.18 12.78 23.72

This mechanism was used in a previous version of Pandore it performs at runtime a modulo and an integer division to nd the block n umber and the o set in the block.