
HAL Id: hal-00426575
https://hal.science/hal-00426575v1

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagative Deployment of Hierarchical Components in
a Dynamic Network
Didier Hoareau, Yves Mahéo

To cite this version:
Didier Hoareau, Yves Mahéo. Propagative Deployment of Hierarchical Components in a Dynamic
Network. Third International Working Conference on Component Deployment, Nov 2005, Grenoble,
France. pp.115-118, �10.1007/11590712_9�. �hal-00426575�

https://hal.science/hal-00426575v1
https://hal.archives-ouvertes.fr


Propagative Deployment of Hierarchical Components
in a Dynamic Network

Didier Hoareau and Yves Mahéo

Valoria Laboratory– University of South Brittany, France
{Didier.Hoareau |Yves.Maheo}@univ-ubs.fr

Abstract. This paper addresses the distribution and the deployment of hierar-
chical components on heterogeneous dynamic networks. Such networks may in-
clude fixed and mobile resource-constrained devices and are characterized by the
volatility of their hosts and connections, which may lead to their fragmentation.
We propose a propagative, hierarchically-controlled deployment process for such
networks and an ADL extension allowing the specification of this context-aware
deployment.

1 Introduction

The component-based approach becomes widely reckoned to be relevant for develop-
ing complex distributed applications and many component models and their associated
technologies are now available. Some of the proposed models (e.g.Koala [11], Dar-
win [6] or Sofa [9]), known as hierarchical models, wake up the interest of software
architects. In such models, a component –that is then called a composite component–
can be itself an assembly of components, recursive inclusion ending with primitive
components that encapsulate computing code.

Besides, the distributed platforms that are susceptible of being the target of com-
plex distributed applications, have evolved in a few years from homogeneous networks
of workstations to networks of heterogeneous hosts that may comprise mobile and
resource-constrained devices. Among these platforms, dynamic networks represent com-
mon but challenging environments. What we call a dynamic network is a network that
is characterised by its heterogeneity (e.g. hosts do not all provide similar hardware and
software resources), and its dynamism (e.g. hosts may become unaccessible because
of their mobility or their volatility). A major consequence of this dynamism is that the
target platform cannot be considered as a fully connected network. It is rather described
as a partitioned network, viewed as a collection of independent islands. An island is
equivalent to a connected graph of hosts that can communicate together, while no com-
munication is possible between two islands. In addition, the configuration of the islands
may change dynamically.

This paper describes a distribution scheme of hierarchical components and its asso-
ciated deployment process that targets the abovementioned dynamic networks. Because
of the very constrained environment in which the application is to be deployed, we can
hardly envisage a permanent access to the services offered by the application or an op-
timal use of the resources. The emphasis is put on finding a distribution scheme and



some deployment mechanisms (focusing on the instantiation and the activation phases)
that achieve a minimal availability while taking account of the environment.

2 Distributed Hierarchical Component Model for Dynamic
Networks

In order to support network disconnections we propose a distributed hierarchical com-
ponent model which allows an application to run in a degraded mode, avoiding that the
entire application becomes unusable. We introduce the notion ofactive interfaceto the
component model. Our runtime support detects network disconnections and deactivates
some components’ interfaces accordingly. The underlying distribution scheme of the
model is based on the replication of composite components. This replication allows the
interfaces of a composite to be easily accessible on a set of hosts. Only the membrane,
that contains architectural information, is replicated, thus reducing consistency mainte-
nance problems. Each primitive component is localized on a single host, which reflects
the semantics of the architecture descriptor in which each reference to a component
corresponds one (possibly statefull) component. Further details about the distribution
and the support of this distributed hierarchical component model can be found in [5].

3 Context-Aware Deployment Specification

When considering the deployment of distributed components, the key issue is to build
a mapping between the component instances and the hosts of the target platform. This
task implies to have some knowledge not only about the identity of the hosts involved
in the deployment phase, but about the characteristics of each of them as well. How-
ever, at design-time, the designer is unlikely to know where to deploy each component
regarding resource availability. This motivates the need to differ this task at runtime.
We propose to add a deployment aspect to an existing architecture description language
(such as [2, 3]).This will allow the description of the resource properties that must be
satisfied by a machine for hosting a specific component.

We follow the approach of [4] to specify the deployment of the hierarchy of compo-
nents in a constraint-based declarative way (see figure 1). The architecture descriptors
of the components are augmented with deployment descriptors in which constraints on
the resources required by components and on their possible locations can be specified.
It is not mandatory to give explicit names or addresses to target machines: the place-
ment of components are mainly driven by constraints on the resources the target host(s)
should satisfy. The choice of the machine that will host a component will be made
automatically at runtime (during the deployment).

When the deployment is triggered, all the constraints listed in the deployment de-
scriptor may not be satisfied immediately. The dynamism of the network makes the
situation even more difficult as it may occur that the set of hosts that would satisfy
globally the deployment constraints are never connected together at the same time, pre-
cluding any deployment.



<component name="DocumentSearch">
<component name=" DocumentFinder ">

<deploymentcontext >
< locat ionconstra int >

< t a r g e t varname="x " / >
</ locat ionconstra int >

</deploymentcontext >
</component>
<component name=" DocumentBuffer ">

<deploymentcontext >

<resourceconstraint >
<memory f r ee ="200" u n i t ="MB"

operator ="min " / >
</ resourceconstraint >
< locat ionconstra int >

< t a r g e t varname="y " / >
</ locat ionconstra int >

</deploymentcontext >
</component>
<deploymentcontext >

< locat ionconstra int >
<operator name=" a l l d i f f ">

<arg varname=" t h i s . DocumentSearch . x " / >
<arg varname=" t h i s . DocumentBuffer . y " / >

</ operator
</ locat ionconstra int >

<deploymentcontext >
</component>

Fig. 1.Deployment descriptor

4 Propagative Deployment

The deployment process we propose is apropagativeone: it allows an application to be
activated progressively, that is, part of its provided services can be put at disposal even
if some machines that are required for the "not yet" installed components are not avail-
able. As soon as these machines become connected (or accessible) or some required
resources appear (or become available), the deployment will go along. Thanks to our
distributed hierarchical component model and the dynamic activation of interfaces, the
application can run in a degraded manner even if some of its parts are not yet started.

The main issue of such a deployment is to ensure the unicity of the component
instantiations imposed by the architecture descriptor. Indeed on one hand, since we
cannot predict which machines will be connected at any time, we cannot select one
to be responsible for the instantiation decisions of the entire application. On the other
hand, if we let each machine make an instantiation decision, we cannot guarantee that
in two different islands contradictory instantiations may not be performed.

Ensuring consistent instantiations comes down to establishing a distributed consen-
sus across several islands. We use the results of [8] where the authors identifyconditions
for which there exists an asynchronous protocol that solves the consensus problem de-
spite the occurrence of crashes. It is thus possible to elect a machine responsible for
the instantiation of a component within an island composed of amajority of machines.
When an applicant machine is elected and when an instantiation is made, the deploy-
ment descriptor is updated with this information. As in the work described in [10], the
scalability of our proposition is ensured by the distributed and hierarchical organisation
of the control: each composite component of the hierarchy is represented by a machine.

We propose to alleviate the risk that the consensus algorithm may not terminate (e.g.
the number of hosts within an island may not be sufficient) by taking advantage of net-
work changes to make the consensus evolve. We detect network changes (e.g.a machine
is newly connected) and possibly react to these changes (e.g.make a newly connected
machine participate to the consensus). Moreover, in order to avoid that a machine re-
sponsible for a composite component makes instantiation decisions in a non-majority
island, a reelection mechanism is triggered after comparing the different versions of the
deployment descriptors.

5 Conclusion

This paper has presented a support for deploying and executing an application built with
hierarchical components on an heterogeneous and dynamic network. The main contri-



bution of this work is that it attempts to take into account a challenging distributed target
platform characterized by the heterogeneity and the volatility of the hosts, volatility that
may result in the fragmentation of the network.

The propagative deployment presented in this paper is based on a constraint-based
language for the description of the placement of the components according to resource
requirements. Our distributed component model has been implemented using Julia, a
Java implementation of the Fractal component model [1]. The standard Fractal ADL has
been extended thanks to the addition of new modules. We use D-Raje [7], a framework
developed in our team, dedicated to the observation of distributed system resources in
Java. We can thus detect network changes and exploit them in the deployment process.

The main direction of our future work consists in the extension of our propagative
deployment in order to define an autonomic deployment in which decisions about the
placement of components could be reconsidered.

References

[1] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An Open Compo-
nent Model and its Support in Java. InProc. of the Int. Symposium on Component-based
Software Engineering, Edinburgh, Scotland, May 2004.

[2] xAcme: Acme Extensions to xArch. School of Computer Science Web Site: http://www-
2.cs.cmu.edu/ acme/pub/xAcme/, 2001.

[3] E. Dashofy, A. van der Hoek, and R. Taylor. An Infrastructure for the Rapid Development
of XML-based Architecture Description Languages. InProceedings of the Int. Conference
on Software Engineering, pages 266–276, Orlando, Florida, USA, May 2002.

[4] A. Dearle, G. Kirby, and A. McCarthy. A framework for constraint-based deployment
and autonomic management of distributed applications. InProc. of the Int. Conference on
Autonomic Computing, 2004.

[5] D. Hoareau and Y. Mahéo. Distribution of a Hierarchical Component in a Non-Connected
Environment. InProc. of the 31th Euromicro Conference - Component-Based Software
Engineering Track, Porto, Portugal, September 2005.

[6] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Software Archi-
tectures. InProc. of the 5th European Software Engineering Conference, Sitges, Spain,
September 1995.

[7] Y. Mahéo, F. Guidec, and L. Courtrai. A Java Middleware Platform for Resource-Aware
Distributed Applications. In2nd Int. Symposium on Parallel and Distributed Computing,
pages 96–103, Ljubljana, Slovenia, October 2003.

[8] A. Mostéfaoui, S. Rajsbaum, M. Raynal, and M. Roy. Condition-based consensus solv-
ability: a hierarchy of conditions and efficient protocols.Distributed Computing, 17(1),
2004.

[9] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for Component Trading
and Dynamic Updating. InProc. of the 4th Int. Conference on Configurable Distributed
Systems, Annapolis, Maryland, US, may 1998.

[10] V. Quéma, R. Balter, L. Bellissard, D. Féliot, A. Freyssinet, and S. Lacourte. Asynchronous,
hierarchical and scalable deployment of component-based applications. InProc. of the 2nd
Int. Working Conference on Component Deployment, Edinburgh, Scotland, May 2004.

[11] R. C. van Ommering. Koala, a Component Model for Consumer Electronics Product Soft-
ware. InProc. of the ESPRIT ARES Workshop, Las Palmas de Gran Canaria, Spain, Febru-
ary 1998.


