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Abstract

In this paper� the problem of evaluating the perfor�

mance of parallel programs generated by data�parallel

compilers is studied� These compilers take as input

an application written in a sequential language aug�

mented with data distribution directives and produce a

parallel version� based on the speci�ed partitioning of

data�

A methodology for evaluating the relationships ex�

isting among the program characteristics� the data dis�

tribution adopted� and the performance indices mea�

sured during the program execution is described� It

consists of three phases� a �static� description of the

program under study� a �dynamic� description� based

on the measurement and the analysis of its execution

on a real system� and the construction of a workload

model� by using workload characterization techniques�

Following such a methodology� decisions related to the

selection of the data distribution to be adopted can be

facilitated�

The approach is exposed through the use of the Pan�

dore environment� designed for the execution of se�

quential programs on distributed memory parallel com�

puters� It is composed of a compiler� a runtime system

and tools for trace and pro�le generation� The results

of an experiment explaining the methodology are pre�

sented�

� Introduction

Performance evaluation activities are required in
many studies� involving the design and the tuning of
a system� as well as the debugging of its performance�
Whatever is the objective of the study� the workload�
that is the set of programs submitted to the system� is
one of the major components which determine system
performance� in that strict relationships exist between
the obtained performance and the hardware and soft�

ware components of the system itself� Workload char�
acterization is the basis of every performance evalua�
tion study� in that it provides systematic methods for
a quantitative description of the load which� together
with the systems architectural aspects� is responsible
of the performance�

In parallel environments� in particular� the perfor�
mance evaluation process is more crucial and di�cult
than in sequential ones� The analysis and charac�
terization of the workload in parallel systems require
special care because of their complex architectures�
the large number of hardware and software compo�
nents interacting� and the new programming paradigm
adopted�

In this paper� we study the problem of evaluat�
ing the performance of parallel programs generated by
data�parallel compilers� Such compilers that takes as
input an application written in a sequential language
augmented with data distribution directives like HPF
��� and produce a parallel version� based on the spec�
i	ed partitioning of data 
e�g� ���� �� ����

The �parallelizing� compiler represents one of the
most important system�s software component in�uenc�
ing the program execution� However� even if the com�
piler manages in a transparent way code distribution�
data distribution and communication among tasks�
the parallelization decisions are de	nitively left to the
user who speci	es the partitioning of the data and
their mapping onto the available processors� These
factors highly in�uence the performance attained by
the system�

The paper is organized as follows� In Sect� �� the
motivations for such a study and the problems re�
lated to the selection of the appropriate data distri�
bution are presented� A methodology for the evalu�
ation of the relationships existing between the work�
load characteristics and the obtained performance is



proposed� In Sect� �� the environment used for the au�
tomatic generation of data parallel programs is brie�y
described� together with the pro	ler tool providing
measurements of the program execution� Finally� an
experiment showing the feasibility of the approach is
presented in Sect� ��

� Performance Evaluation of Data

Parallel Programs
From the performance point of view� the major

characteristic of a data parallel program is the de�
pendence of the obtained performance from the spec�
i	ed data distribution� which in�uences computation�
as well as communication activities� Optimal system
performance is obtained by balancing the computation
activity among di�erent processors but also by min�
imizing communication tra�c� and achieving a large
degree of parallelism�

As already pointed out� the user is still responsible
for decisions related to data distribution� Hence� due
to the large number of distributions available and to
the number of parameters a�ecting such decisions� an
help in selecting the appropriate data decomposition
which maximizes performance has emerged as an es�
sential requirement� This help can bene	t to the user�
who has to choose the distribution� or it can serve the
development of automatic data management in paral�
lelizing compilers 
see ��� �����

��� Methodology

Generally� depending on the objective of the study
and on the availability of the system� di�erent meth�
ods can be applied for performance evaluation �����
They range from the construction of models having an
analytical solution� to very detailed simulation mod�
els� to measurement based approaches� The major
bene	t in using performance modeling is when mea�
surements are not available� for example� in perfor�
mance prediction studies or during design activities�
A number of studies have been done in the frame�
work of data�parallel compilers to statically estimate
the performance of the generated parallel programs
��� ��� However� also in this case� an interaction with
performance measurement activity is required in order
to test if the model is realistic� or to verify the validity
of the parameterization of the model and to drive its
input�

When the system is available� a measurement�based
study is generally carried out� measurements represent
the basis for the workload characterization process

see ��� ��� Following this approach� the performances
of the real system are obtained� they contain also the
in�uence of hardware and software components which
would be otherwise di�cult to capture even in a very

detailed model� When dealing with programs gener�
ated by a parallelizing compiler� in particular� many
are the decisions to be taken and the factors which in�
teract and which make a measurement based approach
particularly suitable�

Thus� the approach that we propose is based on var�
ious statistical analyses of the data measured during
the program execution� The aim is to relate the pro�
gram characteristics with that of the data partition�
ing and mapping� in order to optimize performance�
Three phases have been identi	ed� First� the program
under study can be statically described by means of
a few parameters� Then� a �dynamic� description�
based on the measurement and the analysis of its ex�
ecution on a real system is obtained� Finally� work�
load characterization techniques are applied to the ob�
tained workload for constructing a model� In what
follows� the three phases are described in more detail�

By statically analyzing the program structure� a
workload description in terms of parameters that can
a�ect the choice of the data distribution can be ob�
tained� The attention has been focused on DO loops�
and on array data structures� because the most part of
scienti	c codes are based on loops working on data ar�
rays� and the major part of the parallelism inherent in
an application resides in them� Indeed� e�cient code
has to be generated especially for such structures� they
form also the major source of performance degradation
in numerical applications� due to communication�

Parameters which are strictly related to the loop
structure� and others which characterize the whole
program have been de	ned� As an example� the loop
can be de	ned by the size of each of the referenced
arrays� by the order of the index in the nested loops�
and by the depth of the loop� The selected data dis�
tribution� which can be identi	ed by the size of the
blocks into which the data structures are partitioned�
and the mapping strategy adopted are other parame�
ters characterizing the program� Finally� the number
of allocated processors can be chosen as a parameter
re�ecting the in�uence of the system hardware con	g�
uration�
Note that the parameter selection is a critical point�
in that they have to accurately describe the program
characteristics�

Once the program under study has been de	ned
according to some of the previously described param�
eters� the second phase deals with the measurement



and the analysis of its execution on a real architecture�
In order to trace the program execution� appropriate
monitoring instrumentation is required 
see ���� ����
Very low level data� related for example to the start
and to the end of an event� are produced by monitoring
tools and collected into trace 	les� The generally huge
amount of data obtained makes them di�cult to inter�
pret� At this point� a pre�elaboration phase is needed
in order to derive a more intuitive and compact de�
scription of the program behavior� Starting from mea�
surements collected by the monitoring tools� a set of
higher�level parameters are identi	ed� describing the
behavior of the program in terms of computation and
communication activities� Such parameters deal� for
example� with the number of messages exchanged� the
execution� computation and communication times�

At the end of these two phases� the whole program
execution can globally be represented by a set of n pa�
rameters� that is� those related to its �static� structure
and to the system con	guration� and those re�ecting
its �dynamic� behavior� that is� measured�

Each execution of the program is a workload com�

ponent� which can be represented as a point in a n�
dimensional space ��� Then� the workload processed
by the system is constituted by a collection of work�
load components� obtained varying the values of the
parameters� for example� changing the dimension of
the blocks into which data have been distributed� the
mapping policy� or the problem dimension�

The aim and the core of the methodology� at this
point� is to construct a model of the workload� that is�
a compact representation able to capture and repro�
duce the behavior of the system� Workload character�
ization techniques have to be applied� so that �typi�
cal� behaviors of the program can be identi	ed� mul�
tidimensional analysis techniques are required for this
purpose� A description of the techniques applied for
workload characterization is presented in the next sec�
tion�

��� Workload Characterization

The characteristics of the workload have to be stud�
ied by applying di�erent statistical analyses� A com�
plete description of workload characterization tech�
niques applied to performance evaluation studies of
various system architectures� can be found in ��� ���

The idea in our study is to 	nd relationships
among the program� the system con	guration� and the
achieved performance�
In order to reduce the number of parameters� and thus
the complexity of the analysis� the correlation among

the parameters can be analyzed� The correlation ma�
trix helps in selecting the most appropriate parame�
ters by expressing the dependencies among them� a
correlation index between two parameters close to one
re�ects an equivalent behavior� Just one parameter
amongst the highly correlated parameters can then be
considered for the description of the application� hence
reducing the dimension of the n�dimensional space�

Clustering analysis 
see ����� revealed very impor�
tant for the identi	cation of workload components
having �similar� behavior� and is most commonly ap�
plied to the workload characterization problem�
The workload is considered as a set of points 
compo�
nents� in a space with a number of dimensions equal to
the number of parameters used to describe each com�
ponent�
Clustering algorithms partition the workload into clus�
ters� such that components with similar characteristics
belong to the same cluster� These algorithms have to
identify the partition which better represents the char�
acteristics of the original measurements� The good�
ness of a partition is given by an optimality measure�
based on a selected metric� for example the euclidean
distance�
Then� according to some speci	ed criteria� a few com�
ponents are extracted from every cluster and are con�
sidered as the representatives of the measured work�
load� The centroid� that is� the geometric center of
the clusters� is generally chosen�

The partitioning of the workload means that �typ�
ical� behaviors can be identi	ed among the various
program executions� This gives the possibility to re�
late the static parameters describing the program and
the system con	guratio� with the dynamic ones� that
is� with the performance indices� Centroids represent
a model of the workload� hence� once the static con�
	guration of the program has been chosen� the corre�
sponding performance indices can be �expected��

Furthermore� clustering algorithms provide an
analysis of the behavior of the components belonging
to a cluster� Basic statistics� such as minimum� max�
imum� average values and standard deviation give a
	rst idea of the �average� behavior of the program�
For example� when considering parameters related to
communication activities� a very high value of the
standard deviation� compared with the mean value�
is a synonym of variabilities� This means that unbal�
anced conditions due to uneven work or data distribu�
tion are detected�

In Sect� �� the application of our methodology is



described through a test example�
In the following section� the environment used for par�
allelizing the program and for monitoring its execution
is presented�

� The Pandore Environment
Pandore is an environment designed for the exe�

cution of sequential programs on distributed memory
parallel computers ���� It is composed of a compiler�
a runtime system and tools for trace and pro	le gen�
eration�

��� The Language

The Pandore language is based on a sequential
imperative language using a subset of C 
excluding
pointers� as a basis� We have added a small set of
simple and well�de	ned data distribution features in
order to describe frequently used decompositions�

A Pandore program is a sequential program which
calls distributed phases� The sequential part is in
charge of all I�O operations and is executed on the
host processor 
if exists� or on one speci	c node of
the distributed computer� Each distributed phase is
spread over the processors of the target machine and
is executed in parallel according to the owner�writes
rule�

Distributed phases are declared like procedures pre�
ceded by the keyword dist� To each formal parame�
ter of the distributed phase is assigned a distribution�
The distributed parameter list allows the speci	cation
of the partitioning and the mapping of the data used
in the distributed phase�

The array is the only data type that may be par�
titioned� scalars are replicated� The means to decom�
pose an array is to split it into blocks� The speci	�
cation of the partitioning for a d�dimensional array is
given by the construct block 
t�� ���� td� where ti indi�
cates the size of the blocks in the ith dimension�

Then� the mapping of the blocks onto the architec�
ture will be achieved in a regular or cyclic way accord�
ing to the mapping parameters 
regular or wrapped��
In Pandore� we consider only one dimensional pro�
cessor arrays whose size is not speci	ed in the source
code but used as a parameter by the compiler� As
we allow the mapping of multidimensional decompo�
sitions� it is needed to indicate the order for the map�
ping of blocks by providing an ordered list of dimen�
sion numbers� for instance� ����� states for column
	rst� ����� states for row 	rst�

The last speci	cation given in the parameter list
concerns the transfer mode for values between the
caller and the distributed phase� allowed modes are
IN� OUT and INOUT� This speci	cation is similar to the
one found in Ada or Fortran���

For example the formal parameter declaration

int A�N��N� by block���N� map wrapped����� mode INOUT

states that array A is decomposed into N lines mapped
cyclically onto the processors� The value of the ele�
ments of the array must be transferred from the host
at the beginning of the distributed phase and must be
sent back to it at the end of the phase�

��� The Compiler and the Runtime Sys�
tem

From the source program� the Pandore compiler
automatically generates a machine independent spmd
code according to the owner�writes rule� a processor
modi	es only the variables that have been assigned to
it by the distribution speci	cation�

Two compilation schemes are embedded in the com�
piler� For reductions and parallel loops� the com�
piler applies an optimized scheme ���� performing loop
bounds reduction and message vectorization� based on
static domain analysis� For statements that cannot be
optimized� the compiler relies on the well�known run�

time resolution technique� masks and communication
operations are introduced at the statement level to
fetch distant data and select the processor responsible
for the computation�

An original distributed array management based
on paging ���� has been developed to support both
schemes� Each block of a distributed array is decom�
posed into pages so that the array is represented on
a processor by a table of pages that contains both lo�

cal pages 
pages of the blocks owned by the processor�
and distant pages 
copies of pages owned by other pro�
cessors�� Such a management leads to both e�cient
accesses and reasonable memory overhead�

The code generated by the compiler is a spmd C

code containing calls to the runtime system� The goal
of the runtime system is to implement memory and
process management� communication of data elements
between processes� and distributed data accesses� It is
build upon a virtual machine that permits the execu�
tion of Pandore programs on a wide range of parallel
platforms�

��� The Pandore Pro�ler

The Pandore pro	ler allows the user to collect
a number of quantitative measures on his program�s
execution with minimal intervention� It may be com�
plemented by a trace generator for more qualitative
measurements ���� The use of pro	ling restrains the
amount of storage needed� the number of counters to
be updated is of the order of the number of variables
declared in the source program� Sensors are inserted
in modi	ed versions of some runtime primitives� thus



the compiler generates a similar code whether an in�
strumentation is demanded or not� An enhancement
of mere pro	ling is actually used� in addition to their
occurrences� the durations of events may also be cu�
mulated ����� Measurements are performed on each
node and counters are brought back to the host at the
end of the execution and then written down into a 	le
that can be exploited by appropriate tools�

The links between the source and the evaluation
results are established two di�erent ways� 	rst the
user bounds fragments of the distributed phases he
wants to be evaluated by de	ning some instrumenta�

tion zones� typically loop nests� Moreover� output 	g�
ures are associated with objects of the source program
such as arrays� scalars or conditional statements�

Twelve types of information are available that can
be divided in two categories�

� Information relative to each instrumentation zone

For each distributed variable v and each couple
of processors 
p�� p��� the number of messages
from p� to p� required for the assignment of v

is computed as well as the corresponding volume
transferred and the cumulated waiting time on
p�� Identical information is collected for broad�
cast messages due to assignments to replicated
scalars and due to the evaluation of conditional
expressions�

For the entire zone� the number of local accesses
to a distributed array element and the number
of accesses that required communication is com�
puted for each processor� Identically� the number
of purely local assignments and the number of as�
signments that required distant data is reported�

The execution time for the zone is also given�

� Information relative to each distributed phase

For each distributed variable� the time spent re�
ceiving the corresponding initial value from the
host is reported for each processor� The waiting
part of this time is also given�

Di�erent times are measured globally for the
phase� the time for the triggering of the phase
by the host� the time for transferring IN variables
from the host� the time for executing the state�
ments of the phase and the time for transferring
OUT variables back to the host�

� Experiments
In order to test the feasibility of the proposed

methodology� a few experiments have been carried out
based on data obtained using the pro	ler integrated

into the Pandore environment� described in the pre�
vious section� An iPSC�� with �� nodes has been
chosen as target architecture� As a test program� the
Jacobi algorithm has been considered 
see Fig� ���
Following the methodology presented in Sect� ��� raw
data collected by the pro	ler have been analyzed� by
applying various statistical techniques�

The algorithm has been statically described as fol�
lows� the size of the array 
Size� has been chosen for
the de	nition of the loop� while the number of allo�
cated processors 
Npr� and the number of blocks 
NBl�
into which the array are partitioned represent the data
distribution policy�
Di�erent runs of the algorithm have been executed�
and monitored using the Pandore pro	ler� obtain�
ing �� components for the workload� Each workload
component has been obtained by executing the algo�
rithm varying from � to �� the number of allocated
processors� the problem size� and the number of blocks
allocated per processor�

At the beginning� �� parameters have been ex�
tracted from the measurements for the description of
the achieved performance� They are 
see Sect� ���� the
mean number of messages exchanged between a cou�
ple of processors 
NM�� the waiting time 
Wait�� the
execution time for the zone 
Tex�� the time for the
triggering of the phase 
Trigg� by the host� the time
for transferring variables from the host 
Tin� and back
to the host 
Tout� and parameters related to the num�
ber of accesses 
NRL� NRD� NAD� NAR��

�define N ���

�define P �

���

dist jacobien�double B�N	�N	 by block�N
P�N�

map wrapped����

mode INOUT

�

double A�N	�N	 by block�N
P�N� map wrapped�����

�

int i�j�

for �i��� i��N���� i���

for �j��� j��N���� j��� �

A�i	�j	 � � B�i��	�j	 � B�i��	�j	 �

B�i	�j��	 � B�i	�j��	 � �

V � B�i	�j	 �

�

�

Figure �� The Jacobi algorithm considered�

The pre�analysis phase dealt with the de	nition of
the relevant parameters able to capture the parallel



characteristics of the load� Indeed� each component�
has been represented in a ���dimensional space�

The aim of the experiments was to analyze the av�
erage behavior of the program� the value of the pa�
rameters for each component have been computed by
averaging the values on all the processors on which the
data have been distributed�
Analyzing the correlation matrix 
see Fig� ��� � highly
correlated parameters have been discovered� In the
further analysis� only � parameters� namely� the num�
ber of processors� the array size� the number of blocks
per processor� the number of exchanged messages� the
execution time� and the I�O times� have been consid�
ered 
see Fig� ���

Cluster analysis yield an optimal partition of the
workload into � clusters� whose statistics are shown in
Fig� �� As can be seen� cluster � contains the major
part of the workload components� and is characterized
by low execution times and number of exchanged mes�
sages�
Looking at the composition of each cluster� we can
see that� independently on the number of the allo�
cated processors� cluster � groups executions with high
problem size and high number of blocks per processor�
Then� we can conclude that the performance obtained
when executing the jacobi algorithm with high prob�
lem size and a partitioning of the data in small blocks
are independent on the number of allocated proces�
sors�

� Conclusions and Future Work
A methodology for evaluating the relationships ex�

isting among the program characteristics� the data dis�
tribution adopted and the measured performance in�
dices has been presented� The results of an experiment
in which the Jacobi algorithm has been analyzed� have
been shown�

Following such methodology� decisions related to
the selection of the data distribution to be adopted
can be facilitated�

The methodology has to be tested on real applica�
tion programs� Then� a more detailed description of
the loop has to be studied� re�ecting� for example� the
dependences among the statements� can be useful for
representing the in�uence that such factors have on
the selected data distribution� If di�erent experimen�
tations are carried out while varying the data distribu�
tion� the data mapping and the problem description�
groups of programs with similar performance behavior

can be identi	ed� Then� given the program descrip�
tion� a prediction of the performance can be obtained�
based on the speci	ed data distribution�
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Figure �� Correlation matrix�
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Figure �� Workload components�
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Figure �� Statistics of the two clusters obtained�


