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tober 6, 2009Abstra
t. The area method for Eu
lidean 
onstru
tive geometry was proposedby Chou et al. in the early 1990's. The method produ
es human-readable proofsand 
an e�
iently prove many non-trivial geometry theorems. It is one of the mostinteresting and most su

essful methods for automated theorem proving in geometryand probably the most su

essful in the domain of automated produ
tion of readableproofs in geometry.In this paper, we provide a �rst 
omplete presentation of the method. We provideboth algorithmi
 and implementation details that were omitted in the original pre-sentations. We also give a variant of Chou, Gao and Zhang's axiom system. Basedon this axiom system, we proved formally all the lemmas needed by the method andits soundness using the Coq proof assistant.To our knowledge, apart from the original implementation by the authors who�rst proposed the method, there are only three implementations more. Althoughthe basi
 idea of the method is simple, implementing it is a very 
hallenging taskbe
ause of a number of details that has to be dealt with. With the des
ription ofthe method given in this paper, implementing the method should be still 
omplex,but a straightforward task. In the paper we des
ribe all these implementations andalso some of their appli
ations.Keywords: area method, geometry, automated theorem proving
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2 Jani£i�
 - Narboux - Quaresma1. Introdu
tionThere are two major families of methods in automated reasoning ingeometry: algebrai
 style and syntheti
 style methods.Algebrai
 style has its roots in the work of Des
artes and in the trans-lation of geometry problems to algebrai
 problems. The automation ofthe proving pro
ess along this line began with the quanti�er eliminationmethod of Tarski (Tarski, 1951) and sin
e then had many improve-ments (Collins, 1975). The 
hara
teristi
 set method, also known asWu's method (Wu, 1978; Chou, 1985), the elimination method (Wang,1995), the Gröbner basis method (Kapur, 1986b; Kapur, 1986a), and theCli�ord algebra approa
h (Li, 2000) are examples of pra
ti
al methodsbased on the algebrai
 approa
h. All these methods have in 
ommon analgebrai
 style, unrelated to traditional, syntheti
 geometry methods,and they do not provide human-readable proofs. Namely, they dealwith polynomials that are often extremely 
omplex for a human tounderstand, and also with no dire
t link to the geometri
al 
ontents.The se
ond approa
h to the automated theorem proving in geometryfo
uses on syntheti
 proofs, with an attempt to automate the traditionalproving methods. Many of these methods add auxiliary elements to thegeometri
 
on�guration 
onsidered, so that a 
ertain postulates 
ouldapply. This usually leads to a 
ombinatorial explosion of the sear
hspa
e. The 
hallenge is to 
ontrol the 
ombinatorial explosion and todevelop suitable heuristi
s in order to avoid unne
essary 
onstru
tionsteps. Examples of syntheti
 proof methods in
lude approa
hes by Gel-ertner (Gelernter, 1959), Nevis (Nevis, 1975), El
o
k (El
o
k, 1977),Greeno et al. (Greeno et al., 1979), Coelho and Pereira (Coelho andPereira, 1986), Chou, Gao, and Zhang (Chou et al., 1993; Chou et al.,1996
).In this paper we fo
us on the area method, an e�
ient semi-algebrai
method for a fragment of Eu
lidean geometry, developed by Chou, Gao,and Zhang (Chou et al., 1993; Chou et al., 1994; Chou et al., 1996b).This method enables implementing e�
ient provers 
apable of gener-ating human readable proofs. These proofs often di�er from the tradi-tional, Hilbert-style, syntheti
 proofs, but still they are often 
on
ise,
onsisting of steps that are dire
tly related to the geometri
al 
ontentsinvolved and hen
e 
an be easily understood by a mathemati
ian.The main idea of the area method is to express the hypotheses ofa theorem using a set of starting (�free�) points and a set of 
onstru
-tive statements ea
h of them introdu
ing a new point, and to expressthe 
on
lusion by an equality between polynomials in some geometri
quantities (without 
onsidering Cartesian 
oordinates). The proof isdeveloped by eliminating, in reverse order, the points introdu
ed before,
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3using for that purpose a set of appropriate lemmas. After eliminatingall the introdu
ed points, the 
on
lusion of the theorem 
ollapses to anequation between two rational expressions involving only free points.This equation 
an be further simpli�ed to involve only independentvariables. If the expressions on the two sides are equal, the statementis valid, otherwise it is invalid. All proof steps generated by the areamethod are expressed in terms of appli
ations of high-level geometrylemmas and expression simpli�
ations.Although the basi
 idea of the method is simple, implementing it isa very 
hallenging task be
ause of a number of details that has to bedealt with. To our knowledge, apart from the original implementationby the authors who �rst proposed the area method, there are onlythree implementations more. These three implementations were madeindependently and in di�erent 
ontexts:
− within a tool for storing and exploring mathemati
al knowledge(Theorema (Bu
hberger et al., 2006)) � implemented by JuditeRobu (Robu, 2002).
− within a generi
 proof assistant (Coq (The Coq development team,2009)) � implemented by Julien Narboux (Narboux, 2004);
− within a dynami
 geometry tool (GCLC (Jani£i¢, 2006)) � im-plemented by Predrag Jani£i¢ and Pedro Quaresma (Jani£i¢ andQuaresma, 2006);The implementations of the method 
an e�
iently �nd proofs of arange of non-trivial theorems, in
luding theorems due to Ceva, Menelaus,Gauss, Pappus, and Thales.In this paper, we present an in-depth des
ription of the area method
overing all relevant de�nitions and lemmas. We also provide some of theimplementations details, whi
h are not given or not 
learly stated in theoriginal presentations. We follow the original exposition, but in a reor-ganised, more methodologi
al form. This des
ription of the area methodshould be su�
ient for a 
omplete understanding of the method, andfor making a new implementation a straightforward task. This paperalso summarises our results, experien
es, and des
riptions of our soft-ware systems related to the area method (Jani£i¢ and Quaresma, 2006;Quaresma and Jani£i¢, 2006a; Quaresma and Jani£i¢, 2006b; Jani£i¢and Quaresma, 2007; Narboux, 2004; Narboux, 2007a).In this paper we 
onsider only the basi
 variant of the area methodfor Eu
lidean geometry, although there are other variants. Additionalte
hniques 
an also be used to produ
e shorter proofs and slightly ex-tend the basi
 domain of the method (Chou et al., 1994). However,
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4 Jani£i�
 - Narboux - Quaresmathese te
hniques are appli
able only in spe
ial 
ases and not in a uni-form way, in 
ontrast to the basi
 method. It is also possible to extendthe area method to deal with inequations in the goal. Then the �nalinequation 
an be de
ided using an CAD algorithm or a heuristi
 likethe sum of squares method. There are also variants of the area methoddeveloped for solid Eu
lidean geometry (Chou et al., 1995) and forhyperboli
 plane geometry (Yang et al., 1998). Substantially, the ideaof these variants is the same as in the basi
 method and this demonstratethat the approa
h has a wide domain. Variants of the method 
an beimplemented in the same way des
ribed in this paper.Overview of the paper. The paper is organised as follows: �rst, inSe
tion 2, we explain the area method in details. In Se
tion 3, wedes
ribe all the existing implementations of the method and some oftheir appli
ations. In Se
tion 4 we summarise our 
ontributions and wedraw �nal 
on
lusions in Se
tion 5.2. The Area MethodThe area method is a de
ision pro
edure for a fragment of Eu
lideanplane geometry. The method deals with problems stated in terms ofsequen
es of spe
i�
 geometri
 
onstru
tion steps. We begin introdu
ingthe method by way of example.In the rest of the paper, 
apital letters will denote points in the planeand △ABC will denote the triangle with verti
es A, B, and C.2.1. Introdu
tory ExampleThe following simple example brie�y illustrates some key features ofthe area method.EXAMPLE 2.1. (Ceva's Theorem). Let △ABC be a triangle and P bean arbitrary point in the plane. Let D be the interse
tion of AP and
BC, E be the interse
tion of BP and AC, and F the interse
tion of
CP and AB. Then it holds that:

AF

FB

BD

DC

CE

EA
= 1This result 
an be stated and proved, within the area method setting.The Constru
tion. The points A, B, C, and P are free points, pointsnot de�ned by 
onstru
tion steps. The point D is the interse
tion ofthe line determined by the points A and P and the line determined by
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5the points B and C. The points E and F are 
onstru
ted in a similarfashion.For this problem, an initial non-degenera
y 
ondition is, that it holds
F 6= B, D 6= C, and E 6= A. Noti
e also that the point P is not
ompletely arbitrary point in the plane, sin
e it should not belong tothe three lines parallel to the sides of the triangle and passing throughthe opposite verti
es (Figure 1).

b

C

b

B

A
b

P

b

D

b

E
b

F
b

Figure 1. Illustration for Ceva's theoremStating the Conje
ture. One of the key problems in automated theoremproving in geometry is the 
ontrol of the 
ombinatorial explosion thatarises from the number of similar, but still di�erent, 
ases that have tobe analysed. For instan
e, given three points A, B, and C, how manytriangles they de�ne? One 
an argue that the answer is one, but froma synta
ti
 point of view the △ABC is not equal to the △ACB. Forredu
ing su
h 
ombinatorial explosion, but also for ensuring rigorousreasoning, one has to deal with arrangement relations, su
h as on thesame side of a line, two triangles have the same positive orientation, et
.Note that, in Eu
lidean geometry, positive and negative orientation arejust two names used to distinguish between the two orientations andone 
an sele
t any triangle in the plane and pro
laim that it has theorientation that will be 
alled positive (and it is similar with orienta-tion of segments on a line). In other words, in Eu
lidean geometry thenotion of orientation is relative rather then absolute, and one 
an provethat a triangle has positive orientation, only if positive (and negative)orientation was already de�ned via some triangle in the same plane.In the Cartesian model of Eu
lidean geometry, the two orientations
areaMethodRe
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6 Jani£i�
 - Narboux - Quaresmaare distinguished as 
lo
kwise and 
ounter
lo
kwise orientations. Thesetwo names should not be used for Eu
lidean geometry, be
ause they
annot be de�ned there. Unfortunately, these terms are widely used ingeometri
al texts, in
luding the des
ription of the area method (Zhanget al., 1995).For stating and proving 
onje
tures, the area method uses a set ofspe
i�
 geometri
 quantities. The geometri
 quantities enable treatingarrangement relations.Within the area method the following geometri
 quantities are used:
− ratio of parallel dire
ted segments, denoted AB/CD. If the points

A, B, C, and D are 
ollinear, AB/CD is the ratio between lengthsof dire
ted segments AB and CD. If the points A, B, C, and D arenot 
ollinear, and it holds AB‖CD, there is a parallelogram ABPQsu
h that P , Q, C, and D are 
ollinear and then AB

CD
= QP

CD
.

− signed area for a triangle ABC, denoted SABC ;
− Pythagoras di�eren
e, denoted PABC , for the points A, B, C, de-�ned as PABC = AB

2
+ CB

2 − AC
2.These three geometri
 quantities allow expressing (in form of equali-ties) geometry properties su
h as 
ollinearity of three points, parallelismof two lines, equality of two points, perpendi
ularity of two lines, et
.(see se
tion 2.2.1). In the example, the 
onje
ture is expressed usingratios of parallel dire
ted segments.Proof. The proof of a 
onje
ture is based on eliminating all the 
on-stru
ted points, in reverse order, using for that propose the propertiesof the geometri
 quantities, until an equality in only the free points isrea
hed. If the equality is valid, then the original 
onje
ture is valid too.For the given example, a proof 
an be as follows:It 
an be proved that AF

FB
= SAPC

SBCP
. By analogy BD

DC
= SBPA

SCAP
and

CE

EA
= SCPB

SABP
. Therefore:

AF

FB

BD

DC

CE

EA
= SAPC

SBCP

BD

DC

CE

EA
the point F is eliminated

= SAPC

SBCP

SBPA

SCAP

CE

EA
the point D is eliminated

= SAPC

SBCP

SBPA

SCAP

SCPB

SABP
the point E is eliminated

= 1 Q.E.D.
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7The example illustrates how to express a problem using the givengeometri
 quantities and how to prove it, and moreover, how to give aproof that is 
on
ise and very easy to understand.The 
omplete proof pro
edure will be given in Se
tion 2.5. Beforethat, the underlying axiom system will be introdu
ed.2.2. Axiomati
 Grounds for the Area MethodThere is a number of axiom systems for Eu
lidean geometry. Eu
lid'ssystem (Heath, 1956), partly naive from today's point of view, was usedfor 
enturies. In early twenty 
entury, Hilbert provided a more rigorousaxiomatisation (Hilbert, 1977), one of the landmarks for modern math-emati
s, but still not up to modern standards (Dehlinger et al., 2000;Meikle and Fleuriot, 2003). In mid-twenty 
entury, Tarski presented anew axiomatisation for elementary geometry (without all 
ontinuity fea-tures ensured), along with a de
ision pro
edure for that theory (Tarski,1959). Although there are other variations of these systems (Jani£i¢,1996; Narboux, 2006), these three are the most in�uential and mostpopular axiomati
 systems for geometry.Modern 
ourses on 
lassi
al Eu
lidean geometry are most often basedon Hilbert's axioms. In Hilbert-style geometry, the primitive (not de-�ned) obje
ts are: point, line, plane. The primitive (not de�ned) pred-i
ates are those of 
ongruen
e and order (with addition of equalityand in
iden
e1). Properties of the primitive obje
ts and predi
ates areintrodu
ed by �ve groups of axioms, su
h as: �For two points A, B thereexists a line a su
h that both A and B are in
ident with it�.In the following text we brie�y dis
uss how axiomati
 grounds 
an bebuilt for the fragment of geometry treated by the area method. We willpresent two approa
hes, both enabling proving properties of geometri
quantities required by the area method.2.2.1. A Hilbert Style AxiomatisationThe geometri
 quantities used within the area method 
an be de�nedin Hilbert style geometry, but they also require axioms of the theory of�elds.The notions of the ratio of parallel dire
ted segments and of thesigned area involve the notion of orientation of segments on a line andthe notion of orientation of triangles in a plane (dis
ussed in se
tion 2.1).DEFINITION 1. (Ratio of parallel dire
ted segments).
1 See von Plato's dis
ussion about in
iden
e in Hilbert's geometry (von Plato,1997).
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8 Jani£i�
 - Narboux - QuaresmaTable I. Expressing geometry predi
ates in terms of the three geometri
 quantities.property in terms of geometri
 quantitiespoints A and B are identi
al PABA = 0points A, B, C are 
ollinear SABC = 0

AB is perpendi
ular to CD PACD = PBCD

AB is parallel to CD SACD = SBCD

O is the midpoint of AB AO

OB
= 1

AB has the same length as CD PABA = PCDCpoints A, B, C, D are harmoni
 AC

CB
=

DA

DBangle ABC has the same measure as DEF SABC · PDEF = SDEF · PABC

A, B, C and D belong to the same 
ir
le SCAD · PCBD = SCBD · PCAD

If the points A, B, C, and D are 
ollinear, AB

CD
is the ratio betweenlengths of dire
ted segments AB and CD. If the points A, B, C, and Dare not 
ollinear, and it holds AB‖CD, there is a parallelogram ABPQsu
h that P , Q, C, and D are 
ollinear and then AB

CD
= QP

CD
.DEFINITION 2. (Signed Area). The signed area of the triangle ABC,denoted SABC .The Pythagoras di�eren
e is a generalisation of the Pythagoras equal-ity regarding the three sides of a right triangle, to an expression appli-
able to any triangle (for a triangle ABC with the right angle at B, itholds that PABC = 0.).DEFINITION 3. (Pythagoras di�eren
e). For three points A, B, and

C, the Pythagoras di�eren
e, denoted PABC , is de�ned in the followingway:
PABC = AB

2
+ CB

2 − AC
2
.Using these three geometri
 quantities it is possible to express arange of geometry predi
ates as shown in Table 2.2.1.Proofs generated by the area method use a set of spe
i�
 lemmas.These lemmas 
an be proved within the Hilbert's geometry (i.e., withinits fragment for plane geometry), but the full, formal proofs would bevery long. That is why it is suitable to have an alternative axioma-tisation, suitable for the area method. Chou, Gao and Zhang (Chouet al., 1993) proposed su
h a system for a�ne geometry, and in thenext se
tion we propose a variant of this system.
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92.2.2. A New Axiom System for the Area MethodThe axiom system used by Chou, Gao and Zhang (Chou et al., 1994)is a Hilbert style axiom system, i.e. a semi-analyti
 axiom system with(only) points as primitive obje
ts (lines are not primitive obje
ts as inHilbert's axiom system). The axiom system 
ontains the axioms of �eld,so the system uses the 
on
ept of numbers, but it is still 
oordinate free.The �eld is not assumed to be ordered, hen
e the axiom system has theproperty of representing an unordered geometry. This means that, forinstan
e, one 
annot express the 
on
ept of a point being between twopoints (unlike in Hilbert's system).In the following, we present our spe
ial-purpose axiom system forEu
lidean plane geometry (within �rst order logi
 with equality), amodi�ed version of the axiomati
 system of Chou, Gao and Zhang.There are several reasons why we modi�ed the original axiom system.Compared to the original version, ours has the advantage to be more
on
ise and organised. Moreover, we formally veri�ed (within the Coqproof assistant (The Coq development team, 2009)) all the propertiesof the geometri
 quantities required by the area method, demonstratingthe 
orre
tness of the system and eliminating all 
on
erns about validityof the lemmas.In our axiom system, there is just one type of obje
ts: points. Thesystem uses a �eld (F,+, ·, 0, 1) of 
hara
teristi
 di�erent from 2.2 Theaxioms of the theory of �elds are standard and hen
e omitted.There is one primitive binary fun
tion symbol (··) and one ternaryfun
tion symbols (S...) from points to F . The �rst depi
ts the signeddistan
e between two points, the se
ond represents the signed area ofa triangle. All axioms given in Table II are impli
itly universally quan-ti�ed. To improve readability (of the last three axioms), the followingshort
uts are used:
PABC ≡ AB

2
+ BC

2 − AC
2

AB ‖ CD ≡ SACB + SABD = 0
AB ⊥ CD ≡ PACD + PBCD = 0The axiom system we propose di�ers from the axiom system of Chou,Gao and Zhang in several aspe
ts.First, our system does not use 
ollinearity as a primitive notionand instead, 
ollinearity is de�ned by the signed area. Chou, Gao and

2 The fa
t that the 
hara
teristi
 of F is di�erent from 2 is used to simplifythe axiom system. Indeed, if 0 6= 2 sin
e ∀ABC,SABC = −SBAC (by axiom 3)then ∀AC,SAAC = −SAAC and hen
e ∀AC,SAAC = 0, so we 
an omit the axiom
SAAC = 0 whi
h appears in the system proposed by Chou et al. In addition, thisassumption allows, for instan
e, 
onstru
tion of the midpoint (using the 
onstru
tionaxiom with r =

1
2
) of a segment without expli
itly stating the assumption 0 6= 2.
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10 Jani£i�
 - Narboux - QuaresmaTable II. The axiom system1. AB = 0 if and only if the points A and B are identi
al2. SABC = SCAB3. SABC = −SBAC4. If SABC = 0 then AB + BC = AC (Chasles's axiom)5. There are points A, B, C su
h that SABC 6= 0 (dimension; not all points are
ollinear)6. SABC = SDBC + SADC + SABD (dimension; all points are in the same plane)7. For ea
h element r of F , there exists a point P , su
h that SABP = 0 and
AP = rAB (
onstru
tion of a point on the line)8. If A 6= B,SABP = 0, AP = rAB,SABP ′ = 0, AP ′ = rAB, then P = P ′ (uni
ity)9. If SPCQ + SPQD = 0, C 6= D SCDQ 6= 0, and PQ

CD
= 1, then SP DQ

SCDQ
= 1(parallelogram)10. If SPAC 6= 0 and SABC = 0 then AB

AC
=

SP AB

SP AC
(proportions)11. If C 6= D and AB ⊥ CD and EF ⊥ CD then AB ‖ EF .12. If A 6= B and AB ⊥ CD and AB ‖ EF then EF ⊥ CD.13. If FA ⊥ BC and SF BC = 0 then 4S2

ABC = AF
2
BC

2 (area of a triangle).
Zhang's system has axioms introdu
ing properties of 
ollinearity, andthese axioms are then used for proving that three points are 
ollinearif and only if SABC = 0 (Chou et al., 1994).Se
ond, while Chou, Gao and Zhang's axiom system restri
ts toratios of dire
ted parallel segments AB

CD
where the lines AB and CD areparallel, we skip this synta
ti
al restri
tion and 
an use ratios for arbi-trary points. The 
onsisten
y of the axiom system is preserved be
ausethe 
on
ept of oriented distan
e 
an be interpreted in the standardCartesian model. The area method requires expli
itly that for everyratio of dire
ted segments AB

CD
, AB is parallel to CD. Therefore, the areamethod is not a de
ision pro
edure for this theory, as it 
an not prove ordisprove all 
onje
tures stated in the introdu
ed language be
ause themethod 
an not deal with ratios of the form AB

CD
if AB ∦ CD (however,it is a de
ision pro
edure for the set of formulae from the restri
tedversion of the language).Third, while Chou, Gao and Zhang's axiom system deals with a�negeometry, we extend the system to deal with Eu
lidean geometry as wemake expli
it the axioms about Pythagoras di�eren
e (axioms 11, 12,and 13).
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112.3. Geometri
 Constru
tionsThe area method is used for proving 
onstru
tive geometry 
onje
tures:statements about properties of obje
ts 
onstru
ted by some �xed set ofelementary 
onstru
tions. In this se
tion we �rst des
ribe the set ofavailable 
onstru
tion steps and then the set of 
onje
tures that 
an beexpressed.2.3.1. Elementary Constru
tion StepsConstru
tions 
overed by the area method are 
losely related, but stilldi�erent, from 
onstru
tions by ruler and 
ompass. These are the ele-mentary 
onstru
tions by ruler and 
ompass:
− 
onstru
tion of an arbitrary point;
− 
onstru
tion of an arbitrary line;
− 
onstru
tion (by ruler) of a line su
h that two given points belongto it;
− 
onstru
tion (by 
ompass) of a 
ir
le su
h that its 
entre is onegiven point and su
h that the se
ond given point belongs to it;
− 
onstru
tion of a point su
h that it is the interse
tion of two lines(if su
h a point exists);
− 
onstru
tion of the interse
tions of a given line and a given 
ir
le(if su
h points exist).
− 
onstru
tion of the interse
tions of two given 
ir
les (if su
h pointsexist).The area method 
annot deal with all geometry theorems involvingthe above 
onstru
tions. It does not support 
onstru
tion of an arbitraryline, and support interse
tions of two 
ir
les and interse
tions of a lineand a 
ir
le only in a limited way.Instead of support for interse
tions of two 
ir
les or a line and a
ir
le (
riti
al for des
ribing many geometry theorems), there are new,spe
i�
 
onstru
tion steps. All 
onstru
tions supported by the areamethod are expressed in terms of the involved points.3 Therefore, only

3 Elementary 
onstru
tion steps used by the area method do not use the 
on
eptof line and plane expli
itly. This is 
onvenient from the formalisation and automati-zation point of view. Indeed, in an axiom system based only on the 
on
ept of points(as in Tarski's axiom system (Tarski, 1959)), the dimension implied 
an be easily
hanged by adding or removing some appropriate axioms (stated in the original
areaMethodRe
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12 Jani£i�
 - Narboux - Quaresmalines and 
ir
les determined by spe
i�
 points 
an be used (rather thanarbitrarily 
hosen lines and 
ir
les) and the key 
onstru
tions stepsare those introdu
ing new points. For a 
onstru
tion steps to be well-de�ned, 
ertain 
onditions may be required. These 
onditions are 
allednon-degenera
y 
ondition (ndg-
onditions). The degree of freedom tellsif a point is free (degree bigger than 0), or not.In the following text, (Line U V) will denote a line su
h that thepoints U and V belong to it, and (Cir
le O U) will denote a 
ir
lesu
h that its 
entre is point O and su
h that the point U belongs to it.Some of the 
onstru
tions steps are formulated using the �xed �eld
(F,+, ·, 0, 1), employed by the used axiom system.Given below is the list of elementary 
onstru
tions in the area method,along with the 
orresponding ndg-
onditions and the degrees of freedomof the 
onstru
ted points.ECS1 
onstru
tion of an arbitrary point U; this 
onstru
tion step isdenoted by (Point U).ndg-
ondition: �degree of freedom for U: 2ECS2 
onstru
tion of a point Y su
h that it is the interse
tion of twolines (Line U V) and (Line P Q); this 
onstru
tion step is denotedby (Inter Y (Line U V) (Line P Q))ndg-
ondition: UV ∦ PQ; U 6= V ; P 6= Q.degree of freedom for Y: 0ECS3 
onstru
tion of a point Y su
h that it is the foot from a givenpoint P to (Line U V); this 
onstru
tion step is denoted by (FootY P (Line U V)).ndg-
ondition: U 6= Vdegree of freedom for Y: 0ECS4 
onstru
tion of a point Y on the line passing through a point

W and is parallel to (Line U V), su
h that WY = rUV , where ris an element of F , a rational expression in geometri
 quantities,or a variable; this 
onstru
tion step is denoted by (Pratio Y W(Line U V) r).signature). On the other hand, in an axiom system based on the 
on
epts of pointsand lines, su
h as Hilbert's axiom system, in order to extent the system to the thirddimension ones needs both to update some axioms, to introdu
e some new axiomsand to 
hange the signature of the theory by introdu
ing the sort of planes.
areaMethodRe
ap.tex; 6/10/2009; 19:53; p.12



13ndg-
ondition: U 6= V ; if r is a rational expression in the geometri
quantities, the denominator of r should not be zero.degree of freedom for Y: 0, if r is a �xed quantity; 1, if r is avariable.ECS5 
onstru
tion of a point Y on the line passing through a point Uand perpendi
ular to (Line U V), su
h that 4SUV Y

PUV U
= r, where r isa rational number, a rational expression in geometri
 quantities, ora variable; this 
onstru
tion step is denoted by (Tratio Y (LineU V) r).ndg-
ondition: U 6= V ; if r is a rational expression in geometri
quantities then the denominator of r should not be zero.degree of freedom for Y: 0, if r is a �xed quantity; 1, if r is avariable.The above set of 
onstru
tions is su�
ient for expressing many 
on-stru
tions based on ruler and 
ompass, but not all of them. For instan
e,an arbitrary line 
annot be 
onstru
ted by the above 
onstru
tion steps.Still, one 
an 
onstru
t two arbitrary points and then (impli
itly) theline going through these points.Also, interse
tions of two 
ir
les and interse
tions of a line and a
ir
le are not supported in a general 
ase. However, it is still possibleto 
onstru
t interse
tions of two 
ir
les and interse
tions of a line anda 
ir
le in some spe
ial 
ases. For example:

− 
onstru
tion of a point Y su
h that it is the interse
tion (otherthan point U) of a line (Line U V) and a 
ir
le (Cir
le O U) 
anbe represented as a sequen
e of two 
onstru
tion steps: (Foot NO (Line U V)), (Pratio Y N (Line N U) -1).
− 
onstru
tion of a point Y su
h that it is the interse
tion (other thanpoint P ) of a 
ir
le (Cir
le O1 P) and a 
ir
le (Cir
le O2 P)
an be represented as a sequen
e of two 
onstru
tion steps: (FootN P (Line O1 O2)), (Pratio Y N (Line N P) -1).In addition, many other 
onstru
tions (expressed in terms of 
on-stru
tions by ruler and 
ompass) 
an be performed by the elementary
onstru
tions of the area method. Some of them are:
− 
onstru
tion of a line su
h that a given point W belongs to it and itis parallel to a line (Line U V); it 
an be represented as a sequen
eof two steps: (Pratio N W (Line U V) 1), (Line W N).
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− 
onstru
tion of a line su
h that a given point W belongs to it andit is perpendi
ular to a line (Line U V); if W , U , V are 
ollinear,then this 
onstru
tion 
an be represented as (Tratio N (Line WU) 1), (Line N W), otherwise it 
an be represented as (Foot NW (Line U V)), (Line N W).
− 
onstru
tion of a perpendi
ular bise
tor of a segment with end-points U and V ; this 
onstru
tion 
an be represented as (PratioM (Line U U) V 1/2), (Tratio N (Line M U) 1), (Line N M).Also, it is possible to 
onstru
t an arbitrary point on a line (LineU V), by (Pratio Y U (Line U V) r) where r is an indeterminate, oron a 
ir
le (Cir
le O P), by (Point Q), (Foot N O (Line P Q)),(Pratio Y N (Line N P) -1).Within a wider system (e.g., within a dynami
 geometry tool), ari
her set of 
onstru
tion steps 
an be used for des
ribing geometry
onje
tures as long as all of them 
an be represented by the elementary
onstru
tion steps of the area method.As said, the set of elementary 
onstru
tion steps in the area method
annot 
over all 
onstru
tions based on ruler and 
ompass. On the otherend, there are also some 
onstru
tions that 
an be performed by theabove 
onstru
tion steps and that 
annot be performed by ruler and
ompass. For instan
e, if 3

√
2 ∈ F then, given two distin
t points A and

B, one 
an 
onstru
t a third point C su
h that AC = 3
√

2 AB, sin
eone 
an use this number (whereas it is not possible using ruler and
ompass).EXAMPLE 2.2. The 
onstru
tion given in Example 2.1 
an be repre-sented in terms of the given 
onstru
tion steps as follows:
A,B,C, P are free points (ECS1)Inter D (Line A P) (Line B C)) (ECS2)Inter E (Line B P) (Line A C)) (ECS2)Inter F (Line C P) (Line A B)) (ECS2)2.3.2. Constru
tive Geometry StatementsIn the area method, geometry statements have a spe
i�
 form.DEFINITION 4. (Constru
tive Geometry Statement). A 
onstru
tivegeometry statement, is a list S = (C1, C2, . . . , Cn, G) where Ci, for

1 ≤ i ≤ n, are elementary 
onstru
tion steps, and the 
on
lusion of thestatement, G is of the form E1 = E2, where E1 and E2 are polynomialsin geometri
 quantities of the points introdu
ed by the steps Ci. Inea
h of Ci, the points used in the 
onstru
tion steps must be alreadyintrodu
ed by the pre
eding 
onstru
tion steps.
areaMethodRe
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15The 
lass of all 
onstru
tive geometry statements is denoted by C.Note that, in its basi
 form, the area method does not deal withinequalities in its 
on
lusion statement, G (for another variant of themethod see se
tion 3.3.2).For a statement S = (C1, C2, . . . , Cn, (E1 = E2)) from C, the ndg-
ondition is the set of ndg-
onditions of the steps Ci plus the 
onditionthat the denominators of the length ratios in E1 and E2 are not equalto zero, and the 
onditions that line appearing in the length ratios in
E1 and E2 are parallel. The logi
al meaning of a statement is hen
e:

C1 ∧ C2 ∧ ... ∧ Cn∧

NDG1 ∧ NDG2 ∧ ... ∧ NDGn∧
d1 ∧ ... ∧ dm

p1 ∧ ... ∧ pm

⇒ E1 = E2where Ci are the propositions 
hara
terising the 
onstru
tion steps;
NDGi are the ndg-
onditions asso
iated to the 
onstru
tion steps; diare the 
onditions on denominators appearing in E1 and E2; and piare the 
onditions about parallelism: for ea
h ratio of the form AB

CDappearing in E1 and E2, there is the 
ondition AB ‖ CD.EXAMPLE 2.3. The statement 
orresponding to the theorem given inExample 2.1 
an be represented as follows:
AP ∦ BC ∧ A 6= P ∧ B 6= C ∧
BP ∦ AC ∧ B 6= P ∧ A 6= C ∧
CP ∦ AB ∧ C 6= P ∧ A 6= B ∧
F 6= B ∧ D 6= C ∧ E 6= A ∧
AF ‖ FB ∧ BD ‖ DC ∧ CE ‖ EA ∧
⇒ AF

FB

BD

DC

CE

EA
= 12.4. Properties of Geometri
 Quantities & EliminationLemmasWe present some de�nitions and the properties of geometri
 quantities,required by the area method. We follow the material from originaldes
riptions of the method (Chou et al., 1993; Chou et al., 1994; Chouet al., 1996b; Zhang et al., 1995), but in a reorganised form. The rigoroustraditional proofs (not formal) a

ompanying all the results presented inthis se
tion are available in (Quaresma and Jani£i¢, 2009). The formal
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hine veri�able) proofs are available as a Coq 
ontribution (Nar-boux, 2009).Along the method appli
ation, in addition to the basi
 geometri
quantities, some additional quantities (SABCD and PABCD) may o

urin the 
onje
ture being proved. These quantities are de�ned in terms ofthe basi
 quantities, as follows.DEFINITION 5. The signed area of a quadrilateral ABCD is de�nedas SABCD = SABC + SACD.DEFINITION 6. For four points A,B,C and D, PABCD is de�ned asfollows:
PABCD = PABD − PCBD = AB

2
+ CD

2 − BC
2 − DA

2
.The following lemmas are impli
itly universally quanti�ed and it isassumed that it holds A 6= B for any ratio of parallel dire
ted segmentsof the form XY

AB
.LEMMA 1. PQ

AB
= −QP

AB
= QP

BA
= −PQ

BA
.LEMMA 2. PQ

AB
= 0 i� P = Q.LEMMA 3. PQ

AB

AB

PQ
= 1.LEMMA 4. SABC = SCAB = SBCA = −SACB = −SBAC = −SCBA.LEMMA 5. PAAB = 0.LEMMA 6. PABC = PCBA.LEMMA 7. PABA = 2AB

2.2.4.1. Elimination LemmasAn elimination lemma is a theorem that has the following properties:
− it states an equality between a geometri
 quantity involving a
ertain 
onstru
ted point Y and an expression not involving Y ;
− this last expression is 
omposed using only geometri
 quantities;
− this expression is well de�ned: denominators are di�erent from zeroand ratios of distan
es are 
omposed only using parallel segments.
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17It is required to des
ribe elimination of points introdu
ed by four
onstru
tion steps (ECS2 to ECS5) from three kinds of geometri
 quan-tities.Some elimination lemmas enable eliminating a point from expres-sions only at 
ertain positions � usually the last position in the list ofthe arguments. That is why it is ne
essary �rst to transform relevantterms of the 
urrent goal into the form that 
an be dealt with bythese elimination lemmas. Moreover, some elimination lemmas requirethat some points are assumed to be distin
t. The �rst following lemmaensures that this assumptions 
an be met.LEMMA 8. If G is a geometri
 quantity involving Y , then either G isequal to zero or it 
an be transformed into one of the following forms(or their sum or di�eren
e), for some A, B, C, and D that are di�erentfrom Y :
AY

CD
; AY

BY
;−AY

BY
; 1

AY

CD

;PABY ;PAY B;SABY ;Proof: If G is a geometri
 quantity of arity 4 (SABCD or PABCD), the�rst step is to transform it into terms of arity 3 by one of the followingtwo rules.
SABCD → SABC + SACD De�nition 5
PABCD → PABD − PCBD De�nition 6Now, all remaining geometri
 quantities (involving Y ) 
an be treated.Signed ratios: G 
an have one of the following forms (for some A, B,and C di�erent from Y ):

• Y Y

AY
= 0 (by Lemma 2)

• Y Y

Y A
= 0 (by Lemma 2)

• Y Y

CD
= 0 (by Lemma 2)

• AY

BY

• AY

Y B
= −AY

BY
(by Lemma 1)

• Y A

BY
= −AY

BY
(by Lemma 1)

• Y A

Y B
= AY

BY
(by Lemma 1)

• AY

CD

• Y A

CD
= −AY

CD
(by Lemma 1)

areaMethodRe
ap.tex; 6/10/2009; 19:53; p.17



18 Jani£i�
 - Narboux - Quaresma
• AB

CY
= 1

CY

AB

(by lemmas 1 and 3)
• AB

Y C
= 1

CY

BA

(by lemmas 1 and 3)Signed area: G 
an have one of the following forms (for some A and
B di�erent from Y ):
• SY Y Y = 0 (by Lemma 4)
• SAY Y = 0 (by Lemma 4)
• SY AY = 0 (by Lemma 4)
• SY Y A = 0 (by Lemma 4)
• SAY B = SBAY (by Lemma 4)
• SY AB = SABY (by Lemma 4)
• SABYPythagoras di�eren
e: G 
an have one of the following forms (forsome A and B di�erent from Y ):
• PY Y Y = 0 (by Lemma 5)
• PAY Y = 0 (by lemmas 6 and 5)
• PY AY = PAY A (by Lemma 7)
• PY Y A = 0 (by Lemma 5)
• PAY B

• PY AB = PBAY (by Lemma 6)
• PABY Q.E.D.If G(Y ) is one of the following geometri
 quantities: SABY , SABCY ,

PABY , or PABCY for points A, B, C di�erent from Y , then G(Y ) is
alled a linear geometri
 quantity.The following lemmas are used for the elimination of Y from geo-metri
 quantities. Thanks to Lemma 8, it is su�
ient to 
onsider onlygeometri
 quantities with only one o

urren
e of Y and the 
ase AY

BY
.Therefore, it 
an be assumed that Y di�ers from A, B, C, and D inthe following lemmas (although they are valid in a general 
ase, unlessstated otherwise). This ensures that Y does not o

ur on the right handsides appearing in the elimination lemmas.
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19LEMMA 9. (EL1). If Y is introdu
ed by (Inter Y (Line U V) (LineP Q)) then it holds that:4
AY

CY
=

{

SAPQ

SCPQ
if A is on UV

SAUV

SCUV
otherwise

AY

CD
=

{

SAPQ

SCPDQ
if A is on UV

SAUV

SCUDV
otherwiseLEMMA 10. (EL2). If Y is introdu
ed by (Foot Y P (Line U V))then it holds that (we assume D 6= U ; otherwise inter
hange U and V ):

AY

CY
=

{

PPUV PPCAV +PPV UPPCAU

PPUV PCV C+PPV UPCUC−PPUV PPV U
if A is on UV

SAUV

SCUV
otherwise

AY

CD
=

{

PPCAD

PCDC
if A is on UV

SAUV

SCUDV
otherwiseLEMMA 11. (EL3). If Y is introdu
ed by (Pratio Y R (Line P Q)r) then it holds that (we assume that A 6= Y ):

AY

CY
=











AR

PQ
+r

CR

PQ
+r

if A is on RY

SAPRQ

SCPRQ
otherwise

AY

CD
=











AR

PQ
+r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwiseLEMMA 12. (EL4). If Y is introdu
ed by (Tratio Y (Line P Q) r)then it holds that:

AY

CY
=







SAPQ−
r
4
PPQP

SCPQ−
r
4
PPQP

if A is on PY
PAPQ

PCPQ
otherwise

AY

CD
=

{

SAPQ−
r
4
PPQP

SCPDQ
if A is on PY

PAPQ

PCPDQ
otherwise

4 Noti
e that in this and other lemmas, the 
ondition A on UV is trivially met if
A is one of the points U and V . This spe
ial 
ase may be treated as a separate 
asefor the sake of e�
ien
y.
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 - Narboux - QuaresmaLEMMA 13. (EL5). Let G(Y ) be a linear geometri
 quantity and Y isintrodu
ed by (Inter Y (Line U V) (Line P Q). Then it holds that:
G(Y ) =

SUPQG(V ) − SV PQG(U)

SUPV Q
.LEMMA 14. (EL6). Let G(Y ) be a linear geometri
 quantity and Y isintrodu
ed by (Foot Y P (Line U V)). Then it holds that:

G(Y ) =
PPUV G(V ) + PPV UG(U)

PUV U
.LEMMA 15. (EL7). Let G(Y ) be a linear geometri
 quantity and Y isintrodu
ed by (Pratio Y W (Line U V) r). Then it holds that:

G(Y ) = G(W ) + r(G(V ) − G(U)).LEMMA 16. (EL8). If Y is introdu
ed by (Tratio Y (Line P Q) r)then it holds that:
SABY = SABP − r

4
PPAQB.LEMMA 17. (EL9). If Y is introdu
ed by (Tratio Y (Line P Q) r)then it holds that:

PABY = PABP − 4rSPAQB.LEMMA 18. (EL10). If Y is introdu
ed by (Inter Y (Line U V)(Line P Q)) then it holds that:
PAY B =

SUPQ

SUPV Q

G(V ) +
SV PQ

SUPV Q

G(U) − SUPQ · SV PQ · PUV U

S2
UPV Q

.LEMMA 19. (EL11). If Y is introdu
ed by (Foot Y P (Line U V))then it holds that:
PAY B =

PPUV

PUV U

G(V ) +
PPV U

PUV U

G(U) − PPUV · PPV U

PUV U

.LEMMA 20. (EL12). If Y is introdu
ed by (Pratio Y W (Line U V)r) then it holds that:
PAY B = PAWB + r(PAV B − PAUB + 2 · PWUV ) − r(1 − r)PUV U .LEMMA 21. (EL13). If Y is introdu
ed by (Tratio Y (Line P Q) r)then it holds that:

PAY B = PAPB + r2PPQP − 4r(SAPQ + SBPQ).
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21Table III. Elimination Lemmas Geometri
 Quantities
AY

CY

AY

CD
SABY SABCY PABY PABCY PAY BECS2 EL1 EL5 EL10ECS3 EL2 EL6 EL11ECS4 EL3 EL7 EL12Constru
tive Steps ECS5 EL4 EL8 EL9 EL13Elimination LemmasThe information on the elimination lemmas is summarized in Ta-ble III.On the bases of the above lemmas, given a statement S, it is alwayspossible to eliminate all 
onstru
ted points (in reverse order) leavingonly free points, numeri
al 
onstants and numeri
al variables. Namely,by Lemma 8, all geometri
 quantities are transformed into one of thestandard forms and then appropriate elimination lemmas (dependingon the 
onstru
tion steps) are used to eliminate all 
onstru
ted points.2.5. The Algorithm and its PropertiesIn this se
tion we present the area method's algorithm. As explainedin se
tion 2.1, the idea of the method is to eliminate all the 
on-stru
ted points and then to transform the statement being proved intoan expression involving only independent geometri
 quantities.2.5.1. Dealing with Side Conditions in Elimination LemmasApart from ndg-
onditions of the 
onstru
tion steps, there are also side
onditions in some of the elimination lemmas. Namely, some eliminationlemmas have two 
ases (side 
onditions) � positive (always of the form�A is on PQ�) and negative (always of the form �A is not on PQ�). Asin the 
ase of ndg-
onditions, the positive side 
onditions (those of theform �A is on PQ�) 
an also be expressed in terms of geometri
 quan-tities (as SAPQ = 0) and 
he
ked by the area method itself. Negativeside 
onditions (expressed ad SAPQ 6= 0) 
an also be proved in somesituations. Basi
ally, the area method 
an only prove 
onje
tures of theform E1 = E2, but if, while trying to prove that it holds E1 6= E2, oneends up with a trivial inequality (a 6= b for two distin
t 
onstants aand b), then it yields E1 6= E2 (sin
e all the rules applied by the areamethod are equivalen
e preserving).In one variant of the area method (implemented in GCLCprover,see 3.1), non-degenera
y 
onditions 
an be introdu
ed not only at the
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22 Jani£i�
 - Narboux - Quaresmabeginning (based on the hypotheses), but also during the proving pro-
ess. If a side 
ondition for the positive 
ase of a bran
hing eliminationlemma (the one of the form L = R) 
an be proved (as a lemma), thenthat 
ase is applied. Otherwise, if a side 
ondition for the negative
ase (the one of the form L 6= R) 
an be proved (as a lemma), thenthat 
ase is applied. Otherwise, the 
ondition for the negative 
ase isassumed and introdu
ed as an additional non-degenera
y 
ondition.Therefore, this approa
h in
ludes proving subgoals (whi
h initiate anew proving pro
ess on that new goal). However, there is no bran
hing,so the proof is always sequential, possibly with lemmas integrated. Lem-mas are being proved as separate 
onje
tures, but, of 
ourse, sharingthe 
onstru
tion and non-degenera
y 
onditions with the outer 
ontext.Note that in this variant of the method, the statement proved by themethod is not exa
tly the one given by the user as the method introdu
esndg-
onditions.In another variant of the method (implemented in Coq, see 3.2),if a 
ondition for one 
ase 
an be proved, then that 
ase is applied,otherwise both 
ases are 
onsidered separately. Therefore, this variantmay produ
e bran
hing proofs (but does not generate additional ndg-
onditions). Note that this variant does not 
hange the initial statementand does not risk to introdu
e ndg-
onditions whi
h are not needed.Indeed, for example, in some 
ontexts it 
ould be the 
ase that neither
A always belongs to CD nor always it does not belong to CD, but thestatement to be proved is still true in both 
ases. Using the �rst variantof the method, in su
h a 
ase the 
ondition SACD 6= 0 would be addedto the statement whereas the theorem 
ould be proved without thisassumption.
2.5.2. UniformizationThe main goal of the phase of eliminating 
onstru
ted points is thatall remaining geometri
 quantities are independent. However, this isnot exa
tly the 
ase, be
ause two equal geometri
 quantities 
an berepresented by synta
ti
ally di�erent terms. For instan
e, SABC 
an alsobe represented by SCAB. To solve this issue, it is needed to uniformizethe geometri
 quantities that appear in the statement. For this purpose,a set of 
onditional rewrite rules is used. To ensure termination, theserules are applied only when A, B and C stand for variables whose nameare in alphabeti
 order.The uniformization pro
edure 
onsists of applying exhaustively thefollowing rules:

areaMethodRe
ap.tex; 6/10/2009; 19:53; p.22



23
BA → −AB by Lemma 1

SBCA → SABC SACB → −SABC

SCAB → SABC SBAC → −SABC

SCBA → −SABC

by Lemma 4
PCBA → PABC by Lemma 6
PBAB → PABA by Lemma 72.5.3. Dealing with free points: area 
oordinatesThe elementary 
onstru
tion step ECS1 introdu
es arbitrary points.Su
h points are the free points on whi
h all other obje
ts are based. Fora geometri
 statement S = (C1, C2, . . . , Cm, (E1 = E2)), one 
an obtaintwo rational expressions E′

1 and E′
2 in ratio of dire
ted segments, signedareas and Pythagoras di�eren
es in only free points, numeri
al 
onstantsand numeri
al variables. Most often this simply leads to equations thatare trivially true (as in Ceva's example). However, the remaining ge-ometri
 quantities 
an still be mutually dependent, e.g., for any fourpoints A, B, C, and D it holds (by Axiom 6) that

SABC = SABD + SADC + SDBCIn su
h 
ases, it is needed to redu
e E′
1 and E′

2 to expressions inindependent variables. For that purpose the area 
oordinates are used.DEFINITION 7. Let A, O, U , and V be four points su
h that O, U ,and V are not 
ollinear. The area 
oordinates of A with respe
t to OUVare
xA =

SOUA

SOUV
, yA =

SOAV

SOUV
, zA =

SAUV

SOUV
.It is 
lear that xA + yA + zA = 1.It holds that the points in the plane are in a one to one 
orrespon-den
e with their area 
oordinates. To represent E1 and E2 as expressionsin independent variables, �rst three new points O, U , and V , su
h that

UO ⊥ OV and d = OU = OV , are introdu
ed. Expressions E1 and E2
an be transformed to expressions in the area 
oordinates of the freepoints with respe
t to OUV .For any point P , let XP denotes SOUP , let YP denotes SOV P , andlet Col(A,B,C) denotes the fa
t that A, B and C are 
ollinear.
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 - Narboux - QuaresmaLEMMA 22. For any points A, B, C and D su
h that C 6= D and
AB ‖ CD, it holds that:
AB

CD
=























































XCYA−XCYB−YAXB+YBXA−YCXA+YCXB

XCYA−XCYD−YAXD−YCXA+YCXD+XAYD
if not Col(A,C,D)

XBYA−XAYB

XDYC−XCYD

if Col(A,C,D) andnot Col(O,A,C)

SOUV (XB−XA)+XBYA−XAYB

SOUV (XD−XC)+XDYC−XCYD

if Col(A,C,D) and
Col(O,A,C) andnot Col(U,A,C)

SOUV (YB−YA)+XBYA−YBXA

SOUV (YD−YC)+XDYC−YDXC
otherwiseLEMMA 23. For any points A, B and C it holds that:

SABC = (YB−YC)XA+(YC−YA)XB+(YA−YB)XC

SOUV
.LEMMA 24. For any points A, B and C it holds that:

PABC = 8(
YAYC−YAYB+Y 2

B−YBYC−XAXB+XAXC+X2
B−XBXC

d2 ).LEMMA 25. SOUV = ±d2

2 .Using lemmas 22 to 25, expressions E1 and E2 
an be written asexpressions in d2, and in the geometri
 quantities of the form SOUP or
SOV P where P is a free point (there is V su
h that SOUV = d2

2 ).After this transformation, the equality E1 = E2 is transformed intoan equality over independent variables and numeri
al parameters.2.5.4. Simpli�
ationFor simpli�
ation of the statement the following rewrite rules are ap-plied.Degenerated geometri
 quantities:
Y Y

AB
→ 0 SAAB → 0 PAAB → 0

SBAA → 0 PBAA → 0
SABA → 0Ring simpli�
ations:

a · 0 → 0 0 + a → a −0 → 0 (−a) · b → −(a · b)
0 · a → 0 a + 0 → a −− a → a a · (−b) → −(a · b)
1 · a → a a − 0 → a −a + a → 0 −a · −b → a · b
a · 1 → a 0 − a → −a a + (−b) → a − b

a − a → 0 −b + a → a − b
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25
c1 + c2 → c3 where c1 and c2 are 
onstants (elements of F ) and

c1 + c2 = c3

c1 · c2 → c3, where c1 and c2 are 
onstants (elements of F ) and
c1 · c2 = c3Field simpli�
ations (if a 6= 0):

a
a

→ 1 0
a

→ 0 −b
a

→ − b
a

a
−a

→ −1 a
1 → a b

−a
→ − b

a

−a
a

→ −1 a · ( 1
a
) → 1 a·b

a
→ b

−a
−a

→ 1 b·a
a

→ b2.5.5. De
iding equality of two rational expressionsAfter the elimination of 
onstru
ted points, uniformization of geomet-ri
 quantities, treatment of the free points, and the simpli�
ation, anequality between two rational expressions involving only independentquantities is obtained. To de
ide validity of su
h an equality (by trans-forming its two sides), the following (terminating) rewrite rules areused.Redu
ing to a single fra
tion:
a
b

+ c → a+c·b
b

a · b
c
→ a·b

c
a
b
c

→ a·c
b

c + a
b

→ c·b+a
b

a
b
· c → a·c

b

a
b

c
→ a

b·c
a
b

+ c
b
→ a+c

b
a
b
· c

d
→ a·c

b·d

a
b
c
d

→ a·d
c·b

a
b

+ c
d

→ a·d+c·b
bdRedu
ing to an equation without fra
tions:

a
b

= c → a = c · b a
b

= c
b
→ a = c

c = a
b

→ c · b = a a
b

= c
d

→ a · d = c · bRedu
ing to an equation where the right hand side is zero:
a = c → a − c = 0Redu
ing left hand side to right asso
iative form:

((a + b) + c) → a + (b + c) a · (b + c) → a · b + a · c
((a · b) · c) → a · (b · c) (b + c) · a → b · a + c · a

a · c → c · a, where c is a 
onstant (element of F ) and a is not a
onstant.
a · (c · b) → c · (a · b) where c is a 
onstant (element of F ) and a isnot a 
onstant.
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c1 · (c2 · a) → c3 · a where c1 and c2 are 
onstants (elements of F )and c1 · c2 = c3.
E1+· · ·+Ei−1+c1 ·C+Ei+1+· · ·+Ej−1+c2 ·C ′+Ej+1+· · ·+En →

E1 + · · ·Ei−1 + c3 ·C +Ei+1 + · · ·+Ej−1 +Ej+1 + · · ·+En, where c1, c2and c3 are 
onstants (elements of F ) su
h that c1 + c2 = c3 and C and
C ′ are equal produ
ts (with all multipli
ands equal up to permutation).The above rules are used in the �waterfall� manner: they are triedfor appli
ability, and when one rule is (on
e) applied su

essfully, thenthe list of the rules is tried from the top. The ordering of the rules 
animpa
t the e�
ien
y to some extent.The original equality is valid if and only if it is transformed to 0 = 0.Note that all the rules involving ratios given above 
an be appliedto ratios of dire
ted segments (as, following the axiom system givenin Se
tion 2.2.2), ratios of dire
ted segments are ratios over F . Sin
ethese rules are applied after the elimination pro
ess, there is no dangerof leaving segment lengths involving 
onstru
ted points (by breakingsome ratios of segments). However, in this approa
h all ratios are han-dled only at the end of the proving pro
ess. To in
rease e�
ien
y, it ispossible to use these rules during the proving pro
ess. Namely, all therules involving ratios 
an be used also in the simpli�
ation phase, butnot applied to ratios of segments (they are treated as spe
ial 
ase ofratios). The �rst approa
h is implemented in Coq (see 3.2), the se
ondin GCLCprover (see 3.1).The set of rules given above is not minimal, in a sense that somerules 
an be omitted and the pro
edure for de
iding equality would stillbe 
omplete. However, they are used for e�
ien
y. Also, additional rules
an be used, as long as they are terminating and validity and invaliditypreserving.2.5.6. Non-degenera
y ConditionsSome 
onstru
tions are possible only if 
ertain 
onditions are met. Forinstan
e, the 
onstru
tion of the interse
tion of lines a and b is possibleonly if the lines a and b are not parallel. For su
h 
onstru
tions ndg-
onditions are stored and 
onsidered during the proving pro
ess. Non-degenera
y 
onditions of the 
onstru
tion steps have one of the followingtwo forms:
− A 6= B or, equivalently, PABA 6= 0;
− PQ ∦ UV or, equivalently, SPUV 6= SQUV ;Negations of these 
onditions have to be 
he
ked during the provingpro
ess. As seen from above, these negations 
an be expressed as equal-ities in terms of geometri
 quantities and in some 
ases 
an be provedby the area method itself.
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27A ndg-
ondition of a geometry statement is the 
onjun
tion of ndg-
onditions of the 
orresponding 
onstru
tion steps, plus the 
onditionsthat the denominators of the ratios of parallel dire
ted segments in thestatement are not equal to zero, and the 
onditions that AB ‖ CD forevery ratio AB

CD
that appear in the statement. As said in Se
tion 2.3.2,the statement is proved with the assumption that its ndg-
onditionsare satis�ed. Hen
e, if the negation of a ndg-
ondition of a geometrystatement is met, the statement is trivially valid.As an example, 
onsider a theorem about an impossible 
onstru
tion.Let A, B and C be three arbitrary points (obtained by ECS1). Let Dbe on the line parallel to AB passing through C (obtained by ECS4).Let I be the interse
tion of AB and CD (obtained by ECS2). Then,the assumptions of any statement G to be proved about these pointsare in
onsistent sin
e the 
onstru
tion of D implies AB ‖ CD and the
onstru
tion of I implies AB ∦ CD. Therefore, G is trivially valid.2.5.7. AlgorithmThe area method 
he
ks whether a 
onstru
tive geometry statement

(C1, C2, . . . , Cm, E1 = E2) is valid or not, i.e., it 
he
ks whether E1 =
E2 is a dedu
tive 
onsequen
e of the 
onstru
tion (C1, C2, . . . , Cm),along with its ndg-
onditions. As said, the key part of the method iseliminating 
onstru
ted points from geometri
 quantities. The point areintrodu
ed one by one, and are eliminated from the goal expression inthe reverse order.Algorithm: Area methodInput: S = (C1, C2, . . . , Cm, (E1 = E2)) is a statement in C.Output: The algorithm 
he
ks whether S is valid or not and produ
esa 
orresponding proof (
onsisting of all single steps performed).1. initially, the 
urrent goal is the given 
onje
ture; translate thegoal in terms of geometri
 quantities using table 2.2.1 andgenerate all ndg-
onditions for S;2. pro
ess all the 
onstru
tion steps in reverse order:a) if the negation of the ndg-
ondition of the 
urrent 
onstru
-tion step is met, then exit and report that the 
onje
tureis trivially valid; otherwise, this ndg-
ondition is one of theassumptions of the statement.b) simplify the 
urrent goal (by using the simpli�
ation pro-
edure);

areaMethodRe
ap.tex; 6/10/2009; 19:53; p.27



28 Jani£i�
 - Narboux - Quaresma
) if the 
urrent 
onstru
tion step introdu
es a new point
P , then eliminate (by using Lemma 8 and the eliminationlemmas) all o

urren
es of P from the 
urrent goal;3. uniformize the geometri
 quantities (using the uniformizationrules);4. simplify the 
urrent goal (by using the simpli�
ation pro
e-dure);5. test if the obtained equality is valid (by using the pro
eduregiven in 2.5.5); if yes, then the 
onje
ture E1 = E2 is valid, un-der the assumption that the ndg-
onditions hold, otherwise:a) eliminate the free points (using the area 
oordinates, asdes
ribed in 2.5.3);b) simplify the 
urrent goal (by using the simpli�
ation pro-
edure);
) test if the obtained equality is valid (by using the pro
e-dure given in 2.5.5); if yes, then the 
onje
ture E1 = E2 isvalid, under the assumption that the ndg-
onditions hold.Otherwise the 
onje
ture is not valid.Testing the validity of ndg-
onditions within the main loop 
an alsobe performed by the area method itself (based on the 
onstru
tion stepsthat pre
ede the 
urrent step).2.5.8. Properties of the MethodThe area method is terminating, sound, and 
omplete: it 
an prove anygeometry theorem expressed in terms of geometri
 quantities, and in-volving only obje
ts introdu
ed by using a spe
i�ed set of 
onstru
tionssteps. Therefore, the pro
edure is a de
ision pro
edure for the des
ribedfragment of geometry.5Termination. Sin
e there is a �nite number of 
onstru
ted points,there is a �nite number of o

urren
es of these points in the statement,and sin
e in ea
h appli
ation of the elimination lemmas there is at leastone o

urren
e of a 
onstru
ted points eliminated, it follows that all
onstru
ted points will be eventually eliminated from the statements.Therefore, if the simpli�
ation pro
edure and the pro
edure for de
id-ing equality over independent parameters terminate, the whole of themethod terminates as well.

5 This fragment 
an also be de�ned as a quanti�er-free theory with the set ofaxioms equal to the set of all introdu
ed lemmas. It 
an be easily shown that thistheory is a sub-theory of Eu
lidean geometry augmented by the theory of �elds.
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29Corre
tness. All steps of the method transform the 
urrent goal. Allsteps are based on the (proved) lemmas, so these transformation pre-serve the validity of the goal: the goal is valid after one step if and onlyif it was valid before that step. Therefore, it remains to 
onsider onlythe last step of the algorithm. If E1 = E2, then the original statementis obviously valid. Note that the ndg-
onditions ensure that the denom-inators of all the expressions o

urring in the proof are di�erent fromzero. Otherwise, if E1 6= E2, sin
e all geometri
 quantities o

urring in
E1 and E2 are free parameters, in the geometri
 
onstru
tion 
onsideredthey 
an take arbitrary values. So, it is possible to 
hoose 
on
rete valuesfor these quantities leading to E1 6= E2, and a 
ounterexample for thestatement. Hen
e, in this 
ase, the statement is not valid. Therefore,the method is both sound and 
omplete: it returns the positive answer(along with the proof) if and only if the given 
onje
ture is valid.Complexity The 
ore of the method does not have bran
hing (unlessthe variant with 
onsidering both 
ases in ndg-
onditions is used, asexplained in Se
tion 2.5.6), whi
h makes it very e�
ient for many non-trivial geometry theorems (still, the area method is less e�
ient thanprovers based on algebrai
 methods (Chou et al., 1994)).The area method 
an transform a 
onje
ture given as an equalitybetween rational expressions involving 
onstru
ted points, to an equal-ity not involving 
onstru
ted points. Ea
h appli
ation of eliminationlemmas eliminates one o

urren
e of a 
onstru
ted point and repla
ea relevant geometri
 quantity by a rational expression with a degreeless than or equal to two. Therefore, if the original 
onje
ture has adegree d and involves n o

urren
es of 
onstru
ted points, then theredu
ed 
onje
ture (without 
onstru
ted points) has a degree of atmost 2n (Chou et al., 1994). However, this degree is usually mu
h less,espe
ially if the simpli�
ation pro
edures are used along the eliminationpro
ess. The above analysis does not take into a

ount the 
omplexityof the elimination of free points and the simpli�
ation pro
ess.3. Implementations of the Area MethodIn this se
tion we des
ribe spe
i�
s of our two (independent) implemen-tations of the area method and brie�y des
ribe other two implementa-tions. We also des
ribe some appli
ations of these implementations.
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 - Narboux - Quaresma3.1. The Area Method in GCLCA theorem prover GCLCprover, based on the area method, is a partof a dynami
 geometry tool GCLC. This se
tion begins with a briefdes
ription of GCLC.3.1.1. GCLCGCLC (Jani£i¢, 2006; Jani£i¢, 2009) is a tool for visualisation of ob-je
ts and notions of geometry and other �elds of mathemati
s. Theprimary fo
us of the �rst versions of the GCLC was produ
ing digitalillustrations of Eu
lidean 
onstru
tions in LATEX form (hen
e the name�Geometry Constru
tions → LATEX Converter�), but now it is mu
hmore than that. For instan
e, there is support for symboli
 expres-sions, for parametri
 
urves and surfa
es, for drawing fun
tions, graphs,and trees, support for �ow 
ontrol, et
. Libraries of GCLC pro
eduresprovide additional features, su
h as support for hyperboli
 geometry.The basi
 idea behind GCLC is that 
onstru
tions are abstra
t, for-mal pro
edures, rather than images. Thus, in GCLC, produ
ing math-emati
al illustrations is based on �des
ribing �gures� rather than on�drawing �gures�. A �gure 
an be generated (in the Cartesian model ofthe plane) on the basis of the abstra
t des
ription.The language of GCLC (Jani£i¢, 2009) 
onsists of the followinggroups of 
ommands: basi
 de�nitions (e.g., point for introdu
ing apoint, line for a line determined by two point), basi
 
onstru
tions(e.g., interse
 for 
onstru
ting the interse
tion of two lines), trans-formations (e.g., translate for translation), 
ommands for symboli

al
ulations, 
ommands for �ow 
ontrol, drawing 
ommands, labellingand printing 
ommands, Cartesian 
ommands, low level 
ommands,
ommands for des
ribing animations, and 
ommands for automatedtheorem proving.EXAMPLE 3.1. The example GCLC 
ode given in Figure 2 (left) de-s
ribes a triangle and the midpoints of two of triangle's sides. From thisGCLC 
ode, Figure 2 (right) 
an be generated.Apart from produ
ing digital mathemati
al illustrations (in di�erentformats), GCLC 
an be used for tea
hing and studying geometry (andnot only geometry), and for storing visual mathemati
al 
ontents intextual form (as �gure des
riptions in the underlying language).GCLC has been under 
onstant development sin
e 1996. It is imple-mented in C++, and 
onsist of around 40.000 lines of 
ode. WinGCLCis a version with a MS-Windows graphi
al interfa
e that makes GCLCa dynami
 geometry tool with a range of additional fun
tionalities(Figure 3).
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Figure 2. A des
ription of a triangle and midpoints of two of triangle's sides inGCLC language (left) and the 
orresponding illustration (right)3.1.2. Integration of the Area MethodGCLC has three geometry theorem provers for Eu
lidean 
onstru
tivetheorems built in: a theorem prover GCLCprover based on the areamethod6 (Jani£i¢ and Quaresma, 2006) and algebrai
 theorem proversbased on the Gröbner bases method and on the Wu's method7 (Pre-dovi¢, 2008). Thanks to these theorem provers, GCLC links geometri
al
ontents, visual information, and ma
hine�generated proofs.The provers are tightly integrated in GCLC. This means that one 
anuse the prover to reason about a GCLC 
onstru
tion (i.e., about obje
tsintrodu
ed in it) without any adaptations to the dedu
tion pro
ess otherthen the addition of the 
onje
ture itself. For this purpose, the proversuse the standard GCLC 
onstru
tion 
ommands. GCLCprover dealswith the subset of GCLC 
onstru
tion 
ommands (e.g., it does not dealwith interse
tions of two 
ir
les). If needed, GCLCprover transforms a
onstru
tion 
ommand into a form required by the area method and/orintrodu
es some auxiliary points. For example, the GCLC 
ommandmed m A B that introdu
es the segment bise
tor m of the segment withendpoints A and B is dealt with, in the following way: internally, twoauxiliary points are introdu
ed � a point Mm su
h that (Pratio MmA (Line A B) 1/2) and a point Tm su
h that Tratio Tm (Line MmA) 1); the line m is then, within the prover, determined by the points
Mm and Tm. A 
onje
ture to be proved may involve only points and

6 This theorem prover was developed by Predrag Jani£i�
 and Pedro Quaresma.
7 These theorem provers were developed by Goran Predovi�
 and Predrag Jani£i�
.

areaMethodRe
ap.tex; 6/10/2009; 19:53; p.31



32 Jani£i�
 - Narboux - Quaresma

Figure 3. WinGCLC S
reenshotlines already introdu
ed within the 
urrent 
onstru
tion. A 
onje
tureis given as argument to the prove 
ommand. It has to be of the form
L = R, where L and R are expressions over geometri
 quantities, whi
h
an be 
ombined together into more 
omplex terms by operators foraddition, multipli
ation and division (written sum, mult, ratio). The
onje
ture and all its sub-terms, are written in pre�x form, for instan
e,
SA′B′A = SA′B′B is given in the following way:prove { equal { signed_area3 A' B' A }{ signed_area3 A' B' B }}Alternatively, a 
onje
ture 
an be given in the form of some higher-level properties (e.g., prove { parallel A B A' B' } and in su
h 
asesit is internally transformed into a statement in terms of geometri
 quan-tities (following properties from Table 2.2.1). The prover 
onsiders onlyabstra
t spe
i�
ation of the 
onje
ture and do not 
onsider Cartesianvalues of the points involved (they are used only for visualisation).For the 
onstru
tion shown in Example 3.1, it holds that the lines
AB and A′B′ are parallel and this 
an be proved by the theorem prover.This property 
an be given as argument to the prove 
ommand: prove
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33{ parallel A B A' B'}, after the des
ription of the 
onstru
tion. Theprover is invoked at the end of pro
essing of the GCLC �le.Support for the prover involves only �ve 
ommands: prove, to statethe 
onje
ture, prooflevel used, optionally, for 
hoosing one of theeight levels of detail for the output (see 3.1.4), prooflimit for 
ontrol-ling the maximal number of proof steps, prover_timeout for �xing atime limit to the prover, and theorem_name for setting the name of thetheorem (later used in prover's output do
uments).3.1.3. Spe
i�
s of the Implementation in GCLCThe algorithm implemented in GCLCprover is the one des
ribed inSe
tion 2.5.7, with the following spe
i�
s, all introdu
ed for in
reasinge�
ien
y.3.1.3.1. Simpli�
ation pro
edure. With respe
t to the simpli�
ationpro
edure des
ribed in 2.5.4, there are the following spe
i�
s in thevariant implemented within GCLCprover:
− The unary operator − is not used (and instead −x is representedas (−1) · x). Hen
e, the rules involving this operator are not used.This does not a�e
t the 
orre
tness of the method, but simpli�esthe implementation.
− The rules given in 2.5.5 are used also within the simpli�
ationpro
edure, but the rules involving fra
tions are not applied to ratiosof segments. Be
ause of that, the following additional rules are usedwithin the simpli�
ation pro
edure:

• AB

AB
→ 1

• AB

BA
→ −1

− The following rules are used within the simpli�
ation phase:
• x

c
→ (1/c) ·x, where c is a 
onstant (element of F ) and c 6= 1.

• E1·...·Ei−1·C·Ei+1·...·En

E′
1·...·E

′
j−1·C·E′

j+1·...·E
′
m

→ E1·...·Ei−1·Ei+1·...·En

E′
1·...·E

′
j−1·E

′
j+1·...·E

′
m

• E1+ · · ·+Ei−1+c1 ·C+Ei+1+ · · ·+En = E′
1+ · · ·+E′

j−1+c2 ·
C ′+E′

j+1+· · ·+E′
m → E1+· · ·+Ei−1+c3 ·C+Ei+1 · · ·+En =

E′
1 + · · · + E′

j−1 + E′
j+1 + · · · + E′

mwhere c1, c2, and c3 are 
onstants (elements of F ) su
h that
c1 − c2 = c3 and C and C ′ are equal produ
ts (with allmultipli
ands equal up to permutation).
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• If the 
urrent goal is of the form E1 + . . . + En = E′

1 + . . . E′
mand if all summands Ei and E′

j have a 
ommon multipli
ationfa
tor X, then try to prove that it holds X = 0:
∗ if X = 0 has been proved, the 
urrent goal 
an be rewrit-ten to 0 = 0;
∗ if X = 0 has been disproved (i.e., if X 6= 0 has beenproved), then both sides in the 
urrent goal 
an be 
an-
elled by X;
∗ if neither X = 0 nor X 6= 0 
an be proved, then assume

X 6= 0 (and add to the list of non-degenera
y 
onditions)and 
an
el both sides in the 
urrent goal by X.
− The uniformization pro
edure (2.5.2) is used within the simpli�
a-tion pro
edure. In addition, if three points A, B, C are 
ollinear,then the rule SABC → 0 is applied.
− Redu
ing to area 
oordinates is not implemented. Instead, thefollowing rules are applied at that stage:

• AA → 0

• SABC → SABD + SADC + SDBC (by Axiom 6), if there areterms SABD, SADC , SDBC in the 
urrent goal.
• PABC → AB

2
+ CB

2
+ −1 · AC

2 (by De�nition 3)Note that after these rules applied, the equality being proved maystill involve dependent parameters. Still, the simpli�
ation pro
essis applied again and the equality is tested for validity for the lasttime. Even without redu
ing to area 
oordinates, the above rulesenable proving most 
onje
tures from the area method s
ope.3.1.3.2. Dealing with ndg-
onditions. The prover re
ords and reportsabout the ndg-
onditions of the 
onstru
tion steps, but there is no 
he
kof ndg-
onditions within the main loop. That 
he
k is not ne
essaryin this 
ontext, i.e., within GCLC. Namely, when using GCLC, theuser des
ribes a 
onstru
tion and then provides a statement about the
onstru
ted obje
ts to be proved. The 
onstru
tion is visualised for a setof free points with 
on
rete Cartesian 
oordinates. For ea
h 
onstru
tionstep, it is 
he
ked if it is possible (e.g., if two lines do interse
t) andthe test 
orresponds to the ndg-
ondition of the 
onstru
tion step. Ifsome of these 
he
ks fails, an error is reported, the 
onstru
tion is notvisualised, and the 
onje
ture is not sent to the prover. In that 
ase,one of the ndg-
onditions is false in the 
on
rete model. Otherwise, all
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35the ndg-
onditions are true in the 
on
rete model, and hen
e, none oftheir negations 
an be valid, so the 
he
k of ndg-
onditions (as given inse
tion 2.5.7) is not needed.
3.1.3.3. Dealing with side 
onditions. If a side 
ondition for one 
ase ofa bran
hing elimination lemma 
an be proved, then that 
ase is applied,otherwise, a 
ondition for the negative 
ase is assumed and introdu
edas an additional ndg-
ondition (as explained in Se
tion 2.5.1). The sameapproa
h is used when applying the 
an
ellation rule (see se
tion 3.1.3).Thanks to the powerful simpli�
ation pro
edure, e�
ient implemen-tation in C++ and to the fa
t that there are no bran
hing in the proofs,GCLCprover is very e�
ient and 
an prove many 
omplex theoremsin only millise
onds (for examples see the GeoThms web repository(des
ribed in Se
tion 3.4.1).
3.1.4. Prover OutputThe proofs generated by GCLCprover 
an be exported to LATEX or toxml form using a spe
ial-purpose styles, with explanations for ea
hproof step.8At the beginning of the proof, the auxiliary points are de�ned, forinstan
e:Let M0

a be the midpoint of the segment BC.Let T 1
a be the point on bise
tor of the segment BC (su
h thatTratio T 1

a M0
a B 1).For ea
h proof step (a single transformation of the goal being proved),there is an explanation and, optionally, its semanti
s 
ounterpart � asa 
he
k whether a 
onje
ture is valid in the spe
i�
 
ase, determinedby the given Cartesian points. This semanti
 information is 
al
ulatedfor 
on
rete points used in the 
onstru
tion for visualisation purposes(these Cartesian 
oordinates are never used in the proof itself); it 
anserve as a semanti
 test, espe
ially for 
onje
tures for whi
h is not known

8 There are no obje
t-level proofs veri�able by theorem proving assistants.
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 - Narboux - Quaresmawhether or not they are theorems. All proof steps are enumerated, forexample:
((

AF

FB
· BD

DC

)

· CE

EA

) = 1 by the statement (1)
(((

−1 · AF

BF

)

· BD

DC

)

· CE

EA

) = 1 by geometri
 simpli�
ations (2)Lemmas (about side 
onditions) are proved within the main proof(making nested proof levels). After the proof steps, all non-degenera
y
onditions are listed, for instan
e:
SBPA 6= SCPA i.e., lines BC and PA are not parallel (
onstru
-tion based assumption)At the end, the output do
ument in
ludes a short report, 
onsistingof information on whether the 
onje
ture was proved or disproved (orneither), data about CPU time spent, and the number of proof stepsperformed (in several 
ategories).The style for proofs formatted in LATEX has options for di�erentformatting. Proofs stored in xml are stru
tured analogously as in LATEXformat. The proofs in xml format ful�l restri
tions posed by a 
ustomdtd �le. For any xml �le, it 
an be 
he
ked if it meets these restri
tions(by a xml pro
essor). A proof in xml format 
an be 
onverted to ahtml form. A �le with a proof in xml format 
an also be open dire
tlyby web browsers.3.1.5. ExampleIn this se
tion we give a fragment of the output for the 
onje
ture fromExample 3.2.
SAA′B′ = SBA′B′by the statement (1)
SB′AA′ = SB′BA′by geometri
al simpli�
ations (2)
“

SB′AA +
“

1

2
·

`

SB′AC +
`

−1 · SB′AA

´´

””

= SB′BA′by Lemma 29 (point A′ eliminated) (3)
. . .

0 =
“

0 +
“

1

2
· (0 + (−1 · 0))

””by geometri
al simpli�
ations (15)
0 = 0by algebrai
 simpli�
ations (16)Q.E.D.There are no ndg 
onditions.Number of elimination proof steps: 5Number of geometri
al proof steps: 15Number of algebrai
 proof steps: 25Total number of proof steps: 45Time spent by the prover: 0.001 se
onds
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373.2. The Area Method in CoqThis se
tion des
ribes the formalisation of the area method using theproof assistant Coq. Coq is a general purpose proof assistant (The Coqdevelopment team, 2009; Huet et al., 2004; Bertot and Castéran, 2004).It allows expressing mathemati
al assertions and to me
hani
ally 
he
kproofs of these assertions.3.2.1. CoqWe begin the des
ription of the formalisation with a brief des
riptionof Coq and how de
ision pro
edures 
an be formalised in Coq. Althoughthe Coq system has some automati
 theorem proving features, it is notan automati
 theorem prover. The proofs are mainly built by the userintera
tively. The system allows formalising proofs in di�erent domains.For instan
e, it has been used for the formalisation of the four 
olourtheorem (Gonthier and Werner, 2004) and the fundamental theoremof algebra (Geuvers and et.al., 2008). In 
omputer s
ien
e, it 
an beused to prove 
orre
tness of programs, like a C 
ompiler that has beendeveloped and proved 
orre
t using Coq (Leroy, 2006).There are several re
ent results in the formalisation of elementarygeometry in proof assistants: Hilbert's Grundlagen (Hilbert, 1977) hasbeen formalised in Isabelle/Isar (Meikle and Fleuriot, 2003) and inCoq (Dehlinger et al., 2000). Gilles Kahn has formalised Jan von Plato's
onstru
tive geometry in the Coq system (Kahn, 1995; von Plato, 1995).Frédérique Guilhot has made a large development in Coq dealing withFren
h high s
hool geometry (Guilhot, 2004). Julien Narboux has for-malised Tarski's geometry using the Coq proof assistant (Narboux,2007b). Jean Duprat proposes the formalisation in Coq of an axiomsystem for 
ompass and ruler geometry (Duprat, 2008). Proje
tive ge-ometry has also been formalised in Coq (Magaud et al., 2008; Magaudet al., 2009).Implementing de
ision pro
edures in Coq There are three methods toadd automation to the Coq system:1. dire
tly in the implementation language of Coq � O
aml;2. using the ta
ti
9 language of Coq � Ltac;3. by re�e
tion using Coq as a programming language.This third method, introdu
ed by Samuel Boutin (Boutin, 1997),
onsists of formalising a subset of the language of Coq using an obje
t of
9 A ta
ti
 is a program whi
h expresses the sequen
e of the basi
 logi
al stepsneeded to formally prove a theorem.

areaMethodRe
ap.tex; 6/10/2009; 19:53; p.37



38 Jani£i�
 - Narboux - Quaresma
A

AF AF

A

P : ∀t i−1(f(t)) = i−1(t)

.....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

..............

............

i

.....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

.....

....

.....

....

.....

.....

..............

............

Ltac

.................................................................................................................................................
...........

.
f

.................................................................................................................................................
...........

.Coq ..........................................................................................................
......
.
.....
......
.

Coq ..........................................................................................................
......
.
.....
......
.

i−1Figure 4. The Re�e
tion me
hanism.Coq itself. The 
omputations that 
an be done using the meta language(O
aml or Ltac) are performed using the Coq language itself. Figure 4represents the re�e
tion me
hanism in the 
ase of a ta
ti
 whi
h appliesa rewrite rule. A re�exive ta
ti
 is 
omposed of four elements:
i: a pie
e of 
ode written in Ltac (or in O
aml) to translate a Coq terminto an obje
t of Coq;
f : a Coq fun
tion whi
h perform the 
omputations to solve the givenproblem;
i−1: a Coq fun
tion whi
h translates ba
k from the universe of Coq ob-je
ts to the universe ofCoq. Note that it is ne
essary that i−1(i(t)) →

t holds, but this fa
t does not need to be proven formally ;
P : the formal proof that the translation realised by f is 
orre
t.This method has the advantage to produ
e ta
ti
s that are moree�
ient and that produ
e shorter proofs, sin
e the appli
ation of theta
ti
 is re
orded in the proof just as a step of 
omputations. For moreinformation on the re�exive proof method, see, for instan
e, Chapter16 of the book Coq'Art (Bertot and Castéran, 2004).3.2.2. Formalisation of the Area MethodThe goal of the formalisation of the area method (in Coq) is to bring thelevel of automation provided by the method to the Coq proof assistant.This is done by implementing the de
ision pro
edure as a Coq ta
ti
 andformalising all theorems needed by the method. We de�ned an axiomsystem, proved all the propositions needed by the ta
ti
s (we formallyproved more than 700 lemmas) and wrote the ta
ti
s.Con
eptually, proving the propositions and writing the ta
ti
s thatuse them seem to be two separate tasks. But to ease the develop-ment, in our implementation we have intermixed the proofs of thepropositions and the ta
ti
s. We bootstrap partially the 
onstru
tionof the whole de
ision pro
edure by using some automati
 ta
ti
s for
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39the proof of the elimination lemmas. Our ta
ti
 is de
omposed intosub-ta
ti
s performing the following tasks: initialisation; simpli�
ation;uniformization; elimination of 
onstru
ted points; elimination of freepoints; 
on
lusion.The implementation of the prover is realized mainly using the lan-guage Ltac whi
h is integrated in the system Coq. Still, some sub-ta
ti
s(for instan
e the simpli�
ation ta
ti
s) are implemented using the re-�e
tion me
hanism. We 
hosed not to use the re�e
tion ta
ti
 for thewhole de
ision pro
edure for two reasons:1. We believe that the e�
ien
y of the method would not have beenin
reased signi�
antly. Indeed, the proof generated by our ta
ti

onsists mainly of a sequen
e of appli
ation of elimination lemmas.2. Expressing the ta
ti
 as a Coq fun
tion and proving its 
orre
tnesswould have been a very di�
ult task, as we make heavy use of thehigh level primitives of the language Ltac su
h as pattern mat
h-ing, deleting hypotheses, et
. To use the re�e
tion method for thewhole algorithm, the whole ma
hinery and the proof of its 
orre
tionshould have been realized using Coq.Consequently, we did not proved formally the 
ompleteness of themethod implementation (i.e., that the ta
ti
 always su

eeds if thetheorem is valid). Our formal proofs guaranty only the soundness ofthe method implementation (i.e., the proofs generated by the ta
ti
 arealways 
orre
ts).3.2.3. Spe
i�
s of the Implementation in CoqIn this se
tion, we des
ribe the algorithm whi
h is used in the Coq'simplementation of the area method.As the method is implemented within a proof assistant, ea
h stepof the algorithm 
orrespond to a proof step that is 
he
ked by the Coqsystem. At the end of the proof, it is 
he
ked another time by the Coqkernel as explained in se
tion 3.2.6. The main di�
ulty is that Coqmust be �
onvin
ed� at ea
h step that the transformation we performis 
orre
t. For this we have to maintain two invariants:1. For ea
h synta
ti
 expression whi
h o

urs at the denominator ofsome fra
tion, the 
ontext always 
ontains a proof that it is nonzero.2. For ea
h synta
ti
 expression whi
h represents a ratio of dire
tedsegments (AB/CD), the 
ontext always 
ontains a proof that ABis parallel to CD.
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 - Narboux - QuaresmaThe algorithm implemented in Coq 
orresponds to the algorithmdes
ribed in Se
tion 2.5.7. We give details only for the phases withspe
i�
 features.Initialisation The initialisation phase performs the following tasks:1. unfold de�nitions;2. introdu
e hypotheses in the 
ontext;3. en
ode 
onstru
tions of half-free points (points that belong to a lineor a 
ir
le) into 
onstru
tions of �xed point with a parameter;4. 
ompose simple 
onstru
tions into more 
omplex 
onstru
tions whenit is possible;5. transform hypotheses of the form A 6= B into AB 6= 06. split 
onjun
tions in the goal i.e. de
ompose 
onjun
tions in thegoal into several goals;7. 
he
k that the invariants are initially veri�ed.Dealing with Non-degenera
y Conditions and Case Splits in LemmasAs GCLC, the Coq implementation does not deal with ndg 
onditions,we assume that the statement is not 
ontradi
tory.Con
erning 
ase splits in elimination lemmas, new ndg-
onditions arenot generated (unlike in GCLCprover) and, instead, 
ase distin
tion isperformed (as explained in Se
tion 2.5.1).3.2.4. ExampleWe now give a detailed des
ription of how the ta
ti
 works on theexample 3.2 by de
omposing the pro
edure into small steps10.The midpoint theorem is stated using our language in the syntax ofCoq as follows:EXAMPLE 3.2.Theorem midpoint_A :forall A B C A' B' : Point, midpoint A' B C ->midpoint B' A C -> parallel A' B' A B.geoInit.
10 These steps are not exa
tly the same steps as those exe
uted by our automati
pro
edure (the automati
 pro
edure may treat the points in another order, andperform more simpli�
ation and uni�
ation steps).
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411 subgoalA : PointB : PointC : PointA' : PointB' : PointH : on_line_d A' B C (1 / 2)H0 : on_line_d B' A C (1 / 2)============================S A' A B' + S A' B' B = 0on_line_d A' B C (1/2) states that A′ is on line BC and BA′

BC
= 1

2 .At this step it would be enough to type area_method to solve thegoal using our de
ision pro
edure, but for this presentation we mimi
the behaviour of the de
ision pro
edure using our sub-ta
ti
s. We givethe name of the sub-ta
ti
s on the left, and Coq output on the right11:geoInit. H : on_line_d A' B C (1 / 2)H0 : on_line_d B' A C (1 / 2)============================S A' A B' + S A' B' B = 0eliminate B'. H : on_line_d A' B C (1 / 2)============================1 / 2 * S A' A C + (1 - 1 / 2) * S A' A A +(1 / 2 * S B A' C + (1 - 1 / 2) * S B A' A) = 0basi
_simpl. H : on_line_d A' B C (1 / 2)============================1 / 2 * S A' A C + (1 / 2 * S B A' C + 1 / 2 * S B A' A) = 0eliminate A'. ============================1 / 2 * (1 / 2 * S A C C + (1 - 1 / 2) * S A C B) +(1 / 2 * (1 / 2 * S C B C + (1 - 1 / 2) * S C B B) +1 / 2 * (1 / 2 * S A B C + (1 - 1 / 2) * S A B B)) = 0basi
_simpl. ============================1 / 2 * (1 / 2 * S A C B) + 1 / 2 * (1 / 2 * S A B C) = 0uniformize. ============================1 / 2 * (1 / 2 * S A C B) + 1 / 2 * (1 / 2 * - S A C B) = 0field_and_
on
lude. Proof 
ompleted.
11 For this presentation the fa
t that A, B, C, A′, and B′ are of type Point hasbeen removed from the 
ontext.

areaMethodRe
ap.tex; 6/10/2009; 19:53; p.41



42 Jani£i�
 - Narboux - Quaresma3.2.5. Prover OutputThe main 
omparative feature of the implementation in Coq is that itprodu
es formal proofs. It was built with that main motivation (unlikeGCLCprover whi
h aims at produ
ing proofs e�
iently).The output of the formalisation in Coq is a formal proof. Morepre
isely, it is a term of the 
al
ulus of indu
tive 
onstru
tions whi
hre
ords all the details of the proof. These formal proofs are not readable,hen
e to have a readable proof we also output a human readable versionof the proofs in a textual format in the 
onsole. For instan
e, for theexample given above, the following output is generated:Area method:initialisation...elimination...elimination of point : B'we need to show that:(1 / 2 * S A' A C = 1 / 2 * S A' B C + 1 / 2 * S A' B A)elimination of point : A'we need to show that:(1 / 2 * (1 / 2 * S A C B) = 1 / 2 * (1 / 2 * S B A C))uniformize areas...simplifi
ation...before field...3.2.6. Bene�ts of the FormalisationFormalising a de
ision pro
edure within a proof assistant, has not onlythe advantage of simplifying the tedious task of (rigorously) provinggeometry theorems but also allows us to 
ombine the geometry proofsprovided by the ta
ti
 with arbitrary 
ompli
ated proofs developed in-tera
tively using the full strength of the underlying logi
 of the theoremprover. For instan
e, theorems involving indu
tion over the number ofpoints 
an be formalised in Coq. This approa
h has also the advantageof providing a higher level of reliability than ad ho
 theorem provers,be
ause the proofs generated by ta
ti
s are double 
he
ked by theCoq internal proof-
he
ker (the Coq system as a whole and its kernel).Namely, sin
e it is possible that Coq itself 
ontains a bug, the Coqsystem is, to redu
e this risk, built using the de Bruijn's prin
iple: onlya small part of the system 
alled the kernel is trusted. All the proofsgenerated are 
he
ked by the kernel. If there is a bug outside the kernel,the system 
an fail, but it guarantees the soundness (i.e., it does notallow proving an invalid statement).During formalisation of the area method, we found two potentialsour
es of in
orre
tness.
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43First, during proving, we dis
overed one mistake in the original de-s
riptions (Chou et al., 1993): in lemma EL12 the fa
tor 2 before PWUVwas missing.Se
ond, when proving the invariant that elimination lemmas trans-form always well de�ned geometri
 quantities into an expression in-volving only well de�ned geometri
 quantities, we noti
ed that someelimination lemmas require a non degenera
y 
ondition. Let us 
onsiderLemma EL3: if Y is introdu
ed by (Pratio Y R (Line P Q) r), thenit holds
AY

CD
=











AR

PQ
+r

CD

PQ

if A is on RY

SAPRQ

SCPDQ
otherwiseIf A = Y , it 
an be the 
ase that CD 6‖ PQ. This demonstrates thatthe lemma is valid only if A 6= Y and otherwise the ratio CD

PQ
is notwell de�ned. Hen
e, during proofs it is ne
essary to distinguish the two
ases (A = Y and A 6= Y ) as explained in Se
tion 3.2.3 or to generatean additional ndg (A 6= Y ) as explained in Se
tion 3.1.3.3.3.2.7. Integration in GeoProofSimilarly to GCLC, the formalisation of the area method in Coq 
omeswith a dynami
 geometry software (Narboux, 2007a). The software de-veloped, GeoProof (Figure 5) 
ombines three tools: a dynami
 geometrysoftware to explore and invent 
onje
tures, an automati
 theorem proverto 
he
k fa
ts, and an intera
tive proof system (Coq) to me
hani
ally
he
k proofs built intera
tively by the user.3.3. Other Implementations of the Area MethodAlthough it is very well-know and widely 
redited as the most e�
ientmethod for proving geometry theorems that produ
e readable proofs,there are just a very few implementations of the area method. A
tually,the situation is similar with other proving methods for geometry�toour knowledge, there are only around a dozen implementations in totalof other most e�
ient proving methods (Wu's method, Gröbner basesmethod adapted to geometry theorem proving, the full angle method,and the dedu
tive database method), 
ounting versions employed withindi�erent systems. One of the main reasons for this is probably thefa
t that these methods, while having simple basi
 ideas, are all stillvery 
omplex and require many details to be �lled when making a realimplementation.In addition to the two implementations of the area method alreadydes
ribed, we are aware of the other two: one used within a family of
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Construction tools

Measures and 

tests tools

Visualization tools

Working window

Description of the figure

Undo/Redo Selection Manipulation Help

Status bar

Labels

Figure 5. GeoProoftools developed by the authors of the method and their 
ollaborators,and one developed within the wider system Theorema.3.3.1. Eu
lid and Geometry ExpertEu
lid is theorem prover based on the area method, developed in 1993by the authors of the method � Shang Ching Chou, Xiao Shan Gao,and Jing-Zhong Zhang (Chou et al., 1993). It was implemented inCommon Lisp and was a

ompanied by a list of 400 proved theorems.Geometry Expert12 (GEX) is a dynami
 geometry tool fo
used onautomated theorem proving and it implements Wu's, Gröbner basis,ve
tor, full-angle, and the area methods (Chou et al., 1996a). GEX wasimplemented in 1998 by Xiao Shan Gao.MMP/Geometer13 is a new, Chinese, version of GEX. The tool is be-ing developed from 2002 by Xiao-Shan Gao and Qiang Lin. It automatesgeometry diagram generation, geometry theorem proving, and geometrytheorem dis
overing (Gao and Lin, 2004). MMP/Geometer implementsWu's method, the area method, and the geometry dedu
tive databasemethod. Conje
tures are given in a restri
ted pseudo-natural languageor in a point-and-
li
k manner.
12 http://www.mmr
.iss.a
.
n/gex/
13 http://www.mmr
.iss.a
.
n/mmsoft/
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45Java Geometry Expert14 (JGEX) is a new, Java version of GEX.JGEX is being developed from 2004, by Shang Ching Chou, Xiao ShanGao, and Zheng Ye. JGEX 
ombines dynami
 geometry, automatedgeometry theorem proving, and, as its most distin
tive part, visualdynami
 presentation of proofs. It provides a series of visual e�e
tsfor presentation of proofs. The proofs 
an be visualised either manuallyor automati
ally. Within the program distribution, there are more thansix hundred examples of proofs. JGEX implements the following meth-ods for geometry theorem proving: Wu's method, the Groëbner basismethod, the full-angle method, the dedu
tive database method. In theversion 0.80 (May 2009), the area method and the ve
tor method arestill under development.The systems from the GEX family are publi
ly available, but theyare not open-sour
e and are not a

ompanied by te
hni
al reports withimplementation details, so one 
annot re
onstru
t how some parts of theproving methods are implemented. Available resear
h papers des
ribingthese tools des
ribe mainly only the high-level ideas and main requiredlemmas, but for instan
e, des
riptions of the simpli�
ation phase anddealing with 
ase splits are not available.3.3.2. TheoremaTheorema15 is a general mathemati
al tool with uniform framework for
omputing, problem solving, and theorem proving (Bu
hberger et al.,2006). Theorema is implemented inMathemati
a. It has been developingfrom 1996 by Bruno Bu
hberger and a large team of his 
ollabora-tors. Theorema has support for several methods for automated theoremproving, in
luding methods for theorem proving in geometry. The ge-ometry provers are designed for 
onstru
tive geometry problems andthere is support for Wu's method, Gröbner bases method, and the areamethod (Robu, 2002). These provers were implemented by Judit Robu(the algebrai
 methods rely on methods that were already available inMathemati
a and Theorema).The geometry theorem provers are a

ompanied by visualisationtools typi
al for dynami
 geometry. Numeri
al 
he
ks of the validityof geometry statements 
an also be performed for spe
i�
 
oordinatesof the points.In addition to the basi
 area method, there is also a modi�ed ver-sion that 
an deal not only with 
onje
tures in the form of equalities,but also with 
onje
tures in the form of inequalities over geometri
quantities. Within this method (AreaCAD), geometri
 expressions aretransformed by the lemmas used in the basi
 area method and an 
on-
14 http://www.jgex.net/
15 http://www.theorema.org/
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ture (equivalent to the original one) only in terms of the free pointsof the 
onstru
tion is obtained. That new expression (with two sideslinked by one of the relations < or >) is tested for validity by Collins'algorithm for quanti�er elimination in real 
losed �elds by 
ylindri
alalgebrai
 de
omposition (Collins, 1975).EXAMPLE 3.3. Let r1 be the radius of the 
ir
um
ir
le of a triangle
ABC, and let r2 be the radius of the ins
ribed 
ir
le of the triangle.Then it holds that r2

1 ≥ 4r2
2 and this 
an be proved by AreaCAD.

A

B C

S
O

r1

r2

3.4. Appli
ationsAs other geometry theorem provers, the area method 
an have a rangeof di�erent appli
ations in edu
ation, mathemati
al software, 
omputer-aided design, 
omputer graphi
s, 
omputer vision, roboti
s, et
. In thisse
tion a few existing, rather straightforward appli
ations, of the methodare des
ribed.3.4.1. GeoThmsGeoThms is a web-based framework for exploring geometri
al knowl-edge that integrates dynami
 geometry software, automati
 theoremprovers, and a repository of geometri
 
onstru
tions, �gures and proofs(Quaresma and Jani£i¢, 2006b; Quaresma and Jani£i¢, 2006a). TheGeoThms users 
an easily use/browse through existing geometri
al 
on-tent and build new 
ontents.The main motivation is to build and maintain a publi
ly a

essibleand widely used Internet based framework for 
onstru
tive geometry.It 
an be used for tea
hing and studying geometry, but also as a majorInternet repository for geometri
al knowledge.
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The dynami
 geometry software 
urrently used within GeoThms areGCLC (Jani£i¢, 2006) and Eukleides16 (Quaresma and Pereira, 2006),two widely used dynami
 geometry pa
kages. The automated theoremprovers used are the two theorem provers des
ribed in se
tions 3.1and 3.2, both based on the area method, and two theorem proversbased on algebrai
 methods (Predovi¢, 2008). GeoThms provides a webworkben
h that tightly integrates the mentioned tools into a singleframework for 
onstru
tive geometry.
Javascript editor (textarea replacement),
with line numbers, and coloring

Built−in list of constructions

Personal Scrapbook

The Web interfa
e is a PHP/MySQL server-side solution designedto enable GeoThms users easily browse through the list of geometry
16 http://www.eukleides.org/
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 - Narboux - Quaresmaproblems, their statements, illustrations and proofs, and also to intera
-tively use the drawing and automati
 proof tools. GeoThms is a

essibleat http://hilbert.mat.u
.pt/GeoThms.3.4.2. Automati
 Veri�
ation of Regular Constru
tionsSome geometry tools (e.g., Eukleides, GCLC) have a dual view of a givengeometri
 
onstru
tion � its des
ription in a 
ustom formal languageand a visualised version, within the graphi
al interfa
e. Other tools(e.g., Geometer's Sket
hpad, Cabri) do not have, at least in an expli
itform, a formal language for geometri
 
onstru
tions and instead theuser does not des
ribe a 
onstru
tion in abstra
t terms but �draws�it, using a pre-de�ned set of geometry operations. Generally, there arethree types of 
onstru
tion errors:
− synta
ti
 errors � only appli
able for geometry tools with formallanguages and this type of error is easily dete
ted by the underlyingpro
essor and easily 
orre
table by the user. For the other family ofgeometry tools this type of error doesn't o

ur due to a 
ontrolledenvironment where only synta
ti
ally 
orre
t a
tions are allowed.
− semanti
 errors �situations when, for a 
on
rete set of geometri
alobje
ts (usually given in Cartesian plane), a 
onstru
tion step isnot possible, for instan
e, two identi
al points do not determine aline. Su
h an error will be dealt by most (if not all) geometry toolsfor a given �xed set of points. However, that error is dete
ted by anargument relevant only for the given instan
e of the 
onstru
tionand the question whether the 
onstru
tion step is always impossibleor it is not possible only in the given spe
ial 
ase is left open.
− dedu
tive errors �when a 
onstru
tion step is geometri
ally un-sound, e.g., there is never an interse
tion of two parallel lines inEu
lidean geometry. The formal proof that a 
onstru
tion stepis always inpossible 
an only be provided by geometry tools thatin
orporate geometry theorem provers.GCLC has a built-in me
hanism (using GCLCprover) for 
he
king ifa 
onstru
tion step is illegal, i.e., if it is always impossible (Jani£i¢ andQuaresma, 2007).EXAMPLE 3.4. Example 85 from the book Me
hani
al Geometry The-orem Proving (Chou, 1987) will be used to illustrate the me
hanism forautomati
 veri�
ation of regular 
onstru
tions built into GCLC. UsingGCLC, the illustration given in Figure 6 
an be generated.If the 
ode for the interse
tion of lines AD and MN is added, e.g.,
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Figure 6. Example 85 from the book Me
hani
al Geometry Theorem Provingline mn M Ninterse
 X mn adGCLC will not perform the last 
onstru
tion step and it will give thefollowing error message:Run-time error: Bad definition. Can not determineinterse
tion. (Line: 40, position: 10)This is a semanti
 error only, dete
ted for the 
on
rete set of pointsin the Cartesian plane. However, if GCLC is 
alled with an appropriateoption, in the above situation (with a semanti
 error en
ountered), itwill invoke the built-in theorem prover and provide the following infor-mation.Dedu
tion 
he
k invoked: the property that led to the errorwill be tested for validity.The 
onje
ture su

essfully proved - the 
riti
al propertyalways holds. The prover output is written in the fileerror-proof.tex.Thus, the tool provides not only the statement that the 
onstru
tion isalways illegal, but also a rigorous proof of it (in the area method style).As far as we are aware of, the system for automated dedu
tive testingwhether a 
onstru
tion is illegal that is built into GCLC is the only su
hsystem. A similar me
hanism is available in JGEX: when a user tries toperform an illegal 
onstru
tion step, the tool may report that it is notpossible to perform the step, but it does not provide a proof for that ar-gument. The geometry tool Cinderella does not allow performing illegal
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onstru
tion steps, however the justi�
ation is not based on dedu
tivebut on probabilisti
 reasoning (Kortenkamp and Ri
hter-Gebert, 2004).The 
apability of performing dedu
tive 
he
ks is important featurethat enhan
es the dida
ti
 nature of dynami
 geometry tools and pro-vides an important link with automated theorem proving. That link
onne
ts the dedu
tive nature of geometry 
onje
tures with the seman-ti
 nature of models of geometry and, also, with human intuition andvisualisations.3.4.3. Computing Geometri
 ExpressionsWithin Theorema, the area method ma
hinery is used for 
omputing ex-pressions involving geometri
 quantities relative to a given 
onstru
tion.For the given expression, all 
onstru
ted points are eliminated and theexpression is simpli�ed, similarly as in the basi
 method (Robu, 2002).EXAMPLE 3.5. Let A, B and C be arbitrary points and let r is anarbitrary number. Let D be the interse
tion of the line through B thatis parallel to AC and the line through C that is parallel to AB. Let A′be the point that divides CD in the ratio 1 : r(r − 1) and let B′ be thepoint that divides DA in the ratio 1 : r(r − 1). Finally, let X be theinterse
tion of the lines AA′ and BB′. The goal is to �nd the ratio ofthe area of the triangle ABC and the quadrilateral ABCD.
A

B C

DB′

A′

X

The tool implemented within Theorema, based on the area method
an 
ompute that the given ratio is equal to 1−r
4−4r+2r2 .Noti
e that the basi
 area method 
an prove that the given ratio equals

1−r
4−4r+2r2 , but 
omputing the given ratio (without an expe
ted result)requires some slight modi�
ations of the method17.
17 This extension of the method was originally des
ribed by the authors of themethod (Chou et al., 1994).
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513.4.4. Dis
overing Geometry PropertiesWithin Theorema, the area method ma
hinery is used for exploringgeometri
al 
on�gurations and dis
overing geometry properties (Robu,2002). The method is based on a systemati
 generation of all geometri
expressions representing interesting properties relative to a 
onstru
-tion (
ollinear points, 
ongruent segments, parallel and perpendi
ularlines, triangles with the same area) and then analysing whi
h of theseproperties might be unknown so far i.e., not present in an availableknowledge base. Starting from a knowledge base that spe
i�es some
onstru
tions and properties, a range of interesting theorems 
an beautomati
ally obtained. These obtained theorems 
an be added to theknowledge base and the exploration may 
ontinue without re
omputingthe results already obtained. For testing generated properties, the areamethod is used, but other proving methods 
an be used as well.4. ContributionsIn this paper we gave a detailed a

ount of the area method and de-s
ribed all existing implementation that we are aware of and their wider
ontexts. This a

ount 
an serve as a basis for a straightforward imple-mentation of the method. In addition to that, this paper brings thefollowing original 
ontributions:
− We gave an axiom system that serve as a basis for the method,an extension of the axiom system given by the authors of themethod (Chou et al., 1994) (Se
tion 2.2.2).
− We made formal proofs, within the proof assistant Coq (in a 
on-tribution a

ompanying this paper), of all the lemmas needed forthe 
orre
tion of the method not only for a�ne geometry (al-ready des
ribed before (Narboux, 2004)), but also for Eu
lideangeometry (Narboux, 2009). Thanks to the formalisation, we en-sured the 
orre
tness of all the lemmas required by the method,with an ex
eption of one lemma that, as published in the originaldes
ription (Chou et al., 1994), 
ontained an error.
− We provided detailed traditional proofs in an Hilbert-style system(in a te
hni
al report a

ompanying this paper (Quaresma andJani£i¢, 2009)) of all the lemmas and �lled-in some details missingin the original des
riptions.
− We made expli
it the elimination pro
edure for all 
ases in
ludingthe spe
ial 
ases su
h as AY

CY
(Se
tion 2.4.1).
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− We made expli
it dealing with the 
ase split o

urring in some ofthe lemmas (Se
tion 2.5.1).
− Wemade expli
it the uniformization phase whi
h 
onsists in �ndingnormal forms for geometri
 quantities (Se
tion 2.5.2).
− We made expli
it the formulas to be used for dealing with freepoints (Se
tion 2.5.3).
− We made an expli
it des
ription of the simpli�
ation phase (Se
-tion 2.5.4).
− We made expli
it the algorithm for de
iding equality between tworational expressions in independent parameters (Se
tion 2.5.5).
− We highlighted the fa
t that a spe
ial 
ase needs to be studiedwhen eliminating Y in AY

CD
(Se
tion 3.2.6).5. Con
lusionsIn this paper we gave a detailed des
ription of the area method, one ofthe most signi�
ant methods for automated theorem proving in geom-etry, introdu
ed by Chou et al. in 1993. The method produ
es human-readable proofs and 
an e�
iently prove many non-trivial theorems.The des
ription of the method given here 
an serve as a detailed tutorialon the method (�rst of that kind), su�
ient for understanding andimplementing it in a straightforward manner.Within this paper we also showed how the area method 
an besu

essfully integrated with other mathemati
al tools.We, the authors of the paper, independently made two of these in-tegrated implementations and in this paper we presented our 
ombinedresults and experien
es related to the method and its appli
ations.Referen
esBertot, Y. and P. Castéran: 2004, Intera
tive Theorem Proving and Program Devel-opment, Coq'Art: The Cal
ulus of Indu
tive Constru
tions, Texts in Theoreti
alComputer S
ien
e. An EATCS Series. Springer.Boutin, S.: 1997, `Using re�e
tion to build e�
ient and 
erti�ed de
ision pro
e-dures.'. In: M. Abadi and T. Ito (eds.): Pro
eedings of TACS'97, Vol. 1281 ofLe
ture Notes in Computer S
ien
e.
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