
HAL Id: hal-00426627
https://hal.science/hal-00426627v1

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Communications in Parallel Loop Distribution
Marc Le Fur, Yves Mahéo

To cite this version:
Marc Le Fur, Yves Mahéo. Efficient Communications in Parallel Loop Distribution. Fifth International
Conference on Parallel Computing (ParCo’95), Sep 1995, Gent, Belgium. pp.359-366. �hal-00426627�

https://hal.science/hal-00426627v1
https://hal.archives-ouvertes.fr

E�cient Communications in

Parallel Loop Distribution

Marc Le Fur and Yves Mah�eo

IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, FRANCE

Email: (mlefur|maheo)@irisa.fr

1 Introduction

In the framework of the compilation of Hpf-like languages on distributed memory parallel

computers, the distribution of regular parallel loops is studied extensively [9, 4, 1, 5, 6, 10].

Indeed, this kind of loops composes most computation-intensive parts of scienti�c applica-

tions and contains a great amount of potential parallelism. The techniques embedded in

data-parallel compilers are often based on the owner-computes rule: each processor modi-

�es only the variables assigned to it by the user-speci�ed distribution. For regular parallel

loops, the compiler usually produces a Spmd target code composed of a communication

code, during which distant data are received from other processors, and a computation

code.

In this paper, we focus on the generation and on the e�cient execution of the com-

munication code and address the problem regarding both its compile-time and run-time

aspects. Indeed, communication optimizations (vectorization, aggregation, etc.) are often

described at a high level in the literature through send or receive sets. However, in order

to obtain performances, the gap between sets and communication bu�ers has to be �lled

in a non naive way. Run-time implementation strategies have a great importance therein.

Our approach applies to parallel loop nests with one statement, a�ne loop bounds

and array subscripts. Regarding data distribution, it is assumed that each distributed

array is partitioned into rectangular blocks of equal dimensions (known at compile-time)

but any mapping for these blocks is supported. In Hpf, this hypothesis encompasses for

instance arrays distributed onto an abstract processor structure using the DISTRIBUTE

directive. Thus each dimension of the array can be distributed with CYCLIC(k), CYCLIC,

BLOCK or BLOCK(k).

The techniques we propose here have been implemented in the Pandore environ-

ment [3], which is dedicated to the compilation, the execution and the observation of

programs written in C-Pandore or in a subset of Hpf. One of the originalities of Pan-

dore lies in the separation between the compilation scheme and the management of

distributed arrays. Both the compile-time and the run-time techniques bene�t from this

array management for communication optimization.

The paper is organized as follows. Section 2 recalls the distributed array management

used in Pandore. The basic principles of our communication code generation for parallel

1

loops is explained in section 3. An enhancement of this basic method is then presented

in section 4; it reduces the complexity of the description of communication sets by taking

advantage of the layout of distributed arrays.

2 Distributed Array Management

In the Pandore environment, distributed arrays are managed by a software paging

system. The run-time uses the addressing scheme of standard paging systems but is not a

virtual shared memory: the compiler always generates communication when distant data

are needed, so we do not need to handle page faults.

The array management is based on the paging of arrays: the multi-dimensional index

space of each array is linearized and then broken into pages. Pages are used to store

local blocks and distant data received. If data have to be shared by two processors, each

processor stores a copy of the page (or a part of the page) in its local memory. Array

elements are accessed through a table of pages allocated on each processor.

2.1 Principle

To access an element referred to by an index vector (i0; : : : ; in�1) in the source program,

a page number and an o�set (PG and OF) are computed from the index vector with

the linearization function L and the page size S: PG = L(i0; : : : ; in�1) div S; OF =

L(i0; : : : ; in�1) mod S. For a given distributed array, the page size S and the linearization

function L are computed by the compiler so that the evaluation of PG and OF is e�cient.

Time consuming operations are avoided by using powers of two, turning integer division,

modulo and multiplication into simple logical operations (shifts and masks).

For this, the compiler �rst choose the dimension � in which the size of the blocks is the

largest. Function L is the C linearization function applied to a permutation of the access

vector that puts index number � in last position. The page size S is then de�ned by the

following (s� is the block size in dimension �): if s� is a power of two or dimension � is

not distributed, S is the smaller power of two greater than s�; otherwise S is the largest

power of two less than s�. Moreover simpli�cations in the expression of PG and OF are

performed when the is a non-distributed dimension. Figure 1 illustrates this paging in

the 2D case.

Actually, an optimized computation of (PG,OF) is achieved by avoiding the explicit

computation of the linear address L(i0; : : : ; in�1): we express PG and OF directly as a

function of the index vector, thus, when dimension � is not distributed, mod and div

operations are removed. A more detailed description of this array management can be

found in [8].

2.2 Bene�ts

With this software paging, access times remain very close to those without index conver-

sion. The memory overhead induced does not exceed a few percents for most distributions;

it is almost entirely due to the tables of pages: when a page contains elements that have

no equivalent in the original sequential space, or when just a part of a distant page is

accessed in a loop, only a portion of the page is actually allocated.

2

A(200,200) B(400,200)

S = 256
L(i,j) = 256 i + j

PG = i
OF = j

S = 64
L(i,j) = 512 j + i

PG = 8 j + i div 64
OF = i mod 64

50

50

200

256

200

64
100

400

512

200

DISTRIBUTE A(BLOCK,*) DISTRIBUTE B(CYCLIC(100),CYCLIC(50))

Figure 1: Paging of 2D arrays

Moreover, paging distributed arrays o�ers several worthwhile characteristics. First,

the scheme is always applicable as it is independent of the analysis of the code: it only

depends on distribution parameters. The scheme is uniform: as far as accesses are con-

cerned, no di�erence is made between local elements and distant elements previously

received. Finally, the memory contiguity is preserved in the direction of the pages: con-

tiguous elements of the original array are still contiguous in the local representation.

This facilitates the exploitation of caches and vector processors and helps to optimize

communications as it will be shown later.

3 Basic Communication Code for Parallel Loops

Let us briey explain the principle of our communication code generation through the

example given in �gure 2. Loop bounds and array subscripts but also the distribution of

arrays A and B are analyzed by the compiler. The generated code comprises two parts:

a communication part |in charge of pre-fetching non-local data from other processors|

followed by a computation part. The communication code is itself divided into a send code

and a dual receive code. The basis of each code consists in the scanning of a polyhedron [7]

that characterizes the set of data associated with B[j; i+ j � 2] that must be exchanged

between processors.

In the analysis of array distributions, only the partitioning into blocks is considered by

the compiler. In the example, array A is divided into 8 blocks of size 500� 4000 whereas

array B is decomposed into 8 blocks of size 4000 � 500. The mapping of the blocks

(CYCLIC in the example) is taken into account at run-time through guards depending on

the processor identity. The send code generated by the compiler is given in �gure 3.

In this code, the (i; j)-loop describes the set Block send set(A; kA; B; kB): the set of

elements of block number kB of B that must be sent to the owner of block number kA of

3

0
1
2
3
4
5
6
7

0

3999

A 0

500

3999

0 1 2 3 4 5 6 7

B 0
0

3999

3999
500

REAL, DIMENSION(0:3999,0:3999) :: A,B

!HPF$ PROCESSORS PROCS(P)

!HPF$ DISTRIBUTE (CYCLIC(500),*) ONTO PROCS :: A

!HPF$ DISTRIBUTE (*, CYCLIC(500)) ONTO PROCS :: B

DO I=1, 1000

DO J=I, 2*I+1

A(I,J-I) = B(J,I+J-2)

END DO

END DO

Figure 2: HPF Source code

for kA = 0 ; 2

if myself 6= owner of block kA of A then

for k
B

= max(0; 2 � k
A
� 1) ; min(5; 3 � k

A
+ 2)

if myself = owner of block k
B

of B then

for i = max(500 � kA; div(500 � kB + 3; 3)) ;

min(500 � kA + 499; 1000; 250 � kB + 250)

for j = max(i; 500 � k
B
� i+ 2) ; min(2 � i+ 1; 500 � k

B
� i+ 501)

elt send(B[j; i+ j � 2], owner of block kA of A)

Figure 3: Basic send code

A. So Block send set(A; kA; B; kB) is a subset of Send set(B; p; p0): the set of data of B

that must be sent from p (the owner of block kB of B) to p0 (the owner of block kA of A).

A straightforward implementation of the run-time primitive elt send consists in a

simple send of the element B[j; i+ j � 2]. This is not a satisfactory solution because it

leads to a great number of small messages, and so to a prohibitive latency cost.

One can think optimizing this implementation by aggregating all the elements to be

sent from a processor to another. In this case, the primitive elt send adds a couple

(address, value) to a bu�er that can be sent at the end of the (i; j)-loop. This reduces the

number of messages but several drawbacks remain. First, the number of data transferred

is not optimal since an address has to be attached to each element. Second, it necessi-

tates memory copies between local representations of arrays and communication bu�ers

(packing/unpacking). The fact that intermediate communication bu�ers are allocated

constitutes also a memory overhead.

Moreover, in these two solutions, the time spent in the description of the send set is

high since the scanning is performed element-wise.

To summarize, an e�cient communication code needs to reduce memory overhead

4

(communication bu�ers, etc.) and the time passed in:

� the description of the communication sets;

� the packing/unpacking of the communication bu�ers;

� the e�ective data transfer (i.e. the number of messages and their size must be

minimized).

Minimizing all these parameters may be contradictory: for instance, a coarse descrip-

tion of send sets (e.g. surrounding rectangular sections) can be rapidly performed but is

likely to bring about transfers of useless elements. Therefore, it is clear that a compromise

must be reached that allows for the layout of arrays and that involves both the compiler

and the run-time system. Next section presents such a compromise that is implemented

in the Pandore environment.

4 E�cient Communication Code for Parallel Loops

A solution for optimizing communications consists in sending supersets of send sets,

while exploiting the memory contiguity in the layout of distributed arrays. The choice

adopted in Pandore consists in transferring the convex-hull of each send set associ-

ated with a pair of blocks i.e., for the example of �gure 2, the convex-hull of each

Block send set(A; kA; B; kB). Thus, in the general case, Send set(B; p; p0) is a non nec-

essarily disjoint union of convex-hulls.

4.1 Enhancing the Compilation Technique

Allowing for the memory contiguity (i.e. the direction of pages) and representing send

sets by their convex-hulls �nd their expression in the de�nition of new polyhedrons at

compile-time. See [3] for more details about the static analysis performed to construct

these polyhedrons.

The communication code obtained for the example given above is shown in �gure 4.

It comprises three parts:

� The �rst one computes, on a given processor p, the set of processors p0 that must

receive data from p and for each p0, a description of Send set(B; p; p0).

� In the second part, each processor p determines the set of processors that will

send distant data to p. There is no computation of any receive set here since the

description of the send sets will be included in the messages received by p.

� The third part is only a call to a run-time routine that is in charge of the inter-

processor communications according to the di�erent sets computed in the previous

parts.

As it can be seen on the code, the scanning of the convex-hull of aBlock send set(A; kA;

B; kB) is performed e�ciently |no longer element-wise| by enumerating its extremal

points in a given direction. The (i; j)-loop of �gure 3 has been replaced by a single loop

scanning the columns of array B, since the pages of B are column-wise oriented. For a

5

||| Part 1 |||

for k
A
= 0; 2

pA := owner_block(A; kA)

if myself 6= pA then

for kB = max(0; 2 � kA � 1) ; min(5; 3 � kA + 2)

if myself = owner_block(B; kB) then

add_recver(B; pA)

for v = max(500 � kB; 1000 � kA � 2) ; min(500 � kB + 499; 1500 � kA + 1496)

u inf := max(div(v+ 3; 2); v� 998;�500 � kA + v � 497)

u sup := min(div(2 � v + 5; 3);�500 � kA + v + 2)

portion_pack(B; v; u inf; u sup; pA)

||| Part 2 |||

for kA = 0; 2

if myself = owner_block(A; kA) then

for kB = max(0; 2 � kA � 1) ; min(5; 3 � kA + 2)

pB := owner_block(B; kB)

if myself 6= pB then

add_sender(Y; pB)

||| Part 3 |||

exchange(B)

Figure 4: Optimized communication code

given column v, the routine portion_pack adds a portion of column v (B[u inf::u sup; v])

to the current Send set(B; myself; pA).

Moreover, in this example, the convex-hull is exact since the linear part of the access

function of reference B[j; i+ j � 2] is unimodular, which is generally the case in regular

scienti�c applications.

4.2 Enhancing the E�ective Data Transfers

The notion of segments is used to reduce the amount of memory needed for the storage

of the description of send sets. It also permits data transfers to be and optimized. A

segment is a contiguous set of elements within a page. It is represented by a triplet (pg,

ofs, ofe) where pg is the page number and ofs (resp. ofe) is the o�set of the beginning

(resp. the end) of the segment.

In �gure 4, the call portion_pack(B; v;u inf; u sup; pA) adds the segments inter-

sected by the portion of column B[u inf::u sup; v] to the list of segments to be sent to

pA. Only one segment per page is memorized in this list; this segment is de�ned by the

convex union of the segments within the page. This mechanism ensures that an array

element is recorded only once and prevents from redundant transfers, notably in the case

of multiple right hand side reference to the same array.

The routine exchange(B) performs the sends and the receives of all the segments

related to B. Segments are communicated di�erently according to their size. Small

6

segments are aggregated in a unique message whereas direct communication is used for

big segments. In the latter case, the segment is transferred in a single message directly

from the page on the sender side to the page on the receiver side, without any packing/-

unpacking. The threshold between small and big segments is determined from platform-

speci�c parameters such as the message latency and the memory copy bandwidth. In the

current implementation of exchange, all the sends are performed prior to all the receives.

A more asynchronous solution may be envisaged in which communication overlaps the

construction of bu�ers for aggregation.

This approach leads to a good compromise between the number of messages, the total

amount of data transferred, the memory overhead and the time required for packing/-

unpacking bu�ers.

5 Conclusion

In this paper, we have presented original techniques for the generation and the e�cient

execution of communication code for parallel loop nests. The problem has been studied

through its two components: on one hand, the generation of a fast description of com-

munication sets by the compiler and, on the other hand, the implementation of e�cient

transfers at run-time. Both take into account the characteristics of the distributed array

management, notably the memory contiguity.

These optimizations have been integrated in the Pandore environment. They lead

to good performances for a number of numerical applications [2]. Figure 5 shows the

speedups obtained on the Jacobi kernel on the Intel iPSC/2 and on a network of work-

stations.

Although the approach we have presented here applies to Hpf direct distributions,

we are currently investigating the adaptation of our array management and of our static

analysis in order to allow for alignment.

0

8

16

24

32

0 8 16 24 32

Nb Proc

iPSC/2

512 2

2

2

2

2

1024 4

4

4

4

ideal

0

2

4

6

8

0 2 4 6 8

Nb Proc

Sun Network

512 2

2

2

2

1024 4

4

4

4

ideal

Figure 5: Speedups obtained on the Jacobi kernel

7

References

[1] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. { A Linear Algebra Framework for

Static HPF Code Distribution. { In Fourth International Workshop on Compilers

for Parallel Computers, Delft, The Netherlands, December 1993.

[2] F. Andr�e, M. Le Fur, Y. Mah�eo, and J.-L. Pazat. { Parallelization of a Wave

Propagation Application using a Data Parallel Compiler. { In 9th International

Parallel Processing Symposium, Santa Barbara, California, April 1995.

[3] F. Andr�e, M. Le Fur, Y. Mah�eo, and J.-L. Pazat. { The Pandore Data-Parallel Com-

piler and its Portable Runtime. { In High-Performance Computing and Networking,

Milan, Italy, May 1995. LNCS 919, Springer Verlag.

[4] B.M. Chapman and H.P. Zima. { Compiling for Distributed-Memory Systems. {

Research Report ACPC/TR 92-17, Austrian Center for Parallel Computation, Uni-

versity of Vienna, November 1992.

[5] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S.-H. Teng. { Generating

Local Addresses and Communication Sets for Data-Parallel Programs. { In Fourth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

San Diego, California, May 1993.

[6] S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan. { Compiling Array

Expressions for E�cient Execution on Distributed-Memory Machines. { Technical

Report 19, The Ohio State University, 1994.

[7] M. Le Fur. { Scanning Parameterized Polyhedron using Fourier-Motzkin Elimination.

{ In High Performance Computing Symposium, Montr�eal, Canada, July 1995.

[8] Y. Mah�eo and J.-L. Pazat. { Distributed Array Management for HPF Compilers. {

In High Performance Computing Symposium, Montr�eal, Canada, July 1995.

[9] C.-W. Tseng. { An Optimizing Fortran D Compiler for MIMD Distributed-Memory

Machines. { PhD thesis, Rice University, Houston, Texas, January 1993.

[10] V. Van Dongen. { Compiling Distributed Loops onto SPMD Code. { Parallel Pro-

cessing Letter, 4(3), 1994.

8

