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The existing theories which aim to explain the extraordinary optical transmission of a metallic film pierced
by a two-dimensional subwavelength hole arf@yW. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A.
Wolff, Natural (London 391, 667 (1998] all have in common the following feature: instead of studying the
two-dimensional crossed grating resulting from the hole array, they consider a one-dimensional grating with
infinite slits. We show that such a simplification introduces an efficient channel for light transmission in
lamellar gratingswhich does not exist for hole array¥herefore in order to explain the relatively high
transmission observed by Ebbegsral, it is necessary to take into account the existence of the holes in the
array. In this paper we develop a two-dimensional analysis of the experiment performed by Ethaisbio
simplification is introduced. This allows us to obtain theoretically the long-wavelength peak reported by
Ebbeseret al. with the same grating thickness as the one used by these aut/®malso review and study in
detail the various contributions devoted to this very surprising effect.

[. INTRODUCTION but do not exist in Ebbesen’s two-dimensional gratihgs
compared to TE and TM modes, TEM modes have a zero
The famous paper by Ebbesenal® which showed that cutoff frequency. Consequently these TEM modes constitute
subwavelength hole arrays inside a silver film can present an efficient channel for light transmission in lamellar
light transmission much higher than the hole surface-to-tota@ratings>**~** Unfortunately such a channel cannot be in-
surface ratio has stimulated a wide interest in the scientifi¥oked to explain the highest wavelength resonance péak.
community. Although the photon tunneling effect is well iS also necessary to notice that with a grating thickness of 0.2
known since many years and is widely used in near-fielgsm (the thickness of the experiment reported in Ref.the
microscopy’%_e the discovery of the above-mentioned ex- Waveguide resonance discussed in Ref. 9 does not exist. This
traordinary transmission surprised their authors, as well agiscussion clearly points to the necessity of using a rigorous
other physicists. Indeed a rapid estimation of the attenuatioflectromagnetic theory of crossed gratings with finite
length of evanescent waves involved in the photon-tunnelingonductivity. ="t is the aim of this paper to present such
process shows that the origin of the extraordinary transmis@n analysis. No simplification is introduced in our approach.
sion is of a different nature. Several authors thought to relatd his allows us to obtain the long-wavelength peak with the
this surprising effect to the excitation of surface Same grating thickneg®.2 um) as in Ref. 1.
p|asm0n§__lo Th|S seems quite natura' Since it has been For the sake of CompleteneSS, we first reVieW, in Secs. |l
establishetf that surface plasmons are responsible for a type@nd lI, the various resonancésavity resonances, surface
of grating anomalies. However, other kinds of electromag-Plasmon resonanceshat produce anomalies in reflection
netic resonances may play similar roles, for example eiger@nd transmission spectrum of gratings. The study of field
modes inside cavites or waveguide®. Thus other Maps allows finding the origin of the light transmission
author$®“also attributed the effect to the excitation of cav- Peaks through lamellar gratings. This is achieved with com-
|ty resonances, i_e_’ of localized surface Shape resonancég.;'ter codes based on the I‘igorOUS e|eCtI’0magnetiC theories of
while the classical surface plasmons are delocalized res@ratings with finite conductivity’~** Section IV is devoted
nances. All these authors simulate the observed transmissiéf the bidimensional study of Ebbesenal. experiment.
spectrum via electromagnetic computations concerning one-
dimensional grati_ngs. Hoyvever, Ebbesenal! dealt With Il CAVITY RESONANCES
crossed gratings™*® constituted of hole arrays. Studying
such a situation rises a challenge to all scientists familiar When considering this type of electromagnetic reso-
with the electromagnetic theory of gratintjdt is worth not-  nances, a difficulty comes from the terminology. Indeed con-
ing that some waveguide resonances of the one-dimensionsidering one-dimensional gratings the TE, TM decomposi-
model do not exist considering hole arrays. Indeed, as is wetion is performed with respect to tllecomponentFig. 1) of
known, TEM (in the sense of classical waveguide théBry the electric or magnetic fields, respectivélyThis is the de-
waveguide resonances cannot exist in waveguides whosmmposition of the opticians. Another decomposition, which
cross section is a simply connected donfdi@onsequently, is always valid, i.e., even when the system is notvariant,
TEM resonances exist in metallic gratings with infinite slitsis that used in waveguide thed®¥In this case, the TE and
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FIG. 1. Schematic representation of a lamellar grating.

TM polarizations refer to solutions that have no electric or
magnetic field component along the direction of propagation,
respectively. Another class of solutions, which refer to TEM

polarization, is known to have no cutoff frequency, since its, ] o ]

determination requires resolving the Laplace equation iniS varied, several anomaliggips) occur in both the zeroth-
stead of the Helmholtz one. They are also known to require &rder efficiency and the total-reflected energy curve, each of
waveguide with a nonsimply connected cross section in orth€m corresponding to the excitation of a cavity mode. Fig-
der to exist. Hence the very important consequence: there i€ 2 shows the total field intensity map of the fundamental
no TEM wave inside a perfectly conducting hose, whatevefode, which is excited whew/d=0.16, forxe[0Ow] and

its simply connected cross section may be. This conclusiod € [0h]. One can see thiE,|? is null at the bottom of the
fails if the section is unbounded. It is then possible to propagrooves §=0) and small on the vertical wallsx&0 and

gate a TEM wave between two infinite parallel perfectly con-x=W, with ye[0h]). The maximum of|E,|* is located
ducting planes, and the wavevector of the TEM mode is th&lose to the center of the cavity. However, since we deal with
same as in the unbounded space. In order to distinguish tH& open resonatofE,|* is not null at the top of the groove,
three classes of polarizations used in waveguide theory frotwhich allows a coupling with the diffracted field. Whenis

the TE, TM cases of the opticians, we use the subscripiicreased, higher modes appear, and the chosen normal inci-
“wg” namely TE,g, TMyg TEMyq. dence precludes the existence of odd modes. Figure 3 shows

Cavity resonances have been involved in the explanatiofhe field map of a more complex mode which is resonantly
of lamellar diffraction gratings anomalies. In 1979, An- excited whenw/d=0.5016. Four maximums are observed
drewarthaet al?>?® studied perfectly conducting lamellar instead of one, but the same comments apply as for the fun-
gratings in detail, and discovered that modes exist inside theamental mode. The existence of downgoing and upgoing
grooves, their number depending on the groove width andnodes in the groove§.e., alongy) leads to cavity reso-
wavelength. When these modes are excited, they causen@nces and explains tiyedependence of the electric field. In
strong redistribution of energy into the different diffracted Particular, we can see in both Figs. 2 and 3 that at the top of
orders, the transfer from mode resonances towards far-fieldie grooves y=h), the maximum valudE,|* is about 5,
resonance depending on wavelength and groove deptMhile the incident wave amplitude is assumed to be unity. It
These cavity resonances, which explained anomalies in th@eans that such resonances do not produce a noticeable field
reflected orders of lamellar gratings, exist for both TE andenhancement near the grating surface, nor in the far field, the
TM polarization and may play a similar role for the trans- maximum value oE, being limited to about twice the one of
mitted field of a rectangular rod grating. the incident wave. Although the width of the lamellas in Fig.

The use of the perfectly conducting model is not sufficient3 are much thinner than that in Fig. 2, the field on the vertical
for the present study. As previously pointed Gtithe perfect  Walls is still small, showing a negligible coupling between
conductivity prevents the coupling of the field in the neigh-the modes in the neighboring grooves, as it occurs in the
boring grooves directly through the lamella walls. On theperfectly conducting model. As a result, the cavity reso-
other hand, the finite conductivity of the lamellae causes th@ances of a lamellar grating do not significantly depend on
tangential component of the electric field on the surface to
differ from zero. This leads to absorption losses, which may
result into a phenomenon of total absorptférhus the fi-
nite conductivity may play a non-negligible role and has to
be taken into account in a study which aims to bring quan-
titative results.

The main features of cavity resonances will be pointed
out on the lamellar grating illustrated in Fig. 1, and previ- y
ously studied in Ref. 12. The grating has perihdgroove i /],""ﬂm,{’{{l__l}' N '//};l/,,'v,i‘,.',-'e
depthh, and groove widttw. It is lighted by a TE polarized j N S
incident plane wave with wavelength under incidences.
The superstrate is vacuum, the substrate and the bumps a
filled with a metal whose refractive index is 6:44.4. In this
section, we choosen=1um, #=0°, d=2.99um, h
=1 um. As pointed out in Ref. 12, when the groove width FIG. 3. Field map of a higher order cavity mode.

FIG. 2. Field map of the fundamental cavity mode.
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FIG. 4. Rectangular rod grating and notations.

the bump width, and thus, of the period, while they strongly
depend on the groove width and groove depth.
These comments done for TE waves also apply for TM

modes. We have to remember, however, that the TE and TM 10° TE
cutoff frequencies are different so that, for a groove width 105 | g
small enough, one of the two kinds of modes may propagate.
A third kind of modes, namely the TEJ) one, may also ig e |
occur. We are now in position to understand and to discuss
the work presented in Refs. 9 and 14. a7
The authors of Refs. 9 and 14 explain the extraordinary & 10
optical transmissionof a two-dimensional subwavelength &
hole array by analyzing a one-dimensional model, i.e., a 10 7 1
lamellar metallic grating. Their device is shown in Fig. 4, 40
wheren,, n,, andng are the refractive indices of the various 10 ™ 4
regions. The metal is silver, whose refractive index at the
chosen 1.433um wavelength is equal to 0.13410.462. A 10°% 7
TM polarized incident field is considered, as illustrated in i y h

Fig. 4 and, in Refs. 9 and 14, it is assumed that the mode
profile inside the grooves is the same as that of the perfectly FIG. 5. (a) Field intensity map inside a groove in TE polariza-
conducting case. In order to discuss their works and concluion; (b) y dependence of the field intensity obtainedxatw/2
sions, we first analyze the case where the grating is lighted ishown on a logarithmic scale.

TE polarization. We chose the grating parameters described

in Fig. 2 of Ref. 14, i.e.d=0.9um, h=1.8um, #=0° that this field is a TEN}, one, with the terminology of wave-
n,=n;=1; ng=1.5, and we chos&=0.04um, near which guide theory, for which, as already stated, no cutoff fre-
appears the cavity anomalgee Fig. 2 of Ref. 14 Figure  quency exists.

5(a) shows the field intensity map inside a groove, ix., Indeed, when we repeat the same calculations as those
e[Ow], ye[0h]. One can see that the field intensity, which which led to Fig. 5, but for TM polarization, we find the

is already small at the top of the groove, exponentially detesults shown in Fig. 6. In order to obtain orders of magni-
cays inside it, so that the field is almost null everywhere. Theudes similar for both electric and magnetic figldgH,|? is
exponential decrease ,|? as a function ofy is confirmed  plotted insteadH,|?, whereZ, is vacuum impedance. One

by Fig. 5b). Thus no field exists at the bottom, and the can see thatH,|? is almost constant with respectxpwhich
transmittance is zero. This confirms our previous experiencegitimates the assumption done in Refs. 9 and 14 which
of the filtering properties of such gratirffsand shows that consisted in choosing the mode profile equal to that of the
the 0.04um value ofw is below the TE mode cutoff. As perfectly conducting case, equal to re¢tf). Concerning
previously pointed out in Refs. 28 and 14, the TM polariza-
tion case does not suffer from such a limit, so that such a
device has polarizing properties. This is a surprising result
for people acquainted with waveguide theory. In waveguide
theory, both T, and TM,, modes have cutoff phenomena. R
Thus nobody would expect that a vertical metallic rectangu- i
lar waveguide made by limiting in the direction the two

s\
\\\\\\\\\\\\\\“\\\\\\\“\\\\\\\\

vertical walls of a groove will support propagating F! - I ‘-‘-‘-\w,’,l,,‘\ ‘\\\\\\““\‘\‘\:\'\:\:\f\f\'\_\_\_\_\_\_\_\_\_\_\,‘ \\\\\'\"\\'\\"\\\\“\"\‘:\‘

modes when its width tends to zero; moreover the fundamen x ,Z:;;, \i'\iiii\‘\l‘\‘\‘l\\\\\\\\\\\“‘\\“‘\‘\\\“\\_\_\_\_\\\\\_\_!!\\\

tal TM,q mode would be expected to disappear before the < i

fundamental TE, one, which is indeed the fundamental N Ay
ﬁg ! W i

mode for the TEy+TM,, family. This apparent contradic- 0l

tion is blown away when one realizes that the TM field stud- y=h _
ied in Refs. 9, 14, and 28 has, inside the grooves, an electric
vector perpendicular to the vertical walls of the groove and  FIG. 6. Magnetic field intensity map in TM polarization.
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FIG. 9. Reflectivity and transmittivity curves as function of the
groove widthw.

““;“.‘u‘n\\.\“\lx | : depth equal to 1.9um, and other parameters as those used in

‘ Fig. 5, Fig. 9 shows the reflectivity and transmittance curves
as functions ofv. Several dips and peaks occur. Let us ana-
lyze the two strongest, which occur fov=17 nm andw
=39.7 nm.

In Fig. 10, we choose a fixed abscissa corresponding to
FIG. 7. Electric field map intensity in TM polarizatida) |[E,J2  the center of a slit,{=w/2), and analyze thgH,|? curve as
map; (b) |Ey|2 map. a function of ordinatey inside the modulated area. Such a

curve is drawn for the value af corresponding to the maxi-
the y variation, sinusoidal oscillations are observed. Suchmum of transmittancev{=39.7 nm) and for a value far from
oscillatory behavior has been predictéty a simplified ver-  the peak, at which the transmittance is negligible (
sion of the modal theory of lamellar gratings in which only =50nm). The vertical lines show the limits of the modu-
one mode is kept to represent the field in the grooves. Thixted area. Noticing that the ordinate scale is logarithmic, it
field is, then, the sum of a downgoing and an upgoing waveis clear that when the maximum transmittance occjis}?
and can be calculate by a Bremmer séfiédentical to the  js much higher, and a finite number of maxima are included
one used in the Fabry-Perot thedfyThus, as expected from jn the modulated region. Similar conclusions are derived
the Fabry-Perot behavior, the number of maximums dependgom the curves in Fig. 11. They confirm what is known in
on groove deptth, as we verified by nonreported calcula- Fabry-Perot's resonatofs.
tions. As shown in Fig. (&), the minimums ofH,| corre- To conclude this paragraph, the TE}guided mode ex-
spond to maximums$E,|? and vice versa; Fig. (B) shows  plains the important optical transmission of a metallic lamel-
that|E,|? presents a more complicatedvariation, while its  |ar grating with subwavelength slits reported in Refs. 9 and

y variation presents the same minima as|fdg|?. 14. However, since the TEJ)} mode does not exist in me-
The combination of théd andE field maps result in the
total energy map illustrated in Fig. 8. From the nonzero 10 o7
value of the energy density at the bottom of the groove, one '
expects a significant transmittance which will dependwon L
and h, linked with a dip in reflectivity. For a fixed groove
0.1 -
o
jusi
B =
nerey 0.01 |
0.001 + w=50nm
0.0001 ; . :
0.5 0 0.5 1 L5 2 25
y=h o yew y [um]

FIG. 8. Total energy map in TM polarization. FIG. 10. Magnetic field intensity oscillations inside a groove.
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FIG. 11. Same as in Fig. 10, but for the second main transmit—rOd’ (O<X<_d_w) |H2|2 has a strong maximum, Wh'Ch IS
tance peak. expected since, in the perfectly conducting limit, the jump of
H, leads to a surface current. Of course, for a real mgtg|,
tallic holes, the one-dimensional model cannot be used t§Xponentially decreases inside the metallic rod. However,
explain the phenomenon reported in Ref. 1 which is conOne can see that,|* has significant values in the slit,
cerned by a hole array. This remark concerns all workd —W<x<0) which allows a coupling between the bottom
which have used the one-dimensional model to explain th@nd top surface of the rod grating. As a result, a non-rulll
discovery presented in Ref. 1. But before considering thds found below the grating.
hole array system, let us discuss the surface plasmon reso- Figure 13 shows thiE,|* map of the same device. In the
nances which can also be excited in the geometry of Figs. finite conductivity limit, E, is expected to vanish on the
or 4. metal surfacesy=h,0; as a result, the values ¢F,|? are
indeed small on the rod surface. Edge phenomena are seen at
IIl. SURFACE PLASMON RESONANCES the corners of the rods, and a coupling is still observed be-
tween upper and lower interfaces.
In order to illustrate the main features of the surface- In Fig. 14,|E,|? is plotted, and presents, as expected, high
plasmon resonance, we choose the device previously studig@lues near the metal surfaces h,0. The excitation of sur-
in the Fig. 3a) of Ref. 9. It consists of a rectangular rod face plasmons propagating in tRelirection is made on both
silver grating; with the notations in Fig. 4, =n,=n3=1;  upper and lower interfaces, as evident in the figure.
d=3.5um, h=0.6um, N\=3.6um, §=0°; the refractive Figure 15, which presents the total energy map, confirms
index of silver is 0.%i10. With the chosen parameters, athe previous conclusions drawn from Figs. 12-14, i.e., that
delocalized surface plasmon is excited, and, as pointed out ithe delocalized surface plasmon resonance produces strong
Ref. 9, a strong field is expected near the entire grating sumear-field outside the modulated area<($<h), while both
face. We present the computed field maps obtained in suchfields and energy are weak inside the slits. In order to stress
situation. the big difference with the cavity resonances studied in Sec.
Figure 12 shows the magnetic field intensity map insidell, Fig. 16 show the same maps as in Figs. 12—15, but for
and near the modulated area. Above the silver rectangulai=3 ym and\=7.5um for which a cavity resonance is
excited. It is clearly shown that, this time, both field and
energy are strong inside the slits, while they remain small
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FIG. 12. Magnetic field intensity map of a surface plasmon reso-
nance. FIG. 14.|E,|* map of the device in Fig. 12.
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IV. ELECTROMAGNETIC STUDY OF A
2D-SUBWAVELENGTH SQUARE HOLE ARRAY

In order to analyze the two-dimensional hole array, we
choose the Fourier modal method extended to crossed
gratings?® This method is well suited for crossed surface

relief gratings consisting of vertical cylindrical holes inside a
metallic or a dielectric plate in the sense that the Fourier
components of the permittivity function are independent of
ordinate, and that the problem reduces to an eigenvalue one,
which has only to be resolved once. An additional small
simplification is obtained by considering square hole cross-
sections instead of circular onéwhich leads to a simpler

""“‘ =
\\W ‘Hlﬁgﬂ"\ ““W“‘ leﬂ||||||l|||"\i)\‘i‘iﬂl llllillfl\
’\e\\\'\\\\“{\i\maﬂ e

X=-W expression for the permittivity Fourier components, and al-
- x=d-w lows working in an orthogonal coordinate set, which greatly
simplifies the propagation equation$n order to deal with
FIG. 15. Total energy map of the device in Fig. 12. high reflecting materials, the Smatrix propagation

algorithnt®34 is included. The convergence of the double

outside the modulated area. This effect has previously beeRourier series of the field is improved by using the correct
used to explain enhanced nonlinear optical effects, e.grules for Fourier factoring products that contain discontinu-
surface-enhanced Raman scattering of organic molecules abus functions®3” Computations have shown that it is pos-
sorbed on a rough surfade although delocalized surface sible to obtain converging numerical results for the transmit-
plasmons are also involved in the explanation of other entivity of various hole arrays inside a silver plate. Also our
hanced nonlinear effectd.Our field maps confirm and state method allows determining the propagation constant along
precisely the arguments developed in Ref. 9. the hole axis of symmetry of all propagatirignd evanes-

Now that we have reviewed the electromagnetic resoeen) modes, a problem which reduces to the search of ei-
nances involved in one-dimensional systems, let us considgrenvalues of a particular matrix.
the case of two-dimensional gratings. Indeed, if(x,2 is the grating plane anyg the coordinate

(0) T (@

WH
| u\mmu\\uu
i \'\’\'\ il !

i

i
T

FIG. 16. Field and energy maps associated to a cavity resonance of a device similar to the one studied in Fig&)13+15map;
(b): |E? map; (0): |Ey|? map;(d): total energy map.
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™ holes

slits
40 40
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Im(yy)

50

Re(Yy)

FIG. 18. Same as Figs. 17 but for a square hole array in a silver

50 A A plate. Circles: infinite conductivity, triangles: finite conductivity.
TE A The numerical values in the bubbles correspond toylin(Notice
slits a0 the lack of the TEN], solution. The triangles within the dashed

40 - A A boundary correspond to low values of gl which only exist in

D) the case ofinite conductivity.

30 A

—_ For a better understanding of the origin of the light trans-
= O mission peaks, it is appropriate to consider, for both the in-
k= finite and finite conductivity cases, the channels for light
transmission not only for the hole array but also for the one-
dimensional lamellar grating.
109 A Figures 17 and 18 show the varioyg in the complex
plane for a lamellar grating with infinite sliffigs. 147a) and
17(b) for the TM and TE cases, respectivelgnd for a
0 , , . square hole array in a silver plat€ig. 18. The x and z
0 01 02 03 04 0.5 periods of _the array are 0,8m, the square v_vidth 0.2om
(b) Re(y,) and the_ th_|ckness qf the plate Qun; it is lighted _under
4 normal incidence with a 1.3Zm wavelength at which re-
FIG. 17. Eigenvalueévertical mode propagation constant§a  fractive index of silver is 0.318.94. .
silver grating with infinite slits in the complex, plane for TM ~ Examination of Figs. 17 show three classes of solutions:
polarization(a) and for TE polarization(b). Circles: infinite con- (i) imaginary values ofy,; (ii) in the TM case and for finite
ductivity, triangles: finite conductivity. The numerical values shown conductivity only, within the dashed boundary, complex val-
in the bubbles correspond to Ipj. Notice, for TM polarization(i) ues ofy, with low imaginary part ofy, and(iii) the TEM,,
the existence of the TE)) solution which has the lowest Im)

and (i) within the dashed boundary, low values of lyg) which
only exist in the case dfinite conductivity. 0‘08__ .
_ _ o 0074 ¢ :
along the grating normal, any field component inside the .
square holes write& 0.06 ] .
0.05- '
Ep(xy.2)= 2 |Uq@XRli 76y) +0qexpl~i7qY)] L 0.04] '
. 0.034 .
xexd'(amx+:8nz)]Eamnqa 1 -
0.02+ -
whereo=Xx,z andu, andv, are the amplitudes of the up- 1 b
ward and downward propagating or decaying modal fields. 017 \
In the subwavelength regioa)l modes inside the holes are 0.00 ol e ——— | .
evanescent, so that the field intensity below the hole array is 0.9 1.0 1.1 1.2 1.3 1.4 1.5

mainly governetf by the mode which has the lowest attenu- A (um)
ation constant, i.e., by the mode for which kg) is mini-

mum. In what follows, we will simply cally the correspond- FIG. 19. Computed transmitted intensity of a square hole array
ing propagation constant. in silver.
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solution. The latter is not excited in the TE case and has @end significantly on the hole dimensions, which would not
nearly zero imaginary part when the silver losses are takehe the case if cavity resonances were excited. Moreover, the
into account. Thus, as already explained, the TESblution  layer thickness(0.2 um) is too small to involve a cavity
constitutes an efficient channel of transmission for lightresonance. It is worth noting that the same kind of channel
when lamellar gratings are involved. exists for lamellar gratings in TM polarizatigwithin the

Let us now consider Fig. 18. First of all, the TEjchan- ~ dashed boundary in Fig. @@]: the finite conductivity gen-
nel presented in Fig. 1@ no longer exists. As in Fig. 1@ erates an additional set of eigenvalues with lower imaginary
for finite conductivity, complex values of,, are obtained ~Parts. However, for one-dimensional gratings their effect in
(they are located within the dashed boundawith the transmission is masked by the existing TEMnode, which
imaginary part much lower than for infinite conductivity. In- d0€s not propagate in the holes. , .
deed, inside a perfectly conducting waveguide, the funda- As it was done in Ref. 1, it is interesting to replace silver

mental cutoff wavelength is twice the square width, i.e., 0.5PY gérmanium. Taking a refractive index equal to 3.5, we
um from which we deduce y2=4m2\2— n?/a®= have computed the propagation constants of the same hole

—129.0973:m"2. The result is that Imf)=11.362um, array. It was four_1d that one of the_m is real, vyhich Igads to
so that a wave of the form, exp(~iy,Y) is attenuated from uniform qontrlbutlon to the _tran.sjmnted intensity, _Whlle t_he
top to bottom of the hole by a factor €xpim(y)h] closest eigenvalue hz_sls an imaginary part three times higher
~0.00534. For finite conductivity, one can firdwith much than _the one f(_)und with silver, V.Vh'Ch precludes any resonant
lower imaginary part, e.g. Imj=2.4um7l ie., contnbutpn_wnh the chosen thuf‘k.ness. Our results also. al-
ex —Im(y)h]~0.6. It means that the transmitted field en- lows prgdlctmg that the transmlttlwty_of the array scales lin-
ergy is 10 times larger when the finite conductivity of silver early W'_th_ the surface area. Concerning the thlckr_mess depen-
is taken into account. Thus it is seen that hole array withdet'nce'_ it is governed by the e[xp_lm(y)h] term, .Wh'Ch’ for_
finite conductivity supports an efficient channel for the trans—th'n thicknesses, can be approx_lmated by a linear function.
mission of light despite the fact that there is no TEMo- All our results account for what is observed in Ref. 1.

lution. Such a result is all the more surprising that in the
considered spectral region the reflectivity of silver is close to
99%. This channel yields the peak observed in Fig. 1 of Ref. We have reviewed and studied in detail the various reso-
1 close to 1.37um wavelength, as shown in Fig. 19. The nant processes which were previously invoked to explain the
excitation of surface plasmons on the upper interf@eis-  transmission of light through subwavelength hole arrays. For
ing the peak around 0.8m in Fig. 1 of Ref. } is easily  one-dimensional lamellar gratings, cavity and surface plas-
made using the:-1st diffracted orderX/d~1). The channel mon resonances account for several observed maxima; cavity
is responsible for the excitation of surface plasmons on theesonances arise from the excitation of TfJVsolutions.
lower interface with constant of propagation of the order ofHowever, no TEN)4 solution is present in the case of hole
1.5 (the substrate refractive index is equal to)ldgain  arrays. For such systems we have demonstrated the existence
through the+1st diffracted order in the substrate. This hap-of a channel for the transmission of light that cannot be pre-
pens fora/d=~1.5, i.e.,A=~1.35 and is the cause for the dicted by one-dimensional models. This channel, which al-
longer-wavelength peak in Fig. 1 of Ref.(4ame as in Fig. lows the resonant excitation of surface plasmons on the
19). Our numerical investigations, not reported here, havdower interface, is specific of two-dimensional hole arrays
shown that when varying the periodicity the peak position with finite conductivity and explains the extraordinary opti-
remains constant in the/d scale. Its position does not de- cal transmission of these devices.

CONCLUSION

*Temporary Address: Laboratoire 'Electromagngésme, Mi- Lezec, Phys. Rev. B8, 6779(1998.

croondes et Opfdectronique, UMR CNRS, no. 5530, 23, Avenue 'D. Maystre and M. Nevie, J. Opt.(Pari9 8, 165 (1977).

des Martyrs, Bte Postale 257, 38016 Grenoble Cedex, France.*®E. Popov, L. Tsonev, and D. Maystre, Appl. O@3, 5214
1T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A.  (1994).

Wolff, Nature (London 391, 667 (1998. 18T, Lopez-Rios, D. Mendoza, F. J. Garcia-Vidal, J. Sanchez-
2E. Betzig, A. Harootunian, M. Isaacson, and E. Kratshmer, Bio- Dehesa, and B. Pannetier, Phys. Rev. L&tt.665(1998.

phys. J.49, 269 (1986. 14ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D.
3U. Diring, D. W. Pohl, and F. Roher, J. Appl. Phyg9, 3318 Moller, J. Opt. A: Pure Appl. Opt2, 48 (2000.

(1986. 15D, Maystre and M. Nevie, J. Opt.(Pari9 9, 301 (1978.
4D. Courjon, K. Sarayeddine, and M. Spajer, Opt. Comnitl).  ®P. Vincent, Opt. Commur6, 293 (1978.

23(1989. 17G. H. Derrick, R. C. Mc Phedran, D. Maystre, and M. Negie
5R. C. Reddick, R. J. Warmack, and T. L. Ferrell, Phys. Re89B Appl. Phys.18, 39 (1979.

767 (1989. 18R, C. Mc Phedran, G. H. Derrick, M. Nevie and D. Maystre, J.
SF. de Fornel, J. P. Goudonnet, L. Salomon, and E. Lesniewska, Opt. (Pari9 13, 209 (1982.

Proc. SPIE1139 77 (1989. 19Electromagnetic Theory of Gratingslited by R. PetitSpringer-
"U. Schrder and D. Heitmann, Phys. Rev. 38, 15 419(1998. Verlag, Berlin, 1980.
8M. M. J. Treacy, Appl. Phys. LetfZ5, 606 (1999. 20R. E. Collin, Field Theory of Guided Wavegnd ed.(IEEE, New
9J. A. Porto, F. T. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett.  York, 1991).

83, 2845(1999. 211, Li, J. Opt. Soc. Am. Al4, 2758(1997).

104, F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J.?’L. C. Botten, M. S. Craig, R. C. Mc Phedran, J. L. Adams, and J.



16 108

T. Andrewartha, Opt. Act28, 413(198)).

23L. C. Botten, M. S. Craig, and R. C. Mc Phedran, Opt. A2&
1103(1982.

24G. Tayeb and R. Petit, Opt. AcBil, 1361(1984.

253. R. Andrewartha, J. R. Fox, and 1. J. Wilson, Opt. A26 69
(1979.

263, R. Andrewartha, J. R. Fox, and I. J. Wilson, Opt. A26a197
(1979.

27E. Popov and L. Tsonev, Surf. SE71, L378(1992.

28/, Sentenac and D. Maystre, J. Mod. Og5, 785(1998.

29H. Bremmer, Commun. Pure Appl. Math, 105 (1951).

30M. Born and E. Wolf,Principles of Optics 6th ed.(Pergamon,
Oxford, 1980.

E. POPOV, M. NEVI‘ERE, S. ENOCH, AND R. REINISCH

PRB 62

3IA. Wirgin and T. Lopez-Rios, Opt. Commuas, 416(1984; T.
Lopez-Rios and A. Wirgin, Solid State Commub2, 197
(1984.

32M. Neviere, E. Popov, R. Reinisch, and G. Vitrafectromag-
netic Resonances in Nonlinear Opti¢€ordon and Breach,
Reading, MA, 200D

33L. Li, J. Opt. Soc. Am. A13, 1024(1996.

34F. Montiel, M. Neviee, and P. Peyrot, J. Mod. Op45, 2169
(1998.

35, Li, J. Opt. Soc. Am. A13, 1870(1996.

3%6pp. Lalanne and G. M. Morris, J. Opt. Soc. Am. ¥8, 779
(1996.

37G. Granet and B. Guizal, J. Opt. Soc. Am.1&, 1019(1996.



