
HAL Id: hal-00426619
https://hal.science/hal-00426619v1

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Evaluation of Automatically Generated
Data Parallel Programs

Luisa Massari, Yves Mahéo

To cite this version:
Luisa Massari, Yves Mahéo. Performance Evaluation of Automatically Generated Data Parallel Pro-
grams. Fourth Euromicro Workshop on Parallel and Distributed Processing, Jan 1996, Braga, Portu-
gal. pp.534-540, �10.1109/EMPDP.1996.500629�. �hal-00426619�

https://hal.science/hal-00426619v1
https://hal.archives-ouvertes.fr


Performance Evaluation of Automatically Generated Data�Parallel

Programs

L� Massari Y� Mah�eo

DIS IRISA

Universit�a di Pavia Campus de Beaulieu

via Ferrata � Avenue du G�en�eral Leclerc

����� Pavia	 ITALIA 
���� Rennes Cedex	 FRANCE

Abstract

In this paper� the problem of evaluating the perfor�

mance of parallel programs generated by data�parallel

compilers is studied� These compilers take as input

an application written in a sequential language aug�

mented with data distribution directives and produce a

parallel version� based on the speci�ed partitioning of

data�

A methodology for evaluating the relationships ex�

isting among the program characteristics� the data dis�

tribution adopted� and the performance indices mea�

sured during the program execution is described� It

consists of three phases� a �static� description of the

program under study� a �dynamic� description� based

on the measurement and the analysis of its execution

on a real system� and the construction of a workload

model� by using workload characterization techniques�

Following such a methodology� decisions related to the

selection of the data distribution to be adopted can be

facilitated�

The approach is exposed through the use of the Pan�

dore environment� designed for the execution of se�

quential programs on distributed memory parallel com�

puters� It is composed of a compiler� a runtime system

and tools for trace and pro�le generation� The results

of an experiment explaining the methodology are pre�

sented�

� Introduction

Performance evaluation activities are required in
many studies� involving the design and the tuning of
a system� as well as the debugging of its performance�
Whatever is the objective of the study� the workload�
that is the set of programs submitted to the system� is
one of the major components which determine system
performance� in that strict relationships exist between
the obtained performance and the hardware and soft�

ware components of the system itself� Workload char�
acterization is the basis of every performance evalua�
tion study� in that it provides systematic methods for
a quantitative description of the load which� together
with the systems architectural aspects� is responsible
of the performance�

In parallel environments� in particular� the perfor�
mance evaluation process is more crucial and di�cult
than in sequential ones� The analysis and charac�
terization of the workload in parallel systems require
special care because of their complex architectures�
the large number of hardware and software compo�
nents interacting� and the new programming paradigm
adopted�

In this paper� we study the problem of evaluat�
ing the performance of parallel programs generated by
data�parallel compilers� Such compilers that takes as
input an application written in a sequential language
augmented with data distribution directives like HPF
��� and produce a parallel version� based on the spec�
i	ed partitioning of data 
e�g� ���� �� ����

The �parallelizing� compiler represents one of the
most important system�s software component in�uenc�
ing the program execution� However� even if the com�
piler manages in a transparent way code distribution�
data distribution and communication among tasks�
the parallelization decisions are de	nitively left to the
user who speci	es the partitioning of the data and
their mapping onto the available processors� These
factors highly in�uence the performance attained by
the system�

The paper is organized as follows� In Sect� �� the
motivations for such a study and the problems re�
lated to the selection of the appropriate data distri�
bution are presented� A methodology for the evalu�
ation of the relationships existing between the work�
load characteristics and the obtained performance is



proposed� In Sect� �� the environment used for the au�
tomatic generation of data parallel programs is brie�y
described� together with the pro	ler tool providing
measurements of the program execution� Finally� an
experiment showing the feasibility of the approach is
presented in Sect� ��

� Performance Evaluation of Data

Parallel Programs
From the performance point of view� the major

characteristic of a data parallel program is the de�
pendence of the obtained performance from the spec�
i	ed data distribution� which in�uences computation�
as well as communication activities� Optimal system
performance is obtained by balancing the computation
activity among di�erent processors but also by min�
imizing communication tra�c� and achieving a large
degree of parallelism�

As already pointed out� the user is still responsible
for decisions related to data distribution� Hence� due
to the large number of distributions available and to
the number of parameters a�ecting such decisions� an
help in selecting the appropriate data decomposition
which maximizes performance has emerged as an es�
sential requirement� This help can bene	t to the user�
who has to choose the distribution� or it can serve the
development of automatic data management in paral�
lelizing compilers 
see ��� �����

��� Methodology

Generally� depending on the objective of the study
and on the availability of the system� di�erent meth�
ods can be applied for performance evaluation �����
They range from the construction of models having an
analytical solution� to very detailed simulation mod�
els� to measurement based approaches� The major
bene	t in using performance modeling is when mea�
surements are not available� for example� in perfor�
mance prediction studies or during design activities�
A number of studies have been done in the frame�
work of data�parallel compilers to statically estimate
the performance of the generated parallel programs
��� ��� However� also in this case� an interaction with
performance measurement activity is required in order
to test if the model is realistic� or to verify the validity
of the parameterization of the model and to drive its
input�

When the system is available� a measurement�based
study is generally carried out� measurements represent
the basis for the workload characterization process

see ��� ��� Following this approach� the performances
of the real system are obtained� they contain also the
in�uence of hardware and software components which
would be otherwise di�cult to capture even in a very

detailed model� When dealing with programs gener�
ated by a parallelizing compiler� in particular� many
are the decisions to be taken and the factors which in�
teract and which make a measurement based approach
particularly suitable�

Thus� the approach that we propose is based on var�
ious statistical analyses of the data measured during
the program execution� The aim is to relate the pro�
gram characteristics with that of the data partition�
ing and mapping� in order to optimize performance�
Three phases have been identi	ed� First� the program
under study can be statically described by means of
a few parameters� Then� a �dynamic� description�
based on the measurement and the analysis of its ex�
ecution on a real system is obtained� Finally� work�
load characterization techniques are applied to the ob�
tained workload for constructing a model� In what
follows� the three phases are described in more detail�

By statically analyzing the program structure� a
workload description in terms of parameters that can
a�ect the choice of the data distribution can be ob�
tained� The attention has been focused on DO loops�
and on array data structures� because the most part of
scienti	c codes are based on loops working on data ar�
rays� and the major part of the parallelism inherent in
an application resides in them� Indeed� e�cient code
has to be generated especially for such structures� they
form also the major source of performance degradation
in numerical applications� due to communication�

Parameters which are strictly related to the loop
structure� and others which characterize the whole
program have been de	ned� As an example� the loop
can be de	ned by the size of each of the referenced
arrays� by the order of the index in the nested loops�
and by the depth of the loop� The selected data dis�
tribution� which can be identi	ed by the size of the
blocks into which the data structures are partitioned�
and the mapping strategy adopted are other parame�
ters characterizing the program� Finally� the number
of allocated processors can be chosen as a parameter
re�ecting the in�uence of the system hardware con	g�
uration�
Note that the parameter selection is a critical point�
in that they have to accurately describe the program
characteristics�

Once the program under study has been de	ned
according to some of the previously described param�
eters� the second phase deals with the measurement



and the analysis of its execution on a real architecture�
In order to trace the program execution� appropriate
monitoring instrumentation is required 
see ���� ����
Very low level data� related for example to the start
and to the end of an event� are produced by monitoring
tools and collected into trace 	les� The generally huge
amount of data obtained makes them di�cult to inter�
pret� At this point� a pre�elaboration phase is needed
in order to derive a more intuitive and compact de�
scription of the program behavior� Starting from mea�
surements collected by the monitoring tools� a set of
higher�level parameters are identi	ed� describing the
behavior of the program in terms of computation and
communication activities� Such parameters deal� for
example� with the number of messages exchanged� the
execution� computation and communication times�

At the end of these two phases� the whole program
execution can globally be represented by a set of n pa�
rameters� that is� those related to its �static� structure
and to the system con	guration� and those re�ecting
its �dynamic� behavior� that is� measured�

Each execution of the program is a workload com�

ponent� which can be represented as a point in a n�
dimensional space ��� Then� the workload processed
by the system is constituted by a collection of work�
load components� obtained varying the values of the
parameters� for example� changing the dimension of
the blocks into which data have been distributed� the
mapping policy� or the problem dimension�

The aim and the core of the methodology� at this
point� is to construct a model of the workload� that is�
a compact representation able to capture and repro�
duce the behavior of the system� Workload character�
ization techniques have to be applied� so that �typi�
cal� behaviors of the program can be identi	ed� mul�
tidimensional analysis techniques are required for this
purpose� A description of the techniques applied for
workload characterization is presented in the next sec�
tion�

��� Workload Characterization

The characteristics of the workload have to be stud�
ied by applying di�erent statistical analyses� A com�
plete description of workload characterization tech�
niques applied to performance evaluation studies of
various system architectures� can be found in ��� ���

The idea in our study is to 	nd relationships
among the program� the system con	guration� and the
achieved performance�
In order to reduce the number of parameters� and thus
the complexity of the analysis� the correlation among

the parameters can be analyzed� The correlation ma�
trix helps in selecting the most appropriate parame�
ters by expressing the dependencies among them� a
correlation index between two parameters close to one
re�ects an equivalent behavior� Just one parameter
amongst the highly correlated parameters can then be
considered for the description of the application� hence
reducing the dimension of the n�dimensional space�

Clustering analysis 
see ����� revealed very impor�
tant for the identi	cation of workload components
having �similar� behavior� and is most commonly ap�
plied to the workload characterization problem�
The workload is considered as a set of points 
compo�
nents� in a space with a number of dimensions equal to
the number of parameters used to describe each com�
ponent�
Clustering algorithms partition the workload into clus�
ters� such that components with similar characteristics
belong to the same cluster� These algorithms have to
identify the partition which better represents the char�
acteristics of the original measurements� The good�
ness of a partition is given by an optimality measure�
based on a selected metric� for example the euclidean
distance�
Then� according to some speci	ed criteria� a few com�
ponents are extracted from every cluster and are con�
sidered as the representatives of the measured work�
load� The centroid� that is� the geometric center of
the clusters� is generally chosen�

The partitioning of the workload means that �typ�
ical� behaviors can be identi	ed among the various
program executions� This gives the possibility to re�
late the static parameters describing the program and
the system con	guratio� with the dynamic ones� that
is� with the performance indices� Centroids represent
a model of the workload� hence� once the static con�
	guration of the program has been chosen� the corre�
sponding performance indices can be �expected��

Furthermore� clustering algorithms provide an
analysis of the behavior of the components belonging
to a cluster� Basic statistics� such as minimum� max�
imum� average values and standard deviation give a
	rst idea of the �average� behavior of the program�
For example� when considering parameters related to
communication activities� a very high value of the
standard deviation� compared with the mean value�
is a synonym of variabilities� This means that unbal�
anced conditions due to uneven work or data distribu�
tion are detected�

In Sect� �� the application of our methodology is



described through a test example�
In the following section� the environment used for par�
allelizing the program and for monitoring its execution
is presented�

� The Pandore Environment
Pandore is an environment designed for the exe�

cution of sequential programs on distributed memory
parallel computers ���� It is composed of a compiler�
a runtime system and tools for trace and pro	le gen�
eration�

��� The Language

The Pandore language is based on a sequential
imperative language using a subset of C 
excluding
pointers� as a basis� We have added a small set of
simple and well�de	ned data distribution features in
order to describe frequently used decompositions�

A Pandore program is a sequential program which
calls distributed phases� The sequential part is in
charge of all I�O operations and is executed on the
host processor 
if exists� or on one speci	c node of
the distributed computer� Each distributed phase is
spread over the processors of the target machine and
is executed in parallel according to the owner�writes
rule�

Distributed phases are declared like procedures pre�
ceded by the keyword dist� To each formal parame�
ter of the distributed phase is assigned a distribution�
The distributed parameter list allows the speci	cation
of the partitioning and the mapping of the data used
in the distributed phase�

The array is the only data type that may be par�
titioned� scalars are replicated� The means to decom�
pose an array is to split it into blocks� The speci	�
cation of the partitioning for a d�dimensional array is
given by the construct block 
t�� ���� td� where ti indi�
cates the size of the blocks in the ith dimension�

Then� the mapping of the blocks onto the architec�
ture will be achieved in a regular or cyclic way accord�
ing to the mapping parameters 
regular or wrapped��
In Pandore� we consider only one dimensional pro�
cessor arrays whose size is not speci	ed in the source
code but used as a parameter by the compiler� As
we allow the mapping of multidimensional decompo�
sitions� it is needed to indicate the order for the map�
ping of blocks by providing an ordered list of dimen�
sion numbers� for instance� ����� states for column
	rst� ����� states for row 	rst�

The last speci	cation given in the parameter list
concerns the transfer mode for values between the
caller and the distributed phase� allowed modes are
IN� OUT and INOUT� This speci	cation is similar to the
one found in Ada or Fortran���

For example the formal parameter declaration

int A�N��N� by block���N� map wrapped����� mode INOUT

states that array A is decomposed into N lines mapped
cyclically onto the processors� The value of the ele�
ments of the array must be transferred from the host
at the beginning of the distributed phase and must be
sent back to it at the end of the phase�

��� The Compiler and the Runtime Sys�
tem

From the source program� the Pandore compiler
automatically generates a machine independent spmd
code according to the owner�writes rule� a processor
modi	es only the variables that have been assigned to
it by the distribution speci	cation�

Two compilation schemes are embedded in the com�
piler� For reductions and parallel loops� the com�
piler applies an optimized scheme ���� performing loop
bounds reduction and message vectorization� based on
static domain analysis� For statements that cannot be
optimized� the compiler relies on the well�known run�

time resolution technique� masks and communication
operations are introduced at the statement level to
fetch distant data and select the processor responsible
for the computation�

An original distributed array management based
on paging ���� has been developed to support both
schemes� Each block of a distributed array is decom�
posed into pages so that the array is represented on
a processor by a table of pages that contains both lo�

cal pages 
pages of the blocks owned by the processor�
and distant pages 
copies of pages owned by other pro�
cessors�� Such a management leads to both e�cient
accesses and reasonable memory overhead�

The code generated by the compiler is a spmd C

code containing calls to the runtime system� The goal
of the runtime system is to implement memory and
process management� communication of data elements
between processes� and distributed data accesses� It is
build upon a virtual machine that permits the execu�
tion of Pandore programs on a wide range of parallel
platforms�

��� The Pandore Pro�ler

The Pandore pro	ler allows the user to collect
a number of quantitative measures on his program�s
execution with minimal intervention� It may be com�
plemented by a trace generator for more qualitative
measurements ���� The use of pro	ling restrains the
amount of storage needed� the number of counters to
be updated is of the order of the number of variables
declared in the source program� Sensors are inserted
in modi	ed versions of some runtime primitives� thus



the compiler generates a similar code whether an in�
strumentation is demanded or not� An enhancement
of mere pro	ling is actually used� in addition to their
occurrences� the durations of events may also be cu�
mulated ����� Measurements are performed on each
node and counters are brought back to the host at the
end of the execution and then written down into a 	le
that can be exploited by appropriate tools�

The links between the source and the evaluation
results are established two di�erent ways� 	rst the
user bounds fragments of the distributed phases he
wants to be evaluated by de	ning some instrumenta�

tion zones� typically loop nests� Moreover� output 	g�
ures are associated with objects of the source program
such as arrays� scalars or conditional statements�

Twelve types of information are available that can
be divided in two categories�

� Information relative to each instrumentation zone

For each distributed variable v and each couple
of processors 
p�� p��� the number of messages
from p� to p� required for the assignment of v

is computed as well as the corresponding volume
transferred and the cumulated waiting time on
p�� Identical information is collected for broad�
cast messages due to assignments to replicated
scalars and due to the evaluation of conditional
expressions�

For the entire zone� the number of local accesses
to a distributed array element and the number
of accesses that required communication is com�
puted for each processor� Identically� the number
of purely local assignments and the number of as�
signments that required distant data is reported�

The execution time for the zone is also given�

� Information relative to each distributed phase

For each distributed variable� the time spent re�
ceiving the corresponding initial value from the
host is reported for each processor� The waiting
part of this time is also given�

Di�erent times are measured globally for the
phase� the time for the triggering of the phase
by the host� the time for transferring IN variables
from the host� the time for executing the state�
ments of the phase and the time for transferring
OUT variables back to the host�

� Experiments
In order to test the feasibility of the proposed

methodology� a few experiments have been carried out
based on data obtained using the pro	ler integrated

into the Pandore environment� described in the pre�
vious section� An iPSC�� with �� nodes has been
chosen as target architecture� As a test program� the
Jacobi algorithm has been considered 
see Fig� ���
Following the methodology presented in Sect� ��� raw
data collected by the pro	ler have been analyzed� by
applying various statistical techniques�

The algorithm has been statically described as fol�
lows� the size of the array 
Size� has been chosen for
the de	nition of the loop� while the number of allo�
cated processors 
Npr� and the number of blocks 
NBl�
into which the array are partitioned represent the data
distribution policy�
Di�erent runs of the algorithm have been executed�
and monitored using the Pandore pro	ler� obtain�
ing �� components for the workload� Each workload
component has been obtained by executing the algo�
rithm varying from � to �� the number of allocated
processors� the problem size� and the number of blocks
allocated per processor�

At the beginning� �� parameters have been ex�
tracted from the measurements for the description of
the achieved performance� They are 
see Sect� ���� the
mean number of messages exchanged between a cou�
ple of processors 
NM�� the waiting time 
Wait�� the
execution time for the zone 
Tex�� the time for the
triggering of the phase 
Trigg� by the host� the time
for transferring variables from the host 
Tin� and back
to the host 
Tout� and parameters related to the num�
ber of accesses 
NRL� NRD� NAD� NAR��

�define N ���

�define P �

���

dist jacobien�double B�N	�N	 by block�N
P�N�

map wrapped����

mode INOUT

�

double A�N	�N	 by block�N
P�N� map wrapped�����

�

int i�j�

for �i��� i��N���� i���

for �j��� j��N���� j��� �

A�i	�j	 � � B�i��	�j	 � B�i��	�j	 �

B�i	�j��	 � B�i	�j��	 � �

V � B�i	�j	 �

�

�

Figure �� The Jacobi algorithm considered�

The pre�analysis phase dealt with the de	nition of
the relevant parameters able to capture the parallel



characteristics of the load� Indeed� each component�
has been represented in a ���dimensional space�

The aim of the experiments was to analyze the av�
erage behavior of the program� the value of the pa�
rameters for each component have been computed by
averaging the values on all the processors on which the
data have been distributed�
Analyzing the correlation matrix 
see Fig� ��� � highly
correlated parameters have been discovered� In the
further analysis� only � parameters� namely� the num�
ber of processors� the array size� the number of blocks
per processor� the number of exchanged messages� the
execution time� and the I�O times� have been consid�
ered 
see Fig� ���

Cluster analysis yield an optimal partition of the
workload into � clusters� whose statistics are shown in
Fig� �� As can be seen� cluster � contains the major
part of the workload components� and is characterized
by low execution times and number of exchanged mes�
sages�
Looking at the composition of each cluster� we can
see that� independently on the number of the allo�
cated processors� cluster � groups executions with high
problem size and high number of blocks per processor�
Then� we can conclude that the performance obtained
when executing the jacobi algorithm with high prob�
lem size and a partitioning of the data in small blocks
are independent on the number of allocated proces�
sors�

� Conclusions and Future Work
A methodology for evaluating the relationships ex�

isting among the program characteristics� the data dis�
tribution adopted and the measured performance in�
dices has been presented� The results of an experiment
in which the Jacobi algorithm has been analyzed� have
been shown�

Following such methodology� decisions related to
the selection of the data distribution to be adopted
can be facilitated�

The methodology has to be tested on real applica�
tion programs� Then� a more detailed description of
the loop has to be studied� re�ecting� for example� the
dependences among the statements� can be useful for
representing the in�uence that such factors have on
the selected data distribution� If di�erent experimen�
tations are carried out while varying the data distribu�
tion� the data mapping and the problem description�
groups of programs with similar performance behavior

can be identi	ed� Then� given the program descrip�
tion� a prediction of the performance can be obtained�
based on the speci	ed data distribution�

References
��� F� Andr�e� M� Le Fur� Y� Mah�eo� and J��L� Pazat�

The Pandore Data Parallel Compiler and its
Portable Runtime� In International Conference

and Exhibition on High�Performance Computing

and Networking� HPCN Europe	
�� number ���
in Lecture Notes in Computer Science� Milan�
Italy� May ����� Springer Verlag�

��� V� Balasundaram� G� Fox� K� Kennedy� and
U� Kremer� A Static Performance Estimator to
Guide Data Partitioning Decisions� In �rd ACM

SYGPLAN Symposium on Principles and Prac�

tice of Parallel Programming� Williamsburg� VA
USA� June �����

��� C� Bareau� Y� Mah�eo� and J��L� Pazat� Par�
allel Program Performance Debugging with the
Pandore II Environment� Parallel Computing�
September �����

��� M� Calzarossa and L� Massari� Measurement�
Based Approach to Workload Characterization�
In G� Haring� R� Marie� and G� Kotsis� edi�
tors� Performance and Reliability Evaluation� Tu�

torials Papers at the th International Confer�

ence on Modelling Techniques and Tools for Com�

puter Performance Evaluation� OCG Schriften�
reihe� pages ������� Oldenbourg Verlag� �����

��� M� Calzarossa and G� Serazzi� Workload Char�
acterization� A Survey� Proc� of the IEEE�
�
������������ �����

��� B� Chapman� T� Fahringer� and H�P� Zima� Au�
tomatic Support for Data Distribution on Dis�
tributed Memory Multiprocessor Systems� In
U� Banerjee� D� Gelernter� A� Nicolau� and
D� Padua� editors� Proc� Sixth International

Workshop on Languages and Compilers for Par�

allel Computing� number �� in Lecture Notes
in Computer Science� pages ������� Springer�
Verlag� �����

��� T� Fahringer and H� Zima� A Static Parameter
Based Performance Prediction Tool for Parallel
Programs� In International Conference on Super�

computing� Tokyo� Japan� July ����� ACM Press�

�� D� Ferrari� G� Serazzi� and A� Zeigner� Measure�

ment and Tuning of Computer Systems� Prentice�
Hall� Inc�� ����



��� High Performance Fortran Forum� High Perfor�
mance Fortran Language Speci	cation� Version
���� Technical report� Rice University� Huston�
Texas� �����

���� J�A� Hartigan� Clustering Algorithms� John Wi�
ley � Sons� New York� �����

���� P� Heidelberger and S�S� Lavenberg� Computer
Performance Evaluation Methodology� IEEE

Trans� on Computers� C���
�������������� ����

���� S� Hiranandani� K� Kennedy� and C�W� Tseng�
Compiling Fortran D for MIMD Distributed�
Memory Machines� Communications of the ACM�
��
�� August �����

���� C� Kesselman� Tools and Techniques for Perfor�

mance Measurement and Performance Improve�

ment in Parallel Programs� PhD thesis� UCLA�
July �����

���� M� Le Fur� J��L� Pazat� and F� Andr�e� An Ar�
ray Partitioning Analysis for Parallel Loop Dis�
tribution� In International Conference on Paral�

lel Processing� Euro�Par	
�� Stockholm� Sweden�
August ����� Springer Verlag�

���� Y� Mah�eo and J��L� Pazat� Distributed Ar�
ray Management for HPF Compilers� In High

Performance Computing Symposium� Montreal�
Canada� July �����

���� J� Ramanujam and P� Sadayappan� Compile�
Time Techniques for Data Distribution in Dis�
tributed Memory Machines� IEEE Trans� on Par�

allel and Distributed Systems� �
���������� Oc�
tober �����

���� P�H� Worley� A New PICL Trace File Format�
Technical Report TM������� Oak Ridge National
Laboratory� �����

��� H� Zima and B� Chapman� Compiling for
Distributed�Memory Systems� Proc� of the IEEE�
�
���������� �����



Npr Size NBl NM Wait Tex Tin Tout NRL NRD NAD

Npr ���� ���� ���� ���� ���� ���� ����� ���� ����	 ���� ����	

Size ���� ���� ���� ��
	 ��
� ���� ���	 ���� ���	 ��
	 ���	

NBl ���� ���� ���� ��	� ���� ���� ���� ��

 ����� ��	� ����

NM ���� ��
	 ��	� ���� ��� ��	 ���	 ���� ��� ���� ���	

Wait ���� ��
� ���� ��� ���� ���� ����� ��	
 ����� ��� �����

Tex ���� ���� ���� ��	 ���� ���� ����� ��	
 ����� ��	 �����

Tin ����� ���	 ���� ���	 ����� ����� ���� ����� ���� ���	 ����

Tout ���� ���� ��

 ���� ��	
 ��	
 ����� ���� ����� ���� �����

NRL ����	 ���	 ����� ��� ����� ����� ���� ����� ���� ��� ����

NRD ���� ��
	 ��	� ���� ��� ��	 ���	 ���� ��� ���� ���	

NAD ����	 ���	 ���� ���	 ����� ����� ���� ����� ���� ���	 ����

Figure �� Correlation matrix�

Npr Size NBl NM Tex Tin Tout

� ��	 � �
��� ������ ����� 
�	�

� ��	 � �		��� ����� ���	� �������

� ��	 � ������ ���
�
 ����� �������

� ��	 	 ��	���� ��
	��	� ����� ������

� �� � ����� �
����� ����� ������

� �� � �	���� 
����

 �	��� �������

� �� � ������� ��		��� �
���� 	�
����

� �� 	 ��
���� �
������ �
���� 	�����

	 ��	 � ������ ������	 	���� ��	��	

	 ��	 � ������ �����	
 ������ �������

	 ��	 � ����� 	�	��� ����
� �������

�

�

Figure �� Workload components�

� th cluster of � n� of observations� �
�����

param� center min max st�dev

Npr ���
� ����� ����� ���	

Size ����� ��	���� ������ �����

NBl 
���
 ����� 	���� �����

NM ������ ������ ��	����� �	���

Tex �
�����	 �������� ��
	��	�� ��������

Tin ������� ������ ����� ��	��
�

Tout ��
����� 
�	�� 
����
� 	�����

� th cluster of � n� of observations� ������

param� center min max st�dev

Npr 	���� ����� ����� ���

Size ������ ������ ������ �����

NBl ���� ����� 	���� �����

NM �����	� �	����� ��
����� ���	��	�

Tex ������
� ��
����� �
������� 
	����
�

Tin �����	� �
���� ���
�� 
�	����

Tout ���
���� �����
	� 	����� �������

Figure �� Statistics of the two clusters obtained�


