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Abstract

This article addresses the utilisation of the component-
based approach for building and executing a distributed ap-
plication that can offer services over a set of heterogeneous
and possibly volatile devices. We propose to rely on a hi-
erarchical component model and present a method for
distributing a component that makes the set of its inter-
faces available everywhere. The runtime system associated
with this model allows disconnections of devices to be re-
flected on the architecture of the component by disabling
some of its interfaces while allowing it to perform in a de-
graded mode.
keywords: hierarchical components, distributed compo-
nents, context-awareness, disconnections, Fractal.

1. Introduction

Mobile devices such as PDAs, laptops or mobiles phones
are becoming more and more popular. When used together
with traditional workstations, they can form new dis-
tributed platforms for which new distributed applicative
needs emerge. One of the challenges we are faced is to be
able to implement distributed applications that take into ac-
count the heterogeneous and dynamic characteristics of this
kind of equipment. Indeed, designing and deploying ap-
plications in this context requires to consider software
and hardware specificities of the various devices as well
as to support the (more or less important) dynamic char-
acteristics of the runtime environment, which are namely
induced by the volatility of the hosts and the connec-
tions.

Existing component models [11, 12, 13] and more gen-
erally the component approach have proved their interest in
designing, implementing and maintaining distributed appli-
cations. They allow an application to be designed as a set of
interconnected components accessible through well defined
interfaces, the whole forming a potentially complex archi-
tecture. But most of the existing models and their associ-

ated middleware support have been designed for business
client/server applications targeting traditional networks of
workstations. They often rely on rather strong assumptions
on the stability of the execution platform (e.g. permanent
availability of a server component) and suppose that each
of the hosts offers sufficient resources. In general, an appli-
cation designed this way cannot be installed or execute on
networks of potentially volatile hosts with sometimes lim-
ited resources.

This article addresses the utilisation of the component-
based approach for building and executing an application
that should offer services over a set of mobile devices with
possibly limited hardware and software resources. The dif-
ferent parts of the application do not necessarily reside on
all the hosts but on each of them, the application should be
usable. A degraded functioning mode may take place if all
the parts of the application are not accessible.

In this perspective, we propose to use a hierarchical com-
ponent model in which a component can be itself an assem-
bly of components (it is then called a composite compo-
nent). A common way to distribute a component-based ap-
plication consists in installing each component instance on
a host; the distribution then refers to the fact that a com-
ponent can make distant invocations to the services imple-
mented by another component. As for us, we propose to
take advantage of the hierarchical structure of the compo-
nent architecture and to allow a composite component to be
accessible on several hosts although each of its subcompo-
nents is instantiated on a single machine. In this context, the
volatility of the devices and the connections eventually re-
sults in temporary failures of some bindings between sub-
components. To avoid that the entire application becomes
unusable, the runtime support implements mechanisms that
detect these failures and make inactive some of the com-
ponent’s interfaces. The other interfaces remain active so
that the component can continue to perform part of its func-
tions. The runtime support we have built provides for intro-
spection on the fact that an interface is active or not, thus
allowing the development of applications that can adapt to
disconnections.



This article is structured as follows: we first present the
hierarchical component model we have adopted and detail
how a hierarchical component can be distributed. Secondly,
the notion of active interface is taken up and we precise
how it is implemented in the support of our hierarchical
distributed component model. The next section gives some
details on the prototype we have built based on the Frac-
tal model. Finally we conclude by mentioning some related
works and the future research directions we envisage.

2. Towards a distributed hierarchical compo-
nent

2.1. Hierarchical component

In a hierarchical component model, composite compo-
nents provide a uniform view of an application across differ-
ent abstraction levels. Hence, a composite component rep-
resents a more or less complex structure of interconnected
components —described by a configuration stored in an ar-
chitecture descriptor—and thus can be used as a simple com-
ponent with well-defined required and provided interfaces.
Recursion stops with primitive components that correspond
to computing units. Components are interconnected through
bindings that represent each a link (local or distant) between
a required interface and a provided interface.

The notion of composite component is often used at de-
sign time and is found in so-called architecture descrip-
tion languages (ADL) [10]. In the applicative framework we
have chosen, it is however interesting to also be able to ma-
nipulate a composite at execution time. Indeed, it eases the
provision for dynamic adaptation mechanisms whose aims
are to allow subcomponents to be added, withdrawn or re-
placed, and bindings between components to be redefined.
The hierarchical structure is then a means to take into ac-
count several abstraction levels at execution time.

When compared with other models of hierarchical com-
ponents like Darwin [7] or Koala [14], Fractal [3] offers
most of the characteristics we need. We will rely on a sub-
set of this hierarchical component model if the following.

The Fractal model defines a component as being com-
posed of two parts: a membrane (or controller) and a con-
tent. The membrane exposes the interfaces (required and
provided) of the component and intercepts all the invoca-
tions at the interface level. A composite component is de-
fined as a component exposing its content, i.e. a set of sub-
components. To each required and provided interface of a
composite corresponds the interface of a subcomponent.

Composition in Fractal is done through bindings be-
tween required an provided interfaces and through the pres-
ence of components inside a composite. The model is recur-
sive: a composite component can itself appears in the con-
tent of a composite component.

The initial configuration of the components is described
in an architecture descriptor written in Fractal ADL. Stan-
dard features of Fractal ADL allow the user to specify
namely the details (name, type, implementation,...) con-
cerning the primitive and composite components and the
bindings between components. New modules may be added
to this ADL to express other aspects related for example
to the architecture (e.g. inheritance, attributes) or to the de-
ployment (such as the placement directives mentioned be-
low).

A number of control interfaces (as opposed to functional
interfaces) are provided in order to introspect an reconfigure
the internal features of the component, for example to per-
form the dynamic addition and withdrawal of bindings be-
tween components. The user may add new such interfaces
to handle specific reflection mechanisms.

Figure 1 shows the architecture of an application com-
posed of a composite component that contains two prim-
itive subcomponents. Two control interfaces are depicted
that are responsible of controlling actions respectively on
the subcomponents and on the bindings bewteen subcom-
ponents.
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Figure 1. Internal view of a Fractal compo-
nent.

2.2. Distribution of a hierarchical component

As mentioned in the introduction, we wish to deploy a
hierarchy of components on a distributed platform that is
characterized namely by its heterogeneity and its volatil-
ity. The application components will be distributed on a
set of hosts. The placing of the components is performed
while taking account of the hardware and software re-
sources available on each host. The way this placement is
initially chosen and how it evolves is one of the aspects of
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Figure 2. Distribution of a composite component on three hosts.

our project but is not detailed in this paper. We will focus
on describing the mechanisms allowing a distributed execu-
tion of hierarchical components.

In our approach, the architecture of a component is cou-
pled to its placement and this relationship is dealt with dif-
ferently for composite components than for primitive com-
ponents. As far as distribution is concerned, a primitive
component executes on one host whereas a composite is
possibly physically distributed on a set of different hosts.
This mainly allow the services implemented by a compos-
ite to be invoked on more than one host.

A single instance corresponds to primitive composite.
On the contrary, an instance of composite may be repli-
cated. In a context of dynamicity and therefore as new hosts
may appear, the target set of this replication should not be
considered as fixed. However, for simplification reasons, we
will consider here that it is explicitly defined in the architec-
ture descriptor. In this descriptor, a single host is associated
with a primitive component whereas a set of hosts is associ-
ated with a composite component. The set of hosts associ-
ated with a given composite component must be a subset of
the set of hosts associated with the including component. If
no set is specified, the placement set is inherited from the in-
cluding component.

A composite component ¢ is distributed over a set of
hosts IM if it exists on every host of M an instance of c.
All the instances of ¢ are created according to the directives
found in the architecture descriptor. At execution time, each
instance of ¢ maintains locally the configuration of its sub-
components. Hence, a distributed composite component ¢
distributed over M respects the following properties:

e The provided and required interfaces of ¢ are accessi-
ble on all the hosts m; of IM. These interfaces are those
defined in the architecture descriptor.

e let ¢ be a composite component that contains a single
primitive subcomponent p. It exists a single host m; on
which p executes. For every host m; € M (j # i), it
exits c;, an instance of c on m ;. Each ¢; holds a distant
reference to p.

Each instance that represents the same composite is lo-
cally responsible for the architectural configuration of the
composite. Figure 2 carries on with the example of the com-
posite component described in Figure 1. It depicts its distri-
bution on three hosts. If, during execution, host 1, becomes
unaccessible from ms and mg, component p cannot be ref-
erenced any longer. However, for ms and mg, binding to ¢
is still possible. On m4 and mg, one can still access to the
services offered by ¢ through interface b. Indeed, the inter-
faces of the component are available on each host. Invoking
methods on these interfaces still poses problems when the
subcomponents are not accessible. Indeed, instantiating the
composite on all the hosts makes possible the use of its pro-
vided interfaces on each host. However, due to network dis-
connections, on a given site, an access to a distant primi-
tive component can be interrupted. Consequently, an invo-
cation method in this case is likely to raise some kind of
network exception.

This problem is not specific to our approach but appears
as soon as distant references are used, that may point to un-
accessible components at any time. In order to prevent in-
vocations that may not complete because of disconnections,
we introduce the notion of active and non active interfaces.
We propose to add a control interface to components to al-
low introspection on the state (active or not) of its provided
and required interfaces.



3. Activelnterfaces

The life-cycle of a component is significantly tied to the
one of the components it requires: for a component to be ac-
tivated (i.e. it is safe to invoke any method defined in its
interfaces) it must have all its required interfaces bound.
As in a dynamical environment disconnections have to be
taken into account, this approach can be severely disadvan-
tageous. We may not want a component to be deactivated
even if all of its (required) interfaces are not bound. In this
case the component still offers a service but in a degraded
mode.

Figure 3 shows an assembly of components that points
out the two parts of its architecture that are independent.
Dependencies between required interfaces and provided in-
terfaces for composite component A are represented by a
graph. So, if a primitive component of graph grA becomes
unavailable, we can still make safe method invocations on
interface a,. Interface ao is being kept active whereas ag
and a; have to be deactivated to prevent failures of method
invocations on these provided interfaces.

Our previous example introduces the notion of active in-
terface. Indeed the activity of an interface represents its state
regarding method invocations. An active interface delegates
a method invocation to the component owning this inter-
face.

A provided interface is active if it is bound to a provided
interface which is also active. A provided interface is active
if:

e for a primitive component: all its required interfaces
are active;

e for a composite component: the provided interface of
the corresponding subcomponent is active.

Inactive interfaces are defined by taking the negative
form of the previous clauses. We can notice that the deac-
tivation of only one required interface of a primitive com-
ponent makes all of its provided interface inactive. This is
due to the lack of a priori explicit information to describe
dependencies between provided interfaces and required in-
terfaces within a primitive component. To some extent, this
problem could be alleviated by declarative features or by
code analysis.

Consequently to our characterization of the state of com-
ponents, the state of a composite component is independent
of the one of its required interfaces. It is by the analysis of
the hierarchical structure of the architecture that the depen-
dencies are revealed. Indeed, the activation or the deactiva-
tion of an interface is propagated through the architecture.
In a dynamical environment, disconnections will affect the
component structure by inducing breaks of binding. Con-
versely, the appearance of a component of the architecture

(after a disconnection) will result in the creation of some
binding(s) and thus the activation of some interface(s).

We can use the hierarchical structure of our model to up-
date the state of the architecture regarding interfaces. When
a primitive component activates or deactivates its provided
or required interfaces, this information is propagated to the
corresponding enclosing composite component. The latter,
which has a global view of its sub-architecture (in terms of
bindings between subcomponents) is in charge of activat-
ing or deactivating the corresponding interfaces of the in-
volved components.

We can also use active interfaces in the reconfiguration
of an application by replacing the implementation of a com-
ponent by an other one. We have to isolate the part of the ar-
chitecture affected by this modification in order to perform
the substitution at runtime. The technique that consists in
stopping the compaosite component which contains the sub-
component to be substituted may be disadvantageous be-
cause dependencies between provided and required inter-
faces are not taken into account. For example, the substi-
tution of component H of Figure 3 requires that the pro-
vided interfaces of H (hg) be deactivated. This will grad-
ually cause the deactivation of dy (component D) and cg
(component C). We can thus call methods on interface ¢
which is still active.

4. Implementation
4.1. Extension of the Fractal component model

We have implemented a middleware support for hierar-
chical distributed components by extending Julia [3], a Java
implementation of the Fractal component model. Active in-
terfaces have been realized thanks to the addition of a new
controller to the primitive and composite components. As
mentioned in section 2.1, controllers in the Fractal compo-
nent model represent non functional operations (functional
interfaces are directly bound to the business code of the
components). The specification [3] defines some control in-
terfaces to manage the bindings between components, sub-
components etc. Our new controller is in charge of main-
taining up-to-date the state of the required and provided in-
terfaces. It also allows the activation and the deactivation of
any interface of the component. Propagation within the ar-
chitecture is based on the dependencies between interfaces,
which are explicitely declared with the bi ndi ng clause in
the Fractal architecture descriptor.

The controller prevents method invocations on the inac-
tive interfaces of the component. To do so, method reifica-
tion has been performed by using the interceptor mecha-
nisms of Julia (Met aCodeCener at or ). If an interface is
inactive, the current strategy consists in stopping the method
calls during a parameterizable amount of time and in throw-
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Figure 3. Dependencies between provided and required interfaces within a composite component.
Graphs grA and grB emphasize the sub-architecture that can be isolated.

ing an exception if the interface has not been activated after
this time. This default behaviour can be modified, as illus-
trated in the next section.

The support for managing active and inactive interfaces
relies on the mixin mechanisms offered by Julia that allow
code insertion in the membrane of the component, accord-
ing to the aspect oriented programming approach. Thus it is
possible to take into account this kind of interface in any ap-
plication implemented with Julia, independently of our exe-
cution platform. The components are then endowed with an
API for discovering the state of the interfaces (active or not)
and the dependencies between interfaces.

The appearance of components results in an automatic
reconfiguration of the bindings between components like in
[4]. Due to interception mechanisms, the propagation time
for the deactivation of an interface in the hierarchy is lin-
ear with the depth of the hierarchy. We have improved the
default behaviour of our prototype by adding to each mem-
brane the dependencies between provided and required in-
terfaces. So, when a required interface becomes inactive for
a composite component, we can directly exploit the list of
the provided interfaces which have to be deactivated. For
example, if component | of figure 3 becomes unavailable,
interface ¢, is deactivated but instead of propagating this
information to component C, we can directly deactivate in-
terface c¢;. Although this optimization is beneficial in com-
plex architectures, we have now to manage methods calls
that have not been captured between the moment we deacti-
vate a required interface and its corresponding provided in-
terface.

4.2. Context-awareness

Disconnections have been taken into account thanks
to D-RAJE (Distributed Resource-Aware Java Environ-
ment) [8], an extensible Java-based middleware devel-
oped in our team. D-RAJE makes it possible to model and
to monitor resources in a distributed environment. With
this middleware, hardware resources (e.g. processor, mem-
ory, network interface...) or software resources (process,
socket, thread, directory...) can be modeled in an homo-
geneous way. Like in a previous work on parallel compo-
nents [9], D-RAJE has been extended in order to model
components and bindings as resources. It is thus possi-
ble to discover the existence of a component, to look for a
specific component and to collect information on the state
of a component and its interfaces. Information can be ob-
tained by direct observation or by being notified after
subscription to interesting events concerning specific com-
ponents.

When a physical disconnection or a reconnection oc-
curs (i.e. at the network level), the bindings between
components as well as the state of the interfaces are mod-
ified accordingly. For this purpose, we use the D-RAJE
Net wor kLi nk resource that models the physical link be-
tween two hosts and maintains information about the
state of the network connection. We have added the
Renot eBi ndi ng resource that models the bind-
ing beetween components. Each Networ kLi nk re-
source is related to one or more Renot eBi ndi ng re-
sources. D-RAJE monitors are created on Net wor kLi nk
resources so that the state of the Renot eBi ndi ng re-
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Figure 4. Management of remote bindings with resources in D-RAJE.

sources are modified when the corresponding network link
fails. The event on the change of a Renot eBi ndi ng re-
source is captured with the result that the Fractal binding
is withdrawn and the corresponding interfaces are deacti-
vated. Conversely, when a monitor on a Net wor kLi nk
resource detects that the network becomes up again, it noti-
fies the Renot eBi ndi ngs resources. As previously, this
results in reestablishing the broken Fractal bindings an ac-
tivating the corresponding interfaces.

In D-RAJE, a naming system gives any resource a unique
identity. This allows us to identify each instance of a dis-
tributed composite component. So, when a network connec-
tion becomes available, our system can discover all the in-
stances of the same composite component and reestablish a
binding if needed.

Figure 5 illustrates how we can use our APl to manage
strategies according to the state of the interfaces. In this ex-
ample, the programmer decides to wait for the reconnection
before invoking a method on an inactive interface.

5. Related works

Our project is focused on providing facilities to support
distributed component-based applications that can adapt
themselves. Among other works sharing this goal, few con-
sider the use of a hierarchical distributed component model
and the management of disconnections at the same time.

Our approach has some similarities to [5, 1]. These
works aims at providing general adaptation mechanisms ap-
plied to hierarchical component-based applications. More
specifically, in [6] adaptation to disconnections is discussed
but for the Corba Component Model [13] which is a flat
component model. In order to guarantee continuity of ser-
vices, the authors have introduced « disconnected compo-
nents » whose role are to perform the logging of methods
calls and reconciliation when disconnections occur. It is not

/1 Obtain a reference on our controller
CubikController kcontroller
=(CubikController)comp. getFclnterface(
"cubik—controller");

/1 Get the state of the client interface
/!l named " cltltf"
if (kcontroller.getFcltfState(" cltltf")==false) {

// Manual management of the disconnection
RemoteBinding rb =

kcontroller .getRemoteBinding (" clientltf ") ;
while(!rb. getState()) {

/1l Waiting for the interface activation

/! Now we can do the invocation
clientltf.something () ;

}

Figure 5. Introspection on the state of an in-
terface.

envisaged that services are maintained (even in a degraded
mode) when disconnections occur.

The notion of hierarchical components physically dis-
tributed over several hosts is also discussed in [2] where an
implementation of the Fractal component model, using the
Proactive library, is presented in order to provide Grid com-
ponents. Although they are not explicitly dealt with, dis-
connections are taken into account to some extent thanks
to the use of Proactive asynchronous communications be-
tween components.

The Gravity project [4] is based on a service-oriented
component model. In this approach, the bindings between
components are considered as dependencies between ser-
vices (like in the service oriented approach). So, automatic
adaptation can be done within a component composition ac-
cording to the services’ availability. The availability of one
or more services required by a component results in valid



or invalid instances. The current development of the Grav-
ity project does not consider distributed components.

6. Conclusion

In this paper we have presented the utilization of a hi-
erarchical component model for building and executing an
application distributed over a set of heterogeneous and pos-
sibly volatile devices. We take advantage of the hierarchi-
cal model in the distribution of the components as well as
in the management of disconnections.

Our model rely on the Fractal hierarchical component
model. We have defined an operating scheme to execute a
Fractal composite component that is physically distributed
over several machines. In this scheme, the interface of a
composite component are available on a set of machines,
even if its primitive subcomponents are not replicated, thus
allowing for the heterogeneity of the target platform.

The architecture of a composite component is handled
in a decentralized way in order to ease the management of
network disconnections. These disconnections are reflected
on the architecture as widthdrawal of bindings. The Frac-
tal hierarchical component model has been extended with
the notion of active interface in order to isolate dependen-
cies between required and provided interfaces. A network
disconnection triggers the break of the component bindings
on which they rely and consequently the deactivation of the
related interfaces. Lastly, interface deactivations are prop-
agated within the component hierarchy. The interfaces that
remain active allow a component to perform in a degraded
mode. Reconnections are dealt with along the same ling,
ending up with the activation of some component interfaces.

We have realized a prototype and integrated it into Julia,
a Java implementation of the Fractal component model. Our
mechanisms in charge of supporting disconnections have
been added as a non-functional service into Julia, endow-
ing it with an introspection interface through which one may
discover the state of each interface in order to build strate-
gies of adaptation to disconnections.

The work presented in this paper is the first stage of the
development of a middleware supporting adaptive compo-
nents, that is components capable of reconfigure themselves
according to changes occurring in their runtime environ-
ment.

We plan to integrate adaptation strategies from informa-
tion on the state of the application architecture at runtime. In
particular, our current work focuses on the adaptive aspects
of the deployment of a hierarchical component. Indeed such
a deployment could be done in a continuous way during the
execution of the application according to resources avail-
ability.
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