Marc Le Fur

Yves Mah

E cient C o m m unications in Parallel Loop Distribution

published or not. The documents may come

Introduction

In the framework of the compilation of Hpf-like languages on distributed memory parallel computers, the distribution of regular parallel loops is studied extensively 9, 4, 1, 5, 6, 10]. Indeed, this kind of loops composes most computation-intensive parts of scienti c applications and contains a great amount o f p o t e n tial parallelism. The techniques embedded in data-parallel compilers are often based on the owner-computes rule: e a c h processor modies only the variables assigned to it by the user-speci ed distribution. For regular parallel loops, the compiler usually produces a Spmd target code composed of a communication code, during which distant data are received from other processors, and a computation code.

In this paper, we focus on the generation and on the e cient execution of the communication code and address the problem regarding both its compile-time and run-time aspects. Indeed, communication optimizations (vectorization, aggregation, etc.) are often described at a high level in the literature through send or receive sets. However, in order to obtain performances, the gap between sets and communication bu ers has to be lled in a non naive w ay. Run-time implementation strategies have a great importance therein.

Our approach applies to parallel loop nests with one statement, a ne loop bounds and array subscripts. Regarding data distribution, it is assumed that each distributed array is partitioned into rectangular blocks of equal dimensions (known at compile-time) but any mapping for these blocks is supported. In Hpf, t h i s h ypothesis encompasses for instance arrays distributed onto an abstract processor structure using the DISTRIBUTE directive. Thus each dimension of the array can be distributed with CYCLIC(k), CYCLIC, BLOCK or BLOCK(k).

The techniques we propose here have been implemented i n t h e Pandore environment 3], which is dedicated to the compilation, the execution and the observation of programs written in C-Pandore or in a subset of Hpf. One of the originalities of Pandore lies in the separation between the compilation scheme and the management o f distributed arrays. Both the compile-time and the run-time techniques bene t from this array management for communication optimization.

The paper is organized as follows. Section 2 recalls the distributed array management used in Pandore. The basic principles of our communication code generation for parallel loops is explained in section 3. An enhancement of this basic method is then presented in section 4 it reduces the complexity of the description of communication sets by taking advantage of the layout of distributed arrays.

Distributed Array Management

In the Pandore environment, distributed arrays are managed by a software paging system. The run-time uses the addressing scheme of standard paging systems but is not a virtual shared memory: the compiler always generates communication when distant data are needed, so we do not need to handle page faults.

The array management is based on the paging of arrays: the multi-dimensional index space of each array is linearized and then broken into pages. Pages are used to store local blocks and distant data received. If data have to be shared by t wo processors, each processor stores a copy of the page (or a part of the page) in its local memory. Array elements are accessed through a table of pages allocated on each processor.

Principle

To access an element referred to by an index vector (i 0 : : : i n;1) in the source program, a page number and an o set (PG and OF) are computed from the index vector with the linearization function L and the page size S: PG = L(i 0 : : : i n;1) div S OF = L(i 0 : : : i n;1) mod S. F o r a g i v en distributed array, the page size S and the linearization function L are computed by the compiler so that the evaluation of PG and OF is e cient. Time consuming operations are avoided by u s i n g p o we r s o f t wo, turning integer division, modulo and multiplication into simple logical operations (shifts and masks).

For this, the compiler rst choose the dimension in which the size of the blocks is the largest. Function L is the C linearization function applied to a permutation of the access vector that puts index number in last position. The page size S is then de ned by the following (s is the block size in dimension): if s is a power of two or dimension is not distributed, S is the smaller power of two greater than s otherwise S is the largest power of two less than s . Moreover simpli cations in the expression of PG and OF are performed when the is a non-distributed dimension. Figure 1 illustrates this paging in the 2D case.

Actually, an optimized computation of (PG,OF) i s a c hieved by a voiding the explicit computation of the linear address L(i 0 : : : i n;1): we express PG and OF directly as a function of the index vector, thus, when dimension is not distributed, mod and div operations are removed. A more detailed description of this array management can be found in 8].

Bene ts

With this software paging, access times remain very close to those without index conversion. The memory overhead induced does not exceed a few percents for most distributions it is almost entirely due to the tables of pages: when a page contains elements that have no equivalent in the original sequential space, or when just a part of a distant page is accessed in a loop, only a portion of the page is actually allocated. Moreover, paging distributed arrays o ers several worthwhile characteristics. First, the scheme is always applicable as it is independent of the analysis of the code: it only depends on distribution parameters. The scheme is uniform: as far as accesses are concerned, no di erence is made between local elements and distant elements previously received. Finally, the memory contiguity is preserved in the direction of the pages: contiguous elements of the original array are still contiguous in the local representation. This facilitates the exploitation of caches and vector processors and helps to optimize communications as it will be shown later.

Basic Communication Code for Parallel Loops

Let us brie y explain the principle of our communication code generation through the example given in gure 2. Loop bounds and array subscripts but also the distribution of arrays A and B are analyzed by the compiler. The generated code comprises two parts: a communication part |in charge of pre-fetching non-local data from other processors| followed by a computation part. The communication code is itself divided into a send code and a dual receive code. The basis of each code consists in the scanning of a polyhedron 7] that characterizes the set of data associated with B j i + j ; 2] that must be exchanged between processors.

In the analysis of array distributions, only the partitioning into blocks is considered by the compiler. In the example, array A is divided into 8 blocks of size 500 4000 whereas array B is decomposed into 8 blocks of size 4000 500. The mapping of the blocks (CYCLIC in the example) is taken into account at run-time through guards depending on the processor identity. The send code generated by the compiler is given in gure 3.

In this code, the (i j)-loop describes the set Block send set(A k A B k B): the set of elements of block n umber k B of B that must be sent to the owner of block n umber k A of A straightforward implementation of the run-time primitive elt send consists in a simple send of the element B j i + j ; 2]. This is not a satisfactory solution because it leads to a great number of small messages, and so to a prohibitive latency cost. One can think optimizing this implementation by aggregating all the elements to be sent from a processor to another. In this case, the primitive elt send adds a couple (address, value) to a bu er that can be sent at the end of the (i j)-loop. This reduces the number of messages but several drawbacks remain. First, the number of data transferred is not optimal since an address has to be attached to each element. Second, it necessitates memory copies between local representations of arrays and communication bu ers (packing/unpacking). The fact that intermediate communication bu ers are allocated constitutes also a memory overhead.

Moreover, in these two solutions, the time spent in the description of the send set is high since the scanning is performed element-wise.

To summarize, an e cient communication code needs to reduce memory overhead (communication bu ers, etc.) and the time passed in: the description of the communication sets the packing/unpacking of the communication bu ers the e ective data transfer (i.e. the number of messages and their size must be minimized). Minimizing all these parameters may be contradictory: for instance, a coarse description of send sets (e.g. surrounding rectangular sections) can be rapidly performed but is likely to bring about transfers of useless elements. Therefore, it is clear that a compromise must be reached that allows for the layout of arrays and that involves both the compiler and the run-time system. Next section presents such a compromise that is implemented in the Pandore environment.

E cient Communication Code for Parallel Loops

A solution for optimizing communications consists in sending supersets of send sets, while exploiting the memory contiguity i n t h e l a yout of distributed arrays. The choice adopted in Pandore consists in transferring the convex-hull of each send set associated with a pair of blocks i.e., for the example of gure 2, the convex-hull of each Block send set(A k A B k B). Thus, in the general case, Send set(B p p 0) is a non necessarily disjoint union of convex-hulls.

Enhancing the Compilation Technique

Allowing for the memory contiguity (i.e. the direction of pages) and representing send sets by their convex-hulls nd their expression in the de nition of new polyhedrons at compile-time. See 3] for more details about the static analysis performed to construct these polyhedrons.

The communication code obtained for the example given above is shown in gure 4.

It comprises three parts:

The rst one computes, on a given processor p, the set of processors p 0 that must receive data from p and for each p 0 , a description of Send set(B p p 0). In the second part, each processor p determines the set of processors that will send distant data to p. There is no computation of any receive set here since the description of the send sets will be included in the messages received by p. The third part is only a call to a run-time routine that is in charge of the interprocessor communications according to the di erent sets computed in the previous parts. As it can be seen on the code, the scanning of the convex-hull of a Block send set(A k A B k B) is performed e ciently |no longer element-wise| by e n umerating its extremal points in a given direction. The (i j)-loop of gure 3 has been replaced by a single loop scanning the columns of array B, since the pages of B are column-wise oriented. For a given column v, the routine portion_pack adds a portion of column v (B u inf::u sup v]) to the current Send set(B myself p A). Moreover, in this example, the convex-hull is exact since the linear part of the access function of reference B j i + j ; 2] is unimodular, which is generally the case in regular scienti c applications.

Enhancing the E ective D a t a T ransfers

The notion of segments is used to reduce the amount of memory needed for the storage of the description of send sets. It also permits data transfers to be and optimized. A segment is a contiguous set of elements within a page. It is represented by a triplet (pg, ofs, ofe) w h e r e pg is the page number and ofs (resp. ofe) is the o set of the beginning (resp. the end) of the segment. In gure 4, the call portion_pack(B v uinf u sup pA) adds the segments intersected by the portion of column B u inf::u sup v] to the list of segments to be sent t o pA. Only one segment per page is memorized in this list this segment is de ned by the convex union of the segments within the page. This mechanism ensures that an array element is recorded only once and prevents from redundant transfers, notably in the case of multiple right hand side reference to the same array.

The routine exchange(B) performs the sends and the receives of all the segments related to B. Segments are communicated di erently according to their size. Small segments are aggregated in a unique message whereas direct communication is used for big segments. In the latter case, the segment is transferred in a single message directly from the page on the sender side to the page on the receiver side, without any p a c king/unpacking. The threshold between small and big segments is determined from platformspeci c parameters such as the message latency and the memory copy bandwidth. In the current implementation of exchange, all the sends are performed prior to all the receives. A more asynchronous solution may b e e n visaged in which c o m m unication overlaps the construction of bu ers for aggregation.

This approach leads to a good compromise between the number of messages, the total amount of data transferred, the memory overhead and the time required for packing/unpacking bu ers.

Conclusion

In this paper, we h a ve presented original techniques for the generation and the e cient execution of communication code for parallel loop nests. The problem has been studied through its two components: on one hand, the generation of a fast description of communication sets by the compiler and, on the other hand, the implementation of e cient transfers at run-time. Both take i n to account t h e c haracteristics of the distributed array management, notably the memory contiguity.

These optimizations have been integrated in the Pandore environment. They lead to good performances for a number of numerical applications 2]. Figure 5 shows the speedups obtained on the Jacobi kernel on the Intel iPSC/2 and on a network of workstations.

Although the approach w e h a ve presented here applies to Hpf direct distributions, we are currently investigating the adaptation of our array management and of our static analysis in order to allow for alignment.

Figure 1 :

 1 Figure 1: Paging of 2D arrays

Figure 3 :

 3 Figure 2: HPF Source code

Figure 4 :

 4 Figure 4: Optimized communication code

Figure 5 :

 5 Figure 5: Speedups obtained on the Jacobi kernel