
HAL Id: hal-00426564
https://hal.science/hal-00426564v1

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraint-Based Deployment of Distributed
Components in a Dynamic Network

Didier Hoareau, Yves Mahéo

To cite this version:
Didier Hoareau, Yves Mahéo. Constraint-Based Deployment of Distributed Components in a Dynamic
Network. Architecture of Computing Systems, Mar 2006, Frankfurt/Main, Germany. pp.450-464,
�10.1007/11682127_32�. �hal-00426564�

https://hal.science/hal-00426564v1
https://hal.archives-ouvertes.fr

Constraint-Based Deployment of Distributed
Components in a Dynamic Network

Didier Hoareau and Yves Mahéo

Valoria Lab – University of South Brittany
{Didier.Hoareau|Yves.Maheo}@univ-ubs.fr

Abstract. Hierarchical software components offer interesting characteristics for
the development of complex applications. However, supporting the deployment
of such applications is difficult, especially on challenging distributed platforms.
This paper addresses the distribution and the deployment of hierarchical com-
ponents on heterogeneous dynamic networks. Such networks may include fixed
and mobile resource-constrained devices and are characterized by the volatility
of their hosts and connections, which may lead to their fragmentation. The distri-
bution scheme and the associated mechanisms we propose allow a component to
provide its services in an ubiquitous way and to operate in a degraded mode. The
deployment of hierarchical components is described: we present an ADL exten-
sion for specifying a context-aware deployment and we detail a hierarchically-
controlled deployment designed for dynamic networks. This deployment is per-
formed in a propagative way and is driven by constraints put on the resources of
the target hosts.

1 Introduction

Distributed platforms are no longer restricted to stable networks of workstations. One
of the archetype of a distributed platform is now a network that may comprise stable
and powerful workstations but also a number of mobile and resource-constrained de-
vices. Although this kind of distributed platform is increasingly common, it remains a
challenging target for building, deploying an maintaining distributed applications. Spe-
cific techniques must be applied to cope with the heterogeneity of the hosts and links as
well as with the dynamism of the network. What we call dynamic networks are espe-
cially a difficult target, as hosts may become unaccessible because of their mobility or
their volatility. As a consequence, one cannot rely on models and algorithms designed
for fully connected networks. A dynamic network is rather described as a partitioned
network, viewed as a collection of independent islands. An island is equivalent to a
connected graph of hosts that can communicate together, while no communication is
possible between two islands. In addition, the configuration of the islands may change
dynamically.

Figure 1 shows an example of such a dynamic network. It is composed of a number
of hosts a user has access to and on which a distributed application is meant to be
accessible. This set of hosts includes fixed and mobile machines. Connectivity is not
ensured between all the hosts. Indeed, at home, the user’s connection to Internet is

Fig. 1. Example of a dynamic network, possibly partitioned in three islands

sporadic and some of the devices are mobile (as such, they may become out of reach)
and/or volatile (a PDA may for example be switched off frequently).

The applications that are to be executed on dynamic networks can be inherently
complex. This complexity is even increased by the need to produce code that can adapt
to the changes of the execution environment. Since a few years, the use of software
components proved to be useful for developing complex distributed applications and
many component models and their associated technologies are now available. In the
component-based approach, the application is designed as an assembly of reusable
components that can be bound in a versatile manner, possibly dynamically. Some of
the proposed models are known as hierarchical models. They offer the possibility of
creating high level components by composing components of lower abstraction level,
which represents a software construction principle that is natural and expressive. In
such models, a component –that is then called a composite component– can be itself
an assembly of components, recursive inclusion ending with primitive components that
encapsulate computing code.

Using a hierarchical component-based approach for building an application that tar-
gets a dynamic network seems an attractive solution. Yet, several problems remain that
are not dealt with available component models and component execution supports. In
particular, the two following aspects have to be dealt with: (1) how to deploy a hierar-
chical component in a dynamic network while ensuring that this deployment respects
the architecture of the application and adapts itself to the resource constraints imposed
by the target platform? (2) how to allow a distributed execution of the components,
i.e. to allow interactions between components in a not-always-connected environment?
This paper describes a distribution scheme of hierarchical components and its associ-
ated deployment process that target dynamic networks. Because of the very constrained
environment in which the application is to be deployed, we can hardly envisage a per-
manent access to the services offered by the application or an optimal utilization of the
resources. The emphasis is put on finding a distribution scheme and some deployment
mechanisms that achieve a minimal availability while taking account of the environ-
ment.

Outline of our approach

The distribution scheme we propose is related to the hierarchical structure of the appli-
cation. This scheme is based on the replication of composite components. Indeed, we
allow a composite to be accessible on a set of hosts, although each primitive component
is localized on a single host. Besides, we also allow a component to operate in a de-
graded mode in order to account for network disconnections without making the entire
application unusable. The notion of active interface is added to the component model.
Our runtime support detects network disconnections and deactivates some components’
interfaces accordingly. Introspection on the state (active or inactive) of an interface is
possible so as to allow the development of adaptive components.

The deployment of a component covers several parts of the life-cycle of a compo-
nent. In this paper we focus on the last phases of the deployment, covering the instan-
tiation of the component (that creates an executable instance from a component code),
its configuration (that establishes the bindings to its interfaces) and its activation (that
allows the other components to invoke its interfaces). The presented techniques should
be complemented with component delivery mechanisms such as those described in [1].

The deployment of the hierarchy of components is specified in a constraint-based
declarative way. The architecture descriptors of the components are augmented with
deployment descriptors in which constraints on the resources required by components
and on their possible location can be specified.

When the deployment is triggered, all the constraints listed in the deployment de-
scriptor may not be satisfied immediately. The dynamism of the network makes the sit-
uation even more difficult as it may occur that the set of hosts that would satisfy globally
the deployment constraints are never connected together at the same time, precluding
any deployment. Instantiation of some components and their activation is however pos-
sible as we allow the components to operate in a degraded mode through the dynamic
management of interfaces’ activation. The deployment process we implement is thus a
propagative process : the instantiation and the activation of a component are performed
as soon as some resources that meet its needs are discovered. We propose an algorithm
that supports this propagative deployment. The scalability of the process is ensured by
the distributed and hierarchical organisation of the control. Moreover, we implement a
distributed consensus that guarantees that the location constraints are satisfied even in
the context of a partitioned network.

The paper is organised as follows. First, the model of hierarchical component we work
on is presented and we explain how a hierarchy of components is distributed over a
network. The concept of activation at the interface level is briefly exposed. In section 3
we give some details on the form of the deployment descriptor that complements the
architecture description. Section 4 presents the overall propagative deployment process
and details the distributed instantiation algorithm that forms the basis of the distributed
deployment. Section 5 briefly describes the status of the development of our prototype.
Finally, we cite the related works before concluding.

2 Distributed Hierarchical Components

We describe in this section what we understand by distributed hierarchical components,
through the description of the basic features of our component model and of the way
we have chosen for distributing the components over a network of hosts. Further details
can be found in [2].

2.1 Hierarchical Component Model

In this paper, we consider a widely applicable hierarchical component model in which
a composite component represents a more or less complex structure of interconnected
components that can be used as a simple component with well-defined required and pro-
vided interfaces. Recursion stops with primitive components that correspond to com-
puting units. Components are interconnected through bindings that each represents a
link between a required interface and a provided interface. For practical reasons, we
have chosen to base our development on the Fractal component model [3] and more
precisely on its reference Java implementation Julia. However, the concepts developed
in this paper could easily be applied to other hierarchical component models such as
Koala [4], Darwin [5] or Sofa [6].

The notion of composite component is often used at design time and is found in
so-called architecture description languages (ADL) [7]. In the applicative framework
we have chosen, it is however interesting to also be able to manipulate a composite at
execution time in order to ease dynamic adaptation. Therefore the composite is reified
at runtime namely by a membrane object that stores the interfaces of the component
and its configuration (the list of its subcomponents and the bindings between these
subcomponents).

2.2 Distribution Model

As mentioned in the introduction, we wish to deploy a hierarchy of components on a
distributed platform that is characterized namely by its heterogeneity and the volatility
of its hosts. The application components are distributed on a set of hosts. The way this
placement is performed is detailed in section 4. We focus here on the description of the
mechanisms allowing a distributed execution of hierarchical components.

In our approach, the architecture of a component is coupled to its placement and
this relationship is dealt with differently for composite components than for primitive
components. As far as distribution is concerned, a primitive component executes on one
host whereas a composite can be physically replicated on a set of different hosts. The
main goal of composite replication is that the component’s interfaces become directly
accessible on several hosts. A composite component can then be seen as providing a
ubiquitous service.

A single host is associated with a primitive component whereas a set of hosts is
associated with a composite component. This set must be a subset of the set of hosts
associated with the including component. By default, the placement set of a composite
component is inherited from the including component.

At execution time, each instance of a composite component maintains locally infor-
mation about the configuration of its subcomponents. Hence, a distributed composite
component c distributed over a set of hosts

�
respects the following properties:

– The provided and required interfaces of c are accessible on all the hosts hi of
�

.
– Let c be a composite component that contains a primitive subcomponent p. There

exists a single host hi on which p executes. For every host h j ∈
�

(j , i), there
exits c j, an instance of c on h j. Each c j holds a remote reference to p (in a proxy).

2.3 Example

We give in this section an example of an application made of hierarchical components
and we detail how it can be distributed on a given set of hosts.

Figure 2 depicts the architecture of a photo application that allows the user to search
for a number of photos in a repository and to build a diaporama with the selected photos.
The top-level composite component (PhotoApp) includes a generic component devoted
to document searching (DocumentSearch). This component is also a composite compo-
nent (taken off the shelf); it is composed of a DocumentFinder and a DocumentBuffer.
The primitive DocumentFinder component provides an interface for issuing more or
less complex requests based on the names of documents, on their subjects or some
other meta-information, and for selecting the corresponding documents from a given
set of documents (a repository). The selected documents are passed to a Document-
Buffer. Apart from an interface for adding new documents, the primitive Document-
Buffer component provides an interface for sorting and extracting documents. This pro-
vided interface and the one of DocumentFinder are accessible as provided interfaces
of the DocumentSearch component. Finally, the DocumentSearch component is bound
to a PhotoRepository component that constitutes the specialized document repository
and a DiapoMaker component which allows the selected photos to be assembled in a
parameterizable diaporama.

DocumentFinder
PhotoRepository

PhotoApp
DocumentSearch

DocumentBuffer

DiapoMaker

Fig. 2. Architecture of the photo application (in UML 2.0)

Consider that the photo application is meant to be usable from any of the five ma-
chines owned by the user (hosts h1 to h5), in a dynamic network similar to the one
depicted in figure 1. Hence, the target set of hosts associated with the PhotoApp com-
ponent is {h1, h2, h3, h4, h5}. A subset of these hosts is dedicated to the distributed

execution of the composite component DocumentSearch, say {h1, h2, h3}, h4 and h5

being excluded for licence reasons for example. Moreover, some constraints on the re-
quired resources result in the following placement of the primitive components (see
section 4 for details): DocumentFinder on h1, DocumentBuffer on h2, PhotoRepository
on h4 and DiapoMaker on h5.

At runtime the membranes of the composite components are maintained on each
of their target hosts. A membrane contains the interfaces of the component as well
as the description of its architecture (subcomponents and bindings). The instances of
components (primitive or composite) that are not present are represented by proxies.
Note that for a primitive component, the proxy is linked to the distant (single) instance
of this primitive whereas for a composite component, the proxy is linked to one distant
instance of the (partially replicated) membrane.

Figure 3 summarizes the placement of the components and shows the runtime enti-
ties (architectural information and instances) maintained on h1 and h4 for our PhotoApp
example.

DocumentFinder

DocumentSearch : {h1, h2, h3}
PhotoApp : {h1, h2, h3, h4, h5}

DocumentBuffer : h2
DocumentFinder : h1 PhotoRepository : h4

DiapoMaker : h5

PhotoApp local instance

h1

DocumentSearch local instance

PhotoRepository

proxy to h4

DocumentBuffer

proxy to h2
DiapoMaker

proxy to h5

h4

PhotoApp local instance

DocumentSearch proxy to h1

PhotoRepository

local instance

DiapoMaker

proxy to h5

local instance

Fig. 3. Placement of components and entities maintained on host h1 and h4

2.4 Support for disconnections

The replication of a composite component eases the access to the services it implements
as it makes possible to use its provided interfaces on each host. However, because of
network disconnections, from a given site, access to a remote component can be in-
terrupted. Consequently, a method invocation in this case may raise some kind of a

network exception. This problem is not specific to our approach but appears as soon as
remote references are used, that may point to unaccessible components at any time. In
a context of hierarchical components, the technique that consists in deactivating a com-
ponent as soon as one of its required interface is unbound is very penalizing as a single
disconnection will end up by ricochet with the deactivation of the top-level component,
that is the deactivation of the entire application. In the dynamic environments we target,
where disconnections are frequent, the application is likely to be rarely usable.

We address this problem in the following two ways:

– We introduce the notions of active and non active interfaces. We maintain the state
(active or not) of an interface according to the accessibility of the component’s
instance it is bound to. Moreover, we add a control interface to components to
allow introspection on the state of its provided and required interfaces.

– We allow the execution of a component even if some of its interfaces are not active.

On the PhotoApp example, if a disconnection occurs between h1 and h4, the Pho-
toRepository component is no longer accessible from h1. The disconnection is detected
by a dedicated monitor, and consequently, the required interface of the DocumentSearch
component is deactivated. This triggers the deactivation of the corresponding required
interface of the DocumentFinder and then of its provided interface. However, the sec-
ond interface of DocumentSearch (the one bound to DiapoMaker) can remain active as
the DocumentSearch component is still accessible. Globally the application is still us-
able, although in a degraded mode, as diaporamas can still be built from the document
buffer.

Notice that this approach has an obvious impact on the programming style required
when developing components, as the state of an interface should be tested before invok-
ing methods on this interface. Indeed, the uncertainty of the accesses to needed (or re-
quired) services –inherent to the targeted dynamic platforms– enforces adaptable code.
The provision for tools to introspect on the availability of the interfaces is a minimal
answer that should be complemented by other facilities for describing or applying, for
example, adaptation strategies. This involves research at language level and middleware
level that is out the scope of the presented work.

3 Deployment Specification

When considering the deployment of distributed components, the key issue is to build
a mapping between the component instances and the hosts of the target platform. This
task implies to have some knowledge not only about the identity of the hosts involved in
the deployment phase, but about the characteristics of each of them as well. Moreover,
for a hierarchical component-based application, every component instance at each level
of the hierarchy has to be handled.

At design-time, the designer is unlikely to know where to deploy each component
regarding resource availability. This motivates the need to differ this task at runtime.
We propose to add a deployment aspect to an existing architecture description language
(such as [8, 9]).This will allow the description of the resource properties that must be
satisfied by a machine for hosting a specific component.

We propose an extension to ADLs that makes possible the description of the tar-
get platform in a declarative way. The language we propose is purely declarative and
descriptive and has a similar objective to the language described in [10]. It is not manda-
tory to give an explicit name or address of a target machine: the placement of compo-
nents are mainly driven by constraints on the resources the target host(s) should satisfy.
The choice of the machine that will host a component will be made automatically at
runtime (during the deployment).

The description of the resources that the target platform must satisfy is defined in
a deployment descriptor in which references to component instances (defined in the
architecture descriptor) can be made. For each component, a deployment context is
defined. Such a context lists all the constraints that a hosting machine has to satisfy. If
these constraints are associated with a primitive component, one host will be authorized
to instantiate this component whereas several hosts may be selected for hosting the
membrane of a composite component, in accordance with our distribution model.

There are two types of constraints that can be defined in a deployment context: re-
source constraints (ResCst) and location constraints (LocCst). ResCsts allow hardware
and software needs to be represented. Each of these constraints defines a domain value
for a resource type that the target host(s) should satisfy. LocCsts are useful to drive the
placement choice of a component if it occurs that more than one host is applicant.

<component name="DocumentSearch">
<component name=" DocumentFinder">

<deployment−contex t >
<resource−c o n s t r a i n t >

5 <cpu f r e q ="1 .2"
u n i t ="GHz"
operator ="min " / >

</ resource−c o n s t r a i n t >

10 < l o c a t i o n −c o n s t r a i n t >
< t a r g e t varname="x " / >

</ l o c a t i o n −c o n s t r a i n t >
</ deployment−contex t>

</component>
15

<component name=" DocumentBuffer ">
<deployment−contex t >

<resource−c o n s t r a i n t >
<memory f r e e ="200"

20 u n i t ="MB"
operator ="min " / >

</ resource−c o n s t r a i n t >
< l o c a t i o n −c o n s t r a i n t >

< t a r g e t varname="y " / >
25 </ l o c a t i o n −c o n s t r a i n t >

</ deployment−contex t>
</component>

<deployment−contex t>
30 < l o c a t i o n−c o n s t r a i n t >

<operator name=" a l l d i f f ">
<arg varname=" t h i s . DocumentFinder . x " / >
<arg varname=" t h i s . DocumentBuffer . y " / >

</ operator
35 </ l o c a t i o n −c o n s t r a i n t >

<deployment−contex t>
</component>

(a)

<component name=" PhotoApp">
<component name=" DiapoMaker ">

<deployment−contex t>
40 <cpu f r e q = " 1 . 5 " u n i t ="GHz"

operator ="min " / >
<memory f r e e ="50"

d i r e c t o r y = " /home / "
u n i t ="MB"

45 operator =" min " / >
</ resource−c o n s t r a i n t >

</ deployment−contex t>
</component>

50 <component name=" PhotoRepository ">
<deployment−contex t>

<resource−c o n s t r a i n t >
<memory f r e e = " 1 " u n i t ="GB"

d i r e c t o r y = " /home / "
55 operator ="min " / >

</ resource−c o n s t r a i n t >
</ deployment−contex t>

</component>

60 <component name="DocumentSearch">
< l o c a t i o n c o n s t r a i n t >

<operator name=" exclude ">
<arg value =" e g i l s a y " / >
<arg value =" p a r v a t i " / >

65 </ operator >
</ l o c a t i o n c o n s t r a i n t >

</component>

<deployment−contex t >
70 < l o c a t i o n c o n s t r a i n t >

< t a r g e t hostname ="ambika " / >
< t a r g e t hostname =" d a k i n i " / >
< t a r g e t hostname =" mafate " / >
< t a r g e t hostname =" e g i l s a y " / >

75 < t a r g e t hostname =" p a r v a t i " / >
<deployment−contex t >

</component>

(b)

Fig. 4. Deployment descriptor

An example of use of ResCst and LocCst is illustrated in Figure 4 which shows the
deployment descriptor, in an XML notation, of the photo application introduced in the
previous section. The descriptor (a) contains the constraints associated with the Doc-
umentSearch composite component and descriptor (b) contains those of the PhotoApp
component. Resource constraints are defined within the resource-constraint element.
For every component, adding an XML tag corresponding to a resource type (e.g. cpu,
memory) specifies a constraint on this resource the target host has to verify.

Location constraints are declared within the location-constraint element. The target
element defines the set of hosts among which our runtime support will have to choose.
Hosts can be represented in two ways: (1) by their hostname if their identity are known
before the deployment or (2) by a variable. Such a variable can be used at the composite
level to control the placement of components. This feature is achieved by the use of the
operator element. This element allows relations between variables to be expressed. For
example, in descriptor (a), the DocumentFinder component is said to be deployed on
host x and DocumentBuffer on host y. Constraining DocumentFinder and Document-
Buffer to be on two distinct hosts is achieved by using the alldiff operator that declares
x to be different from y. For a primitive component, at most one variable can be declared
(because a primitive component will be placed on an unique host). Several variables can
be used for a composite component, which is physically distributed over several hosts.

When composing the application, it is possible to use only variables. Then, the defi-
nition of the target platform is made at the first level of the hierarchy (for the component
PhotoApp on the example) by adding the list of the machines that will be involved in the
deployment (lines 71–75 on Figure 4). During the deployment, as it is detailed in next
section, this set of machines, together with the location constraints will be inherited by
the sub-components.

4 Deployment Process

4.1 Overview of the Propagative Deployment

Because of the dynamism of the network on which we deploy our applications, it is not
possible to base a deployment on a full connection of the different hosts. We are inter-
ested in a deployment that will allow an application to be activated progressively, that
is, part of its provided services can be put at disposal even if some machines that are
required for the "not yet" installed components, are not available. As soon as these ma-
chines become connected, the deployment will go along. Moreover, resource changes
on any host may yield the deployment of components although is was not possible be-
fore. The deployment we present in this paper is thus asynchronous as it may not be
possible to deploy every component immediately.

Once the architecture descriptor and the deployment descriptor have been defined,
the deployment phase we consider in this article consists in choosing a target host for
every component of the architecture. This selection has to be made according to the
deployment context associated with every component. Indeed, the selected machine has
to satisfy all the resource constraints and this machine must not contradict the location
constraints. In the case of a primitive component, a single host has to be selected among

several applying machines. For a composite component, the number of applicants can
be greater than the set of machines over which this composite component has to be
distributed. Controlling the selection of the target hosts is essential to guarantee the
consistency of the application. Indeed, in a dynamic network where islands of machines
may appear, we must avoid inconsistent decisions in two different islands. For example,
we have to ensure that two distinct machines from two islands will not be selected for
the hosting of the same primitive component.

In the following we present the general propagative deployment algorithm in two
steps. First, we consider a fully connected environment. This will help us to focus on the
resolution of the constraints expressed in the deployment descriptor and to describe a
possible distribution of the instantiation tasks (thus the selection of target hosts) within
a hierarchical architecture. Then we present the complete propagative deployment in a
dynamic network where the main difficult aspect is to ensure a unique decision regard-
ing component instantiation.

4.2 Deployment in a Connected Network

We consider in this section a fully connected network composed of a finite set of ma-
chines. Each machine is identified and no disconnection may occur. The propagative
deployment in such a network consists in diffusing the architecture descriptor and the
deployment descriptor to all the machines that are listed at the top level of the applica-
tion (with the XML target element).

Then, once a machine has received these descriptors, a recursive process is launched
in order to select the components that can be hosted on this machine. The main steps of
this process for a machine mi, for a component C are the following:

1. machine mi checks if it satisfies the location constraints associated with C. This cor-
responds to verifying if mi belongs to the set of the target hosts (see XML target
element). If the mi is not concerned by the deployment (instantiation) of component
C, the process returns for this component, else,

2. machine mi has to launch probes corresponding to the resource constraints of C
(e.g. CPUProbe, MemoryProbe). If at least one probe returns a value violating a
resource constraint (e.g. not enough free memory available), the process returns,
else,

3. machine mi declares itself as an applicant host for component C and a collective de-
cision has to be made. Indeed, more than one host may apply and if C is a composite
component, it may have subcomponents with location constraint such as x , y

4. once a choice has been made, all the applicants are informed of the value of the free
variables and of the fact that they are authorized (or not) to instantiate component
C. The process stops for hosts that are not authorized. For the others,

5. if C is a composite component, the process is performed recursively for all the
subcomponents of C

In a connected network, there is no difficulty to make the collective decision de-
scribed in point 3. We could for example choose before the deployment a machine S
whose role is to decide a host among applicants. In this case, when a host h satisfies all

the constraints attached to a component and thus becomes applicant, h announces itself
to S and waits for a decision. However we prefer the approach of [11] where a deploy-
ment controller, which is in charge of well-defined tasks of the deployment, is defined
for each composite component of the hierarchy. The main reason for such a distribu-
tion of the deployment controllers is scalability. Indeed, with this approach, parts of the
application can be deployed independently according to its topology. Thus, we define a
machine S i per composite component of the hierarchy. This machine is responsible for
the decision-making of its direct sub-architecture, i.e. it must choose among applicants
those who don’t contradict the location constraints. Applicants must be informed of
the results. Thus, after a decision, each representative S i sends to the applying hosts a
new deployment descriptor which is updated with the new location information, i.e. the
actual name of the machine hosting a specific component is added to the location con-
straints. Indeed, before the deployment, no explicit machine name is given and variables
can be used to indicate applicant machines. For example, if the machines ambika and
dakini are respectively attributed to components DocumentFinder and DocumentBuffer,
the following lines are added to descriptor (a):
/ / r e p l a c e l i n e 1 1 by : / / r e p l a c e l i n e 2 3 by :
< t a r g e t varname ="x " v a l u e=" ambika " / > < t a r g e t varname ="y " v a l u e=" d a k i n i " / >

As a consequence of the decision, some components can be instantiated. In the
case of composite components, the deployment process (local evaluation, applicant an-
nouncement, decision-making) goes along recursively.

However, it may be possible that a representative machine could not find any place-
ment solution (because no combination of applicants fullfills all the location constraints).
In order to propose to the representative a new possible placement, a machine that newly
satisfies some resource constraints (for uninstalled components) declares itself as appli-
cant.

4.3 Deployment in a Dynamic Network

The previous section, with the assumption of a fully connected network, has highlighted
two main ideas of the propagative deployment: (1) each host does the evaluation of the
constraints attached to the components and (2) the decision making is distributed over
several machines, each of them representing a composite component of the application.

In a dynamic network all the machines may not be connected at the same time. In
this kind of network, islands may exist and communication paths between machines
may disappear. In such an environment, a deployment based on a full connection of
the different machines at the same time is not conceivable. We may want to start the
deployment (i.e. the instantiation of parts of the components and thus to put parts of
the services offered by the application at disposal) while some machines may be dis-
connected or inaccessible. The component model presented previously (see section 2)
allows an application to run in a degraded mode but the main difficulty here is to deal
with the unicity of the instantiation of the–possibly statefull–components, which is dif-
ficult to ensure in a dynamic network. Indeed, we must avoid conflicting decision to
be made in the different islands that may exist in such an environment. On one hand, a
machine that represents a composite component, cannot be selected before the deploy-
ment, as in a fully connected network, since this machine may not be connected. On

the other hand, if we let each of the machines that host the same replicated composite
component make a decision, we cannot guarantee that in two different islands contra-
dictory instantiations may not be performed. We tackle this difficulty by considering
the consensus problem: a set of machine has to decide on a same value regarding the
representative of composite components.

We use the results of [12], in which the requirements of the consensus problem are
relaxed. The authors have identified conditions for which there exists an asynchronous
protocol that solves the consensus problem despite the occurrence of t process crashes.
We define the consensus to select, for each composite that is replicated on several ma-
chines, a representative host that will make future decisions on where the direct sub-
components have to be instantiated.

Algorithm The main steps of the algorithm described in the previous section are not
modified. The only change concerns the designation of a representative host for each
node of the hierarchy. We use the algorithm of [12] to elect such a representative and to
build a common view of the placement of the components.

The consensus algorithm requires that a majority of machines can be reached among
the target hosts of the composite component. This majority is not the same depending
on the composite component. For example, the photo application is distributed over
{h1, h2, h3, h4, h5}, as a consequence, the majority is reached when at least three of these
machines are in the same island. Whereas for the composite DocumentSearch com-
ponent, which is distributed over {h1, h2, h3}, the consensus is possible when an island,
composed of at least {h1, h2}, {h1, h3} or {h2, h3}, is formed.

The consensus-based algorithm consists in:

1. ensuring that the selection of a host for a representative composite component is
possible if an island is composed of a majority of machines,

2. selecting a machine S i for the future instantiation decisions for each composite
component of the hierarchy

3. updating the deployment descriptor with the identifier of the selected machine.

Points 1 and 3 guarantee that if a new island composed of a majority of machines
is created, there is at least one machine that possesses the most recent version of the
deployment descriptor. Thus no contradictory decision can be made in this island.

The consensus may not terminate (e.g. the number of hosts within an island may not
be sufficient). In order to prevent this situation, we allow a newly connected machine to
participate in this consensus. This is achieved by periodically broadcasting a message
asking if a consensus is still in progress. In that case the newly connected machine
collects the data that have already been exchanged between the other machines and
proposes a value that can make the consensus evolve.

Once a representative composite component is chosen, due to the dynamism of the
network, this composite may be in a non-majority island during a more or less amount
of time. In this case, if an instantiation decision is made, it cannot decide any more
whereas it may exists an other island in which a consensus can be reached. Thus, if
such a decision has to be made and a majority of machines composes the islands, a new
representative machine is selected and the deployment descriptor is updated. No conflict

will arise later, i.e. when the older representative belongs to a new majority islands.
Indeed in such an island, it exists at least one machine that possesses the most recent
version of the deployment descriptor, thus during the consensus, the older representative
will learn the existence of the new one.

5 Implementation Status

The propagative deployment presented in this paper is based on a constraint based-
language for the description of the placement of components according to resource
requirements. Our current prototype has been implemented using Julia, a Java imple-
mentation of the Fractal component model [3]. The features of the ADLs described
in section 3 have been implemented as new modules into the Fractal Architecture De-
scription Language. Deployment descriptors can be specified graphically through an
extension of FractalGUI.

In order to evaluate the constraints defined in the deployment descriptor, we have to
collect information about resources on every host. We use D-Raje [13] –a framework
developed in our team, dedicated to the observation of distributed system resources in
Java– to define specific probes related to resource constraints. D-Raje is also used to
model and to monitor the state of physical links between hosts. A disconnection can
then be captured with the result that bindings between components are withdrawn and
the corresponding interfaces are deactivated. Further details can be found in [2].

We are currently implementing a distributed test platform in order to tune our con-
sensus algorithm considering parameters such as the numbers of hosts and the frequency
of disconnections.

6 Related work

The main aspects developed in this paper are related to a distribution scheme for hi-
erarchical components on dynamic networks and to a resource-aware and propagative
deployment.

Many works have taken into account a context-aware deployment, that is, the place-
ment of components onto hosts according to some resource requirements. A formal
statement of the deployment is given in [14] and a set of algorithms that improve mo-
bile system’s availability is presented. In [15] the authors propose a deployment con-
figuration language (DCL) in which properties on the target hosts can be expressed.
The deployment considered in this work extends the Corba Component Model, which
is a flat component model. In [10], the authors present the Deladas language that also
allows constraints to be defined on hosts and components. A constraint solver is used to
generate a valid configuration of the placements of components and reconfiguration of
the placement is possible when a constraint becomes inconsistent. But this centralized
resolution is not suited to the kind of dynamic network we target. Moreover, the current
version of Deladas does not consider resource requirements. These abovementioned
works aim at finding an optimum for the placement problem of components. This as-
pect is not one of our objectives. Indeed, due to the dynamism of the environment, it

is hardly feasible to define a quiescent state that will allow our consensus algorithm to
decide on an optimal placement. Moreover, the solutions proposed are centralized.

In [16] a decentralized redeployment is presented. The configuration to be deployed
is available on every host involved in the deployment. A local decision can then be made
according to the local subsystem configuration state. However the choice of the compo-
nents’ location is made before the deployment process. The works presented in [11] on
the deployment of hierarchical component-based applications is probably the closest to
ours’. The authors describe an asynchronous deployment and use the hierarchical struc-
ture of the application in order to distribute deployment tasks. In the solution developed
by the authors, a deployment controller is statically chosen and defined in the deploy-
ment descriptor. In our approach we could not decide at design-time which machine
will host such a controller. The approach proposed by the authors focuses on functional
constraints and thus resource requirements have not been taken into account.

7 Conclusion

This paper has presented a support for deploying and executing an application built with
hierarchical components on an heterogeneous and dynamic network. The main contri-
bution of this work is that it attempts to take into account a challenging distributed target
platform characterized by the heterogeneity and the volatility of the hosts, volatility that
may result in the fragmentation of the network.

A distribution method has been proposed for hierarchical components. Composite
components are made accessible on a set of hosts whereas each primitive component is
localized on a single host. Besides, via the notion of active interface, we allow a com-
ponent to operate in a degraded mode in order to account for network disconnections
without making the entire application unusable.

We have presented a purely descriptive language for specifying deployment descrip-
tors that allow for a context-aware deployment. This language is meant to extend some
existing ADL. A deployment descriptor allows the description of the resource needs of
a component and some placement constraints.

The deployment process we have defined is a propagative one. The instantiation
and the activation of a component is performed as soon as some resources that meet
its needs are discovered. This early activation is possible as some of its interfaces can
remain inactive (the component then executes in a degraded mode).We have designed
an algorithm that supports this propagative deployment in a dynamic network. The scal-
ability of the process is ensured by the distributed and hierarchical organisation of the
control. Moreover, we have presented a distributed consensus that guarantees that the
location constraints are satisfied even in the context of a partitioned network.

The main direction of our future work consists in taking into account the possible
modifications on the resources’ availability after some component instantiations have
been made. Indeed, even if we can respect for example a memory constraint on the
instantiation of a given primitive component, the memory conditions may change that
invalidates the choice afterwards. The mechanisms we have implemented in our deploy-
ment algorithm could be adapted for solving this problem, provided the component can
be safely stopped. An autonomic deployment could thus be defined.

References

1. Roussain, H., Guidec, F.: Cooperative Component-Based Software Deployment in Wireless
Ad Hoc Networks. In: 3rd International Working Conference on Component Deployment
(CD 2005). LNCS, Grenoble, France (2005)

2. Hoareau, D., Mahéo, Y.: Distribution of a Hierarchical Component in a Non-Connected
Environment. In: 31th Euromicro Conference - Component-Based Software Engineering
Track, Porto, Portugal, IEEE CS (2005)

3. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An Open Compo-
nent Model and its Support in Java. In: Proceedings of the International Symposium
on Component-based Software Engineering (CBSE7). Number 3054 in LNCS, Edinburgh,
Scotland (2004)

4. van Ommering, R.C.: Koala, a Component Model for Consumer Electronics Product Soft-
ware. In: ESPRIT ARES Workshop, Las Palmas de Gran Canaria, Spain (1998) 76–86

5. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software Architec-
tures. In: Proceedings of the 5th European Software Engineering Conference (ESEC), Sitges,
Spain (1995) 137–153

6. Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for Component Trading and
Dynamic Updating. In: Proceedings of the 4th International Conference on Configurable
Distributed Systems (ICCDS ’98), Annapolis, Maryland, US (1998)

7. Medvidovic, N., N. Taylor, R.: A classification and comparison framework for software
architecture description languages. IEEE Trans. Software Eng 26 (2000) 70–93

8. : xacme: Acme extensions to xarch. School of Computer Science Web Site: http://www-
2.cs.cmu.edu/ acme/pub/xAcme/ (2001)

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: An infrastructure for the rapid development
of xml-based architecture description languages. In: In proceedings of the International
Conference on Software Engineering (ICSE’02), Orlando, Florida, USA (2002) 266–276

10. Dearle, A., N. C. Kirby, G., J. McCarthy, A.: A framework for constraint-based deployment
and autonomic management of distributed applications. In: ICAC. (2004) 300–301

11. Quéma, V., Balter, R., Bellissard, L., Féliot, D., Freyssinet, A., Lacourte, S.: Asynchronous,
hierarchical and scalable deployment of component-based applications. In: Proceedings of
the 2nd International Working Conference on Component Deployment (CD’2004), Edin-
burgh, Scotland (2004)

12. Mostéfaoui, A., Rajsbaum, S., Raynal, M., Roy, M.: Condition-based consensus solvability:
a hierarchy of conditions and efficient protocols. Distributed Computing 17 (2004) 1–20

13. Mahéo, Y., Guidec, F., Courtrai, L.: A Java Middleware Platform for Resource-Aware Dis-
tributed Applications. In: 2nd Int. Symposium on Parallel and Distributed Computing (IS-
PDC’2003), Ljubljana, Slovenia, IEEE CS (2003) 96–103

14. Mikic-Rakic, M., Medvidovic, N.: Software architectural support for disconnected operation
in highly distributed environments. In: CBSE. (2004) 23–39

15. Li, T., Hoffmann, A., Born, M., Schieferdecker, I.: A platform architecture to support the
deployment of distributed applications. In: ICC, IEEE International Conference on Commu-
nications. Volume 4. (2002) 2592–2596

16. Mikic-Rakic, M., Medvidovic, N.: Architecture-level support for software component de-
ployment in resource constrained environments. In: Component Deployment. (2002) 31–50

