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Abstract. The area method for Euclidean constructive geometry was proposed
by Chou et al. in the early 1990’s. The method produces human-readable proofs
and can efficiently prove many non-trivial geometry theorems. It is one of the most
interesting and most successful methods for automated theorem proving in geometry
and probably the most successful in the domain of automated production of readable
proofs in geometry.

In this paper, we provide a first complete presentation of the method. We provide
both algorithmic and implementation details that were omitted in the original pre-
sentations. We also give a variant of Chou, Gao and Zhang's axiom system. Based
on this axiom system, we proved formally all the lemmas needed by the method and
its soundness using the Cog proof assistant.

To our knowledge, apart from the original implementation by the authors who
first proposed the method, there are only three implementations more. Although
the basic idea of the method is simple, implementing it is a very challenging task
because of a number of details that has to be dealt with. With the description of
the method given in this paper, implementing the method should be still complex,
but a straightforward task. In the paper we describe all these implementations and
also some of their applications.

Keywords: area method, geometry, automated theorem proving
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2 Janic¢i¢ - Narboux - Quaresma

1. Introduction

There are two major families of methods in automated reasoning in
geometry: algebraic style and synthetic style methods.

Algebraic style has its roots in the work of Descartes and in the trans-
lation of geometry problems to algebraic problems. The automation of
the proving process along this line began with the quantifier elimination
method of Tarski (Tarski, 1951) and since then had many improve-
ments (Collins, 1975). The characteristic set method, also known as
Wu’s method (Wu, 1978; Chou, 1985), the elimination method (Wang,
1995), the Grobner basis method (Kapur, 1986b; Kapur, 1986a), and the
Clifford algebra approach (Li, 2000) are examples of practical methods
based on the algebraic approach. All these methods have in common an
algebraic style, unrelated to traditional, synthetic geometry methods,
and they do not provide human-readable proofs. Namely, they deal
with polynomials that are often extremely complex for a human to
understand, and also with no direct link to the geometrical contents.

The second approach to the automated theorem proving in geometry
focuses on synthetic proofs, with an attempt to automate the traditional
proving methods. Many of these methods add auxiliary elements to the
geometric configuration considered, so that a certain postulates could
apply. This usually leads to a combinatorial explosion of the search
space. The challenge is to control the combinatorial explosion and to
develop suitable heuristics in order to avoid unnecessary construction
steps. Examples of synthetic proof methods include approaches by Gel-
ertner (Gelernter, 1959), Nevis (Nevis, 1975), Elcock (Elcock, 1977),
Greeno et al. (Greeno et al., 1979), Coelho and Pereira (Coelho and
Pereira, 1986), Chou, Gao, and Zhang (Chou et al., 1993; Chou et al.,
1996¢).

In this paper we focus on the area method, an efficient semi-algebraic
method for a fragment of Euclidean geometry, developed by Chou, Gao,
and Zhang (Chou et al., 1993; Chou et al., 1994; Chou et al., 1996b).
This method enables implementing efficient provers capable of gener-
ating human readable proofs. These proofs often differ from the tradi-
tional, Hilbert-style, synthetic proofs, but still they are often concise,
consisting of steps that are directly related to the geometrical contents
involved and hence can be easily understood by a mathematician.

The main idea of the area method is to express the hypotheses of
a theorem using a set of starting (“free”) points and a set of construc-
tive statements each of them introducing a new point, and to express
the conclusion by an equality between polynomials in some geometric
quantities (without considering Cartesian coordinates). The proof is
developed by eliminating, in reverse order, the points introduced before,
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using for that purpose a set of appropriate lemmas. After eliminating
all the introduced points, the conclusion of the theorem collapses to an
equation between two rational expressions involving only free points.
This equation can be further simplified to involve only independent
variables. If the expressions on the two sides are equal, the statement
is valid, otherwise it is invalid. All proof steps generated by the area
method are expressed in terms of applications of high-level geometry
lemmas and expression simplifications.

Although the basic idea of the method is simple, implementing it is
a very challenging task because of a number of details that has to be
dealt with. To our knowledge, apart from the original implementation
by the authors who first proposed the area method, there are only
three implementations more. These three implementations were made
independently and in different contexts:

— within a tool for storing and exploring mathematical knowledge
(Theorema (Buchberger et al., 2006)) — implemented by Judite
Robu (Robu, 2002).

— within a generic proof assistant (Coq (The Coq development team,
2009)) — implemented by Julien Narboux (Narboux, 2004);

— within a dynamic geometry tool (GCLC (Jani¢i¢, 2006)) — im-
plemented by Predrag Jani¢i¢ and Pedro Quaresma (Jani¢i¢ and
Quaresma, 2006);

The implementations of the method can efficiently find proofs of a
range of non-trivial theorems, including theorems due to Ceva, Menelaus,
Gauss, Pappus, and Thales.

In this paper, we present an in-depth description of the area method
covering all relevant definitions and lemmas. We also provide some of the
implementations details, which are not given or not clearly stated in the
original presentations. We follow the original exposition, but in a reor-
ganised, more methodological form. This description of the area method
should be sufficient for a complete understanding of the method, and
for making a new implementation a straightforward task. This paper
also summarises our results, experiences, and descriptions of our soft-
ware systems related to the area method (Jani¢i¢ and Quaresma, 2006;
Quaresma and Janic¢i¢, 2006a; Quaresma and Janic¢i¢, 2006b; Janici¢
and Quaresma, 2007; Narboux, 2004; Narboux, 2007a).

In this paper we consider only the basic variant of the area method
for Euclidean geometry, although there are other variants. Additional
techniques can also be used to produce shorter proofs and slightly ex-
tend the basic domain of the method (Chou et al., 1994). However,
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these techniques are applicable only in special cases and not in a uni-
form way, in contrast to the basic method. It is also possible to extend
the area method to deal with inequations in the goal. Then the final
inequation can be decided using an CAD algorithm or a heuristic like
the sum of squares method. There are also variants of the area method
developed for solid Euclidean geometry (Chou et al., 1995) and for
hyperbolic plane geometry (Yang et al., 1998). Substantially, the idea
of these variants is the same as in the basic method and this demonstrate
that the approach has a wide domain. Variants of the method can be
implemented in the same way described in this paper.

Overview of the paper. The paper is organised as follows: first, in
Section 2, we explain the area method in details. In Section 3, we
describe all the existing implementations of the method and some of
their applications. In Section 4 we summarise our contributions and we
draw final conclusions in Section 5.

2. The Area Method

The area method is a decision procedure for a fragment of Euclidean
plane geometry. The method deals with problems stated in terms of
sequences of specific geometric construction steps. We begin introducing
the method by way of example.

In the rest of the paper, capital letters will denote points in the plane
and AABC will denote the triangle with vertices A, B, and C.

2.1. INTRODUCTORY EXAMPLE

The following simple example briefly illustrates some key features of
the area method.

EXAMPLE 2.1. (Ceva’s Theorem). Let AABC be a triangle and P be
an arbitrary point in the plane. Let D be the intersection of AP and
BC, E be the intersection of BP and AC, and F the intersection of
CP and AB. Then it holds that:
AF BDCE
FBDC EA
This result can be stated and proved, within the area method setting.

The Construction. The points A, B, C, and P are free points, points
not defined by construction steps. The point D is the intersection of
the line determined by the points A and P and the line determined by
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the points B and C'. The points F and F' are constructed in a similar
fashion.

For this problem, an initial non-degeneracy condition is, that it holds
F # B, D # C, and E # A. Notice also that the point P is not
completely arbitrary point in the plane, since it should not belong to
the three lines parallel to the sides of the triangle and passing through
the opposite vertices (Figure 1).

Figure 1. Tlustration for Ceva’s theorem

Stating the Conjecture. One of the key problems in automated theorem
proving in geometry is the control of the combinatorial explosion that
arises from the number of similar, but still different, cases that have to
be analysed. For instance, given three points A, B, and C, how many
triangles they define? One can argue that the answer is one, but from
a syntactic point of view the AABC' is not equal to the AACB. For
reducing such combinatorial explosion, but also for ensuring rigorous
reasoning, one has to deal with arrangement relations, such as on the
same side of a line, two triangles have the same positive orientation, etc.
Note that, in Euclidean geometry, positive and negative orientation are
just two names used to distinguish between the two orientations and
one can select any triangle in the plane and proclaim that it has the
orientation that will be called positive (and it is similar with orienta-
tion of segments on a line). In other words, in Euclidean geometry the
notion of orientation is relative rather then absolute, and one can prove
that a triangle has positive orientation, only if positive (and negative)
orientation was already defined via some triangle in the same plane.
In the Cartesian model of Euclidean geometry, the two orientations

areaMethodRecap.tex; 6/10/2009; 19:53; p.5



6 Jani¢i¢ - Narboux - Quaresma

are distinguished as clockwise and counterclockwise orientations. These
two names should not be used for Euclidean geometry, because they
cannot be defined there. Unfortunately, these terms are widely used in
geometrical texts, including the description of the area method (Zhang
et al., 1995).

For stating and proving conjectures, the area method uses a set of
specific geometric quantities. The geometric quantities enable treating
arrangement relations.

Within the area method the following geometric quantities are used:

— ratio of parallel directed segments, denoted AB/CD. If the points
A, B, C, and D are collinear, AB/CD is the ratio between lengths
of directed segments AB and C'D. If the points A, B, C, and D are
not collinear, and it holds AB||C'D, there is a parallelogram ABPQ

- AB _ QP
such that P, ), C', and D are collinear and then = =25

— signed area for a triangle ABC, denoted Sapc;

— Pythagoras difference, denoted Papc, for the points A, B, C, de-
fined as Papc = AB° +CB° — AC".

These three geometric quantities allow expressing (in form of equali-
ties) geometry properties such as collinearity of three points, parallelism
of two lines, equality of two points, perpendicularity of two lines, etc.
(see section 2.2.1). In the example, the conjecture is expressed using
ratios of parallel directed segments.

Proof.  The proof of a conjecture is based on eliminating all the con-
structed points, in reverse order, using for that propose the properties
of the geometric quantities, until an equality in only the free points is
reached. If the equality is valid, then the original conjecture is valid too.
For the given example, a proof can be as follows:

AF _ Sapc BD _ Sepra
It can be proved that &= = F2E€. By analogy D6 = Feuw and
CE _ Scpp .
= = LR Therefore:
AF BD CE _ Sapc BD CE : ‘o alimi
55 56 Bx — IoEC 5 & the point F' is eliminated
_ Sapc Sppa CE ; ‘o alimi
= FEC P = the point D is eliminated
= Sapc Sppa Scep the point F is eliminated
Spcp Scap Sapp

=1

Q.E.D.
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The example illustrates how to express a problem using the given
geometric quantities and how to prove it, and moreover, how to give a
proof that is concise and very easy to understand.

The complete proof procedure will be given in Section 2.5. Before
that, the underlying axiom system will be introduced.

2.2. AXIOMATIC GROUNDS FOR THE AREA METHOD

There is a number of axiom systems for Euclidean geometry. Euclid’s
system (Heath, 1956), partly naive from today’s point of view, was used
for centuries. In early twenty century, Hilbert provided a more rigorous
axiomatisation (Hilbert, 1977), one of the landmarks for modern math-
ematics, but still not up to modern standards (Dehlinger et al., 2000;
Meikle and Fleuriot, 2003). In mid-twenty century, Tarski presented a
new axiomatisation for elementary geometry (without all continuity fea-
tures ensured), along with a decision procedure for that theory (Tarski,
1959). Although there are other variations of these systems (Janicic,
1996; Narboux, 2006), these three are the most influential and most
popular axiomatic systems for geometry.

Modern courses on classical Euclidean geometry are most often based
on Hilbert’s axioms. In Hilbert-style geometry, the primitive (not de-
fined) objects are: point, line, plane. The primitive (not defined) pred-
icates are those of congruence and order (with addition of equality
and incidence!). Properties of the primitive objects and predicates are
introduced by five groups of axioms, such as: “For two points A, B there
exists a line a such that both A and B are incident with it”.

In the following text we briefly discuss how axiomatic grounds can be
built for the fragment of geometry treated by the area method. We will
present two approaches, both enabling proving properties of geometric
quantities required by the area method.

2.2.1. A Hilbert Style Axiomatisation
The geometric quantities used within the area method can be defined
in Hilbert style geometry, but they also require axioms of the theory of
fields.

The notions of the ratio of parallel directed segments and of the
signed area involve the notion of orientation of segments on a line and
the notion of orientation of triangles in a plane (discussed in section 2.1).

DEFINITION 1. (Ratio of parallel directed segments).

1 See von Plato’s discussion about incidence in Hilbert’s geometry (von Plato,
1997).
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Table I. Expressing geometry predicates in terms of the three geometric quantities.

property in terms of geometric quantities
points A and B are identical Papa =0

points A, B, C are collinear Sapc =0

AB is perpendicular to CD Pacp = Pecp

AB is parallel to CD Sacp = Secp

O is the midpoint of AB 40 -

AB has the same length as CD Pasa =Pcpc

points A, B, C, D are harmonic % = %

angle ABC has the same measure as DEF  Sapc - Pper = Sper - PaBC
A, B, C and D belong to the same circle Scap - Pecep = Scep - Pcabp

If the points A, B, C, and D are collinear, % 1s the ratio between
lengths of directed segments AB and CD. If the points A, B, C, and D
are not collinear, and it holds AB||CD, there is a parallelogram ABPQ

; AB _ QP
such that P, Q, C, and D are collinear and then =5~ %p-
DEFINITION 2. (Signed Area). The signed area of the triangle ABC,
denoted Sppc.

The Pythagoras difference is a generalisation of the Pythagoras equal-
ity regarding the three sides of a right triangle, to an expression appli-
cable to any triangle (for a triangle ABC with the right angle at B, it
holds that Papc = 0.).

DEFINITION 3. (Pythagoras difference). For three points A, B, and
C, the Pythagoras difference, denoted Papc, is defined in the following
way:
—=2 =52 2
Papc =AB" +CB™ — AC".

Using these three geometric quantities it is possible to express a
range of geometry predicates as shown in Table 2.2.1.

Proofs generated by the area method use a set of specific lemmas.
These lemmas can be proved within the Hilbert’s geometry (i.e., within
its fragment for plane geometry), but the full, formal proofs would be
very long. That is why it is suitable to have an alternative axioma-
tisation, suitable for the area method. Chou, Gao and Zhang (Chou
et al., 1993) proposed such a system for affine geometry, and in the
next section we propose a variant of this system.

areaMethodRecap.tex; 6/10/2009; 19:53; p.8



2.2.2. A New Aziom System for the Area Method

The axiom system used by Chou, Gao and Zhang (Chou et al., 1994)
is a Hilbert style axiom system, i.e. a semi-analytic axiom system with
(only) points as primitive objects (lines are not primitive objects as in
Hilbert’s axiom system). The axiom system contains the axioms of field,
so the system uses the concept of numbers, but it is still coordinate free.
The field is not assumed to be ordered, hence the axiom system has the
property of representing an unordered geometry. This means that, for
instance, one cannot express the concept of a point being between two
points (unlike in Hilbert’s system).

In the following, we present our special-purpose axiom system for
Euclidean plane geometry (within first order logic with equality), a
modified version of the axiomatic system of Chou, Gao and Zhang.
There are several reasons why we modified the original axiom system.
Compared to the original version, ours has the advantage to be more
concise and organised. Moreover, we formally verified (within the Cogq
proof assistant (The Coq development team, 2009)) all the properties
of the geometric quantities required by the area method, demonstrating
the correctness of the system and eliminating all concerns about validity
of the lemmas.

In our axiom system, there is just one type of objects: points. The
system uses a field (F,+,-,0,1) of characteristic different from 2.2 The
axioms of the theory of fields are standard and hence omitted.

There is one primitive binary function symbol () and one ternary
function symbols (S.)) from points to F. The first depicts the signed
distance between two points, the second represents the signed area of
a triangle. All axioms given in Table IT are implicitly universally quan-
tified. To improve readability (of the last three axioms), the following
shortcuts are used:

Papc = AB +BC —AC"
AB||CD = Sacp+Sapp =0
AB L CD = Pacp+Ppcp =0

The axiom system we propose differs from the axiom system of Chou,
Gao and Zhang in several aspects.

First, our system does not use collinearity as a primitive notion
and instead, collinearity is defined by the signed area. Chou, Gao and

2 The fact that the characteristic of F is different from 2 is used to simplify
the axiom system. Indeed, if 0 # 2 since VABC,Sapc = —Spac (by axiom 3)
then VAC,Saac = —Saac and hence VAC,Saac = 0, so we can omit the axiom
Saac = 0 which appears in the system proposed by Chou et al. In addition, this
assumption allows, for instance, construction of the midpoint (using the construction
axiom with r = %) of a segment without explicitly stating the assumption 0 # 2.
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10 Janic¢i¢ - Narboux - Quaresma

Table II. The axiom system
1. AB = 0 if and only if the points A and B are identical
2. Sapc = ScaB
3. SaBc = —SBac
4. If Sapc = 0 then AB + BC = AC (Chasles’s axiom)
5

. There are points A, B, C such that Sapc # 0 (dimension; not all points are
collinear)

(=2}

. Sac = Spc + Sapc + Sapp (dimension; all points are in the same plane)

7. E eac}ilement r of I, there exists a point P, such that Sapp = 0 and
AP = rAB (construction of a point on the line)

8. If A+# B,Sapp =0,AP =rAB,Sogp =0, AP’ = rAB, then P = P’ (unicity)
Vol s
9. If Spcqg + Spgp = 0, C # D Scpg # 0, and g=g = 1, then % =1
(parallelogram)
10. If Spac # 0 and Sapc = 0 then A;g = giﬁg (proportions)

11. f C # D and AB L CD and EF L CD then AB || EF.
12. f A# B and AB L CD and AB || EF then EF L CD.

13. If FA 1 BC and Srppc = 0 then 453 5. = FQB_C2 (area of a triangle).

Zhang’s system has axioms introducing properties of collinearity, and
these axioms are then used for proving that three points are collinear
if and only if Sapc = 0 (Chou et al., 1994).

Second, while Chou, Gao and Zhang’s axiom system restricts to
ratios of directed parallel segments A:g where the lines AB and C'D are
parallel, we skip this syntactical restriction and can use ratios for arbi-
trary points. The consistency of the axiom system is preserved because
the concept of oriented distance can be interpreted in the standard
Cartesian model. The area method requires explicitly that for every

ratio of directed segments é;g, AB is parallel to C'D. Therefore, the area
method is not a decision procedure for this theory, as it can not prove or

disprove all conjectures stated in the introduced language because the
method can not deal with ratios of the form é:g if AB }f CD (however,
it is a decision procedure for the set of formulae from the restricted
version of the language).

Third, while Chou, Gao and Zhang’s axiom system deals with affine
geometry, we extend the system to deal with Euclidean geometry as we
make explicit the axioms about Pythagoras difference (axioms 11, 12,
and 13).
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11
2.3. GEOMETRIC CONSTRUCTIONS

The area method is used for proving constructive geometry conjectures:
statements about properties of objects constructed by some fixed set of
elementary constructions. In this section we first describe the set of
available construction steps and then the set of conjectures that can be
expressed.

2.3.1. Elementary Construction Steps

Constructions covered by the area method are closely related, but still
different, from constructions by ruler and compass. These are the ele-
mentary constructions by ruler and compass:

construction of an arbitrary point;
— construction of an arbitrary line;

— construction (by ruler) of a line such that two given points belong
to it;

— construction (by compass) of a circle such that its centre is one
given point and such that the second given point belongs to it;

— construction of a point such that it is the intersection of two lines
(if such a point exists);

— construction of the intersections of a given line and a given circle
(if such points exist).

— construction of the intersections of two given circles (if such points
exist).

The area method cannot deal with all geometry theorems involving
the above constructions. It does not support construction of an arbitrary
line, and support intersections of two circles and intersections of a line
and a circle only in a limited way.

Instead of support for intersections of two circles or a line and a
circle (critical for describing many geometry theorems), there are new,
specific construction steps. All constructions supported by the area
method are expressed in terms of the involved points.? Therefore, only

3 Elementary construction steps used by the area method do not use the concept
of line and plane explicitly. This is convenient from the formalisation and automati-
zation point of view. Indeed, in an axiom system based only on the concept of points
(as in Tarski’s axiom system (Tarski, 1959)), the dimension implied can be easily
changed by adding or removing some appropriate axioms (stated in the original
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lines and circles determined by specific points can be used (rather than
arbitrarily chosen lines and circles) and the key constructions steps
are those introducing new points. For a construction steps to be well-
defined, certain conditions may be required. These conditions are called
non-degeneracy condition (ndg-conditions). The degree of freedom tells
if a point is free (degree bigger than 0), or not.

In the following text, (LINE U V) will denote a line such that the
points U and V belong to it, and (CIRCcLE O U) will denote a circle
such that its centre is point O and such that the point U belongs to it.

Some of the constructions steps are formulated using the fixed field
(F,+,-,0,1), employed by the used axiom system.

Given below is the list of elementary constructions in the area method,
along with the corresponding ndg-conditions and the degrees of freedom
of the constructed points.

ECS1 construction of an arbitrary point U; this construction step is
denoted by (PoIinT U).

ndg-condition: —
degree of freedom for U: 2
ECS2 construction of a point Y such that it is the intersection of two

lines (LINE U V) and (LINE P Q); this construction step is denoted
by (INTER Y (LINE U V) (LINE P Q))

ndg-condition: UV }f PQ; U #V; P # Q.
degree of freedom for Y: 0

ECS3 construction of a point Y such that it is the foot from a given
point P to (LINE U V); this construction step is denoted by (FooT
Y P (LINE U V)).

ndg-condition: U # V
degree of freedom for Y: 0

ECS4 construction of a point Y on the line passing through a point
W and is parallel to (LINE U V), such that WY = rUV, where r
is an element of F', a rational expression in geometric quantities,
or a variable; this construction step is denoted by (PrATIO Y W
(LINE U V) 1).

signature). On the other hand, in an axiom system based on the concepts of points
and lines, such as Hilbert’s axiom system, in order to extent the system to the third
dimension ones needs both to update some axioms, to introduce some new axioms
and to change the signature of the theory by introducing the sort of planes.
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ndg-condition: U # V7 if r is a rational expression in the geometric
quantities, the denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a
variable.

ECS5 construction of a point Y on the line passing through a point U
and perpendicular to (LINE U V), such that 47;95# = r, where 7 is
a rational number, a rational expression in geometric quantities, or
a variable; this construction step is denoted by (TRATIO Y (LINE
UV)r).

ndg-condition: U # V; if r is a rational expression in geometric
quantities then the denominator of r should not be zero.

degree of freedom for Y: 0, if r is a fixed quantity; 1, if r is a
variable.

The above set of constructions is sufficient for expressing many con-
structions based on ruler and compass, but not all of them. For instance,
an arbitrary line cannot be constructed by the above construction steps.
Still, one can construct two arbitrary points and then (implicitly) the
line going through these points.

Also, intersections of two circles and intersections of a line and a
circle are not supported in a general case. However, it is still possible
to construct intersections of two circles and intersections of a line and
a circle in some special cases. For example:

— construction of a point Y such that it is the intersection (other
than point U) of a line (LINE U V) and a circle (CIRCLE O U) can
be represented as a sequence of two construction steps: (FooT N
O (LiNE U V)), (PraTiIO Y N (LINE N U) -1).

— construction of a point Y such that it is the intersection (other than
point P) of a circle (CIRCLE O1 P) and a circle (CIRCLE O2 P)
can be represented as a sequence of two construction steps: (FooT
N P (LiNe O1 02)), (PrATIO Y N (LINE N P) -1).

In addition, many other constructions (expressed in terms of con-
structions by ruler and compass) can be performed by the elementary
constructions of the area method. Some of them are:

— construction of a line such that a given point W belongs to it and it
is parallel to a line (LINE U V); it can be represented as a sequence
of two steps: (PrRATIO N W (LINE U V) 1), (LINE W N).
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— construction of a line such that a given point W belongs to it and
it is perpendicular to a line (LINE U V); if W, U, V are collinear,
then this construction can be represented as (TRATIO N (LINE W
U) 1), (LiINe N W), otherwise it can be represented as (FooT N
W (LiNe U V)), (LINE N W).

— construction of a perpendicular bisector of a segment with end-
points U and V; this construction can be represented as (PRATIO
M (Line U U) V 1/2), (TraTIO N (LINE M U) 1), (LINE N M).

Also, it is possible to construct an arbitrary point on a line (LINE
U V), by (PrRATIO Y U (LINE U V) r) where r is an indeterminate, or
on a circle (CIrcLE O P), by (PoinT Q), (Foor N O (LINE P Q)),
(PrAaTIO Y N (LINE N P) -1).

Within a wider system (e.g., within a dynamic geometry tool), a
richer set of construction steps can be used for describing geometry
conjectures as long as all of them can be represented by the elementary
construction steps of the area method.

As said, the set of elementary construction steps in the area method
cannot cover all constructions based on ruler and compass. On the other
end, there are also some constructions that can be performed by the
above construction steps and that cannot be performed by ruler and
compass. For instance, if ¥/2 € F then, given two distinct points A and
B, one can construct a third point C such that AC = /2 AB, since
one can use this number (whereas it is not possible using ruler and
compass).

EXAMPLE 2.2. The construction given in Example 2.1 can be repre-
sented in terms of the given construction steps as follows:

A, B,C, P are free points (ECS1)

INTER D (LINE A P) (LINE B C)) (ECS2)

INTER E (LINE B P) (LINE A C)) (ECS2)

INTER F (LINE C P) (LINE A B)) (ECS2)

2.3.2. Constructive Geometry Statements
In the area method, geometry statements have a specific form.

DEFINITION 4. (Constructive Geometry Statement). A constructive
geometry statement, is a list S = (C1,Co,...,Cy, G) where C;, for
1 <1 < n, are elementary construction steps, and the conclusion of the
statement, G is of the form Fy = FEs, where Fy and Fo are polynomials
in geometric quantities of the points introduced by the steps C;. In
each of C;, the points used in the construction steps must be already
introduced by the preceding construction steps.
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The class of all constructive geometry statements is denoted by C.

Note that, in its basic form, the area method does not deal with
inequalities in its conclusion statement, G (for another variant of the
method see section 3.3.2).

For a statement S = (C1,Cy,...,Cy, (E1 = E2)) from C, the ndg-
condition is the set of ndg-conditions of the steps C; plus the condition
that the denominators of the length ratios in Fy and E5 are not equal
to zero, and the conditions that line appearing in the length ratios in
FE4y and Es are parallel. The logical meaning of a statement is hence:

CiNCyN...NCLN

NDGy ANNDGy A ... N NDG, N

di A ... Ndp,
| ANAY %
= F1 = F

where C; are the propositions characterising the construction steps;
NDG; are the ndg-conditions associated to the construction steps; d;
are the conditions on denominators appearing in F; and FEs; and p;
are the conditions about parallelism: for each ratio of the form A=g
appearing in Ey and E,, there is the condition AB || CD.

EXAMPLE 2.3. The statement corresponding to the theorem given in
Example 2.1 can be represented as follows:

AP} BCANA#PANB#CA

BPACANB#PANA#CA

CPYABANC #PANA#BA

F£A£BAND#ACANE#AN

AF || FBABD || DCANCE || EAN

AF BD CE __

= ¥5 DC EA

2.4. PROPERTIES OF GEOMETRIC QUANTITIES & ELIMINATION
LEMMAS

We present some definitions and the properties of geometric quantities,
required by the area method. We follow the material from original
descriptions of the method (Chou et al., 1993; Chou et al., 1994; Chou
et al., 1996b; Zhang et al., 1995), but in a reorganised form. The rigorous
traditional proofs (not formal) accompanying all the results presented in
this section are available in (Quaresma and Jani¢i¢, 2009). The formal
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(machine verifiable) proofs are available as a Cog contribution (Nar-
boux, 2009).

Along the method application, in addition to the basic geometric
quantities, some additional quantities (Sapcp and Papcp) may occur
in the conjecture being proved. These quantities are defined in terms of
the basic quantities, as follows.

DEFINITION 5. The signed area of a quadrilateral ABCD is defined
as Sapcp = Sapc + Sacp-

DEFINITION 6. For four points A,B,C and D, Papcp is defined as
follows:

Pagco = Papp — Popp = AB- +CD° — BC” — DA”.

The following lemmas are implicitly universally quantified and it is
assumed that it holds A # B for any ratio of parallel directed segments

XY
oftheformﬁ.

PQ _ QP _ QP _ _PQ
LEMMA 1. £4 = 98 _ QF _ _Jq
LEMMA 2. 22 =0 iff P= Q.

PQ AB _

LEMMA 3. L& 48 — 1.

LEMMA 4. Sapc = Scap = Spca = —Sac = —Spac = —ScBa.
LEMMA 5. Paap =0.
LEMMA 6. Papc = PcBa-

LEMMA 7. Papa = 24B".

2.4.1. Elimination Lemmas
An elimination lemma is a theorem that has the following properties:

— it states an equality between a geometric quantity involving a
certain constructed point Y and an expression not involving Y’;

— this last expression is composed using only geometric quantities;

— this expression is well defined: denominators are different from zero
and ratios of distances are composed only using parallel segments.
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It is required to describe elimination of points introduced by four
construction steps (ECS2 to ECS5) from three kinds of geometric quan-
tities.

Some elimination lemmas enable eliminating a point from expres-
sions only at certain positions — usually the last position in the list of
the arguments. That is why it is necessary first to transform relevant
terms of the current goal into the form that can be dealt with by
these elimination lemmas. Moreover, some elimination lemmas require
that some points are assumed to be distinct. The first following lemma
ensures that this assumptions can be met.

LEMMA 8. If G is a geometric quantity involving Y, then either G is
equal to zero or it can be transformed into one of the following forms
(or their sum or difference), for some A, B, C, and D that are different

from Y :
AY  AY .

CD’ BY’ BY’

=
Sl

;PaBy; PayB; SaBY;

Proof: If G is a geometric quantity of arity 4 (Sapcp or Papcp), the
first step is to transform it into terms of arity 3 by one of the following

two rules.
Sapcp — Sapc + Sacp Definition 5

Papcp — Pap — Pcopp Definition 6

Now, all remaining geometric quantities (involving Y’) can be treated.

Signed ratios: G can have one of the following forms (for some A, B,
and C different from Y):

° % =0 (by Lemma 2)

° % = 0 (by Lemma 2)

° g;g =0 (by Lemma 2)

. A__Y
BY

o % = _% (by Lemma 1)

o Ld_ AV (hy Lemma 1)
YA _ AY

e = =% (by Lemma 1)
AY

* °op

o L2 ——Z2% (by Lemma 1)
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(by lemmas 1 and 3)

(by lemmas 1 and 3)

S 2
e~ &~

Signed area: G can have one of the following forms (for some A and
B different from Y'):
e Syyy =0 (by Lemma 4)
e Suyy =0 (by Lemma 4)
e Syay =0 (by Lemma 4)
e Syya =0 (by Lemma 4)
o Siyp =Spay (by Lemma 4)
o Syap =Sapy (by Lemma 4)
e Sany
Pythagoras difference: G can have one of the following forms (for
some A and B different from Y):
e Pyyy =0 (by Lemma 5)
e Puyy =0 (by lemmas 6 and 5)
e Pyay = Paya (by Lemma 7)
e Pyys =0 (by Lemma 5)
e Pavnp
e Pyap = Ppay (by Lemma 6)

o Papy

Q.E.D.

If G(Y') is one of the following geometric quantities: Sapy, Sapcy,
Papy, or Papcy for points A, B, C different from Y, then G(Y) is
called a linear geometric quantity.

The following lemmas are used for the elimination of Y from geo-
metric quantities. Thanks to Lemma 8, it is sufficient to consider only
geometric quantities with only one occurrence of Y and the case AY
Therefore, it can be assumed that Y differs from A, B, C, and D in
the following lemmas (although they are valid in a general case, unless
stated otherwise). This ensures that Y does not occur on the right hand
sides appearing in the elimination lemmas.
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LEMMA 9. (EL1). IfY is introduced by (INTER Y (LINE U V) (LINE
P Q)) then it holds that*

Scprq

SAJ otherwise
cUuv

AY Saprq if Ais on UV
cY

‘S‘SA# otherwise
CUDV

AY SSAPQ if Ais on UV
il CPDQ
CD

LEMMA 10. (EL2). IfY is introduced by (Foor Y P (LiNE U V))
then it holds that (we assume D # U ; otherwise interchange U and V' ):

PpuvPpcav+PpvuPpcau . .
—AY = { PpuvPcvce+PpvuPcuc—PpuvPpvu if Ais on UV
AUV )
Yy Scuv otherwise

24UV otherwise

W_ Prcap i Ais on UV
CD

LEMMA 11. (EL3). IfY is introduced by (PrRATIO Y R (LINE P Q)
r) then it holds that (we assume that A #Y ):

= if A is on RY

= =-+r
PQ
SAPRQ
ScPRQ

AY
ey otherwise

+7r

_— = P=Q

CD SAPRQ
ScpPpQ

K=

if Ais on RY

otherwise

LEMMA 12. (EL4). IfY is introduced by (TRATIO Y (LINE P Q) r)
then it holds that:

—-— SarQ—3Prqr . .
AY _ %CPQ_gprP if A is on PY
CcYy PAPQ otherwise

CPQ

ParqQ
Pcrp@

AV [ SagaPrer g A s on PY
D otherwise

4 Notice that in this and other lemmas, the condition A on UV is trivially met if
A is one of the points U and V. This special case may be treated as a separate case
for the sake of efficiency.
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LEMMA 13. (EL5). Let G(Y) be a linear geometric quantity and Y is
introduced by (INTER Y (LINE U V) (LINE P Q). Then it holds that:

_ SurgG(V) - SvpG(U)

Y
¢y) Supvo

LEMMA 14. (EL6). Let G(Y) be a linear geometric quantity and Y is
introduced by (Foor Y P (LINE U V)). Then it holds that:
_ PruvG(V) 4+ PrvuGU)

G(Y) Pove .

LEMMA 15. (ELT). Let G(Y) be a linear geometric quantity and Y is
introduced by (PRATIO Y W (LINE U V) r). Then it holds that:

GY)=GW)+r(GV)—-GWU)).

LEMMA 16. (EL8). IfY is introduced by (TRATIO Y (LINE P Q) 1)
then it holds that:

,
SaBy = Sapp — ZPPAQB-

LEMMA 17. (EL9). IfY is introduced by (TRATIO Y (LINE P Q) 1)
then it holds that:

Papy = Papp — 4rSpagB-

LEMMA 18. (EL10). If Y is introduced by (INTER Y (LINE U V)
(LINE P Q)) then it holds that:

S S - S -P
Payp = : G(V) + K VPQ 7y — SUPQ S2VPQ uvu
UPVQ UPVQ UPVQ

LEMMA 19. (EL11). IfY is introduced by (FooT Y P (LINE U V))
then it holds that:
Ppuv Ppvu Ppuv - Ppvu
G(V) + GU) - ———.
Puvu Puvu ( Puvu

LEMMA 20. (EL12). IfY is introduced by (PrRATIO Y W (LINE U V)
r) then it holds that:

Payp =

Paye = Pawp +r(Pave — Pavs +2 - Pwuv) —r(1 —r)Puvu.

LEMMA 21. (EL13). IfY is introduced by (TRATIO Y (LINE P Q) r)
then it holds that:

Payp = Papp +r*Ppop — 47(Sapg + Srg)-
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Table III. Elimination Lemmas

Geometric Quantities
AY  AY | S,py Sapoy Pasy Pascy | Pavs
cy <CbD
£ | ECS2 EL1 EL5 EL10
2 &| ECS3 EL2 EL6 EL11
% & | ECS4 EL3 EL7 EL12
8 ECS5 EL4 EL8 EL9 EL13
Elimination Lemmas

The information on the elimination lemmas is summarized in Ta-
ble TII.

On the bases of the above lemmas, given a statement S, it is always
possible to eliminate all constructed points (in reverse order) leaving
only free points, numerical constants and numerical variables. Namely,
by Lemma 8, all geometric quantities are transformed into one of the
standard forms and then appropriate elimination lemmas (depending
on the construction steps) are used to eliminate all constructed points.

2.5. THE ALGORITHM AND ITS PROPERTIES

In this section we present the area method’s algorithm. As explained
in section 2.1, the idea of the method is to eliminate all the con-
structed points and then to transform the statement being proved into
an expression involving only independent geometric quantities.

2.5.1. Dealing with Side Conditions in Elimination Lemmas
Apart from ndg-conditions of the construction steps, there are also side
conditions in some of the elimination lemmas. Namely, some elimination
lemmas have two cases (side conditions) — positive (always of the form
“Ais on PQ") and negative (always of the form “A is not on PQ”). As
in the case of ndg-conditions, the positive side conditions (those of the
form “A is on PQ”) can also be expressed in terms of geometric quan-
tities (as Sapg = 0) and checked by the area method itself. Negative
side conditions (expressed ad Sapg # 0) can also be proved in some
situations. Basically, the area method can only prove conjectures of the
form Fy = F», but if, while trying to prove that it holds Fy # F», one
ends up with a trivial inequality (a # b for two distinct constants a
and b), then it yields Fy # F5 (since all the rules applied by the area
method are equivalence preserving).

In one variant of the area method (implemented in GCLCprover,
see 3.1), non-degeneracy conditions can be introduced not only at the
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beginning (based on the hypotheses), but also during the proving pro-
cess. If a side condition for the positive case of a branching elimination
lemma (the one of the form L = R) can be proved (as a lemma), then
that case is applied. Otherwise, if a side condition for the negative
case (the one of the form L # R) can be proved (as a lemma), then
that case is applied. Otherwise, the condition for the negative case is
assumed and introduced as an additional non-degeneracy condition.
Therefore, this approach includes proving subgoals (which initiate a
new proving process on that new goal). However, there is no branching,
so the proof is always sequential, possibly with lemmas integrated. Lem-
mas are being proved as separate conjectures, but, of course, sharing
the construction and non-degeneracy conditions with the outer context.
Note that in this variant of the method, the statement proved by the
method is not exactly the one given by the user as the method #ntroduces
ndg-conditions.

In another variant of the method (implemented in Coq, see 3.2),
if a condition for one case can be proved, then that case is applied,
otherwise both cases are considered separately. Therefore, this variant
may produce branching proofs (but does not generate additional ndg-
conditions). Note that this variant does not change the initial statement
and does not risk to introduce ndg-conditions which are not needed.
Indeed, for example, in some contexts it could be the case that neither
A always belongs to C'D nor always it does not belong to C'D, but the
statement to be proved is still true in both cases. Using the first variant
of the method, in such a case the condition Sacp # 0 would be added
to the statement whereas the theorem could be proved without this
assumption.

2.5.2. Uniformaization
The main goal of the phase of eliminating constructed points is that
all remaining geometric quantities are independent. However, this is
not exactly the case, because two equal geometric quantities can be
represented by syntactically different terms. For instance, S4p¢ can also
be represented by Scap. To solve this issue, it is needed to uniformize
the geometric quantities that appear in the statement. For this purpose,
a set of conditional rewrite rules is used. To ensure termination, these
rules are applied only when A, B and C stand for variables whose name
are in alphabetic order.

The uniformization procedure consists of applying exhaustively the
following rules:
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BA — —AB by Lemma 1
Spca — Sasc Sacs — —Sasc
Scap — Sapc Spac — —Sapc by Lemma 4
Scpa — —SaBc

Pcepa — Papc by Lemma 6

Ppap — Papa by Lemma 7

2.5.3. Dealing with free points: area coordinates

The elementary construction step ECS1 introduces arbitrary points.
Such points are the free points on which all other objects are based. For
a geometric statement S = (C1,Cy, ..., Cy, (E1 = E»)), one can obtain
two rational expressions F/ and F) in ratio of directed segments, signed
areas and Pythagoras differences in only free points, numerical constants
and numerical variables. Most often this simply leads to equations that
are trivially true (as in Ceva’s example). However, the remaining ge-
ometric quantities can still be mutually dependent, e.g., for any four
points A, B, C, and D it holds (by Axiom 6) that

Sapc = SaBp + Sapc + Spsc

In such cases, it is needed to reduce Ej] and E) to expressions in
independent variables. For that purpose the area coordinates are used.

DEFINITION 7. Let A, O, U, and V be four points such that O, U,
and V' are not collinear. The area coordinates of A with respect to OUV
are
_ Sova ya = Soav ia= Savv

Sovv’ Sovv’ Souv

Tra

It 1s clear that x4 +ya + 24 = 1.

It holds that the points in the plane are in a one to one correspon-
dence with their area coordinates. To represent £, and E5 as expressions
in independent variables, first three new points O, U, and V, such that
UO L OV and d = OU = OV, are introduced. Expressions E; and E»
can be transformed to expressions in the area coordinates of the free
points with respect to OUV..

For any point P, let Xp denotes Soyp, let Yp denotes Spoyp, and
let Col(A, B,C) denotes the fact that A, B and C are collinear.
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LEMMA 22. For any points A, B, C and D such that C # D and
AB || CD, it holds that:

XcYaA—XoYp—YaXp+YpXA—YcXa+YcXp ;
XcYa—XcYp—YaXp—Yc Xa+YcXp+XaYD fl'f not COl(A7 C? D)

XpYa—XuYp if Col(A,C, D) and

S XpYo—-XcYp not Col(O, A, C)
AB

- if Col(A,C, D) and

b Souv(Xp—XaltXp¥a—Xa¥p fcozgo,A, cg and

S Xp—Xco)+XpYo—XcY,
ovv(Xp=Xc)+XpYo—XcYp not COZ(U’A’ C)

Souv(Yp—Ya)+XpYa—YpXa

\ Sovv(Yp—Yo)+XpYo—Yp X otherwise

LEMMA 23. For any points A, B and C it holds that:
(YB_YC)XA+(YC§YA)XB+(YA_YB)XC '
ouv

Sapc =

LEMMA 24. For any points A, B and C it holds that:

YaYo—-YaYe+YE—YpYo—XaXp+XaXc+X3-XpXc
Papc = 8§( = 7 £ )-

2
LEMMA 25. Soyy = +4-.

Using lemmas 22 to 25, expressions F; and Fs can be written as
expressions in d?, and in the geometric quantities of the form Spyp or
. . . d2
Sovp where P is a free point (there is V' such that Soyy = % ).
After this transformation, the equality E; = E» is transformed into
an equality over independent variables and numerical parameters.

2.5.4. Simplification
For simplification of the statement the following rewrite rules are ap-
plied.

Degenerated geometric quantities:

%—»0 Saap — 0 Paap —0
Spaa — 0 Ppaa—0
Sapa — 0
Ring simplifications:
a-0—0 0+a — a -0 —0 (—a)-b — —(a-b)
0-a—0 a+0 — a ——a — a a-(=b) — —(a-b)
l-a—a a—0— a —a+a — 0 —a-—b — a-b
a-l—a 0—a — —a a+(-b) - a—»
a—a — 0 —b+a — a—>
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¢1 + co — c3 where ¢; and ¢ are constants (elements of F') and

c1+cyg=c3
¢1 - co — c3, where ¢; and co are constants (elements of F') and

Cl1 - Cy = C3
Field simplifications (if a # 0):
T
T
= — 1 a-(%)—>1 %b—>b
=2 -1 %l — b

2.5.5. Deciding equality of two rational expressions

After the elimination of constructed points, uniformization of geomet-
ric quantities, treatment of the free points, and the simplification, an
equality between two rational expressions involving only independent
quantities is obtained. To decide validity of such an equality (by trans-
forming its two sides), the following (terminating) rewrite rules are
used.

Reducing to a single fraction:

A R
&

a cbta a a-c b a
¢ty — o b C 7 % ¢ T be
a4 ¢ atc a, c ac B a-d
b Te 7 b'd — bd € 7 b
a c a-d+c-b
b td ™ T od

Reducing to an equation without fractions:
=c —a=c-b =£f > a=c

a
b
c=3 — cb=a

Reducing to an equation where the right hand side is zero:

— a-d=c-b

[SISIS S
Qoo

a=c—a—c=0
Reducing left hand side to right associative form:
((a+b)+¢) — a+(b+¢) a-(b+c) — a-b+a-c
((a-b)-¢c) = a-(b-c) (b+c)-a —b-a+c-a

a-c — c-a, where ¢ is a constant (element of F') and a is not a

constant.
a-(c-b) — c-(a-b) where ¢ is a constant (element of F') and a is

not a constant.
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c1 - (eg - a) — c3-a where ¢; and ¢y are constants (elements of F')
and ¢y - cg = c3.

E1+"'+Ei—1+cl'C+Ei+1+"'+Ej—1+02'0/+Ej+1+"'+En N
Ei+ - Ei1+c3-C+Eip1+--+Ej_1+Ej1+- -+ E,, where ¢, ¢
and c3 are constants (elements of F') such that ¢; + ¢o = ¢3 and C and
C’ are equal products (with all multiplicands equal up to permutation).

The above rules are used in the “waterfall” manner: they are tried
for applicability, and when one rule is (once) applied successfully, then
the list of the rules is tried from the top. The ordering of the rules can
impact the efficiency to some extent.

The original equality is valid if and only if it is transformed to 0 = 0.

Note that all the rules involving ratios given above can be applied
to ratios of directed segments (as, following the axiom system given
in Section 2.2.2), ratios of directed segments are ratios over F. Since
these rules are applied after the elimination process, there is no danger
of leaving segment lengths involving constructed points (by breaking
some ratios of segments). However, in this approach all ratios are han-
dled only at the end of the proving process. To increase efficiency, it is
possible to use these rules during the proving process. Namely, all the
rules involving ratios can be used also in the simplification phase, but
not applied to ratios of segments (they are treated as special case of
ratios). The first approach is implemented in Coq (see 3.2), the second
in GCLCprover (see 3.1).

The set of rules given above is not minimal, in a sense that some
rules can be omitted and the procedure for deciding equality would still
be complete. However, they are used for efficiency. Also, additional rules
can be used, as long as they are terminating and validity and invalidity
preserving.

2.5.6. Non-degeneracy Conditions

Some constructions are possible only if certain conditions are met. For
instance, the construction of the intersection of lines a and b is possible
only if the lines a and b are not parallel. For such constructions ndg-
conditions are stored and considered during the proving process. Non-
degeneracy conditions of the construction steps have one of the following
two forms:

— A # B or, equivalently, Paga # 0;
— PQ } UV or, equivalently, Spyyv # Sqouv;

Negations of these conditions have to be checked during the proving
process. As seen from above, these negations can be expressed as equal-
ities in terms of geometric quantities and in some cases can be proved
by the area method itself.
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A ndg-condition of a geometry statement is the conjunction of ndg-
conditions of the corresponding construction steps, plus the conditions
that the denominators of the ratios of parallel directed segments in the
statement are not equal to zero, and the conditions that AB || C'D for

every ratio 42 that appear in the statement. As said in Section 2.3.2,
the statement is proved with the assumption that its ndg-conditions
are satisfied. Hence, if the negation of a ndg-condition of a geometry
statement is met, the statement is trivially valid.

As an example, consider a theorem about an impossible construction.
Let A, B and C be three arbitrary points (obtained by ECS1). Let D
be on the line parallel to AB passing through C (obtained by ECS4).
Let I be the intersection of AB and C'D (obtained by ECS2). Then,
the assumptions of any statement G to be proved about these points
are inconsistent since the construction of D implies AB || CD and the
construction of I implies AB Jf C'D. Therefore, G is trivially valid.

2.5.7. Algorithm

The area method checks whether a constructive geometry statement
(C1,Cq,...,Ch, E1 = E») is valid or not, i.e., it checks whether E; =
E, is a deductive consequence of the construction (Cp,Ca,...,Cp),
along with its ndg-conditions. As said, the key part of the method is
eliminating constructed points from geometric quantities. The point are
introduced one by one, and are eliminated from the goal expression in
the reverse order.

Algorithm: Area method
Input: S = (C1,Cq,...,Ch, (E1 = E)) is a statement in C.

Output: The algorithm checks whether §' is valid or not and produces
a corresponding proof (consisting of all single steps performed).

1. initially, the current goal is the given conjecture; translate the
goal in terms of geometric quantities using table 2.2.1 and
generate all ndg-conditions for S;

2. process all the construction steps in reverse order:

a) if the negation of the ndg-condition of the current construc-
tion step is met, then exit and report that the conjecture
is trivially valid; otherwise, this ndg-condition is one of the
assumptions of the statement.

b) simplify the current goal (by using the simplification pro-
cedure);
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c) if the current construction step introduces a new point
P, then eliminate (by using Lemma 8 and the elimination
lemmas) all occurrences of P from the current goal,

3. uniformize the geometric quantities (using the uniformization
rules);

4. simplify the current goal (by using the simplification proce-
dure);

5. test if the obtained equality is valid (by using the procedure
given in 2.5.5); if yes, then the conjecture Fy = Fj is valid, un-
der the assumption that the ndg-conditions hold, otherwise:

a) eliminate the free points (using the area coordinates, as
described in 2.5.3);

b) simplify the current goal (by using the simplification pro-
cedure);

c) test if the obtained equality is valid (by using the proce-
dure given in 2.5.5); if yes, then the conjecture Fy = Fj is
valid, under the assumption that the ndg-conditions hold.
Otherwise the conjecture is not valid.

Testing the validity of ndg-conditions within the main loop can also
be performed by the area method itself (based on the construction steps
that precede the current step).

2.5.8. Properties of the Method

The area method is terminating, sound, and complete: it can prove any
geometry theorem expressed in terms of geometric quantities, and in-
volving only objects introduced by using a specified set of constructions
steps. Therefore, the procedure is a decision procedure for the described
fragment of geometry.?

Termination. Since there is a finite number of constructed points,
there is a finite number of occurrences of these points in the statement,
and since in each application of the elimination lemmas there is at least
one occurrence of a constructed points eliminated, it follows that all
constructed points will be eventually eliminated from the statements.
Therefore, if the simplification procedure and the procedure for decid-
ing equality over independent parameters terminate, the whole of the
method terminates as well.

5 This fragment can also be defined as a quantifier-free theory with the set of
axioms equal to the set of all introduced lemmas. It can be easily shown that this
theory is a sub-theory of Euclidean geometry augmented by the theory of fields.
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Correctness.  All steps of the method transform the current goal. All
steps are based on the (proved) lemmas, so these transformation pre-
serve the validity of the goal: the goal is valid after one step if and only
if it was valid before that step. Therefore, it remains to consider only
the last step of the algorithm. If £y = Ej, then the original statement
is obviously valid. Note that the ndg-conditions ensure that the denom-
inators of all the expressions occurring in the proof are different from
zero. Otherwise, if Fy # Fs, since all geometric quantities occurring in
FE4 and FE» are free parameters, in the geometric construction considered
they can take arbitrary values. So, it is possible to choose concrete values
for these quantities leading to Fy # Es, and a counterexample for the
statement. Hence, in this case, the statement is not valid. Therefore,
the method is both sound and complete: it returns the positive answer
(along with the proof) if and only if the given conjecture is valid.

Complexity The core of the method does not have branching (unless
the variant with considering both cases in ndg-conditions is used, as
explained in Section 2.5.6), which makes it very efficient for many non-
trivial geometry theorems (still, the area method is less efficient than
provers based on algebraic methods (Chou et al., 1994)).

The area method can transform a conjecture given as an equality
between rational expressions involving constructed points, to an equal-
ity not involving constructed points. Each application of elimination
lemmas eliminates one occurrence of a constructed point and replace
a relevant geometric quantity by a rational expression with a degree
less than or equal to two. Therefore, if the original conjecture has a
degree d and involves n occurrences of constructed points, then the
reduced conjecture (without constructed points) has a degree of at
most 2" (Chou et al., 1994). However, this degree is usually much less,
especially if the simplification procedures are used along the elimination
process. The above analysis does not take into account the complexity
of the elimination of free points and the simplification process.

3. Implementations of the Area Method
In this section we describe specifics of our two (independent) implemen-

tations of the area method and briefly describe other two implementa-
tions. We also describe some applications of these implementations.
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3.1. THE AREA METHOD IN GCLC

A theorem prover GCLCprover, based on the area method, is a part
of a dynamic geometry tool GCLC. This section begins with a brief
description of GCLC.

3.1.1. GCLC

GCLC (Janici¢, 2006; Janici¢, 2009) is a tool for visualisation of ob-
jects and notions of geometry and other fields of mathematics. The
primary focus of the first versions of the GCLC was producing digital
illustrations of Euclidean constructions in WTEX form (hence the name
“Geometry Constructions — IATEX Converter”), but now it is much
more than that. For instance, there is support for symbolic expres-
sions, for parametric curves and surfaces, for drawing functions, graphs,
and trees, support for flow control, etc. Libraries of GCLC procedures
provide additional features, such as support for hyperbolic geometry.

The basic idea behind GCLC is that constructions are abstract, for-
mal procedures, rather than images. Thus, in GCLC, producing math-
ematical illustrations is based on “describing figures” rather than on
“drawing figures”. A figure can be generated (in the Cartesian model of
the plane) on the basis of the abstract description.

The language of GCLC (Janici¢, 2009) consists of the following
groups of commands: basic definitions (e.g., point for introducing a
point, line for a line determined by two point), basic constructions
(e.g., intersec for constructing the intersection of two lines), trans-
formations (e.g., translate for translation), commands for symbolic
calculations, commands for flow control, drawing commands, labelling
and printing commands, Cartesian commands, low level commands,
commands for describing animations, and commands for automated
theorem proving.

EXAMPLE 3.1. The ezample GCLC code given in Figure 2 (left) de-
scribes a triangle and the midpoints of two of triangle’s sides. From this
GCLC code, Figure 2 (right) can be generated.

Apart from producing digital mathematical illustrations (in different
formats), GCLC can be used for teaching and studying geometry (and
not only geometry), and for storing visual mathematical contents in
textual form (as figure descriptions in the underlying language).

GCLC has been under constant development since 1996. It is imple-
mented in C++, and consist of around 40.000 lines of code. WinGCLC
is a version with a MS-Windows graphical interface that makes GCLC
a dynamic geometry tool with a range of additional functionalities
(Figure 3).
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point A 20 10
peoint B 70 10
point C 35 40

midpoint B’ B C ¢
midpoint A’ A C

drawsegment A B

drawsegment A C A /
drawsegment B C

drawsegment A’ B’

cmark_b A

cmark_b B A B

cmark_t C
cmark_1 A’

cmark_r B’

Figure 2. A description of a triangle and midpoints of two of triangle’s sides in
GCLC language (left) and the corresponding illustration (right)

3.1.2. Integration of the Area Method

GCLC has three geometry theorem provers for Euclidean constructive
theorems built in: a theorem prover GCLCprover based on the area
method® (Jani¢i¢ and Quaresma, 2006) and algebraic theorem provers
based on the Grébner bases method and on the Wu’s method” (Pre-
dovié¢, 2008). Thanks to these theorem provers, GCLC links geometrical
contents, visual information, and machine—generated proofs.

The provers are tightly integrated in GCLC. This means that one can
use the prover to reason about a GCLC construction (i.e., about objects
introduced in it) without any adaptations to the deduction process other
then the addition of the conjecture itself. For this purpose, the provers
use the standard GCLC construction commands. GCLCprover deals
with the subset of GCLC construction commands (e.g., it does not deal
with intersections of two circles). If needed, GCLCprover transforms a
construction command into a form required by the area method and/or
introduces some auxiliary points. For example, the GCLC command
med m A B that introduces the segment bisector m of the segment with
endpoints A and B is dealt with, in the following way: internally, two
auxiliary points are introduced — a point M, such that (PRATIO M,,
A (LINE A B) 1/2) and a point T}, such that TraTIO T,, (LINE M,,
A) 1); the line m is then, within the prover, determined by the points
M,, and T,,. A conjecture to be proved may involve only points and

6 This theorem prover was developed by Predrag Jani¢i¢ and Pedro Quaresma.
" These theorem provers were developed by Goran Predovi¢ and Predrag Janicié.
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Figure 8. WinGCLC Screenshot

lines already introduced within the current construction. A conjecture
is given as argument to the prove command. It has to be of the form
L = R, where L and R are expressions over geometric quantities, which
can be combined together into more complex terms by operators for
addition, multiplication and division (written sum, mult, ratio). The
conjecture and all its sub-terms, are written in prefix form, for instance,
Sarp a4 = Sapp is given in the following way:

prove { equal { signed_area3 A’ B> A }
{ signed_area3 A’ B’ B }
}

Alternatively, a conjecture can be given in the form of some higher-
level properties (e.g., prove { parallel A B A’ B’ }and in such cases
it is internally transformed into a statement in terms of geometric quan-
tities (following properties from Table 2.2.1). The prover considers only
abstract specification of the conjecture and do not consider Cartesian
values of the points involved (they are used only for visualisation).

For the construction shown in Example 3.1, it holds that the lines
AB and A’ B’ are parallel and this can be proved by the theorem prover.
This property can be given as argument to the prove command: prove
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{ parallel A B A’ B’}, after the description of the construction. The
prover is invoked at the end of processing of the GCLC file.

Support for the prover involves only five commands: prove, to state
the conjecture, prooflevel used, optionally, for choosing one of the
eight levels of detail for the output (see 3.1.4), prooflimit for control-
ling the maximal number of proof steps, prover_timeout for fixing a
time limit to the prover, and theorem_name for setting the name of the
theorem (later used in prover’s output documents).

3.1.3. Specifics of the Implementation in GCLC

The algorithm implemented in GCLCprover is the one described in
Section 2.5.7, with the following specifics, all introduced for increasing
efficiency.

3.1.3.1. Simplification procedure. With respect to the simplification
procedure described in 2.5.4, there are the following specifics in the
variant implemented within GCLCprover:

— The unary operator — is not used (and instead —zx is represented
as (—1) - ). Hence, the rules involving this operator are not used.
This does not affect the correctness of the method, but simplifies
the implementation.

— The rules given in 2.5.5 are used also within the simplification
procedure, but the rules involving fractions are not applied to ratios
of segments. Because of that, the following additional rules are used
within the simplification procedure:

AB

° Eﬁl
AB

* B 1

— The following rules are used within the simplification phase:

e % — (1/c)-x, where cis a constant (element of [') and ¢ # 1.

° Ei..BEi 1-CEiq1-...-En N BB 1-BEig1-... By
! ! ! ! ! !
E|-..E,_ | CE,  -.B,  Bj...B,_ B, ..Eh

o Byt +Ei1t+cC+Eipt - +E, =B+ +E,_+c
C/+E§-+1+' +El — B+ +E_1+c3:C+Eip1-+E, =
B+ +E,  +E; +-+E,
where ¢1, c2, and cg are constants (elements of F') such that
g —ca = ¢ and C and C' are equal products (with all
multiplicands equal up to permutation).
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e If the current goal is of the form Ey1+...+ E, = E{+... E],
and if all summands F; and E’ have a common multiplication
factor X, then try to prove that it holds X = 0:

x if X = 0 has been proved, the current goal can be rewrit-
ten to 0 = 0;

x if X = 0 has been disproved (i.e., if X # 0 has been
proved), then both sides in the current goal can be can-
celled by X;

x if neither X = 0 nor X # 0 can be proved, then assume
X # 0 (and add to the list of non-degeneracy conditions)
and cancel both sides in the current goal by X.

— The uniformization procedure (2.5.2) is used within the simplifica-
tion procedure. In addition, if three points A, B, C' are collinear,
then the rule Sapc — 0 is applied.

— Reducing to area coordinates is not implemented. Instead, the
following rules are applied at that stage:

e AA—0

o Supc — Sapp + Sapc + Sppc (by Axiom 6), if there are
terms Sapp, Sapc, Sppc in the current goal.

o Papc — AB° +CB° + —1-AC" (by Definition 3)

Note that after these rules applied, the equality being proved may
still involve dependent parameters. Still, the simplification process
is applied again and the equality is tested for validity for the last
time. Even without reducing to area coordinates, the above rules
enable proving most conjectures from the area method scope.

3.1.3.2. Dealing with ndg-conditions. The prover records and reports
about the ndg-conditions of the construction steps, but there is no check
of ndg-conditions within the main loop. That check is not necessary
in this context, i.e., within GCLC. Namely, when using GCLC, the
user describes a construction and then provides a statement about the
constructed objects to be proved. The construction is visualised for a set
of free points with concrete Cartesian coordinates. For each construction
step, it is checked if it is possible (e.g., if two lines do intersect) and
the test corresponds to the ndg-condition of the construction step. If
some of these checks fails, an error is reported, the construction is not
visualised, and the conjecture is not sent to the prover. In that case,
one of the ndg-conditions is false in the concrete model. Otherwise, all
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the ndg-conditions are true in the concrete model, and hence, none of
their negations can be valid, so the check of ndg-conditions (as given in
section 2.5.7) is not needed.

3.1.3.3. Dealing with side conditions. If a side condition for one case of
a branching elimination lemma can be proved, then that case is applied,
otherwise, a condition for the negative case is assumed and introduced
as an additional ndg-condition (as explained in Section 2.5.1). The same
approach is used when applying the cancellation rule (see section 3.1.3).

Thanks to the powerful simplification procedure, efficient implemen-
tation in C++ and to the fact that there are no branching in the proofs,
GCLCprover is very efficient and can prove many complex theorems
in only milliseconds (for examples see the GeoThms web repository
(described in Section 3.4.1).

3.1.4. Prover Qutput
The proofs generated by GCLCprover can be exported to A TEX or to
XML form using a special-purpose styles, with explanations for each
proof step.®

At the beginning of the proof, the auxiliary points are defined, for
instance:

Let M? be the midpoint of the segment BC'.
Let T} be the point on bisector of the segment BC' (such that
TraTIO T} M? B 1).

For each proof step (a single transformation of the goal being proved),
there is an explanation and, optionally, its semantics counterpart — as
a check whether a conjecture is valid in the specific case, determined
by the given Cartesian points. This semantic information is calculated
for concrete points used in the construction for visualisation purposes
(these Cartesian coordinates are never used in the proof itself); it can
serve as a semantic test, especially for conjectures for which is not known

8 There are no object-level proofs verifiable by theorem proving assistants.
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whether or not they are theorems. All proof steps are enumerated, for
example:

AL
FB

&

Lemmas (about side conditions) are proved within the main proof
(making nested proof levels). After the proof steps, all non-degeneracy
conditions are listed, for instance:

1 by the statement (1)

&

~—

215

~
I

I
SN—

CE\ _ .. . .
: ﬁ) =1 by geometric simplifications  (2)

os}
B!

Sppa # Scpa i.e., lines BC and PA are not parallel (construc-
tion based assumption)

At the end, the output document includes a short report, consisting
of information on whether the conjecture was proved or disproved (or
neither), data about CPU time spent, and the number of proof steps
performed (in several categories).

The style for proofs formatted in IWTEX has options for different
formatting. Proofs stored in XML are structured analogously as in KTEX
format. The proofs in XML format fulfil restrictions posed by a custom
DTD file. For any XML file, it can be checked if it meets these restrictions
(by a XML processor). A proof in XML format can be converted to a
HTML form. A file with a proof in XML format can also be open directly
by web browsers.

3.1.5. Example
In this section we give a fragment of the output for the conjecture from
Example 3.2.

Saarp! =Sparp’
by the statement (1)
Spraar = Sprpa’
by geometrical simplifications (2)
1
(SB’AA+(E'(SB’A0+(_1'SB’AA)))) =Sp/pa’
by Lemma 29 (point A’ eliminated) (3)
0 =(0+ (3 0+ (-1-00))
by geometrical simplifications (15)
0 =0
by algebraic simplifications (16)
Q.E.D.
There are no ndg conditions.
Number of elimination proof steps: 5
Number of geometrical proof steps: 15
Number of algebraic proof steps: 25
Total number of proof steps: 45
Time spent by the prover: 0.001 seconds
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3.2. THE AREA METHOD IN Cogq

This section describes the formalisation of the area method using the
proof assistant Cog. Cog is a general purpose proof assistant (The Coq
development team, 2009; Huet et al., 2004; Bertot and Castéran, 2004).
It allows expressing mathematical assertions and to mechanically check
proofs of these assertions.

3.2.1. Coq

We begin the description of the formalisation with a brief description
of C'og and how decision procedures can be formalised in Coq. Although
the Cog system has some automatic theorem proving features, it is not
an automatic theorem prover. The proofs are mainly built by the user
interactively. The system allows formalising proofs in different domains.
For instance, it has been used for the formalisation of the four colour
theorem (Gonthier and Werner, 2004) and the fundamental theorem
of algebra (Geuvers and et.al., 2008). In computer science, it can be
used to prove correctness of programs, like a C compiler that has been
developed and proved correct using Cog (Leroy, 2006).

There are several recent results in the formalisation of elementary
geometry in proof assistants: Hilbert’s Grundlagen (Hilbert, 1977) has
been formalised in Isabelle/Isar (Meikle and Fleuriot, 2003) and in
Cogq (Dehlinger et al., 2000). Gilles Kahn has formalised Jan von Plato’s
constructive geometry in the Cog system (Kahn, 1995; von Plato, 1995).
Frédérique Guilhot has made a large development in Coq dealing with
French high school geometry (Guilhot, 2004). Julien Narboux has for-
malised Tarski’s geometry using the Cog proof assistant (Narboux,
2007b). Jean Duprat proposes the formalisation in Cog of an axiom
system for compass and ruler geometry (Duprat, 2008). Projective ge-
ometry has also been formalised in Cog (Magaud et al., 2008; Magaud
et al., 2009).

Implementing decision procedures in Cog There are three methods to
add automation to the Coq system:

1. directly in the implementation language of Cog — Ocaml;
2. using the tactic? language of Coq — Liac;
3. by reflection using Cog as a programming language.

This third method, introduced by Samuel Boutin (Boutin, 1997),
consists of formalising a subset of the language of Coq using an object of

9 A tactic is a program which expresses the sequence of the basic logical steps
needed to formally prove a theorem.
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AF+N>AF P:vti i (f(t) =i~ (t)

1 ﬁtac Coq it

A A

Figure 4. The Reflection mechanism.

Cogq itself. The computations that can be done using the meta language
(Ocaml or L) are performed using the Cogq language itself. Figure 4
represents the reflection mechanism in the case of a tactic which applies
a rewrite rule. A reflexive tactic is composed of four elements:

it a piece of code written in L. (or in Ocaml) to translate a Cogq term
into an object of Cog;

f: a Cog function which perform the computations to solve the given
problem;

i~': a Coq function which translates back from the universe of Cog ob-
jects to the universe of Cog. Note that it is necessary that i ~1(i(t)) —
t holds, but this fact does not need to be proven formally;

P: the formal proof that the translation realised by f is correct.

This method has the advantage to produce tactics that are more
efficient and that produce shorter proofs, since the application of the
tactic is recorded in the proof just as a step of computations. For more
information on the reflexive proof method, see, for instance, Chapter
16 of the book Cog’Art (Bertot and Castéran, 2004).

3.2.2. Formalisation of the Area Method

The goal of the formalisation of the area method (in Cog) is to bring the
level of automation provided by the method to the Coq proof assistant.
This is done by implementing the decision procedure as a Coq tactic and
formalising all theorems needed by the method. We defined an axiom
system, proved all the propositions needed by the tactics (we formally
proved more than 700 lemmas) and wrote the tactics.

Conceptually, proving the propositions and writing the tactics that
use them seem to be two separate tasks. But to ease the develop-
ment, in our implementation we have intermixed the proofs of the
propositions and the tactics. We bootstrap partially the construction
of the whole decision procedure by using some automatic tactics for
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the proof of the elimination lemmas. Our tactic is decomposed into
sub-tactics performing the following tasks: initialisation; simplification;
uniformization; elimination of constructed points; elimination of free
points; conclusion.

The implementation of the prover is realized mainly using the lan-
guage Liq. which is integrated in the system Cog. Still, some sub-tactics
(for instance the simplification tactics) are implemented using the re-
flection mechanism. We chosed not to use the reflection tactic for the
whole decision procedure for two reasons:

1. We believe that the efficiency of the method would not have been
increased significantly. Indeed, the proof generated by our tactic
consists mainly of a sequence of application of elimination lemmas.

2. Expressing the tactic as a Cogq function and proving its correctness
would have been a very difficult task, as we make heavy use of the
high level primitives of the language L4, such as pattern match-
ing, deleting hypotheses, etc. To use the reflection method for the
whole algorithm, the whole machinery and the proof of its correction
should have been realized using Cog.

Consequently, we did not proved formally the completeness of the
method implementation (i.e., that the tactic always succeeds if the
theorem is valid). Our formal proofs guaranty only the soundness of
the method implementation (i.e., the proofs generated by the tactic are
always corrects).

3.2.3. Specifics of the Implementation in Cog
In this section, we describe the algorithm which is used in the Cog’s
implementation of the area method.

As the method is implemented within a proof assistant, each step
of the algorithm correspond to a proof step that is checked by the Cog
system. At the end of the proof, it is checked another time by the Cog
kernel as explained in section 3.2.6. The main difficulty is that Cogq
must be “convinced” at each step that the transformation we perform
is correct. For this we have to maintain two invariants:

1. For each syntactic expression which occurs at the denominator of
some fraction, the context always contains a proof that it is non
ZEr0.

2. For each syntactic expression which represents a ratio of directed
segments (AB/CD), the context always contains a proof that AB
is parallel to C'D.
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The algorithm implemented in Coq corresponds to the algorithm
described in Section 2.5.7. We give details only for the phases with
specific features.

Initialisation The initialisation phase performs the following tasks:
1. unfold definitions;
2. introduce hypotheses in the context;

3. encode constructions of half-free points (points that belong to a line
or a circle) into constructions of fixed point with a parameter;

4. compose simple constructions into more complex constructions when
it is possible;

5. transform hypotheses of the form A # B into AB # 0

6. split conjunctions in the goal i.e. decompose conjunctions in the
goal into several goals;

7. check that the invariants are initially verified.

Dealing with Non-degeneracy Conditions and Case Splits in Lemmas
As GCLC, the Coq implementation does not deal with ndg conditions,
we assume that the statement is not contradictory.

Concerning case splits in elimination lemmas, new ndg-conditions are
not generated (unlike in GCLCprover) and, instead, case distinction is
performed (as explained in Section 2.5.1).

3.2.4. Example
We now give a detailed description of how the tactic works on the
example 3.2 by decomposing the procedure into small steps!©.

The midpoint theorem is stated using our language in the syntax of
Cogq as follows:

EXAMPLE 3.2.

Theorem midpoint_A :
forall A B C A’ B’ : Point, midpoint A’ B C ->
midpoint B’ A C -> parallel A’ B’ A B.
geolnit.
10 These steps are not exactly the same steps as those executed by our automatic

procedure (the automatic procedure may treat the points in another order, and
perform more simplification and unification steps).
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1 subgoal
A : Point
B : Point
C : Point
A’ : Point
B? : Point

H : on_line.d A BC (1 / 2)
HO : on_line_.d B> AC (1 / 2)

S A>AB>+ S A”>B>B=20

on_line_d 4° B C (1/2) states that A’ is on line BC and %—‘g = %

At this step it would be enough to type area_method to solve the
goal using our decision procedure, but for this presentation we mimic
the behaviour of the decision procedure using our sub-tactics. We give
the name of the sub-tactics on the left, and Coq output on the right!!:

geOInit . H: on_line.d A’ BC (1 / 2)
HO : on_line_d B> A C (1 / 2)

S A> AB’+ 5 A”B"B=0

eliminate B’. H : on_line_d A> B C (1 / 2)

1/2*%xSA AC+ (1 -1/2) xS A AL+
(1/2*SBAC+ (1 -1/2)*SBA”A) =0

basic_simpl . H : on_line_d A’ B C (1 / 2)

1/2*SA AC+ (1 /2*xSBA’C+1/2%SBA”A) =0

eliminate A’.

1/2*x(1/2*x8SACC+(1-1/2)*SACB)+
( * (1/2%*8 B) +
* *

CBC +
(1/2*x8SABC+

* *
= Q
W w

1/ 2
1/2

basic_simpl.
1 /2% /2xSACB) +1/2% ({1 /2*xSABC)=0

uniformize.

1/2* (1 /2*xSACB)+1/2%(1/2%-SACB) =0
field_and_conclude. Proof completed.

1 For this presentation the fact that A, B, C, A’, and B’ are of type Point has
been removed from the context.
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3.2.5. Prover Qutput

The main comparative feature of the implementation in Cog is that it
produces formal proofs. It was built with that main motivation (unlike
GCLCprover which aims at producing proofs efficiently).

The output of the formalisation in Coq is a formal proof. More
precisely, it is a term of the calculus of inductive constructions which
records all the details of the proof. These formal proofs are not readable,
hence to have a readable proof we also output a human readable version
of the proofs in a textual format in the console. For instance, for the
example given above, the following output is generated:

Area method:
initialisation...
elimination...
elimination of point : B’
we need to show that:
(1/2*xSA>AC=1/2*«SA>BC+1/2x*SA>BA)
elimination of point : A’
we need to show that:
1/2*x 1 /2*xS5SACB)=1/2%(1/2%*S8SBAC))
uniformize areas...
simplification...
before field...

3.2.6. Benefits of the Formalisation
Formalising a decision procedure within a proof assistant, has not only
the advantage of simplifying the tedious task of (rigorously) proving
geometry theorems but also allows us to combine the geometry proofs
provided by the tactic with arbitrary complicated proofs developed in-
teractively using the full strength of the underlying logic of the theorem
prover. For instance, theorems involving induction over the number of
points can be formalised in Cog. This approach has also the advantage
of providing a higher level of reliability than ad hoc theorem provers,
because the proofs generated by tactics are double checked by the
Coq internal proof-checker (the Cog system as a whole and its kernel).
Namely, since it is possible that Cog itself contains a bug, the Cog
system is, to reduce this risk, built using the de Bruijn’s principle: only
a small part of the system called the kernel is trusted. All the proofs
generated are checked by the kernel. If there is a bug outside the kernel,
the system can fail, but it guarantees the soundness (i.e., it does not
allow proving an invalid statement).

During formalisation of the area method, we found two potential
sources of incorrectness.
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First, during proving, we discovered one mistake in the original de-
scriptions (Chou et al., 1993): in lemma EL12 the factor 2 before Py yy
was missing.

Second, when proving the invariant that elimination lemmas trans-
form always well defined geometric quantities into an expression in-
volving only well defined geometric quantities, we noticed that some
elimination lemmas require a non degeneracy condition. Let us consider
Lemma EL3: if Y is introduced by (PRATIO Y R (LINE P Q) r), then
it holds

E—{—r
AY Lo if Aison RY
_ = P__Q
b ggf: gg otherwise
If A=Y, it can be the case that CD |[f PQ. This demonstrates that
the lemma is valid only if A # Y and otherwise the ratio €2 is not

PQ
well defined. Hence, during proofs it is necessary to distinguish the two
cases (A=Y and A #Y) as explained in Section 3.2.3 or to generate
an additional ndg (A #Y') as explained in Section 3.1.3.3.

3.2.7. Integration in GeoProof

Similarly to GCLC, the formalisation of the area method in Coq comes
with a dynamic geometry software (Narboux, 2007a). The software de-
veloped, GeoProof (Figure 5) combines three tools: a dynamic geometry
software to explore and invent conjectures, an automatic theorem prover
to check facts, and an interactive proof system (Cog) to mechanically
check proofs built interactively by the user.

3.3. OTHER IMPLEMENTATIONS OF THE AREA METHOD

Although it is very well-know and widely credited as the most efficient
method for proving geometry theorems that produce readable proofs,
there are just a very few implementations of the area method. Actually,
the situation is similar with other proving methods for geometry—to
our knowledge, there are only around a dozen implementations in total
of other most efficient proving methods (Wu’s method, Grobner bases
method adapted to geometry theorem proving, the full angle method,
and the deductive database method), counting versions employed within
different systems. One of the main reasons for this is probably the
fact that these methods, while having simple basic ideas, are all still
very complex and require many details to be filled when making a real
implementation.

In addition to the two implementations of the area method already
described, we are aware of the other two: one used within a family of
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Figure 5. GeoProof

tools developed by the authors of the method and their collaborators,
and one developed within the wider system Theorema.

3.3.1. Euclid and Geometry Ezpert

FEuclid is theorem prover based on the area method, developed in 1993
by the authors of the method — Shang Ching Chou, Xiao Shan Gao,
and Jing-Zhong Zhang (Chou et al., 1993). It was implemented in
Common Lisp and was accompanied by a list of 400 proved theorems.

Geometry Expert'? (GEX) is a dynamic geometry tool focused on
automated theorem proving and it implements Wu’s, Grobner basis,
vector, full-angle, and the area methods (Chou et al., 1996a). GEX was
implemented in 1998 by Xiao Shan Gao.

MMP/Geometer' is a new, Chinese, version of GEX. The tool is be-
ing developed from 2002 by Xiao-Shan Gao and Qiang Lin. It automates
geometry diagram generation, geometry theorem proving, and geometry
theorem discovering (Gao and Lin, 2004). MMP /Geometer implements
Wu’s method, the area method, and the geometry deductive database
method. Conjectures are given in a restricted pseudo-natural language
or in a point-and-click manner.

12 http://www.mmrc.iss.ac.cn/gex/
13 http://www.mmrc.iss.ac.cn/mmsoft/
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Java Geometry Ezpert'* (JGEX) is a new, Java version of GEX.
JGEX is being developed from 2004, by Shang Ching Chou, Xiao Shan
Gao, and Zheng Ye. JGEX combines dynamic geometry, automated
geometry theorem proving, and, as its most distinctive part, visual
dynamic presentation of proofs. It provides a series of visual effects
for presentation of proofs. The proofs can be visualised either manually
or automatically. Within the program distribution, there are more than
six hundred examples of proofs. JGEX implements the following meth-
ods for geometry theorem proving: Wu’s method, the Groébner basis
method, the full-angle method, the deductive database method. In the
version 0.80 (May 2009), the area method and the vector method are
still under development.

The systems from the GEX family are publicly available, but they
are not open-source and are not accompanied by technical reports with
implementation details, so one cannot reconstruct how some parts of the
proving methods are implemented. Available research papers describing
these tools describe mainly only the high-level ideas and main required
lemmas, but for instance, descriptions of the simplification phase and
dealing with case splits are not available.

3.3.2. Theorema

Theorema' is a general mathematical tool with uniform framework for
computing, problem solving, and theorem proving (Buchberger et al.,
2006). Theorema is implemented in Mathematica. It has been developing
from 1996 by Bruno Buchberger and a large team of his collabora-
tors. Theorema has support for several methods for automated theorem
proving, including methods for theorem proving in geometry. The ge-
ometry provers are designed for constructive geometry problems and
there is support for Wu’s method, Grobner bases method, and the area
method (Robu, 2002). These provers were implemented by Judit Robu
(the algebraic methods rely on methods that were already available in
Mathematica and Theorema).

The geometry theorem provers are accompanied by visualisation
tools typical for dynamic geometry. Numerical checks of the validity
of geometry statements can also be performed for specific coordinates
of the points.

In addition to the basic area method, there is also a modified ver-
sion that can deal not only with conjectures in the form of equalities,
but also with conjectures in the form of inequalities over geometric
quantities. Within this method (AreaCAD), geometric expressions are
transformed by the lemmas used in the basic area method and an con-

1 http://www.jgex.net/
15 http://www.theorema.org/
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jecture (equivalent to the original one) only in terms of the free points
of the construction is obtained. That new expression (with two sides
linked by one of the relations < or >) is tested for validity by Collins’
algorithm for quantifier elimination in real closed fields by cylindrical
algebraic decomposition (Collins, 1975).

EXAMPLE 3.3. Let ry be the radius of the circumcircle of a triangle
ABC, and let ro be the radius of the inscribed circle of the triangle.
Then it holds that r3 > 4r3 and this can be proved by AreaCAD.

A

3.4. APPLICATIONS

As other geometry theorem provers, the area method can have a range
of different applications in education, mathematical software, computer-
aided design, computer graphics, computer vision, robotics, etc. In this
section a few existing, rather straightforward applications, of the method
are described.

3.4.1. GeoThms

GeoThms is a web-based framework for exploring geometrical knowl-
edge that integrates dynamic geometry software, automatic theorem
provers, and a repository of geometric constructions, figures and proofs
(Quaresma and Jani¢i¢, 2006b; Quaresma and Janic¢i¢, 2006a). The
GeoThms users can easily use/browse through existing geometrical con-
tent and build new contents.

The main motivation is to build and maintain a publicly accessible
and widely used Internet based framework for constructive geometry.
It can be used for teaching and studying geometry, but also as a major
Internet repository for geometrical knowledge.
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problems, their statements, illustrations and proofs, and also to interac-
tively use the drawing and automatic proof tools. GeoThms is accessible
at http://hilbert.mat.uc.pt/GeoThms.

3.4.2. Automatic Verification of Regular Constructions

Some geometry tools (e.g., Fukleides, GCLC) have a dual view of a given
geometric construction — its description in a custom formal language
and a visualised version, within the graphical interface. Other tools
(e.g., Geometer’s Sketchpad, Cabri) do not have, at least in an explicit
form, a formal language for geometric constructions and instead the
user does not describe a construction in abstract terms but “draws”
it, using a pre-defined set of geometry operations. Generally, there are
three types of construction errors:

— syntactic errors — only applicable for geometry tools with formal
languages and this type of error is easily detected by the underlying
processor and easily correctable by the user. For the other family of
geometry tools this type of error doesn’t occur due to a controlled
environment where only syntactically correct actions are allowed.

— semantic errors —situations when, for a concrete set of geometrical
objects (usually given in Cartesian plane), a construction step is
not possible, for instance, two identical points do not determine a
line. Such an error will be dealt by most (if not all) geometry tools
for a given fixed set of points. However, that error is detected by an
argument relevant only for the given instance of the construction
and the question whether the construction step is always impossible
or it is not possible only in the given special case is left open.

— deductive errors —when a construction step is geometrically un-
sound, e.g., there is never an intersection of two parallel lines in
Euclidean geometry. The formal proof that a construction step
is always inpossible can only be provided by geometry tools that
incorporate geometry theorem provers.

GCLC has a built-in mechanism (using GCLCprover) for checking if
a construction step is illegal, i.e., if it is always impossible (Jani¢i¢ and
Quaresma, 2007).

EXAMPLE 3.4. Ezample 85 from the book Mechanical Geometry The-
orem Proving (Chou, 1987) will be used to illustrate the mechanism for
automatic verification of reqular constructions built into GCLC. Using

GCLC, the illustration given in Figure 6 can be generated.
If the code for the intersection of lines AD and M N is added, e.g.,
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Figure 6. Example 85 from the book Mechanical Geometry Theorem Proving

line mn M N
intersec X mn ad

GCLC will not perform the last construction step and it will give the
following error message:

Run-time error: Bad definition. Can not determine
intersection. (Line: 40, position: 10)

This is a semantic error only, detected for the concrete set of points
in the Cartesian plane. However, if GCLC is called with an appropriate
option, in the above situation (with a semantic error encountered), it
will invoke the built-in theorem prover and provide the following infor-
mation.

Deduction check invoked: the property that led to the error
will be tested for validity.

The conjecture successfully proved - the critical property
always holds. The prover output is written in the file
error-proof.tex.

Thus, the tool provides not only the statement that the construction is
always illegal, but also a rigorous proof of it (in the area method style).

As far as we are aware of, the system for automated deductive testing
whether a construction is illegal that is built into GCLC is the only such
system. A similar mechanism is available in JGEX: when a user tries to
perform an illegal construction step, the tool may report that it is not
possible to perform the step, but it does not provide a proof for that ar-
gument. The geometry tool Cinderella does not allow performing illegal
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construction steps, however the justification is not based on deductive
but on probabilistic reasoning (Kortenkamp and Richter-Gebert, 2004).

The capability of performing deductive checks is important feature
that enhances the didactic nature of dynamic geometry tools and pro-
vides an important link with automated theorem proving. That link
connects the deductive nature of geometry conjectures with the seman-
tic nature of models of geometry and, also, with human intuition and
visualisations.

3.4.3. Computing Geometric Expressions

Within Theorema, the area method machinery is used for computing ex-
pressions involving geometric quantities relative to a given construction.
For the given expression, all constructed points are eliminated and the
expression is simplified, similarly as in the basic method (Robu, 2002).

EXAMPLE 3.5. Let A, B and C be arbitrary points and let r is an
arbitrary number. Let D be the intersection of the line through B that
is parallel to AC and the line through C' that is parallel to AB. Let A’
be the point that divides CD in the ratio 1 : r(r — 1) and let B be the
point that divides DA in the ratio 1 : r(r — 1). Finally, let X be the
intersection of the lines AA’ and BB'. The goal is to find the ratio of
the area of the triangle ABC and the quadrilateral ABCD.

e

B.-~
7

The tool implemented within Theorema, based on the area method
can compute that the given ratio is equal to m. - _

Notice that the basic area method can prove that the given ratio equals
%, but computing the given ratio (without an expected result)
requires some slight modifications of the method!”.

17 This extension of the method was originally described by the authors of the
method (Chou et al., 1994).
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3.4.4. Discovering Geometry Properties

Within Theorema, the area method machinery is used for exploring
geometrical configurations and discovering geometry properties (Robu,
2002). The method is based on a systematic generation of all geometric
expressions representing interesting properties relative to a construc-
tion (collinear points, congruent segments, parallel and perpendicular
lines, triangles with the same area) and then analysing which of these
properties might be unknown so far i.e., not present in an available
knowledge base. Starting from a knowledge base that specifies some
constructions and properties, a range of interesting theorems can be
automatically obtained. These obtained theorems can be added to the
knowledge base and the exploration may continue without recomputing
the results already obtained. For testing generated properties, the area
method is used, but other proving methods can be used as well.

4. Contributions

In this paper we gave a detailed account of the area method and de-
scribed all existing implementation that we are aware of and their wider
contexts. This account can serve as a basis for a straightforward imple-
mentation of the method. In addition to that, this paper brings the
following original contributions:

— We gave an axiom system that serve as a basis for the method,
an extension of the axiom system given by the authors of the
method (Chou et al., 1994) (Section 2.2.2).

— We made formal proofs, within the proof assistant Cog (in a con-
tribution accompanying this paper), of all the lemmas needed for
the correction of the method not only for affine geometry (al-
ready described before (Narboux, 2004)), but also for Euclidean
geometry (Narboux, 2009). Thanks to the formalisation, we en-
sured the correctness of all the lemmas required by the method,
with an exception of one lemma that, as published in the original
description (Chou et al., 1994), contained an error.

— We provided detailed traditional proofs in an Hilbert-style system
(in a technical report accompanying this paper (Quaresma and
Janici¢, 2009)) of all the lemmas and filled-in some details missing
in the original descriptions.

— We made explicit the elimination procedure for all cases including
the special cases such as % (Section 2.4.1).
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— We made explicit dealing with the case split occurring in some of
the lemmas (Section 2.5.1).

—  We made explicit the uniformization phase which consists in finding
normal forms for geometric quantities (Section 2.5.2).

— We made explicit the formulas to be used for dealing with free
points (Section 2.5.3).

— We made an explicit description of the simplification phase (Sec-
tion 2.5.4).

— We made explicit the algorithm for deciding equality between two
rational expressions in independent parameters (Section 2.5.5).

— We highlighted the fact that a special case needs to be studied
when eliminating Y in 24X (Section 3.2.6).

5. Conclusions

In this paper we gave a detailed description of the area method, one of
the most significant methods for automated theorem proving in geom-
etry, introduced by Chou et al. in 1993. The method produces human-
readable proofs and can efficiently prove many non-trivial theorems.
The description of the method given here can serve as a detailed tutorial
on the method (first of that kind), sufficient for understanding and
implementing it in a straightforward manner.

Within this paper we also showed how the area method can be
successfully integrated with other mathematical tools.

We, the authors of the paper, independently made two of these in-
tegrated implementations and in this paper we presented our combined
results and experiences related to the method and its applications.
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