
HAL Id: hal-00426601
https://hal.science/hal-00426601

Submitted on 2 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Agents and Artefacts for Multiple Models coordination.
Objective and decentralized coordination of simulators.

Julien Siebert, Laurent Ciarletta, Vincent Chevrier

To cite this version:
Julien Siebert, Laurent Ciarletta, Vincent Chevrier. Agents and Artefacts for Multiple Models co-
ordination. Objective and decentralized coordination of simulators.. 25th Symposium on Applied
Computing - SAC 2010, Mar 2010, Sierre, Switzerland. pp.2024-2028. �hal-00426601�

https://hal.science/hal-00426601
https://hal.archives-ouvertes.fr

Agents & Artefacts for Multiple Models coordination

Objective and decentralized coordination of simulators

Julien Siebert
INRIA, Centre Nancy Grand

Est
julien.siebert@loria.fr

Laurent Ciarletta
Ecole Nationale Supérieure

des Mines de Nancy
laurent.ciarletta@loria.fr

Vincent Chevrier
Université Henri Poincaré

(Nancy 1)
vincent.chevrier@loria.fr

LORIA - Campus Scientifique - BP 239 - 54506 Vandoeuvre-lès-Nancy Cedex

ABSTRACT
Complex systems simulation implies the interaction of dif-
ferent scientific fields. However, most of the time people in-
volved into the simulation process do not know intricate dis-
tributed simulation tools and only care about their own do-
main modelling. We propose a framework (called AA4MM)
to build a simulation as a society of interacting models. The
main goal is to reuse existing models and simulators and to
make them interact. The coordination challenges remain to
the AA4MM framework so that the simulation design and
implementation stay as simple as possible. In this paper,
we present the coordination model which intends to decen-
tralize the simulators interactions. We propose to use the
environment through the notion of artefact in order to deal
with the coherence, compatibility and coordination issues
that appear in parallel simulations.

Keywords
Multiple interacting models. A&A paradigm. Data-driven
coordination model. Decentralization.

1. INTRODUCTION
A complex system is composed of a set of interacting parts

that, as a whole, exhibits properties that cannot be pre-
dicted from the simple sum of the individual parts proper-
ties. Human economies, social structures, climate or ecosys-
tems are good examples of complex systems. Equation based
modelling cannot represent interactions among components
and their impact on the global system behaviour. Multia-
gent approach offers an interesting alternative [12]

Complex systems modelling also involves the interaction
of different scientific domains or different abstraction levels.
In biology for example, in order to understand and to predict
the impact of a molecule on a specific organism, both mod-
els from chemistry (chemical reaction) and biology (cellular,
tissue, organ) are needed [10]. This way, different special-
ists work on the same simulation. Each one brings its own

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

models and simulators.
The challenge is then to allow those scientists to build a

complex simulation from their own building blocks. More-
over, we should keep in mind that they are probably not
familiar with the intricate modelling and simulation tools
and theories. One way to facilitate the design and the im-
plementation of such a simulation is to build it as a society
of interacting models. Models should be seen as components
we can weave together (as in component-based software en-
gineering).

We propose a framework (called AA4MM) to build a sim-
ulation as a society of interacting models. The main goal is
to reuse existing models and simulators and to make them
interact. However, the main constraint is that people in-
volved into the simulation process do not know intricate dis-
tributed simulation tools and only have to care about their
own domain modelling. Coordination challenges remain to
the AA4MM framework.

2. CHALLENGES AND RELATED WORKS
Contrary to the work in [5], where all models are inte-

grated into DEVS formalism and run in a single simulator,
we assume that each model has been created independently
and implemented in its own simulator. Consequently, each
model has its own representation of time and data. In the
same way, each simulator proceeds its own execution. The
following sections list issues that appear when coupling dif-
ferent models and simulators.

2.1 Coherence and compatibility issues

2.1.1 Coherence between models
Scales or dimensions in which a piece of data is represented

could be different from a model to another. For example, a
position: pos1 = < x, y, z > (with x, y and z expressed
in meters) in a first model can be represented only in two
dimensions in a second one: pos2 = < x′, y′ > (with x′

and y′ expressed in kilometers). A solution proposed in [1]
is to define operations (projection, discretisation, reduction)
in order to achieve this coherence.

Moreover, each model could have its own time represen-
tation. We need to assure, for example, that a time value
t1 ∈ R+ in a first model correspond to a time value t2 ∈ N in
a second one. A possible solution is to express an operation
that makes the correspondence between both time values.

2.1.2 Compatibility between simulators

Each simulator could implement a single piece of data in
its own way (integer, float...) or some simulators may not
implement all aspects of a given model. These challenges are
discussed in [6]. A solution is to add an entity (a program)
between the simulators. Its role is to translate the data in
order to respect the compatibility between simulation tools.

2.2 Coordination issues
The goal of time management in distributed simulation

is to ensure that simulation events (or steps) are executed
in the correct order. Two main approaches have been pro-
posed to coordinate interacting simulators: optimistic and
conservative [2]. We assume that the existing simulators
we reuse have been developed independently and where not
thought for distributed simulations. So they do not have a
roll-back capability (see optimistic approach): they cannot
go back into the simulation process in order to take new in-
put events into consideration. As a consequence, we focus
on the conservative mode. In the latter, the coordination
model has to determine when a simulation event (or step) is
safe to process.

Definition 2.2.1. For a model Mi, a simulation event
(or step) associated with the current simulation time cti is
said to be safe to process if all the input events received after
this event execution are timestamped with a time value > cti.

Conservative coordination can be done by using a cen-
tral and global scheduler that synchronizes all the simula-
tors as in [1, 6, 3]. These solutions prevent to easily reuse
the existing models and simulators since they need substan-
tial modifications in order to be controlled by the scheduler.
Moreover, a global scheduler imposes a bottleneck that ar-
duously allows the simulation to scale up in terms of either
systems size or number of abstraction levels. In section 3, we
remove this central scheduler and we propose a decentralized
coordination model.

3. PROPOSAL

3.1 Hypothesis and requirements
We do not target on-line nor real time simulations, which

directly interact with the reality. Instead we focus on a
model that fits our initial requirements. We try to facilitate
the design of a society of interacting models by suppressing
the global scheduler and by modifying as little as possible
the existing models and simulators used.

We propose to use objective coordination. That is, coor-
dination does not rely on a single entity but is provided by
the surrounding environment. This method is well known in
the field of situated multiagent systems [11, 7] (stigmergy)
or in parallel systems [8] (shared memory). This provides
a way to loosely couple and to coordinate the interacting
processes. In our case, the simulators interact through the
set of data they exchange.

3.2 Validity interval and coordination

3.2.1 Description
Each model Mi holds a current simulation time value cti.

The simulator Si knows the simulation time value for the
next event to be processed nti. When a model Mi is exe-
cuted, it produces data δi at time cti. These data δi will not

change until the next time Mi is executed (at time nti). As
a result, we can say that δi are valid for the simulation time
interval Γi = [cti, nti[.

A simulator can execute a model if the simulation event to
process is safe (see definition 2.2.1). Then, the issue for the
simulator is to know when an event is safe. It can be solved if
the simulators exchange both the data and the correspond-
ing validity interval: < δj ; Γj >. Indeed, a simulation event
is safe to process if and only if:

∀j 6= i : cti ∈ Γj

This way, the input data < δj ; Γj > are safe for the simulator
Si and the latter can process the simulation event at time
cti.

3.2.2 Properties
We have developed a formal specification (in event-B) of

this coordination model. Describing the whole specification
is out of the scope of this article. However, it is available in
[9]. This formal specification is used to prove that coordi-
nation occurs between models and that the system is alive
and deadlock free with k models (k ∈ N). A sketch of the
proof, using reductio ad absurdum is presented hereafter.

Assume, within this coordination model, that a simula-
tor Si is stopped at time cti. It is waiting for input data
< δj , Γj > from another simulator Sj (i 6= j). This simu-
lator cannot send data because it is also stopped but at a
time ctj < cti. Sj also wait for input data. Two cases ap-
pear. Either the simulator Sj is waiting for input data from
Si. In this case it means that Si is waiting for itself, that
contravenes our assumption. Or the simulator Sj is waiting
for input data < δk, Γk > from another simulator Sk at time
ctk < ctj < cti with (i 6= j 6= k). In this case, we come back
to the very first case. Since the number of simulators and the
number of simulation events are assumed to be finite, and
since ∀i : cti ≥ 0, we can show by recursion that the latter
case means that initial conditions are not set correctly and
then that the simulation cannot happen. This contravenes
our initial assumption. We target the initial conditions on
an example in section 5.2.

4. FRAMEWORK OVERVIEW
In this section, we present how the A&A paradigm is used

to take up the coupling challenges and how it implements
the coordination model.

4.1 Architecture
In agent oriented software engineering, agents are auto-

nomous entities that interact with each other and with their
environments in order to solve a given task [12]. In the A&A
paradigm [4], the artefacts are used to design and to imple-
ment the interactions. They can be seen as tools used by the
agents. In the case of building a simulation as a society of in-
teracting models and simulators, the agents are in charge of
the models execution and they interact through some spe-
cific artefacts. The coupling-artefact allows the agents to
exchange data. It is in charge of coherence and compatibil-
ity issues and it implements the coordination model. The
model-artefact allows the agents to initialize, to execute the
model, to send input data and to get output data. The fig-
ure 1 depicts this architecture. An implementation example
is given in the section 5 and the corresponding agents and
artefacts used are described by figure 4.

Figure 1: Architecture overview

4.2 Artefacts functions
In A&A paradigm [4], artefacts hold functions that agents

can use. In this section, we present details about the model-
artefact and the coupling-artefacts.

4.2.1 Model-artefact
The model-artefact role is to allow the agents to operate

on a given model. We propose 6 functions. Init() allows to
create a model instance and to initialize it. Run() allows to
run the simulation only for one step or for one event. Then,
in order to exchange some data between models, next func-
tions are getOutputData() and setInputData(). Finally, as
they are needed for the coordination process, last functions
are getCurrentTime() that returns cti and getNextTime()
that returns nti (Cf 3.2).

4.2.2 Coupling-artefact
The coupling-artefact allows the agents to post() and read()

data δi. However, this artefact also intends to prepare data
and to filter them. Thus, the post() function adds the va-
lidity interval Γi to the data δi. The read() function in-
cludes the guard condition cti ∈ Γj to coordinate mod-
els. read() only returns valid and last produced data to
the agent. Moreover, it is possible to add operations (as in
[1]) in order to deal with coherence and compatibility issues
(Cf 2).

4.3 Agents behaviour
The role of the agent (a model-agent in our case) is to

run a specific task. The artefacts are tools it can use. The
very first role of a model-agent is to execute the model and
to read and post data. We distinguish three major phases.
First, the agent has to create and initialize the artefacts it is
going to use (at least one model and one coupling-artefact).
Then, the agent manages the simulation process as describe
on figure 2. It loops over the five steps. Finally, once the
simulation is over, this agent can retrieve results and save
them for analysis.

5. IMPLEMENTATION EXAMPLE
In this section, we present an example of a simulation

made of different interacting simulators. We choose to use
Netlogo [14] since it is easy to understand and well known.
Note that each model is executed independently in its own
Netlogo instance, i.e. there are as many simulators running
in parallel as interacting models. Implementation details
and other use cases are discussed in section 6.

5.1 Coordination of existing Netlogo models

Figure 2: A model-agent managing the simulation
process

The example is the following: assume we want to build
a simulation of a sheepfold. We are interested into the in-
fluence between the sheep movements and the dynamic of
sheep grazing. Models already exist for each dynamic [13,
15]. The first one M1, the sheep model, depicts the sheep
movements: sheep move randomly, lose some energy and
shepherds try to gather them. The second model M2, the
grass model, represents sheep1 eating grass and gaining en-
ergy. We want these two dynamics to influence each other.
That is, M1 must send the sheep positions to M2 while M2

gives the sheep energy levels back to M1 (see figure 3). The
architecture with A&A concepts is represented by figure 4.

Figure 3: Sheep - grass models dependency network

Figure 4: Sheep and grass models implementation

5.1.1 Model artefacts design
In order to make both simulators S1 and S2 (and their own

models M1 and M2) interact, we need to interface them by
creating the model-artefacts (one for each). In 4.2, we de-
fine model-artefact functions. We implement them, without
modifying the original models, by simply calling procedures
through the provided Netlogo API.

For example, the functions of the model-artefact in charge
of M1 are designed as follows. The Init() function, that sets
the number of sheep, shepherds and their initial positions in
M1, is a call for the ”setup” Netlogo procedure. The Run()

1Originally rabbits, we changed species.

function, that runs one simulation step of M1, calls the ”go”
procedure. getCurrentTime() and getNextTime(), that re-
turns ct1 and nt1, report the number of ”ticks” and ”ticks
+ 1” (as we process simulation step by step). getOutput-
Data() function, that returns the sheep positions δ1, reports
all sheep present in the model and gathers their positions.
setInputData() sets into M1 the sheep energy δ2 produced
by M2. This is done by invoking the ”set energy”Netlogo
command on all the sheep in M1.

5.1.2 Coupling-artefacts design and architecture
overview

Once the dependency network is done (figure 3), we can
design the coupling-artefacts. We propose that each coupling-
artefact is in charge of only one set of data < δi, Γi >. In
our example, one coupling-artefact, cA1, is in charge of sheep
positions < δ1, Γ1 >. The other one, cA2, is in charge of the
sheep energy levels < δ2, Γ2 >.

This way, the model-agent in charge of M1 can post sheep
positions < δ1, Γ1 > to cA1 and read sheep energy levels
< δ2, Γ2 > from cA2 (Cf section 3.2).

Finally, we link each model-agent with its dedicated arte-
facts. Thus, the implementation strictly follows the initial
dependency network. The whole architecture is represented
in figure 4.

5.2 Model and simulators coordination
We saw on figure 3 that each model is waiting for data

from the other one. In order to bootstrap the simulation,
each model-agent must post initial data to the coupling-
artefacts. Initial sheep positions < δ1; [0, 1[> and initial
sheep energy levels < δ2; [0, 1[> have to be sent to their
respective coupling-artefacts before the simulation process
begins.

Then, the models execution follows the process described
by figure 2. Once the model-agent 1 has read the sheep en-
ergy levels from the coupling-artefact 2, it sends them to the
sheep model-artefact, executes M1, gets the sheep positions
and posts them to the coupling-artefact 1. On the other
side, the model-agent 2 reads and sends the sheep positions
to the grass model-artefact, executes M2, gets sheep energy
levels and posts them. In fact model-agents wait for each
other and synchronize themselves thanks to the exchanged
data δi present in their environment.

5.3 Scales differences
Until now, we have assumed that time and space scales

in both models M1 and M2 were the same. In the next
sections, we present how that framework is useful to make
models with different scales interact.

5.3.1 Different space scales
It may not be necessary to represent grass as precise as

sheep are. That is, one patch of grass may correspond to
a square of 2× 2 patches in the sheep model M1 (Cf figure
5). Since it is not possible to change the patches size in the
grass model M2, sheep positions produced by M1 does not
fit anymore with space in M2. As a consequence, we need
to add an operation in the coupling-artefact cA1 when the
grass model-agent reads the sheep positions. This operation
consists in dividing each sheep position coordinates by a
factor 2.

Here, we target a challenge due to the exchanged data

Figure 5: Sheep and grass models spaces correspon-
dence

coherence. We only modify the entity in charge of that issue:
the coupling-artefact. However, since we have altered the
space in the grass model M2, we may also want to change
the model behaviour. For example, how the grass on a patch
is eaten could now be a function of the number of sheep on
that patch. To do that, we only need to change the model
M2 itself; no matter to change either the model-artefact or
the model-agent.

5.3.2 Different time scales
The grass model M2 may no longer be executed step-by-

step but 2 steps by 2 steps; while the sheep model exe-
cution remains step-by-step (Cf figure 6). This is related

Figure 6: Sheep and grass models execution times
correspondence

to the model execution process. So we modify the grass
model-agent Run() and getNextTime() functions. That is,
instead of calling the ”go” Netlogo procedure only once in
the Run() function, the model-agent calls it twice. Then get-
NextTime() returns now the number of ”ticks + 2”. These
are the only modifications to do since the coordination oc-
curs only thanks to time values given by getCurrentTime()
and getNextTime() functions.

6. DISCUSSION
All the framework has been developed in Java since it

makes Java Messaging Service platform2 and Netlogo inte-
gration easier. JMS platform is used for shared memory
purposes. In this article, we present an example based upon
the Netlogo platform that makes only two simulators (and
their models) interact. Due to space constraints, we do not
present all the features allowed by that framework. Indeed,
coupling and synchronizing the model-agents through their
environment deeply simplify the addition of a new model.
We have made experiments with three Netlogo models (both
M1 and M2 plus a model of wolves predation).

Changing the dependences between the models is also sim-
plified by the use of one coupling-artefact for each kind of

2Java Messaging Service. http://java.sun.com/products/jms/

dependence. That is, if M1 and M2 both depends on the
data δ3 provided by a third model M3, we just need to build
a coupling-artefact in charge of δ3. M1 and M2 will read
that data from this new coupling-artefact.

In this article, we only talk about step-by-step simulation.
We currently work on mobile ad hoc networks (MANET)
simulations in which an event-driven simulator interact with
a step-by-step multiagent simulator. The coordination model
is exactly the same as the one described here. No additional
modification is needed in order to integrate an event-driven
simulator into the AA4MM framework.

The technical details, the examples and source code are
available on the framework webpage3.

7. CONCLUSION
We propose a framework (called AA4MM) to build a sim-

ulation as a society of interacting models. The main goal is
to reuse existing models and simulators and to make them
interact. However, the main constraint is that people in-
volved into the simulation process do not know intricate
distributed simulation tools and only care about their own
domain modelling. That is, coordination challenges remain
to the AA4MM framework.

In this paper, we present the coordination model in or-
der to decentralize the simulator interactions. We propose
to use the environment through the notion of artefact in
order to deal with the coherence, compatibility and coordi-
nation issues that appear in parallel simulations. We have
developed a framework that intends to deeply simplify the
simulation of complex systems by easily building a society
of interacting models and simulators.

We do not target the implementation performances. In-
deed, parallel simulations have the advantage of theoreti-
cally scaling up. Large size systems or numerous abstrac-
tion levels may be simulated. However, the data exchange
between simulators can cause a huge overhead and can slow
down the whole simulation. These scalability issues are plan
as future work.

We do not mention the open system consideration. That
is, we only focus on different interacting models where agents
do not enter or leave their model. We think that when an
agent leaves, enters or goes from one model to another, ex-
changing data is not sufficient. We plan to extend our frame-
work in order to deal with that issue. The challenge here is
to respect our requirements of coordination via the environ-
ment.

This work has been motivated by our initial studies on
the interactions between humans behaviour and dynamic
networks. Since we have now the tools to reuse existing
models and simulators, we plan to focus on the experiments
in this domain.

8. ACKNOWLEDGEMENTS
The authors would like to thank the ANR SARAH project

and La Region Lorraine for their financial support. Coordi-
nation formal specification in event B has been developed in
collaboration with Joris Rehm4. JMS implementation has
been done in collaboration with Virginie Galtier5.

3http://www.loria.fr/∼siebertj/aa4mm/aa4mm.html
4joris.rehm@loria.fr; MOSEL Team, LORIA.
5virginie.galtier@supelec.fr; Supelec Metz.

9. REFERENCES
[1] S. Bonneaud, P. Redou, and P. Chevaillier. Pattern

oriented agent-based multi-modeling of exploited
ecosystems. In 6th EUROSIM congress on modelling
and simulation, september 9-13 2007.

[2] R. M. Fujimoto. Parallel simulation: parallel and
distributed simulation systems. In WSC ’01:
Proceedings of the 33nd conference on Winter
simulation, pages 147–157, Washington, DC, USA,
2001. IEEE Computer Society.

[3] F. Kuhl, R. Weatherly, and J. Dahmann. Creating
computer simulation systems: an introduction to the
high level architecture. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1999.

[4] A. Omicini, A. Ricci, and M. Viroli. Artifacts in the
a&a meta-model for multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 17(3):432–456, 2008.

[5] G. Quesnel, R. Duboz, D. Versmisse, and E. Ramat.
The virtual laboratory environment: A multimodelling
and simulation framework. In Transactions on
Modeling and Computer Simulation. ACM, 2009.

[6] G. F. Riley, M. H. Ammar, R. M. Fujimoto, A. Park,
K. Perumalla, and D. Xu. A federated approach to
distributed network simulation. ACM Trans. Model.
Comput. Simul., 14(2):116–148, 2004.

[7] M. Rupert, A. Rattrout, and S. Hassas. The web from
a complex adaptive systems perspective. J. Comput.
Syst. Sci., 74(2):133–145, 2008.

[8] M. Schumacher. Objective coordination in multi-agent
system engineering: design and implementation.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2001.

[9] J. Siebert, J. Rehm, V. Chevrier, L. Ciarletta, and
D. Mery. Aa4mm coordination model: event-b
specification. Technical report, INRIA, 2009.

[10] J. Southern, J. Pitt-Francis, J. Whiteley, D. Stokeley,
H. Kobashi, R. Nobes, Y. Kadooka, and D. Gavaghan.
Multi-scale computational modelling in biology and
physiology. Progress in Biophysics and Molecular
Biology, (96), 2008.

[11] H. Van Dyke Parunak, S. Brueckner, and J. Sauter.
Digital pheromone mechanisms for coordination of
unmanned vehicles. In AAMAS ’02: Proceedings of the
first international joint conference on Autonomous
agents and multiagent systems, pages 449–450, New
York, NY, USA, 2002. ACM.

[12] H. Van Dyke Parunak, R. Savit, and R. L. Riolo.
Agent-based modeling vs. equation-based modeling: A
case study and users’ guide. In MABS, pages 10–25,
1998.

[13] U. Wilensky. Netlogo shepherds model, 1998. Center
for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

[14] U. Wilensky. Netlogo, 1999. Center for Connected
Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.

[15] U. Wilensky. Netlogo rabbits grass weeds model, 2001.
Center for Connected Learning and Computer-Based
Modeling, Northwestern University, Evanston, IL.

