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Summary : In this report one obtains a method to generate random
numbers whose the randomness is proved. In this aim, one transforms data re-
sulting from electronic files. One can also use data provided by machines. The
randomness is proved by mathematical theorems and logical reasoning. This
method can be applied directly in computers in the same way that the function
”random”. In this case, it required neither chips nor machines: one transforms
the data provided by the electronic files. It can be also applied with the ma-
chines and the chips. In this case one transforms the random noises which they
provide. Of course, one can also transform the majority of the noises which
exists. Then, one obtains really independent sequences contrary to the current
methods for machines which often are satisfied to remove the linear correlation.
Moreover that can put a stop to certain malfunctions of the machines or of the
chips.

Résumé : Dans ce rapport on donne une méthode pour générer des
nombres aléatoires dont on soit sûr de la qualité. Pour cela, on transforme des
données issues de fichiers informatiques ou fournies par des machines. L’aléarité
est prouvée par des théorèmes mathématiques et par des raisonnements logiques.
Cette méthode peut être appliquée directement sur ordinateur de la même
manière que les fonction ”random”. Dans ce cas, elle ne nécessite ni puces
ni machines : on transforme les données fournies par les fichiers informatiques.
Elle peut être aussi appliquée avec les machines, les puces et la plupart des
bruits. Dans ce cas, on transforme les bruits aléatoires qu’elles fournissent. On
obtiendra alors des suites réellement indépendantes contrairement aux méthodes
actuelles qui souvent se contentent de supprimer la corrélation linéaire des ma-
chines. De plus cela peut mettre fin à certains dysfonctionnements des machines
ou des puces.

Key Words : Central limit theorem, Or exclusive, Fibonacci sequence,
Random numbers, Random noise, Higher order correlation coefficients.
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NOTICE

This report represents the result of many years of work. It should be read in
relation to a secund report which we go published on this subject ”A perfect
random generator II” (for any information, ask us in rene.blacher@imag.fr).

This new report will be mainly a summary of the results of this report with
a simpler presentation. That is all the more necessary as certain results evolved
here constitute already a complete subject of study. All the results of this re-
port thus have not inevitably to be read to have a clear comprehension of the
construction of an random sequence. But they are not less essential to prove
than the obtained sequences are well random.

The publication of this report was delays owing to the fact that each time
we find a result, we find immediately another best than this one.

Thus, we obtained much more numerical results than those which we de-
scribed in this report. It is the same for the theoretical results. Some are even
not described here because they are not less useful. For example, we described
only a little the possibility that, starting from a sample xn ∈ {0/m, ....,m/m},
n=1,2,...,N, we can almost always describe it by a continuous model if m is
rather large compared to m. However, this result can be useful when one em-
ploys the Central Limit Theorem for understanding well that the conditional
probabilities have a continuous curve which is not concentrated close to a few
points.

There are thus many results which we cannot give for lack of place. However,
all these results lead to a certainty: the numbers obtained are well random. For
those which would need more than precise details, do not hesitate to contact us
on rene.blacher@imag.fr.

Anyway this research being of an entirely new type, it is possible that many
papers where useful points will be developed follow this report. Indeed, many
improvements can be made and the many leads of study exist: they are some-
times quoted in this report.

On the other hand, because this report is very long, it is possible that in
spite of our efforts, the errors have slipped through to us during the correction.
Thank you for excuse us and to point them to us.
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Notations and
Abbreviations

We remind notations and abbreviation used in this report.

CLT : CLT for Central Limit Theorem
XORLT : XORLT for XOR Limit Theorem : cf section 5.2
F ∗(m) : F ∗(m) = {0, 1, ....,m− 1} where m ∈ N

∗.
F(m) : F (m) = {0/m, 1/m, ...., (m− 1)/m} where m ∈ N

∗.
µm : µm is the uniform measure over F(m).
µ∗
m : µ∗

m is the uniform measure over F ∗(m).
µ : µ is the Lebesgue measure over R.
L : L is also the Lebesgue measure over R or over R

p.
E2 : E2 =

{
ℓ, T (ℓ)|ℓ ∈ {0, 1, .....,m− 1}

}
where T is a congruence.

Ob(1) : Ob(1) is the classical ”O” with the condition |Ob(1)| ≤ 1.
js : js, s=1,2,...,p, is an injective sequence such that js ∈ Z, j1 = 0.
j′s : j′s, s=1,2,...,p is a sequence such that j′s ∈ N, j′1 = 0 < j′2 < ... < j′p.
Bo : Bo means a Borel set of R

p.
I : I or Is mean intervals of R.
N(Bo) : N(Bo) is associated to a sample xn . N(Bo) is the number of xn

which belongs to Bo.
ǫ : ǫ is associated to a sequence of random variables Xn which satisfies

P{Xn ∈ Bo} = L(Bo) +Ob(1)ǫ for all n and for all Bo.
⌊x⌋ : ⌊x⌋ means the integer part of x ∈ R+.
T : T means a congruence T (x) ≡ ax modulo m.
T dq : T dq is the function of Fibonacci defined in definition 1.3.5 .
Tq : Tq = T 2

q .
T ∗ : T ∗ is the function of fundamental : cf theorem 1
fin : fin is the sequence of Fibonacci : fin+2 = fin+1 +fin, fi1 = fi2 = 1.
h
m

: h
m ≡ h modulo m and 0 ≤ h < m .

h
1

: h
1

= mh
m
/m when h ∈ F (m).

h : h = h
m

when m is given unambiguous.
T : T (k) = T (k), k ∈ F ∗(m).

T̂ : T̂ (k/m) = T (k)/m .
x ≈ y : x ≈ y, where x,y ∈ R, if, numerically X is approximately equal to y.
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N(0, σ2) : N(0, σ2) means the normal distribution with mean 0 and variance
σ2.

Y ∼ N(0, 1) : Y ∼ N(0, 1) if Y is a random variable which has the distribu-
tion N(0,1).

XG : XG ∼ N(0, 1) .
X∗
G : X∗

G = XG .
x << y : x << y, where 0 ≤ x < y, if and only if x/y ≈ 0.
Γ(b) : Γ(b) = P{|XG| ≥ b} where XG ∼ N(0, 1) .
P
{
Xn ∈ I|x2, ...., xp

}
: P

{
Xn ∈ I|x2, ...., xp

}
= P

{
Xn ∈ I|Xn+j2 =

x2, ...., Xn+jp = xp
}

where Xn is a sequence of random variables.

0, d1d2... : 0, d1d2... means the writing base 2 (or base d) of a number z =

0, d1d2....
A,a,B,b,C,c,.... : When one has a sequence of real numbers an which can

be regarded as a realization of a sequence of random variables, one will always
note datas an with small letters and the random variables An with CAPITAL
LETTERS : an = An(ω) where the An’s are defined on a probability space
(Ω,A, P ).

b1(n′) and b2(n) : b1(n′) and b2(n) are the sequences of random bits con-
cretely obtained.

Xn
D→ X : Xn

D→ X means that the sequence of random variables Xn

converges en distribution to X.

Xn
P→ X : Xn

P→ X means that the sequence of random variables Xn

converges in probability to X.
Cpn : Cpn = n!

p!(n−p)!
H(n) : H(n) =

{
m = 1, 2, ..., N

∣∣∃µ : m = n+ c(µ)
}

: cf Notation 9.2.2

H∗(n) : H∗(n) =
{
m = 1, 2, ..., N

∣∣∃µ : m = n+ c(µ),m 6= n
}

: cf Notation
9.2.2

H(n, q) : H(n, q) =
{
m = 1, 2, ..., N

∣∣∃ µ : |n+ c(µ) −m| ≤ q
}

: cf Notation
9.2.3

H∗(n, q) : H∗(n, q) = H(n, q) \H(n) : cf Notation 9.2.3

oP (1) : Xn = oP (1) if Xm
P→ 0: cf notation 9.1.1.

OP (1) : Xn = OP (1) if the sequence of random variables Xn is bounded in
probability.

E{X} : E{X} means the expectation of the random variables X
σ2
s : σ2

s means always variances.
Card(E) : Card(E) is the cardinality of the set E.
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Chapter 1

Introduction

1.1 General presentation of the matter

In this report, we present a new method to obtain sequences xn of random
numbers. This method can be used as well with machines as directly on a
computer alone.

Let us announce immediately that, by abuse of language, we will call also
”IID sequence” (Independent Identically Distributed) the sequences of random
numbers. Indeed, let xn be a sequence of random numbers. Which one wishes, it
is that xn can be regarded like a sample of a sequence of IID random variablesXn

defined on a probability space (Ω, A, P ) such that, for all n ∈ N
∗, xn = Xn(ω)

where ω ∈ Ω.
One imposes that Xn has the uniform distribution. If it is not the case, we

shall precize it.

1.1.1 Presentation of the result

It is wellknown that numbers which are chosen randomly are useful in many
different kinds of applications. To have such number two methods exists :

1) Use of pseudo-random generators
2) Use of random noise.

These two methods have different defects.
1) For the best of them, the pseudo-random generators seem nondeterminist

only during a certain time. This can be long enough for the cryptographic gen-
erators, but it is with the current means of calculations. Moreover in simulation,
the pseudo-random generators must be tested for each application : cf [2] page
151.

2) If random noises are used, bias and dependences can appear : cf [3]. One
tries to remove them by mathematical transformations. But these methods have
defects. They remove bias and the linear correlation, but not necessarily the
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dependence. Indeed, they are satisfied to remove the linear correlation: it does
not remove the correlation of higher order : cf [10].
On the other hand, these random noises can be produced by machines or chips.
In this case, that thus require additional material which can suffer from mal-
functions extremely difficult to detect : cf [1] page 3.

Now, for some applications, a maximum quality is essential (Nuclear power,
medical, cryptography). It is thus necessary to have generators without defects.
But, up to now no completely reliable solution had been proposed .

To set straight this situation, Marsaglia has created a Cd-Rom of random
numbers by using sequences of numbers provided by Rap music, by a machine
and by a pseudo-random generator. However, it does not have proved that the
sequence obtained is really random.

However, there exists simple means of obtaining random sequences whose
the quality is sure.

One can obtain perfect generators by using random noises, for example those
produced by the machines. In this case, one transforms these noises in a more
effective way. Indeed, one uses assumptions much weaker than those of the
current methods

One can also obtain perfect generators usable directly on computer (with-
out the use of machines). In this case, one uses the electronic files as random
noises (like Marsaglia uses Rap music). Then they are transformed by the same
method that we use for the machines.

One can thus obtain sequences of real numbers which are proved random,
which is a completely new result. To obtain this proof, one uses mathematical
properties and simple logical reasoning.

1.1.2 Summary of the method

When one uses random noise, bias and linear correlations are removed by current
methods. In this aim, one supposes that theses noises check some assumptions.
But, generally, those are not checked. Moreover, for each samples xn there exists
many possibles models Xn such that xn = Xn(ω). That can be problematic.

Our method consists to transform random noises under very weak hypothe-
ses: we assume only that theses noises are not completely deterministic. It is
really a very weak assumption.

Moreover our results are true for all logical models possible. That suppress
the problems. That allows also to satisfy the mathematical definitions of the
random numbers. Though these definitions are very difficult to etablish.

Then, the obtained sequences will be always IID.
Now one can apply this method to many noises. So texts can be regarded as

noises which satisfy these assumptions. It is also the case for numerous softwares
which are recorded on computers : systems softwares for example.
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Therefore, one can obtain directly IID sequences by transforming the files
of computers. In this case, it is not necessary to use machines in order to have
true random numbers.

On the contrary some electronics files can be studied logically. Then ob-
tained numbers are surer than thoses obtained by machines which can have also
malfunctions.

Of course, one can apply also our methods to noises furnished by machines:
of course, our results are much surer than those of current methods.

1.1.3 Definition of randomness

To produce a really random sequence, it is thus necessary initially to have a
definition of the randomness. It is a subject which was studied much. But, it
is extremely complex. Philosophical questions are even involved. A summary
of this study is in the book of Knuth [1] pages 149-183. One reminds some
definitions in section 2.1. In fact, one will see that no current definition is really
satisfactory.

Thus in some definitions one uses numerical approximations which one notes
in the following way.

Notations 1.1.1 One notes the approximation by ≈ : for x, y ∈ R, one sets
x ≈ y if numerically x is nearly equal to y.

Indeed, one can think to define randomness by the following way.

Definition 1.1.2 : Let L be the Lebesgue measure. A sequence xn ∈ [0, 1] is
said random if, for all Borel set Bo, for all n+1, if the past x1, x2, , xn is given,
one cannot predict the place of xn+1 with a probability very different from that
of the uniform distribution : Pe{xn+1 ∈ Bo|x1, ........, xn} ≈ L(Bo) , where
Pe{xn+1 ∈ Bo|x1, ........, xn} is the empirical conditional probability of Bo when
the past is given.

This type of definition it is that which one wishes. Unfortunately, it has
a defect : one does not have specified enough the approximation. On the one
hand, the definition of ≈ is very undetermined mathematically. On the other
hand, one would like a definition closer to the statistics definitions. But it is
almost impossible to obtain such a definition : cf section 2.1.1.

But these questions of mathematical definition will not obstruct us because
we will circumvent this problem by using sequences which are really samples of
sequences of random variables Xn.

Unfortunately, an infinity of models Xn corresponds to the sequence xn.
Then, there is the problem of the choice of the model Xn. We will avoid this
problem by proving that xn behave as an IID sequence for all the logical possible
models.
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1.2 Idea of the solution

Our method rests on a simple idea: to transform random noises by adapted
transformations.

Like random noises, one can use those provided by the machines. It is what
Vazirani, Neumann, Elias and others (cf [46] [4], [8]) wanted to do, but with too
restrictive assumptions.

One can also use some electronic files. It is what Marsaglia did with the Rap
music (cf [1], [20] ). But he has transformed these data in a too elementary way
(cf chapter 3).

Then, one has sequences of random noises yn. One can regard these yn as
a realization of a sequence of (not IID) random variables yn = Yn(ω). The
associated random variables will be always thus noted throughout this report.

Notations 1.2.1 When one has a sequence of real numbers which one can re-
gard as one realization of a sequence of random variables, one will always note
with small letters the data and with CAPITAL LETTERS the random variables
which one will suppose defined on a probability space (Ω, A, P ).

For example, for all n, an = An(ω) for all i=1,...,N., where ω ∈ Ω.

When the yn’s mean random noises, to consider that yn = Yn(ω) is a tradi-
tional and normal assumption. It is also true for the yn extracted from certain
electronic files. We thus have data yn = Yn(ω) where Yn is a sequence of random
variables not completely deterministic (and same often Qd-dependent).

1.3 Fundamental properties

Into this section, we introduce the properties which are at the heart of our study.
We will use the following notations.

Notations 1.3.1 : The notation Ob(.) is that of the classical ”O(.)” with the
additional condition |Ob(1)| ≤ 1.

The sequences j1, j2, ......, jp , p ∈ N
∗, mean alway finite injective sequences

js ∈ Z, such that j1 = 0. On the other hand, the sequences j′1, j
′
2, ......, j

′
p satisfy

moreover 0 = j′1 < j′2 < ...... < j′p.

The notation P
{
Xn ∈ Bo

∣∣x2, ........, xp
}

means always the conditional prob-
ability that the random variable Xn belongs to the Borel Set Bo given Xn+j2 =
x2,........,Xn+jp = xp.

Let m ∈ N
∗. We set F (m) = {0/m, 1/m, ...., (m − 1)/m} and F ∗(m) =

{0, 1, ...,m − 1}. We note by µm and µ∗
m the uniform measures on F(m) and

F ∗(m) , respectively : µm(k/m) = 1/m.
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Fundamental transformation

Because one is in the finite case, the densities always exist and one can suppose
that the condition of Lipschitz is always checked.

Proposition 1.3.1 : Let Zn ∈ F (m), n=1,...,N, be a sequence of random vari-
ables.

For all injective sequence js, we note by fn,j(.)
{
z|z2, ........, zp

}
the condi-

tional density of Zn with respect to µm given Zn+js = zs, s=2,3,...,p.
Then, there exists K0 > 0, such that, for all n ∈ N, for all sequence js, for

all (z, z′) ∈ F (m)2,
∣∣∣fn,j(.)

{
z|z2, ........, zp

}
− fn,j(.)

{
z′|z2, ........, zp

}∣∣∣ ≤ K0|z − z′| . (1.1)

One can then state the fundamental theorem.

Theorem 1 : We keep the previous notations. Then for all ǫ > 0, there exists
an application T ∗ : F (m) → F (m) such that, for all interval I, for all n ∈ N,
for all sequence js,

P
{
Xn ∈ I

∣∣x2, ........, xp
}

= L(I) +Ob(1)ǫ , (1.2)

where ǫ is function of K0 and I and where Xn = T ∗(Zn) , xn = T ∗(zn) .

This theorem is proved in chapter 4.1. It will be understood that ǫ depend on
K0. In the chapter 6.1, this theorem is studied in a more precise way when one
uses the Fibonacci congruence to define T ∗.

Transformation of Fibonacci

What is important, it is that ǫ can be enough small according to the choice of
T ∗. However, one carries out that the functions associated with the Fibonacci
congruence give the smallest ǫ.

Definition 1.3.2 Let fin be the Fibonacci sequence : fi1 = fi2 = 1, fin+2 =
fin+1 + fin. Let T be a congruence T (x) ≡ ax modulo m such that there exists
n0 > 3 satisfying a = fin0

and m = fin0+1. Then T is said a Fibonacci’s
congruence with parameters a and m (or more simply m),

In theorem 1, one can choose T ∗(x/m) = T (x)/m where T is defined by the
following way.

Notations 1.3.3 Let h ∈ Z and m ∈ N
∗. We define h

m
by the following way

1) h
m ≡ h modulo m.

2) 0 ≤ h < m .
If the choice of m is obvious, we simplify h

m
into h.

In the same way, if the choice of m is obvious, and if T is a congruence :
T (x) ≡ ax+ c modulo m, we set T (x) = T (x)

m
.
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One uses also the following notations.

Notations 1.3.4 Let h ∈ F (m) . We define h
1

by h
1

= mh
m
/m. Often we

simplify h
1

into h.

The reduction of Fibonacci congruences to their first bits will be very useful
for our study.

Definition 1.3.5 Let q, d ∈ N
∗. Let T be the congruence of Fibonacci modulo

m.
We define the function of Fibonacci T dq : F (m) → F (dq) by T dq = Prdq ◦ T̂

where
1) T̂ (x) = T (x)/m

2) Prdq (z) = 0, d1d2....dq where z = 0, d1d2... is the writing of z in base d.

If d=2, we simplify T dq in Tq and Prdq in Prq.

Standardization by the functions of Fibonnacci

These functions Tq make uniform marginal distributions of sequences of random
variables Zn ∈ F (m). In order to better understand that, we need the following
notations.

Notations 1.3.6 Let XG be a random variable which has the distribution N(0,1)
: XG ∼ N(0, 1). For all b > 0, we define Γ(b) as being the probability that XG

does not belong to [−b, b] : Γ(b) = P{|XG| ≥ b}.

Suppose that the probabilities of F(m) are chosen randomly with the uniform
distribution. We set Xn = Tq(Zn). Then, we shall prove in chapter 8 that, for
all Borel set Bo,

P{Xn ∈ Bo} = L(Bo)
[
1 +

2bOb(1)√
12L(Bo)m

]
,

with a probability larger than 1 − 2Γ(b).

Example 1.3.1 Suppose m ≥ 2100, q = 50. Then, with a probability larger
than 1 − 2

10340 ,

P{Xn ∈ Bo} = L(Bo)
[
1 +

2 ∗ 40Ob(1)√
12 ∗ 250

]
= L(Bo)

[
1 +

Ob(1)

220

]
.
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As a matter of fact, we have a more important result : it means that, for
almost ALL the possible random variables Zn ∈ F (m) such as Zn is a model
for a sequence of real number zn (zn = Zn(ω)), (even if Zn is a bad model)

P{Xn ∈ Bo} = L(Bo)
[
1 +

Ob(1)

220

]
.

This result is false only with a probability smaller than 2/10340 . One
can same decrease this probability by adding a pseudo-random sequence gn
: Xn = Tq

(
Zn + gn

)
. All these results are proved in chapter 8.

1.4 Method of construction

We now describe a method of construction of an IID sequence using the proper-
ties which we have just described. We build it starting from certain electronic
files. But this method can also be used with the random noises provided by the
machines.

1.4.1 The method

One uses a sequence of data a(j) resulting from several independent files. These
a(j) are thus independent by group. One can them consider like the realization
of a stochastic process Aj : a(j) = A(j)(ω). One then builds an IID sequence
of bits b0(n′) in the following way (this construction is detailed in section 11.1).

a) One groups the data together in order to have a sequence of data e1(j) ∈
F ∗(m1) = {0, 1, ....,m1 − 1} where m1 belongs to the Fibonacci sequence.

b) One makes uniform the marginal distributions by using Fibonacci func-
tions Tm1 .

b-1) One sets e2(j) = e1(j) + rand0(j) where rand0(j) ∈ F ∗(m1) is a
pseudo-random generator of period m1.

b-2) One sets e3(j) = mTm1 (e2(j)/m1) ∈ F ∗(m) = {0, 1, ....,m − 1} where
m belongs also to the Fibonacci sequence.

As a mater of fact, Tm1 make also independent the e3(j).

c) One uses the CLT (Central Limit Theorem)
c-1) One rewrites the sequence e3(j) in the form of table {f(i, n)}, i=1,...,S,

with S=10 or 15.
One removes possibly some e3(j) in order to ensure independence between

the lines: the lines will result from different files.
c-2) The columns are summoned : g(n) =

∑S
i=1 f(i, n) for n = 1,...,N.

c-3) One uses these results modulo m: h(n) = g(n)
m

.

d) One applies the function of Fibonacci Tq0 .
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d-1) One sets x(n) = Tq0(h(n)/m) .
d-2) One rewrites x(n) in the form of bits bns and one joins the bns obtained

to have the sequence of IID bits b0(n′).

This construction is detailed in the chapter 11.

1.4.2 Clarification of the method

The previous construction now is clarified.

Step b : By making uniform the marginal distributions with the functions
Tm1 , the result is true for ALL the logical models A(j) associated with the se-
quence a(j) : a(j) = A(j)(ω) 1.

Step c : The use of the CLT enables the data to check the equation 1.1 with a
K0 not too big where

∣∣∣fn,j(.)
{
z|z2, ........, zp

}
− fn,j(.)

{
z′|z2, ........, zp

}∣∣∣ ≤ K0|z − z′| .

To check that, one will need to know the rate of convergence of H(n) and G(n)
to their limit distributions (by CLT). This study is carried out in the chapter 5.

In fact the step c-3) corresponds to a second limit theorem much more ef-
ficient than the CLT that one will call XOR Limit Theorem (XORLT). In this
case, the sums modulo m are not other than the XOR (Or Exclusive) generalized.

Step d : By using the rate of convergence one knows how to apply the funda-
mental theorem 1 with the function of Fibonacci. A good choice of the param-
eters will imply that the equation 1.2 is true not only for intervals I, but also
for all Borel sets Bo :

P
{
X(n) ∈ Bo

∣∣x2, ........, xp
}

= L(Bo) +Ob(1)ǫ ,

where ǫ is small enough.

If the parameters are well selected, the sequence b0(n′) could be regarded as
IID.

1.4.3 Choice of parameters

It is thus necessary to choose the parameters q0, m and m1. This choice is
carried out according to the size q0N of the sample b0(n′) that we want to have.

Indeed, one will impose

2q0/2Γ−1(a2) ≤ 2α
√
m√

q0N
,

1To consider the models A(j) is equivalent to consider the models E3(j) : cf properties of
functions Tq in section 1.3
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where a2 ≈ 4−q0 and where α ≤ 0.02. The reasons of these choices are detailed
in section 2.4.3

1.5 Quality of the sequences b0(n′)

We will understand that the sequence b0(n′) can not be differentiated from an
IID sample.

1.5.1 Obtained relations

First, for all bit b,

P{B0(n′) = b|b2, ........, bp} = 1/2 +
Ob(1)α√
q0N

,

where q0N means the size of the sample of the bits b0(n′).

Now let us note by Pe the empirical probability that B0(n′ + js) = bs for
s=1,2,..,p : Pe = Pe

{
{B0(n′ + j1) = b1} ∩ ...... ∩ {B0(n′ + jp) = bp}

}
, where

b = (b1, ..., bp) ∈ {0, 1}p. Then,

P{
√
Nq0|Pe − 1/2p)| > σpb} ≤ Γ

(
b[1 − η]

)
,

where σ2
p is the variance of Pe in the IID case and where η is rather close to 0.

Note by PCe the empirical conditional probability that B0(n′) = b1 given
B0(n′ + js) = bs for s=2,3,...,p. Then,

P{
√
Nq0|PCe − 1/2| > σCp b} ≤ Γ

(
b[1 − η′]

)
,

where (σCp )2 is the variance of PCe in the IID case and where η′ is rather close
to 0.

It is important to notice that these results are also checked for all subse-
quence b0(φ(n′)) where φ is an injective function.

1.5.2 It is impossible to differentiate b0(n′) from an IID
sequence

Indeed, it is known that if there is sequence really IID, Pe is close to 1/2p with
a certain probability: it is completely possible that Pe is rather different from
1/2p, but the probability that happens is weak.

Now, under the assumptions of the theorem 1, it is also possible that Pe is
rather different from 1/2p, but that does not have much more chances to happen
than in case really IID.

It will be thus difficult to differentiate the b0(n′) from a really IID sample.
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1.5.3 Checking of the definitions of randomness

The sequences b0(n′) thus checks a probabilistic relation similar to that of the
definitions of a random sequence : cf section 1.1.3 and definition 1.1.2. This
definition is known to be that which one expects from an IID sequence.

The sequences b0(n′) check also empirical relations similar to those of the
traditional definitions of the random sequences : cf sections 2.1.

These results are true for all logical model A(j) associated to the sequence
of the data a(j). They are thus true for ANY models B0(n′) deduced from the
A(j)’s by the constructions defined in section 1.4.1.

By this way, we circumvented the problem of definition of random sequences
of real numbers and even that of the choice of model.

1.5.4 A file of an IID sequence

We have concretely built an IID sequence of real b1(n′) by using the method
described here : cf section 11.2. One can obtain this sequence b1(n′) by ask-
ing it to rene.blacher@imag.fr (Laboratory LJK, University Joseph Fourier of
Grenoble, France). More precisions on this subject will found in [18].

1.5.5 Tests

Theoretically, some tests can not be checked by the sequences b0(n′). But that
will happen only with a probability equivalent to that of an IID sequence.

On the sequence b1(n′), we carried out the traditional tests of Diehard : cf
section 2.1.6. All were checked : cf section 11.2.14.

1.6 Conclusion

For all these reasons, it is not possible to differentiate the sequences b0(n′) from
an IID sequence : one can consider that b0(n′) is an IID sequence.

There is thus well a total and simple answer to the problem of random num-
bers. In particular, this solution will have all its interest
1) For delicate calculations.
2) In cryptography: an IID sequence being by nature unbreakable.
3) In simulation, analysis, etc : one avoids having to test the provided sequence.

The advantages compared to the current methods are clear:
1) It was proven that the numbers obtained are random.
2) There is not to test these numbers, especially in simulation where it had

to be done for each new practical application.
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3) The method is applicable directly on the computers: it is as easy as to
use a function ”random”. Moreover, there does not need to add a machine or
an additional chip to the computer.

4) If one uses the random noises (Machines, chips, software programs), one
removes all the dependence, which generally the current methods do not do.
Moreover that can remove certain dysfunctions of the machines.

A more detailed comparison with the current methods is carried out in sec-
tion 2.3.1.

1.7 Other possible transformations

There are other possible transformations of the data to obtain IID sequences.
We detail this point in the Chapter 12. In section 12.1, we show another method
explicitly.
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Chapter 2

Quality of obtained
sequences

In this chapter, we detail what is the interest of our method.

2.1 Criteria of randomness

2.1.1 Mathematical definitions

To determine the quality of a generator, one needs a definition of the randomness
of a sequence of real numbers xn. Many studies were made to give reasonable
definitions: there is a good summary of these studies in chapter 3-5 of Knuth :
cf [1]. In this section 2.1.1, we summarize the study of Knuth.

The common wish when one tries to obtain random sequences, it is to obtain
a sequences of real numbers xn which can be regarded as a sample of an IID
sequence of random variables Xn : xn = Xn(ω). Then, one can propose the
following definition.

Definition 2.1.1 : Let xn, n=1,2,....,N, be a sequence of real numbers in [0,1].
Then, xn is random if there exists an IID sequence of random variables Xn ∈
[0, 1] defined on a probability space (Ω, A, P ) such that xn = Xn(ω) where ω ∈ Ω.

But there is a problem with this definition : for example, if it is admitted,
xn can be increasing. Of course, it is possible only with a negligible probability.
But it is possible. Then, another definition thus should be used. Thus, Franklin
proposed the following definition.

Definition 2.1.2 : Let xn, n=1,2,....,N, be a sequence of real numbers in [0,1].
Then, xn is random if it has each property that is shared by all samples of an
IID sequence of random variables from uniform distribution.
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This definition is not precise and one could even deduce from it that no
really random sequence exists (cf [1], Knuth page 149).

One must thus define differently what is a random sequence (or IID se-
quence). Also, the following definitions were introduced.

Definition 2.1.3 : For all finite sequence of intervals Is ⊂ [0, 1], we denote by

Pe the empirical probability : Pe = (1/N4)
∑N4

n=1 1I1(xn)1I2(xn+1).....1Ip
(xn+p)

where N4 = N − p.

The sequence {xn} is said p-distributed if |Pe − L(I)| ≤ N
−1/2
4 for all I =

I1 ⊗ I2 ⊗ ...⊗ Ip .

Definition 2.1.4 The sequence xn is random if it is p-distributed for all p ≤
Log2(N4) .

Unfortunately, this definition does not take into account the randomness of
subsequences xt1 , xt2 , ......xtm . However, it is known that one cannot extend this
definition to all the transformations s → ts which define these subsequences :
for example, this definition cannot be satisfied by the sequences xts increasing.
It is necessary thus that the application s → ts is too not complicated. Also
Knuth proposes the following definition.

Definition 2.1.5 : The sequence xn is random with respect to a set of algo-
rithms A, if for all sequence xt1 , xt2 , ......xtm , determined by A, it is p-distributed
for all p ≤ Log2(N).

Remark 2.1.1 One imposes p ≤ Log2(N) because that does not have any
meaning to consider Pe if p > Log2(N), e.g., if p=5, and if one has a sam-
ple of size 10, that has not meaning to study its dependence in 32 = 25 cubes of
width 1/2.

These definitions summarize those given by Knuth, [1] page 108. In fact
he has especially studied the infinite case. But because in practice, there are
always samples of finite size, we are limited to this case in this report.

This type of definition was the subject of many studies. In 1966, Knuth had
thought that definition 3 defines the randomness perfectly: cf [1] page 163. It
seems that he changed opinion since. In any case, none of these definitions is
fully satisfactory. Knuth speaks philosophical debate on this subject. Thus, he
points out that, according to certain principles, all the finite sequences can be
regarded like determinist (cf pages 167-168) [1]).

Remark 2.1.2 In any case, the above definition of Knuth is uncertain: can one
choose algorithms which mix the past and the future? The algorithms should not
they not be limited to mix some xn−t where t is not too large and t > 0? It seems
that not. But is this sure? Cf definitions 2.1.8 and 2.1.9. These remarks show
that the problem is complicated.
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2.1.2 Statistical definitions

Now, the definitions above are not satisfactory statistically. Indeed, it is known

that if xn is really an IID sample, N1/2(Pe−L(I))
σ has approximatively the nor-

mal distribution where σ is the variance associated to Pe. For example, suppose
p=1, L(I) = 1/2, σ2 = 1/4. Then, P{N1/2|Pe − 1/2| ≥ 1} ≈ 0.045. That
means that it is possible that the event |Pe − L(I)| > N−1/2 occurs. In fact,
if one considers |Pe − L(I)| for the set of intervals I, it are almost certain that
it will occur. This property is thus different from the definition 2.1.5 de Knuth.

Therefore, one specifies statistically the definitions 2.1.4 and 2.1.5 in the
following way.

Definition 2.1.6 : Let us suppose that xn belongs to the set of the numbers
with q decimals bases d. One says that xn is random if, for all the sequences xts
defined by a set of algorithms A, for all suitable p, for all I = I1 ⊗ I2 ⊗ ..⊗ Ip,
(where the Is are intervals of {0, 1/dq, 2/dq, ....., dq/dq}), it checks all the tests
associated to N1/2|Pe−L(I)| with the same frequency that a really IID sequence
would do it.

By ”same frequency”, we understand that a really IID sequence will not check
all the associated tests, but will check them only with a certain probability. For
example, if all the tests to 1 percent was checked that would be abnormal.

This definition is completely natural. Indeed, what would make a priori an
observer not knowing anything about xn if he wants to know if this sequence
is IID? He will carry out, in an certain order, a succession of tests which will
define randomness completely.

Now, the definition is limited to the intervals. It does not include Borel sets
and it is an important gap.

For example let us suppose that xn = 0, d1
nd

2
nd

3
nd

4
n is the writing of xn

bases 10. Let us suppose that the definition 2.1.6 is checked only for the in-
tervals. Then, because {d1

n = 1} = {xn ∈ [0.1, 0.2[}, the event {d1
n = 1} will

probably check acceptable conditions. But {d4
n = 1} = P{xn ∈ ∪Is} , where

I1 = [0.0001, 0.0002[ , I2 = [0.00011, 0.0012[ , I3 = [0.0021, 0.0022[ ,...... It is
thus easy to obtain examples where d4

n = 1. Of course, in this case, xn could
not be regarded like random. However, the definition 2.1.6 is checked

Therefore, one specifies statistically definitions 2.1.4 and 2.1.5 in the follow-
ing way.

Definition 2.1.7 : Let P ′
e = (1/N4)

∑N4

n=1 1Bo1(xn)1Bo2(xn+1).....1Bop(xn+p)
where the Boi’s are Borel sets.

It is said that xn is random if, for all the sequences xts defined by a set of
algorithms A, for all Bo = Bo1 ⊗ ...... ⊗ Bop, it checks all the tests associated
to N1/2|P ′

e − L(Bo)| with the same frequency that a really IID sequence would
do it.
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Now, it is known that one will always find Borel sets which does not check
tests of randomness even for a really IID sequence.

This fact is not annoying: this case is envisaged by the use of the terms
”with the same frequency ”.

On the other hand, it is not obvious that one has forgets not any dependence
in the previous definitions. Also, to avoid gaps, one introduces a new definition
(generalization of the definition 1.1.2).

Definition 2.1.8 : It is said that xn is random if, for any n, for all Borel
set Bo, for any injective sequence js, if one knows xn+j2 , xn+j3 , ......., xn+jp ,
one cannot predict the site of xn with a probability very different from that
of uniform distribution : Pe{xn ∈ Bo|xn+j2 , ........., xn+jp} ≈ L(Bo), where
Pe{xn ∈ Bo|xn+j2 , ..., xn+jp} is a good estimate of the conditional probability
P{xn ∈ Bo|xn+j2 , ..., xn+jp}.
Such a definition will pose problems, for example for the sequences xn+js which
are increasing. Then, it is noticed that one can simplify it: if all the conditional
probabilities check P{xn ∈ Bo|xn+j2 , .........., xn+jp} 6= L(Bo) for all n, it is
equivalent to the fact that all the conditional probabilities knowing the past
check P{xn+1 ∈ Bo|x1, ........, xn} 6= L(Bo) for all n : it is enough to regard
the values of probabilities of the Bo1 ⊗ ..... ⊗ Bop ⊂ [0, 1]p. One can thus be
satisfied to use the conditional probabilities knowing only the past.

Definition 2.1.9 : It is said that xn is random if, for all Borel set Bo,
for all n+1, if the past x1, x2, ........, xn is given, one cannot predict the site
of xn+1 with a probability very different from that of uniform distribution :
Pe{xn+1 ∈ Bo|x1, ........, xn} ≈ L(Bo), where Pe{xn+1 ∈ Bo|x1, ........, xn} is a
good estimate of the conditional probability P{xn+1 ∈ Bo|x1, ........, xn}

This definition seems a priori a good definition of the randomness. Indeed,
it says that, knowing the past, one cannot predict the future with a probability
too different from that of the uniform distribution. Intuitively, it is understood
well that it is well the independence of the Xn which one defines thus.

Besides, it is this condition which one wishes for the random sequences in
much books. However, in these books, one does not adopt this definition. In-
deed, the definition 2.1.9 is imprecise : one does not have specified the approx-
imation.

In fact, it is also the case in the definition 2.1.6 where one does not have
specified the frequency. However, that will pose problems as for the definition
of Franklin. It would thus be necessary to specify our definitions and to make a
theoretical study. But it is not the goal of this report more especially because
all the studies on this subject were delicate

Especially, that will not be necessary because we have to avoid this problem
by using sequences which are really samples of random variables and by study-
ing the properties that one has a priori on such sequences.
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Of course, we have proposed the previous theoretical definitions especially to
show that the results that we obtain in section 2.4.3 are well what is supposed
and what one always has wished for random sequences.

2.1.3 Use of random Variable

Use of really random Variable

Then, we use really random variables. It is this technique what one uses with
machines and the method of Von Neumann, Vazirani, and others ones : cf [4],
[46], [8].

As a matter of fact, they assume that xn is the realization of a sequence (not
IID) Xn defined on a probability space (Ω, A, P ) : xn = Xn(ω) where ω ∈ Ω.

Then they transforms {Xn} in a sequence {XT
n } = F({Xn}) such that XT

n

is IID. But they obtain often this result under some assumptions whose one is
not sure that they are checked.

Now, the matter of samples reappears : it is necessary to choose a correct
model for Xn. It is known that some ones are bad. Now there exists an infinity
of such models. How is it possible to choose the good one?

By using our method, we avoid this difficulty by proving that the sequence
XT
n which we obtain are IID for all the logical models Xn.

In particular these sequences XT
n satisfy properties compatible to definitions

2.1.8 and 2.1.7 for ALL logical models. It is a very strong result which resolves
the problem of definition.

Choice of a model : case of machines

We know that one cannot choose definition 2.1.1 as definition of randomness,
that is to say the following definition is bad.

Definition 2.1.10 (Definition 2.1.1) : We say that xn is random if there exists
an IID sequence of random variables Xn ∈ [0, 1] such that xn = Xn(ω).

For example, xn can be increasing (with a negligible probability).

In fact, this definition is not a problem solely when it is known a priori that
the sequence Xn is IID: it is the type of assumption which one makes when xn
is provided by physical phenomena in the machines generating random numbers
electronically.

Unfortunately, it is an assumption which is not completely sure. In fact, a
priori this assumption does not hold for these machines: the intruments of mea-
surements distort the physical phenomenon and induce bias and dependences
(cf section 2.2.2, page 33). The reasoning which follows from there thus become
partially dubious.
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In fact, this definition does not pose any problem solely when one knows
completely a priori the IID sequence Xn, like the case of a mechanical roulette
or a mechanical lotto.

In this case, one starts from a machine and one extracts a sample from it.
But this technique is not thus appropriate inevitably when one starts from

a real sequence yn: cf counterexample of the increasing sequences.

Choice of a model : general case

To a sequence of real, it corresponds an infinity of models. Even if xn can be
regarded as a sample of an IID sequence Xn, it can be also logically regarded
as the realization of an infinity of other models Xa

n (thus not IID).
The question thus should be asked: if one associates a model to a sequence

xn which criteria make it possible to be sure that this model is correct? It is a
study which was never made until.

Then, which is the theory on the models? Generally, the following facts are
admitted:

1) There never exists single model: a model is always related so that one
wants to make of it. The same object will not be translated in a model in the
same way according to in what one is interested.

2) Even when the goal is fixed, there are always several possible models,
which all can be as valid the ones as the others.

Then how to be sure that a model is the good? That seems impossible.

Choice of a model in a group of models

Group of models One can admit that a set of models contains correct mod-
els.

For example, when all the xn are different, one can admit that Xn has a
differentiable density with a Lipschitz coefficient K0 not too large. That can be
increased thanks to the value Min(xt(n+1) − xt(n)) where t is the permutation
checking xt(n+1) > xt(n).

In fact this hypothesis is usually admitted by the statisticians especially
those which use functional estimate.

Transformation in a group of models In order to avoid the problem of the
definition of the random sequence, one can transform them : {XT

n } = F({Xn})
as Von Neumann, Vazirani, and others ones do : cf [4], [46], [8]. But their
transformations do not have all the good properties necessary.

It is necessary that these transformations impose sufficiently useful prop-
erties on the models. For example, one can use the CLT which will impose
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for the majority of the models this assumption of continuity of the densities.
But it is simpler to use the Fibonacci functions Tq which have extremely strong
properties.

Fibonacci transformation If a sequence yn has reasonable models in the
group of models with continuous density, then, with these models it will check

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)K0

N(I)

]
,

where I is an interval and N(I) be the number of k/m ∈ I.

More precisely, all the models with continuous density and associated Lips-
chitsz coefficient K0 will check this equality. Therefore, one is well sure to have
finally

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)[1 + ǫ] ,

where ǫ is enough small.
Then, one is sure that Tq(Yn) could be regarded reasonably as an IID se-

quence.

By this way, one turns well the problem of the definition of an IID sequence.

The problem of other models

Then a question is asked : if a model is correct and does not belong to the
models with K0 rather small, is what it will produce the same properties? If
it produces another one, it will be a conctradiction. There will be two possible
logical conclusions.

But does this problem really exist there? a priori not! It seems absurd that
a sequence can be at the same time regarded as IID and not IID. However,
it is not completely obvious: there one finds the problem of the choice of the
definitions.

Then, does this problem really exist there?

As a matter of fact, the question is: will these models be they correct? In a
certain way, certainly not! But it is not so simple. It is in fact very difficult to
answer this question without making a study which proves it.
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The total answer : true for all the logical models

Now, by using the Fibonacci functions, one avoids the problem. In section 13.3,
one proves mathematically that, for almost all the models, one has well

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)K0

N(I)

]
.

It is a very satisfactory result. Indeed, it is known well that if one takes all
the possible models without no a priori, there will be an infinity of bad models.
Here, we find of it only a number negligible: it is already extraordinary.

Moreover, there is a still better result. One indeed finds that for some data,
for example those resulting from texts, ALL the logical models associated with
yn will check (cf chapter 13)

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1+

O(1)K0

N(I)

]
= L(I)

[
1+ǫ

]
.

One could better wish with difficulty like result.
Unfortunately, there remain the ǫ. But this problem can be resolved by

choosing ǫ with respect the size of the sample.

2.1.4 An answer to the problem of definitions

Indeed, we will understand that the bits bn that we regard as proven IID check
the following properties :

for all p ≤ Log(N)/Log(2), for all injective sequence js, for all logical models
Bn,

P

{
√
N
∣∣Pe −

1

2p
∣∣ ≥ σBx

}
= K1

([
1 − η

]
x
)
,

P

{
√
N

∣∣∣∣∣
Pe
pe

− (1/2)

∣∣∣∣∣ > σcp x

}
= K2

([
1 − η′

]
x
)
,

where η and η′ are small enough and σ2
B and σ2

cp are the variances associated
to Pe and Pe/pe when Pe = (1/n1)

∑n1

n=1 1b(Btn)1b2(Btn+j2
)......1bp

(Btn+jp
) and

pe = (1/n1)
∑n1

n=1 1b2(Btn+j2
)......1bp(Btn+jp

) where t is a permutation and n1 ≤
N .

Moreover, if Bn is IID, the same equalities holds with η = η′ = 0. That
means well that, if η and η′ are small enough, one cannot differentiate Bn from
an IID sequence. This result is proved in this report.

These results correspond well to definitions 2.1.7 and 2.1.8 which we think
to be good mathematical definitions of randomness. As a matter of fact, theses
properties are equivalent to these definitions. Then, by this way, one proves
that Bn satisfies these definitions for all logical models Bn.
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Thus, we solve the problem of mathematical definition and also the problem
of the choice of the model.

One can be convinced of the certainty of this result when ǫ = 1
250.000.000 for

a sample of size 25402545 bits : cf section 12.1.9. In this case, η = O(ǫ) and
η′ = O(ǫ). Indeed, on the current computers which produce results with a few
tens of decimals, one cannot differentiate the numbers which have the same or-
der that 1

250.000.000 .

2.1.5 Number of associated conditions

Concretely how can one check that a sequence xn satisfies these criteria? If there
is no special informations about xn, the natural method consists in executing
the tests associated with these definitions. However, the number of tests which
must be carried out is colossal.

For example, let us suppose that one wants to test all independences between
two numbers. First, it would be necessary to test that all the Xn and Xn+p are
independent. There is thus approximately N independences to test if there is a
sequence xn of size N.

After, it will be necessary to test the independence of 3 numbers: Xn, Xn+p,
Xn+q. For that, it is necessary to make approximately C2

N tests. For exam-
ple, C2

N ≈ 5000000000 if N= 100000. To test the independence of 4 numbers:
Xn, Xn+p, Xn+q, Xn+t, it is necessary to make approximately C3

N tests, i.e. ap-
proximately 166665000000000 tests ..... etc; and so on until p numbers where
p ≤ 16 ≤ Log(N)/log(2) .

Moreover, the set of all possible sequences defined by the algorithms A is
much vaster than subsequences of the type: Xn, Xn+p, Xn+q, Xn+t where one
only considers some possible subsequences.

In addition, it will also be necessary to choose the Borel sets Bo1 ⊗ Bo2 ⊗
...⊗Bop, on which one will carry out the tests. Of course, there is a enormous
number of possible Borel sets.

The number of tests which would have to be carried out is thus colossal. One
cannot do them all. In practice, one thus needs less restrictive quality standards.

2.1.6 Other criteria of randomness

In order to practically know the quality of a generator, the majority of the
authors use the natural method of the statistical tests. Considering the number
of the tests to be carried out, there is an insurmountable gap between the
mathematical definitions and the practical tests. In practice less restrictive
criteria are thus used.

The most common criterion is the following.
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Criteria 2.1.3 : One forces xn to pass a series of significant tests.

Currently, one often uses the Diehard battery of tests (cf [2] p 155. In cryptog-
raphy one adds tests like that of Maurer (cf [3]).

As these tests are only a negligible part of the possible tests, one fills this
lack in the following way.

Criteria 2.1.4 : One forces xn to check certain essential mathematical proper-
ties.

For example, one imposes on congruences that their period is long enough.

Now, even by imposing this new criterion, the generators will check always
only a negligible part of necessary properties. Then, Knuth suggests that a
sequence of numbers will be identified random if it cannot be differentiated
from a IID sample by lack of time. Of course, such a criterion will be especially
useful in cryptography.

More generally, all depends on the use which one wants to do of the genera-
tor. Thus in simulation, most of the time, it will be necessary to make tests to
know if the generator is usable for the envisaged application : cf [2] page 151.

2.2 Current random generators

In this section, we study the current random generators.

2.2.1 Various current techniques

To obtain random numbers, various methods exist. Let us quote in particular,

1) Pseudo Random generator of type xn = f(xn−1, ..., xn−q) : for example,

1-A) Pseudo Random generator for simulation .
1-A-1) Congruences xn ≡ axn−1 + c mod m
1-A-2) Add with carry (AWC) xn ≡ xn−j + xn−k + cn mod (m)
1-A-3) Mersenne Twister.

1-B) Pseudo Random generator for cryptography.
1-B-1) BBS (Blum, Blum, Shub) generator based on xn+1 = x2

n mod m.
1-B-2) RSA generator
1-B-3) Feedback shift register

2) Irrational numbers : for example π and e. On use the writing base 10 of
theses numbers.

3) Use of numerical data : for example music Rap for the Marsaglia Cd-Rom.
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4) Hardware-based random bit generators : they exploit the randomness
which occurs in some physical phenomena. They use machine or chips. Exam-
ples of such physical phenomena include :

4-1 elapsed time between emission of particles during radioactive decay
4-2 thermal noise from a semiconductor diode or resistor
4-3 the frequency instability of a free running oscilator
4-4 Quantum phenomena

5) Processes upon which software random bit generators may be based in-
clude

5-1 the system clock;
5-2 elapsed time between keystrokes or mouse movement;
5-3 content of input/output buffers;

6) Numerical tables, by example the CD-ROM of Marsaglia: in general, these
tables are made with sequences of numbers obtained from the previous methods.

2.2.2 Study

Generators using algorithms

For these generators (pseudo random generators or irrational numbers), it is
admited that it will never provide really random sequence : ”Any one who
considers arithmetical methods of producing random digits is, of course, in a
state of sin” : John Von Neumann (1951) (cf Knuth [1] page 1).

These generators will certainly not check the definitions of randomness given
by Knuth. One cannot thus mathematically regard them as random sequences.

1-a) Generators used in cryptography.
These generators have certain mathematical properties sometimes very nice (e.g.
the BBS). In particular, they are built to be unbreakable before a very long time.
It is precisely the work of cryptanalysts to prove that it is false.

1-b) Generators used in simulation, analysis, etc.
One forces to them to check certain tests. The current generators appeared sat-
isfactory in certain calculations, and certain calculations only. But contrary to
the generator BBS, that is proven by empirical way and not by a mathematical
way.

1-c) Generators using irrational numbers.
For ”e”, one has proved that it does even not satisfy the test of uniformity.
Concerning π, it satisfies the majority of tests. But one could nothing proven

mathematically. Moreover, this sequence is rich with remarkable patterns to a
numerologist (Knuth p 41, 151). As a matter of fact, the question is to know if
the randomness provided by π is better than that of the other pseudo-random
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generators.

Use of random noise

A true random bit generator requires a naturally occuring sources of random-
ness. Designing a hardware device or software program to exploit this random-
ness and produce a bit sequence that is free of biases and correlation is a difficult
task. Moreover, random bit generators based on natural sources of randomness
are subject to influence by external factors, and also to malfunctions. It is im-
perative that such devices be tested periodically (cf [3] ). Thus, Marsaglia has
found that some machines give numbers which have very poor quality : they
fail for some Diehard tests. Moreover, it is impossible to reproduce calculations
exactly a second time when cheking out a program.

Moreover
For the Hardware (Machines, chips) : these machines use some physical

noise (diode noise, quantum noise,...). Machines have tended to suffer from
malfunctions that are extremely difficult to detect.

For the Software-based generators : The behavior of such processes can vary
considerably depending on various factors, such as the computer platform.

The major defect of all these systems is that there can be correlations and
bias in the generated sequences. The underlying physical process can be ran-
dom. But there are many measuring devices between the digital part of the
computer and the physical device. These intruments can thus introduce bias
and correlations (cf [5] ch 17.14 Bias and Correlation).

One removes these bias and these linear correlations by various mathematical
transformations like that of Neuman or Vazirani ([4] [46]). One can also use hash
functions (cf 17.14, [5] ).

However, the linear correlation are only one of the possible correlation. There
exists correlations of higher order (quadratic cubic, etc : Cf [10] or section A.3).
If there are bits, the correlation of higher order are the multilinear correlation
between 3,4,5, etc bits. If one does not remove the correlation of higher order,
one will not have independence. However, the made transformations aim espe-
cially at removing only the correlation linear between two successive numbers
(e.g [4]). Indeed, it is very difficult to remove all the correlations, especially the
ones of high order.

Therefore, a priori the sequences of numbers built by the current
methods to remove the correlation are not IID. It is a serious defect
of the hardware device or software.
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Tables of random numbers

One can obtain such tables by mechanical processes like the lotto or the roulette.
They are the alone tables having results which are guaranteed IID.

But most of the time, these tables are obtained by the previous methods.
They thus have the defects of them

A particular case is the CD-Rom of Marsaglia. Indeed, the random bits of
this CD-ROM were made by combining music rap with sources of electronic
white noise and the output from the best of the latest crop of deterministic ran-
dom number generators, based on Marsaglia’s ”mulitply-with-carry” method.
”They seem to pass all tests I have put to them – and I have some very strin-
gent tests,” Marsaglia says.

But, the randomness of the obtained sequence was not proved mathemati-
cally. In this report, we wanted to know logically if this sequence were random:
cf chapter 3. This study shows that to have more certainty, it is necessary that
these sequences are built by a certain way

That led us to take up the idea of Marsaglia: to regard certain electronic files
as random noises, but to apply transformations a little more complex to them.
That thus makes it possible to obtain true random numbers with a computer
alone and to do without machines and chips. But, one can also use the numbers
produced by machines

In any case, these tables have a major defect: they are limited by their size.

Conclusion

On none of the current generators there is certainty which the obtained se-
quences are random: that which approaches more this result is the Cd-Rom of
Marsaglia.

However, much of users think that the provided generators are completely
reliable and use them without precaution. All this already led to some scientific
errors (cf [1] page 32). Thus, a more reliable solution should be obtained.

2.3 Advantages of our method

2.3.1 Comparison with the current methods

First, it is proved that the obtained numbers are really random. That had been
obtained in no other method. Moreover,

A) Comparison with the pseudo-random generators
First, the usual opinion, it was that no generator built on computer is ran-

dom: it is understood that it is an error. In fact as it thinks for example Von
Neumann, the truth is probably that no generator built by algorithm is random.
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Our method thus brings obvious concrete advantages. In particular, in cryp-
tography, there is no risks that the system can be broken. In simulation, there
is not to test the numbers obtained.

B) Comparison with generators based on natural sources of randomness
B-1) When one directly uses the program on a computer.

1) There does not need to add an additional machine to the computer.
2) There are no possible malfunctions as on the machines. Therefore, there

is not to regularly test them like those.
3) The sequence obtained starting from the electronic files can be reproduced

(it is useful for the checking of calculations).
B-2) When one uses the program on a source of random noises

1) That removes all the dependences, and maybe even certain effects of the
malfunctions.

2) One can have very long sequences quickly (contrary to the methods using
software).

C) Comparison with the CD-Rom of Marsaglia.
1) The results are proved.
2) The CD-ROM has a limited size.
3) A priori, it is possible that the sequence of the CD-Rom have defects.

2.3.2 Advantage for the definition of randomness

Our results bring even solutions to the problems of definition of randomness,
including the philosophical problems: our results are true for all logical model
associated to data.

2.4 Proof of randomness

The proofs of the randomness of sequences b0(n′) are throughout this report.
For better understanding these proofs, we summarize them here.

2.4.1 Randomness of used data

Our results are based on the fact that the data a(j) which we use can be regarded
as a realization of a sequence of random variables A(j) : a(j) = A(j)(ω). It
is thus appropriate to show that one can admit this assumption with certainty
and then to study the models A(j).

Let us announce that one studied this problem in a more complete way in
section 2.4.1 and chapter 10 .
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The data mean really random phenomena

In this paragraph, we show that the assumption a(j) = A(j)(ω) is a sure as-
sumption.

First, it is a scientist assumption universally admited when the aj represents
a physical phenomenon.

Moreover, even for a completely deterministic sequence, one can always write
a(j) = A(j)(ω) : in this case the model A(j) is deterministic. Moreover, one
can admit for this sequence A(j) various other realistic and nondeterministic
models.

But what interests us is to have a logical nondeterministic model. It is
the case for the real phenomena associated with hardware device or software
programs.

It is also the case when aj is resulting from certain electronic files. First,
these files often represent real phenomena. Then, one can even prove logically
that certain files result from nondeterministic models. It is the case for the num-
bers obtained starting from a dictionary: the defined words (or groups of words)
represent independent facts. The numbers obtained from these definitions are
thus independent.

If one wants to go into detail this question, one finds complex philosoph-
ical problems. But in any case, some phenomena are independent from each
other. Therefore, one has to note that the philosophies which would refuse the
assumption aj = Aj(ω) would not be in conformity with what exists in reality.
It appears normal to take not account of such philosophies. For more detailed
study, one can refer to the section 2.4.1 and to chapter 10.

For all these reasons, we thus adopt the assumption a(j) = A(j)(ω).

Asymptotic independance

In fact most of the time, one can admit that there is asymptotic independence.
With regard to the machines, that is due to the choice of the used real phe-

nomena which one wants independent as much as possible, for example quantum
phenomena.

With regard to the electronic files, that is due to their nature. The case of
the dictionaries was understood above. One can also take the encyclopaedias.
In this case, there is independence by groups, and thus Qd-dependence (cf [21]
page 369).

Moreover, one often uses several electronic files completely independent from
each other, for example, a dictionary and a computer program. The sequences
of numbers which they provide are thus independent.

More generally, for logical reasons one can be sure that the data of certain
electronic files have a certain asymptotic independence: e.g. the data obtained
from text (cf section 2.4.1 et chapter 10).

Thus for certain electronic files, asymptotic independence is a logical as-
sumption. For the machines, so that it does not have asymptotic independence
there, one would need a serious malfunction.
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General case

Our results do not need asymptotic independence to be checked. It is enough
for a vast majority of possible models that the A(j)’s are not determinist. But
in this case, it is difficult for the moment to specify which are the models which
are not appropriate.

On the other hand, if there is asymptotic independence, one can prove that,
under this assumption, the sequence b0(n′) is IID. It is thus surer to be under this
assumption. Thus for certain electronic files, one can prove by logical reasoning
that it is well the case.

Let us repeat that, for the machines, there would be a serious malfunction
if there is not asymptotic independence. Now, if the numbers provided by the
machines were deterministic, it would be much more serious. Because of that,
our method applied to machines makes possible to remove many dysfunctions.
It is enough in general that they continue to produce nondeterministic numbers.

2.4.2 Mathematical proofs

In this section, we want to show in a simple way why we are sure that the
sequence b0(n′) is IID.

Because most of the time one can admit that there is asymptotic indepen-
dence, we place oneself under this assumption. For a more general case, it is
necessary to refer to the various chapters of this report.

When the assumption of asymptotic independence is admitted, there are
two transformations which it is practical to apply under this hypothesis : the
Central Limit Theorem (CLT) and the congruence of Fibonaci. We have them
uses both in the transformations defined into section 1.4.

We will now understand the effects of these transformations. We thus study
the steps b, c, d, defined above in 1.4.1 .

b) To make uniform the marginal distributions.
b-1) We set e2(j) = e1(j) + rand0(j) ∈ F ∗(m1) for j=1,2,.......,J where

J/m1 ≈ 0.
A priori, because of this transformation, one can admit that P{E2(j) = x}

cannot be negligible, but equal about 1/m. One obtains these conclusions by
logical reasoning which we will detail in chapter 10.

Remark 2.4.1 Let us notice that it is supposed only that the model E2(j)
has marginal distributions which are not concentrated nearly a small number
of points : it is an assumption much weaker. One is thus sure logically that
one chooses assumptions which are correct. Also let us notice that it is with
this alone transformation that Marsaglia had concluded that the sequence of its
CD-ROM is IID. We thus choose a conclusion much weaker.

Now, let us suppose for example that the data e1(j) result from texts. If one
did not add rand0(j), one would know logically, a priori, that for some ”x”,
P{E1(j) = x} = 0. But to know it starting from the sequences e1(j), it would
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be necessary that one realized that the e1(j)’s results from an English text : it is
doubtful that one can obtain this conclusion if one has only the sequence e1(j).
This shows that, maybe one can do without adding rand0(j) (cf chapter 8.1,
sections 8.3 and 8.2), i.e. that, because one adds rand0(j), the result is very
sure.

Now one applies mathematical results.

b-2) One applies the Fibonacci functions Tm1 : e3(j) = mTm1 (e2(j)/m1).
We proved in the chapter 8.1 that P{E3(j) = x} ≈ 1/m1 for all logical

models, except maybe for a negligible number of them. Moreover, we proved
also that this applications makes the E3(j) independent.

c) Use of limit theorems.
c-1) One rewrites the e3(j)’s in the form of table with independent lines

f(i,n).

c-2) Lines are summoned : g(n) =
∑S
i=1 f(i, n) .

By using the very traditional Central Limit Theorem, one knows, that for
any injective sequence js such that j1 = 0, for any interval I,

P{G(n)/m ∈ I | G(n+ js) = gs, s = 2, ..., p} ≈ P{XGσ
∈ I} ,

where XGσ
∼ N(0, σ2) . It is also known that convergence is extremely fast

c-3) One takes this sequence modulo m : h(n) = g(n)
m

.
As a matter of fact, that amounts considering a second limit theorem (the

XOR Limit Theorem, XORLT): h(n) =
∑
i f(i, n). This sequence satisfies

P
{
H(j)/m ∈ I

∣∣ H(j + js) = hs, s = 2, ..., p
}
≈ P{H(j)/m ∈ I} ≈ L(I) .

This result is written also P
{
H(j)/m ∈ I

∣∣ H(j+js)/m = hs, s = 2, ..., p
}

=
L(I) +Ob(1)ǫ′.

This limit theorem corresponds to famous OR exclusive (XOR) modulo m.
In fact, it is much stronger than the Central Limit Theorem. We study it in
section 5.2.

d) One uses again the Fibonacci function.
d-1) We set x(n) = Tq0(h(n)/m) .
One applies the functions of Fibonacci Tq0 with a suitably chosen parameter

q : the smaller q is, the less there are Borel sets. Therefore, by choosing the
parameters well, and because of the above result in c-3),

P
{
X(n) ∈ Bo

∣∣ X(n+ js) = xs, s = 2, ..., p
}

= L(Bo) +
Ob(1)α√
Nq0

,

for all Borel set Bo. We shall prove this result in chapter 11.
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d-2) One obtains the sequence of bits b0(n′), n′ = 1, ..., q0N , formed by the
writing bases 2 of each x(n). Because of the previous property,

P
{
B0(n′) = b

∣∣ B0(n′ + js) = bs, s = 2, ..., p
}

= 1/2 +
Ob(1)α√
Nq0

.

Finally all is proven mathematically or logically.

2.4.3 Choice of the parameters

It is thus necessary to choose the parameters q0, m and m1. This choice is
carried out according to the size q0N of sample b0(n′) that we want to have and
according to the quality that we wish, i.e. according to ǫ.

In practice, one chooses ǫ according to q0N , the sample size b0(n′). Indeed,
one will impose and

2q0/2Γ−1(a2) ≤ 2α
√
m√

q0N
,

where a2 ≈ 4−q0 and where α ≤ 0.02.

Choice of the parameters according to the sample size

One thus chooses the parameters according to the sample size. In this para-
graph, we will clarify this point.

Let us suppose that we have a really IID sequence with uniform distribution
on [0,1/2] and ]1/2,0] and with a probability such as P{[0, 1/2]} = 0, 501. Then,
this sequence has not the uniform distribution on [0,1]. However, if we have a
sample with size 10, we will absoluetely not understand it. To understand this
difference, one will need samples with size larger than 1000.

One will thus solve the problem of the choice of ǫ in the same way: according
to q0N , the wished size of the sample, one will choose ǫ and thus T ∗. Let us
translate that mathematically.

Let us note by Pe the empirical probability of an interval I associated with
a sequence x∗n = X∗

n(ω), n=1,2,....,N. Then, if X∗
n is a sequence of IID random

variables with uniform distribution, if N is big,

P{N1/2|Pe − L(I)| > σb} ≈ Γ(b) ,

where σ2 = L(I)[1 − L(I)] .
Now, if X∗

n checks only equation 1.2 , i.e. P{X∗
n ∈ I|x∗2, ........, x∗p} = L(I) +

Ob(1)ǫ, one can prove that

P{N1/2|Pe − L(I)| > σb} ≤ Γ
{
b[1 − η(ǫ)]

}
,

where η(ǫ) ≥ 0 and η(ǫ) → 0 as ǫ→ 0.

39



For example, let us suppose that we built T ∗ so that η(ǫ) = 0.1. In this case,
for b=1,5

P{N1/2|Pe − L(I)| > σ.1.5} ≤ 0, 134 under IID hypothsesis,

P{N1/2|Pe − L(I)| > σ.1.5} ≤ 0, 148 under hypothesis of equation 1.2.

However, it is known that if there is a really IID sequence, Pe is close to L(I)
with a certain probability: it is completely possible that Pe is enough different
from L(I), but the probability that occurs is weak.

Now, under the assumptions of equation 1.2, it is also possible that Pe is
enough different from L(I), but that is not likely much more to occur than in
really IID case.

With such a result, it will be thus difficult to differentiate the x∗n from a
really IID sample.

Of course, if it is necessary, one can impose η(ǫ) smaller : for example,
η(ǫ) = 0.01. In this case,

P{N1/2|Pe − L(I)| > σ.1.5} ≤ 0, 135 under hypothesis of equation 1.2.

This type of result holds again for I1 ⊗ ....⊗ Ip where the Ii’s are intervals.
Moreover, one obtains a similar result for the empirical conditional probability
PCe = Pe{x∗n ∈ I|x∗2, ..., x∗p} :

P
{
N1/2

∣∣PCe − L(I)
∣∣ > σCp b

}
≤ Γ

(
b[1 − η′(ǫ)]

)
,

where η′(ǫ) → 0 as ǫ→ 0. This results are proved in chapter 9.

Finally if it is wanted that one cannot differentiate the sequence x∗n from an
IID sample on intervals, ǫ = O(N−1/2) should be chosen.

Case of Borel sets

Then, in order to obtain the previous results, one uses the theorem 1 applied to
T ∗ : we deduce P{X∗

n ∈ I|x∗1, ........, x∗p} = L(I) + ob(1)ǫ for the intervals I.
Now, we need an equivalent result for the Borel sets Bo. For that, one uses

Xn = Pr2q(X
∗
n) : i.e one restricts X∗

n to his q first bits (cf def 1.3.5 ). Then, for
all Borel set Bo,

P{Xn ∈ Bo|x2, ........, xp} = L(Bo) +Ob(1)2qǫ .

It is thus enough to choose q not too large and ǫ enough small so that 2qǫ is
also enough small. In fact, it is necessary to choose 2qǫ = O((qN)−1/2).

It is what one will make to define the q0 of the application Tq0 at step d.
Finally, with the method of construction defined in section 1.4.1, one obtains
for all borel set Bo

P{X(n) ∈ Bo|x2, ........, xp} = L(Bo) +
Ob(1)α√
q0N

, (2.1)
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where α ≤ 0.02 et ou q0N is the size of sequence b0(n′).

Then, one deduced the relations about the empirical probabilities of Borel
set similar to those with the intervals.

Relations about B0(n′)

The previous results being true for all Borel sets, one deduced equivalents results
about the bits b0(n′) provided by the writing of x(n) bases 2.

One deduces from equation 2.1 that, for all bits b,

P{B0(n′) = b|b2, ........, bp} = 1/2 +
Ob(1)α√
q0N

,

where q0N means the size of the sequence b0(n′).

2.4.4 Empirical proofs of the randomness of b0(n′)

Result d-2 ensures that the associated empirical probabilities could not be dif-
ferentiated from those of an IID sequence.

Indeed, with the notations of section 2.4.3, one understands that empirical
probabilities Pe and PCe will check the equations

P{N1/2|Pe − 1/2p)| > σpx} ≤ Γ
(
x[1 − η]

)
,

P{N1/2|PCe − 1/2)| > σCp x} ≤ Γ
(
x[1 − η]

)
,

where η is enough close to 0.

Moreover, a numerical study shows that one cannot differentiate the empir-
ical probabilities associated with the b0(n′) from those of an IID sequence.

2.5 Precise wording of the result

2.5.1 Wording

It is thus proven that, for the model B0(n′) built from ANY models of the
data a(j) (except maybe for a negligible minority, according to the case), that
the sequence B0(n′) cannot be differentiated from a sequence of IID random
variables.

In particular, it satisfies the properties

P{B0(n) = b | B0(n+ js) = bs} = 1/2 +
Ob(1)α√
Nq0

,
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P{N1/2|PCe − 1/2)| > σCp x} ≤ Γ
(
x[1 − η]

)
,

which correspond theoretically and empirically to the definition 2.1.9 of the
randomness.

It satisfies also

P{N1/2|Pe − 1/2p)| > σpx} ≤ Γ
(
x[1 − η]

)
,

which corresponds empirically to the definition 2.1.7 of the randomness.

That means that the sequence b0(n′) cannot be differentiated from a sample
of IID random variables.

2.5.2 Alone risks of errors

In fact, the alone risk that a sequence b0(n′) built by our method is not random,
it is first that an human error slipped in some place. But this risk can be
eliminated by checking carefully each step of calculation and of the study of
data: contrary to the machines, if there is an error, one can detect it keenly.

The second risk is that computer itself have a failure. This risk cannot never
be eliminated completely. Anyway, in this case, any calculation is likely to be
false.

2.6 Uses of these results

2.6.1 Direct programming on computer

A great number of the electronic files recorded on hard disk provide sequences
of data a(j) which one can use to generate random numbers.

There is thus a simple program which provides numbers guaranteed random
without machine or additional chip. It is as simple to use as the function
”random”.

It is thus a method quite superior to the current generators.

2.6.2 Application to hardware devices

One can choose like data those provided by machines or chips. One then applies
our transformations defined into section 1.4. That offers several advantages.

On the one hand any dependence is removed, (and not only linear correla-
tions).

On the other hand, some of their defects could disappear. Indeed, our
method can be applied as soon as there is a certain asymptotic independence. In
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fact it is not even necessary. It is often enough that the data are not completely
deterministic.

It is certainly the case for the data provided by the machines even if they
have malfunctions. If not, the machine has a very serious problem.

It is thus a new method which one proposes to transform the noises provided
by these machines. The advantage, it is that it needs extremely weak assump-
tions to be applied. It is thus much surer. However one produces a little less
quickly random numbers.

2.6.3 Application to software methods

One can choose as data those provided by the software methods if they have
sequences of enough large size.

But normally, it will not be useful. If the files of the computers are used, our
results are much surer than those provided by the software methods. Moreover
it is simpler to use texts than the system clock for example.

2.6.4 Use of files of IID sequences

By using the method described in this report, one can develops files of numbers
which are proved IID.

They could thus be placed for public use in the form of files to download, of
files recorded on hard disk, of DVD or of CD-Rom as it is the case for the CD-
Rom of Marsaglia (cf Internet site [20]) or for the file which we built according
to our method.

2.6.5 Transformations of b0(n′)

From sequences b0(n′) which are proved random, one can obtain a multitude
of others by using any sequences yn provided by generators which are pseudo-
random or even different. Indeed, b0(n′) + yn′ modulo 2 is also IID (cf theorem
5).

2.6.6 Software for data external to the computer

One can build softwares allowing to transform the majority of data external to
the computer in random numbers. They will apply with safety only to some
types of data, for example, texts.

2.6.7 Complete construction

It is the matter to completely use the method of programming defined in this
report with new data and choice of new parameters.
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This method can be used when one wants, for various reasons, to obtain new
sequences xn completely reliable.

For that, it is initially necessary to collect the data, to transform them in
numbers, to check that the necessary assumptions are satisfied and that there
are no errors: for example, the transformation of the text files Apple Work 2006
currently transforms, not only the texts, but also the framework. That revealed
a too great number of 0, which distorts calculations.

Then, it is necessary to choose the parameters according to the wished re-
sults, after to program the transformations and to carry out this program.

A certain work thus should be done. It is the normal price to pay to have
the certainty that one wishes about the randomness of the obtained numbers.

2.6.8 Combination of several methods

If one wants to avoid any risk of human error, of machine’s error, of computer’s
error or others, one can build several sequences b0(n′) as described above in
section 2.6.7.

One will thus build them with different data. In this case, one can also use
machines, even different machines. One can even employ the files of random
numbers which exist over the world.

Then one will summon modulo the 2 various sequences of obtained bits.

That will reduce the probability of any potential error, human or different.

Indeed, if one summons modulo 2 : bn =
∑I
s=1 b

s
n, it is enough that only

one sequence bsn is a random sequence, so that bn is it.

That means that the probability that the sequence bn is not IID is the prod-
uct of the probabilities that each sequence bsn is not IID. One finds very quickly
very negligible probabilities of failure (and including even the human errors and
the dysfunctions of the computers).

One can employ this technique if it is though that it is worthwhile, for ex-
ample if one want to build a rocket being worth some billion dollars.

Remark 2.6.1 As a matter of fact, we do in this way by using several times
methods which make a sequence IID (Fibonacci transform, XORLT, transfor-
mations similar to permutations : cf chapter 11 and 12 ).

2.7 Conclusion

One thus obtains a sequence b0(n′) which can be considered like an IID sample.
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However, there is a probability that it is not it. But this one has the same
order to occur as a really IID sample fails for a test of randomness.

One thus obtained well a sequence which one will be able regarded as IID
with a probability infinitely close to 1.

One can obtain this sequence b1(n′) by asking it to rene.blacher@imag.fr
(Laboratory LJK, University Joseph Fourier of Grenoble, France) 1. Of course,
by prudence, we have carries out on this sequence all the known tests of ran-
domness.

There is thus well thus a total solution to the problem of random numbers.
It is simple to use. This solution will have all its interest
1) For sensitive calculations.
2) In cryptography : an IID sequence being inherently unbreakable.
3) In simulation, analysis, etc, by avoiding having to test the provided sequence.

1More precisions on this subject will found in [18].
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Chapter 3

Cd-Rom of Marsaglia

In this chapter, one will study the method which Marsaglia employed to create
its CD-ROM. As a matter of fact, Marsaglia never described its method. It is
only an assumption which one finds in various documents about this subject.

The Marsaglia Random Number CD-ROM contains some 5 billion random
bits, divided into sixty 10-megabyte files.

The random bits were made by combining three sources of electronic white
noise with the output from the best of the latest crop of deterministic random
number generators, based on Marsaglia’s ”mulitply-with-carry” method. ”They
seem to pass all tests I have put to them – and I have some very stringent tests,”
Marsaglia says.

A truly random stream of bits remains random when it’s combined with any
other stream of bits, no matter how patterned. Marsaglia mixed digital tracks
from rap and classical music selections and even a few digital pictures into some
of the 10-megabyte files on the CD-ROM. Both the untouched and mixed files
seem to pass his randomness tests, he reports.

Then, Marsaglia has studied his CD-Rom by using tests. In this chapter one
will study this method by logical reasoning.

One should thus study the summation modulo m of three generators my′n =
gn +myn +mzn ∈ F ∗(m) where yn ∈ F (m) and zn ∈ F (m) are random se-
quence (non IID) and where gn ∈ F ∗(m) is a pseudo random generator. But
we will be satisfied to study the case my′n = gn +myn ∈ F ∗(m).

One will note that it is likely to obtain IID sequences by this method if the
parameters well are chosen. Unfortunately there is no complete certainty.

In this chapter, one supposes that the yn’s derive from a text, e.g dictionary,
report, etc. One employs the data which we use in the section 11.2. We studied
their behavior in the chapter 10 .

Remark 3.0.1 Marsaglia has not used texts but Rap music. It is no important.
In this chapter we want only to study logically the method of Marsaglia. Then,
we use texts because we studied them in a detailed way.
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3.1 Theoretical study

We will understand now that the behavior of the Y ′
n depends on the way in

which one builds the yn.

3.1.1 Counterexample

First, let us notice that in some cases, to add gn and myn is not enough to
obtain an IID sequence.

Example 3.1.1 Suppose that m=10000 and that myn ∈ {1000, 2000, ...., 9000}.
Study It is not difficult to understand that there will be a dependence between
the y′n: P{Y ′

n ∈ I | y′2, ., y′p} 6= L(I) for certain intervals I. Indeed, let R(gn) =

d2d3d4 where d1d2d3d4 is the writing base 10 of gn. Then, R(gn) is a pseudo-
random generator.

In particular, it is clear that, for each n, the y′n will be concentrated nearly
a small number of points. That will mean that one will have points k such as
PY ′

n
{y′n = k} is much larger than 1/m (where PY ′

n
is the probability associated

with the sequence Y ′
n). �

3.1.2 Case of 2-dependence

In section 11.2, we understand that the data can be regarded as 2 dependent.
Then, we suppose now that the sequence yn is 2-dependent.

First, study the behavior of (y′n+j′1
, y′n+j′2

, ....., y′n+j′p
) when 0 = j′1 < j′2 <

.... < j′p.

Clearly, if j′s0+1 − j′s0 ≥ 2,

(y′n+j′1
, y′n+j′2

, ....., y′n+j′p
) =

(
(y′n+j′1

, y′n+j′2
, ....., y′n+j′s0

)(y′n+j′s0+1
, ....., y′n+j′p

)
)
,

where (yn+j′1
, yn+j′2

, ....., yn+j′s0
) and (yn+j′s0+1

, ....., yn+j′p
) are independent (be-

cause the 2-dependence).

Therefore, to study the dependence of y′n, it is sufficient to study the case
j′s = s− 1, i.e. the (y′n, y

′
n+1, ....., y

′
n+p−1).

Now, one knows it is more logical to limit oneself to study the cases where
p ≤ log(N)/log(2) : cf remark 2.1.1. For example suppose p ≤ 22. In this
case, if the gn’s produce sequences where (gn, gn+1, ....., gn+22) are independent,
the (y′n, y

′
n+1, ....., y

′
n+22) are independent. Therefore, one can consider that

(y′n+j′1
, y′n+j′2

, ....., y′n+j′p
) are also independent.

Then, it is enough to choose pseudo-random generators such that (gn, gn+1, .
...., gn+22) are independent. In this case, to suppose that the y′n are independent
will be a reasonable assumption.
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As it is considered that the generators generally have uniform marginal dis-
tributions, to suppose that the y′n are IID will be also a reasonable assumption.

Therefore the method of Marsaglia can be sufficient to obtain IID sequences
if the parameters have to be suitably chosen. It is the same for the the pseudo-
generator gn and for the type of data : if one uses texts, one can study it by
logical reasoning (cf chapter 10). But is it possible for Rap Music?

However it remains to be checked that the marginal distributions are quite
uniform: the tests of uniformity of the gn means that some tests are checked,
for example for intervals. But is this case for all Borel sets? It is similar for
independences: they are independences for some hypercubes of the gn: what is
it for the others?

3.1.3 Transformation of datas

Now, one can use the data directly. One can also transform them. It is what we
do for the transformation of the sequence c(j) defined in section 11.1.2 during
the construction of the sequences of random bits b1(n′). We now remind the
definition of these d(j).

Example 3.1.2 Let c(j) ∈ {0, 1, ..., 31} be a sequence of data. Let r0 ∈ N
∗.

We set d(j) =
∑r0
r=1 c(r0(j − 1) + r)32r−1.

Then, we understand now that the behavior of y′n depend on the choice of
transformation and on parameters

Size of r0 and conditional dependence

One will now understand that one can choose r0 large in order to decrease the
dependences.

For that, always let us choose data resulting from texts. If one finds a ”. ”,
it there a strong probability so that it is followed by a ”space character”.

Therefore, it is possible that it has there some strong dependences between
c(j) and c(j+e) (where c(j) are the letters modulo 32) especially for e=1. But
this dependence decreases very quickly if e increases.

That will mean that the possible concentrations of d(j+1) given d(j) =∑r0
r=1 c(r0(j − 1) + r)32r−1 will be less strong if r0 increases. In practice, it

will be found that the associated probabilities P{D(j + 1) = d|D(j) = d1} are
always much smaller (and by far) than 32r0/8 as soon as r0 is enough large : for
example r0 ≥ 20 as the study of the conditional probabilities or the numerical
calculations cited in this report proves it.

Let us suppose, for example, r0 = 1. Thus D(j)=C(j). Let us suppose that
d(j− 1) means a ”.” . Then, there is much chance that d(j) = dEs where dEs is
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the numerical value of the ”space character”. The conditional probability will
be thus concentrated close to the point dEs.

Let us suppose now that r0 = 60 and that d(j − 1) means a piece of text
ending in a ”.” . Then, d(j) belongs to the set of the part of texts starting with
a ”space character”. There is 3259 such sets. Thus the conditional probability
is about 1/3259 for these points and equal to 0 for the others. As the uniformity
would be of 1/3260 for all the points, it is understood that it is different - but
not too - from conditions of an IID sequence.

Indeed, there is not much relationship between the last decimals of D(j)
and the first of D(j-1). That means that the associated distribution functions
are not too far away from independence. A fortiori, that means also that con-
ditional distributions of D(j − 1) + g′(j − 1) given D(j) + g′(j) = d′j - where
g′ ∈ F ∗(32r0) is a pseudo-random generator - are not concentrated nearly a
small number of points but are well distributed on F ∗(32r0).

The previous result is checked numerically : in section 3.2.4, one studies the
dependence and the conditional density on samples of yn and y′n .

3.1.4 Independence induced by the data

Independence of times of emergence of the ”.”

We use again the example of ”.”. We note by po their numerical value. Let
zt ∈ {1, 2, ...,m} be the value of successive ”n” such as yn = po, i.e. yzt =
po. This sequence zt is random : one can write zt = Zt(ω5) where Zt is a
sequence of variable increasing in a random way, defined on a probability space
(Ω5,A5, P roba5). Then, in order to obtain my′n = gn +myn, we add gzt

to
yzt

= po .
In practice, we understand that Zt+1 − Zt is close to an IID sequence (not

necessarily with uniform distribution). It is enough to make some numerical
simulation to realise that.

Test about the zt In order to check the independence of the zt, one made
the chi-squared test for the (zt+p+1 − zt+p, zt+1 − zt) on various text file for
different p.

One used sample where the number of points po is between 584 and 2415.
One makes the chi-squared test of independence with estimate of parameters
over partitions (6,6), i.e. with the chi-squared statistics χ2 with 25 degrees of
freedom.

Then, one has obtainded for theses samples of (zt+2 − zt+1, zt+1 − zt) the
following chi-squared statistics :

χ2 25.354 17.901 39.102 31.012 24.980 42.557
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One reminds that the 0.01 significance level at 1 percent (with 25 degrees of
freedom) is 44.31. Then one can deduce that the distribution is close to inde-
pendence.

Conclusion This result means that the zt+1 − zt has a behavior close to an
independent sequence.

Therefore, this result means that my′zt
= gzt

+myzt
= gzt

+mpo, has a be-
havior close to an IID sequence because gzt can be regarded as chosen randomly.

Then, it is not possible to predict mY ′
n given Yn = po. Therefore, it is not

possible to predict mY ′
n given Y ′

n = y′n thanks to yn = po.
The same reasoning holds for other value of yn. Therefore mY ′

n has a be-
havior close to an IID sequence.

3.1.5 Study of yn = ⌊d(n)(m/32r0)⌋
In section, 11.1.2, one uses the sequences y′n when yn =

⌊
d(n)(m/32r0)

⌋
where

m ∈ N
∗. Then, we want to know if this transformation brings sufficient im-

provements. As a matter of fact it brings little improvement. However, in this
cas also, the parameters have to be suitably chosen.

First, recall that, in the example of subsection 3.1.1, the problem derives
from what the support of yn is too small (cf also section 5.4). With data re-
sulting from texts, one can find a problem of this type because the number of
possible texts yn is tiny compared to the number of all the sequences with values
in{0, 1, ...,m− 1}. It is the case if the d(j) belong to a larger set, i.e. if m/32r0

is large.

On the other hand if m is smaller than 32r0 , one does not have maybe prob-
lem of this type. Admittedly all the possible texts belong to a subset fixed. But
this set is unknown. It is even more unknowable if there are samples of size not
too large compared to m. It is thus difficult to conclude from it logically that
the probability is concentrated close to a small number of points. It will be thus
better to choose m ≤ 32r0 and samples d(j) of size not too large compared to
m.

This example shows that it is necessary to choose well the parameters m and
r0.

3.2 Numerical results

Thie previous conclusion is confirmed by numerical study.
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3.2.1 Test of the y′
n’s

One carried out tests of independence between various sequence y′n and y′n+p .
It is known that the marginal distributions are uniform. One thus uses chi-

squared test of independence without estimate of parameters : χ2
I = χ2

X,Y −
χ2
X − χ2

Y : cf proposition A.1.1.
It is used with partitions (20,20) . Therefore χ2

I has D = 192 degrees of

freedom. Because D is big, the statistics χ2
Nor =

√
2χ2

I −
√

2D − 1 has aprox-
imatively the N(0,1) distribution when there is independence : cf proposition
A.1.2

One uses this statistics for various samples of (y′n, y
′
n+p).

Then, for various ”p”, for 20 various samples, the following table of the max-
imum of |χNor| has been obtained.

p 2 3 4 7 10 50
Max|χNor| 2.158 1.989 2.198 1.8054 1.6879 1.1457

All the carried out tests conclude to independence.

Also let us recall that Marsaglia affirms that the numbers of its CD-ROM
passes all the test known. This result thus confirms its conclusions. But the con-
struction of its sequence y′n is a little more complex and thus even more random.

3.2.2 Test between y′
n and gn+p

One makes tests of independence between various sequences y′n and gn+p. It
is known that the marginal distributions are uniform. Then, one uses χ2

I =
χ2
X,Y −χ2

X −χ2
Y with partitions (20,20) . The statistics has D = 192 degrees of

freedom.
Then, for various ”p”, for 20 various samples, the following table of the

maximum of |χ2
Nor| has been obtained:

p 2 3 4 7 10 50
Max|χ2

Nor| 2.170 2.054 2.024 1.7754 1.4493 2.2017

The tests that we have carried out conclude to independence.

3.2.3 Test between y′
n and yn+p

We made the test of independence between various sequences y′n and yn+p. In
this case, it is necessary to estimate the marginal distributions.

This test has been used with partitions (20,20) with the classical statistics
which we note χ2

Es. Then, for various ”p”, for 20 various samples, the following
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table of the maximum of |χ2
Es| has been obtained:

p 2 3 4 7 10 50
Max|χ2

Es| 2.130 2.0455 2.201 1.745 1.789. 1.634

3.2.4 Other tests

Now, one uses the polynomial correlation coefficients of higher order ρi,j between
y′n+1 and (yn, yn−1, ...) , ρ′i,j between y′n+1 and (y′n, y

′
n−1, ...) , and also ρ”i,j

between yn+1 and (yn, yn−1, ...) : cf [10]; cf also section A.3. We know that∑
j ρ

2
1,j ≤ 1 and that y′n+1 = f(yn, yn−1, ...) if and only if

∑
j ρ

2
1,j = 1 : cf [10].

One estimates ρi,j by using empirical correlation coefficients of higher order .
Then, one has estimated

∑
j ρ

2
1,j , for 20 samples of yn and y′n with size vary-

ing from 10.000 to 1.000.000. One varies r0. One obtains the table representing
the maximum of the

∑
j ρ

2
1,j :

r0 = 5 6 7 8 9 10 11 12∑
j(ρ

′
1,j)

2 ≤ 0.041 0.03 0.011 0.021 0.012 0.006 0.025 0.004∑
j(ρ1,j)

2 ≤ 0.05 0.043 0.03 0.07 0.06 0.04 0.03 0.008∑
j(ρ”1,j)

2 ≤ 0.2 0.16 0.13 0.1 0.08 0.06 0.055 0.01

In the same way one also estimated the conditional densities by using the
density of dependence (cf th 5-3, page 8 [10]) and the empirical orthogonal
functions page 10 [10].

On the figure 3.1 one has the curve of the conditional density f ′y of y′n+1

given yn. On the figure 3.2 one has the curve of the conditional density fy of
yn+1 given yn. It is in question the density where the maximum of sup|fy(yn)|
is reached.
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Figure 3.1: Conditional density of y′n+1 given yn
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Figure 3.2: Conditional density of yn+1 given yn

3.3 Conclusion

The previous study shows that one can improve the result by choosing better
the parameters.

If they are well chosen, there is many reasons to think that yn is IID. But
we have not a certainty : that is difficult to specify mathematically. Maybe a
thorough study would allow to arrive at certainties.

But it is simpler to use other transformations whose properties are appropri-
ate well for the construction of an IID sequence and can be studied more easily.
It is the aim of this report.
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Chapter 4

Basic properties

4.1 Basic theorem

In this section the basic theorem 1 is proved. To this end, one uses functions
T ∗ defined by the following way.

Notations 4.1.1 Let d ∈ N
∗, d ≥ 2, p, q ∈ N

∗, p, q ≥ 2. Let G(x) ≡ dpx mod
m defined on F ∗(m) = {0, 1, ....,m − 1} where m = dp+q − 1. We denote by
T ∗ : F (m) → F (m) the function such that m.T ∗(k/m) ≡ G(k) mod m and
0 ≤ T ∗(k/m) < 1 for k=0,1,...,m-1 .

4.1.1 Proof of theorem 1

New statement of the theorem

With the previous notations , the theorem 1 can be specified by the following
way.

Proposition 4.1.1 Assume p=q. Let Z ∈ F (m) be a random variable. Let f be
the density of Z with respect to µm (µm(k/m) = 1/m) : f(x) = m.P{Z = x}.
Let K0 > 0 such that, for all z, z′ ∈ F (m), |f(z) − f(z′)| ≤ K0|z − z′|.

Let I be an interval of F(m). Let N(I) be the number of points of F(m) which
belong to I.

Then, if N(I) ≥ dp,

P
{
T ∗(Z) ∈ I

}
= N(I)/m+ e(K0, d, p),

where
e(K, d, p) = 2(3K0 + 4)/dp +O(K0/m),

with

O(K0/m) =
2(K0 + 1)

m

[
2 +

(dp + 1)

dp(dp − 1)

]
+

3(K0 + 1)(1 + 1/dp)

dp(dp − 1)
.
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Proof of proposition 4.1.1

First, we simplify notations used in this proof.

Notations 4.1.2 In order to simplify the notations, we set T = T ∗. Let
G′(x) ≡ dqx mod m defined on F ∗(m). We denote by T’ the function T ′ :
F (m) → F (m) such that mT ′(k/m) ≡ G′(k) modulo m and 0 ≤ T ′(k/m) < 1
for k=0,1,...,m-1.

Then the following lemmas hold.

Lemma 4.1.1 The following equalities hold : G−1 = G′ , (T ∗)−1 = T ′ .

Lemma 4.1.2 Let I = [a,b[ where a = k’/m and b= k*/m. We set T ′(a) = α.

Let T̃ be the function such that T̃ (k/m)−T ′(k/m) = 0 or 1, and α ≤ T̃ (k/m) <
α+ 1.

Then, T−1(I) = T ′([a, b[)

Now one needs the following notations

Notations 4.1.3 One defines f̃ [α, α + 1[→ R by f̃(t) = f(t) if t ∈ [α, 1[ and

f̃(t) = f(t− 1) if t ∈ [1, α+ 1[.

Notations 4.1.4 We set D = dq/(dp+q−1). Let [α, α+1[= U1∪U2∪ .....∪Udp ,
where Us = [α + (s − 1)D,α + sD[ for s = 1, 2, ......, dp − 1, and Udp

= [α+ 1 − (dq − 1)/(dp+q − 1) , α+ 1[ .

Notations 4.1.5 We denote by N(I) = Hdp+r the Euclidean division of N(I)
by dp.

Remark that N(I) is the number of k/m such that a ≤ k/m < b. Therefore N(I)

is the number of k/m ∈ F (m) which belongs to T̃ ([a, b[).
Then the following result holds.

Lemma 4.1.3 For t = 1, ..., dp − 1

F (m) ∩ Ut ∩ T̃ (I) =
{
α+ (t− 1)D + h/m

∣∣ h = 0, 1, ...,H − 1 + et
}
,

where et = 1 if t ≤r and et = 0 if not.

Proof : At first F (m) ∩ T̃ ([a, b[) = {T̃ (a+ k/m) | k = 0, 1, ..., N(I) − 1}.

Let G̃(x) be the function such that G̃(x) ≡ G′(x) and mα ≤ G̃(x) < m + mα.

Then, T̃ (a+ k/m) = G̃(ma+ k)/m for k=0,1,...,N(I)-1.

Let k = hdp + s the Euclidean division of k by dp. Then, G′(ma + k) ≡
mα+G′(k) ≡ mα+ dq(hdp + s) ≡ mα+ dp+qh+ sdq ≡ mα+ (m+ 1)h+ sdq ≡
mα+ h+ sdq.
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Now h+ sdq < m.
Indeed, h ≤ dq − 1 and s < dp. Then, h + sdq ≤ (dq − 1) + (dp − 1)dq =
dq − 1 + dp+q − dq = dp+q − 1 = m.
Moreover, if h = dq−1, m > k = hdp+s = (dq−1)dp+s = dp+q+s−dp. Then,
if s = dp − 1, m > dp+q − 1 = m : that is impossible. Therefore, s ≤ dp − 2.
Then, h+ sdq ≤ dq − 1 + (dp − 2)dq < m.

Then, G′(ma + k)/m ≡ T̃ (a + k/m) = α + h/m + sdq/m = α + h/m +
sdq/(dp+q − 1) = α+ h/m+ sD.

Now, if k ∈ [0, N(I) − 1] ∩ N, h ∈ [0, H − 1] ∩ N or h ∈ [0, H] ∩ N .
If h= 0, s ∈ [0, dp − 1] ∩ N.
if h= 1, s ∈ [0, dp − 1] ∩ N .
....................
if h= H-1, s ∈ [0, dp − 1] ∩ N.
if h= H, s ∈ [0, r − 1] ∩ N.

We deduce the lemma. �

We deduce the following result.

Lemma 4.1.4 There are H+et points of T̃ (I) which belongs to Ut and H points

of T̃ (I) which belongs to Udp .

Remark 4.1.5 The points of F(m) which belongs to Ut are the H or H+1 first
points of Ut .

Then, the following lemmas holds

Lemma 4.1.6 We set ∆k = H + ek. Then,
∑dp

k=1 ∆k = dpH + r = N(I).

Lemma 4.1.7 The following equality holds : sup(f) = K0 + 1.

Proof Indeed, f is defined on F(m). Then, there exists s0 such that f(s0) ≤ 1.
Then, by our assumptions |f(s)− f(s0)| ≤ K0|s− s0| ≤ K0 for all s ∈ F (m). �

Lemma 4.1.8 Let Z̃ be the sequence Z̃(ω) = Z(ω) if Z(ω) ≥ α and Z̃(ω) =
Z(ω) + 1 if Z(ω) < α for all ω ∈ Ω . Then,

{
T (Z) ∈ [a, b[

}
= ∪k

{
Z̃ ∈ Uk ∩ T̃ ([a, b[)

}
.

Proof The following equalities hold,

{
T (Z) ∈ [a, b[

}
=
{
Z ∈ T−1([a, b[)

}
=
{
Z ∈ T ′([a, b[)

}

=
{
Z ∈

{
[0, α[∩T ′([a, b[)

}}
∪
{
Z ∈

{
[α, 1[∩T ′([a, b[)

}}
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=
{
Z + 1 ∈ [1, α+ 1[∩

{
T ′([a, b[) + 1)

}}
∪
{
Z ∈

{
[α, 1[∩T ′([a, b[)

}}

=
{
Z + 1 ∈

{
[1, α+ 1[∩T̃ ([a, b[)

}}
∪
{
Z ∈

{
[α, 1[∩T̃ ([a, b[)

}}

=
{
Z̃ ∈

{
[1, α+ 1[∩T̃ ([a, b[))

}}
∪
{
Z̃ ∈

{
[α, 1[∩T̃ ([a, b[)

}}

=
{
Z̃ ∈ T̃ ([a, b[)

}

= ∪k
{
Z̃ ∈ Uk ∩ T̃ ([a, b[)

}
. �

Lemma 4.1.9 The Euclidean Division of m by dp is m = Hdp + r with r =
dp − 1 and H = dq − 1. Moreover, H/m = Ob(1)/dp.

Proof Indeed, m = dp+q − 1 = Hdp + r = dp(dq − 1) + r = dp+q − dp + r :
r = dp − 1.

Moreover, (H/m) ≤ (dq − 1)/(dp+q − 1) = (1/dp)(dp+q − dp)/(dp+q − 1) ≤
(1/dp). �

Lemma 4.1.10 Let k1 such that 1 ∈ Uk1 . Then

P
{
T (Z) ∈ [a, b[

}
= (H/m)

∑

k 6=k1
f
{
α+(k−1)D

}
+(K0+1)Ob(1)

( 1

dq
+

2

dp
+

2

m

)
.

Proof Indeed,

P
{
T (Z) ∈ [a, b[

}
=
∑

k

P
{
Z̃ ∈ Uk ∩ T̃ ([a, b[)

}

=
∑

k

∆k−1∑

τ=0

P
{
{Z̃ = α+ (k − 1)D + τ/m

}

=
∑

k

∫

0≤t≤ (∆k−1)/m

f
{
{t+ α+ (k − 1)D

}
.µm(dt)

=
∑

k 6=k1

∫

0≤t≤(∆k−1)/m

f
{
{t+ α+ (k − 1)D

}
.µm(dt)

+
∑

k=k1

∫

0≤t≤(∆k−1)/m

f
{
{t+ α+ (k − 1)D

}
.µm(dt)
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=
∑

k 6=k1

∫

0≤t≤(∆k−1)/m

f
{
{α+ (k − 1)D

}
.µm(dt)

+
∑

k 6=k1

∫

0≤t≤(∆k−1)/m

[
f
{
{t+ α+ (k − 1)D

}
− f

{
{α+ (k − 1)D

}]
.µm(dt)

+

∫

0≤t≤(∆k1
−1)/m

sup(f)Ob(1)(t).µm(dt)

=
∑

k 6=k1
(∆k/m)f

{
{α+ (k − 1)D

}

+
∑

k 6=k1

∫

0≤t≤(∆k−1)/m

[K0(∆k − 1)/m)]Ob(1)(t).µm(dt)

+Ob(1)(∆k1/m)sup(f)

=
∑

k 6=k1
(H/m+ ek/m)f

{
{α+ (k − 1)D

}

+
∑

k 6=k1
[K0(H/m)Ob(1)(∆k/m)] +Ob(1)[(H + 1)/m]sup(f)

= (H/m+Ob(1)/m)
∑

k 6=k1
f
{
{α+ (k − 1)D

}

+K0(H/m)
∑

k 6=k1
Ob(1)(∆k/m) +Ob(1)[(H + 1)/m]sup(f)

= (H/m)
∑

k 6=k1
f
{
{α+ (k − 1)D

}

+Ob(1)(dp/m)sup(f)

+Ob(1)K0(H/m)(N(I)/m) +Ob(1)[(H + 1)/m]sup(f)

= (H/m)
∑

k 6=k1
f
{
{α+ (k − 1)D

}

+Ob(1)(K0 + 1)
[
dp/m+ (H/m)(N(I)/m) + (H + 1)/m

]
.

58



By the previous lemma 4.1.9, H/m = Ob(1)/dp. Then, (H/m)(N(I)/m) =
Ob(1)(1/dp). At last, dp/m = dp/(dp+q − 1) = (1/dq)[dp+q/(dp+q − 1)] =
(1/dq)[1 + 1/(dp+q − 1)] = (1/dq)(1 + 1/m).

Therefore,

(H/m)
∑

k 6=k1
f
{
{α+ (k − 1)D

}

+Ob(1)(K0 + 1)
[
dp/m+ (H/m)(N(I)/m) + (H + 1)/m

]
.

= (H/m)
∑

k 6=k1
f
{
α+ (k − 1)D

}

+(K0 + 1)Ob(1)
(
1/dq + 2/dp + 2/m

)
. �

Lemma 4.1.11 The following equality holds.

(H/m)
∑

k 6=k1
f
{
{α+ (k − 1)D

}

= N(I)/m+
2Ob(1)(1 − dp)

dq − 1

+(K0 + 1)Ob(1)
[ 1

dq
+

2

dp
+

2

m

][
1 +

1

dq − 1
+

1

dp(dq − 1)

]
.

Proof : One chooses [a,b[= [0,1[ in the previous lemma. If N(I) = m =
Hdp + r , r = dp − 1 and H = dq − 1 .

Then,

H/m = (dq − 1)/(dp+q − 1) = (1/dp)(dp+q − dp)/(dp+q − 1)

= (1/dp)(dp+q − 1)/(dp+q − 1) + (1/dp)(1 − dp)/(dp+q − 1)

= (1/dp) +Ob(1)/(dp+q − 1) = (1/dp) +Ob(1)/m.

Then, by the previous proof,

1 = P
{
T (Z) ∈ [0, 1[

}

= (H/m)
∑

k 6=k1
f
{
{α+ (k − 1)D

}
+ (K0 + 1)Ob(1)

[ 1

dq
+

2

dp
+

2

m

]
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=
dq − 1

dp+q − 1

∑

k 6=k1
f
{
{α+ (k − 1)D

}
+ (K0 + 1)Ob(1)

[ 1

dq
+

2

dp
+

2

m

]
.

Then,
dp+q − 1

dq − 1

=
∑

k 6=k1
f
{
{α+ (k − 1)D

}
+ (K0 + 1)Ob(1)

[ 1

dq
+

2

dp
+

2

m

]dp+q − 1

dq − 1
.

We know that H/m ≤ 1/dp. Then,

H

m

dp+q − 1

dq − 1
=
Ob(1)

dp
dp+q − 1

dq − 1

=
Ob(1)(dp+q − dp)

dp+q − dp
+
Ob(1)(dp − 1)

dp+q − dp

= Ob(1) +
Ob(1)(dp − 1)

dp(dq − 1)
= Ob(1) +

Ob(1)dp

dp(dq − 1)
+

Ob(1)

dp(dq − 1)

= Ob(1) +
Ob(1)

dq − 1
+

Ob(1)

dp(dq − 1)
.

Moreover

H

m

dp+q − 1

dq − 1

=
N(I)

mdp
dp+q − 1

dq − 1
− r

mdp
(dp+q − 1)

dq − 1

=
N(I)

m

dq − 1/dp

dq − 1
− r

dp
1

dq − 1

=
N(I)

m
+
N(I)

m

1 − 1/dp

dq − 1
+
Ob(1)(dp − 1)

dp+q − dp

=
N(I)

m
+

2Ob(1)(dp − 1)

dp+q − dp
.

Then,
H

m

∑

k 6=k1
f
{
α+ (k − 1)D

}
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=
H

m

dp+q − 1

dq − 1
+

(K0 + 1)Ob(1)H

m

[ 1

dq
+

2

dp
+

2

m

]dp+q − 1

dq − 1

=
N(I)

m
+

2Ob(1)(1 − 1/dp)

dq − 1
+(K0+1)Ob(1)

[ 1

dq
+

2

dp
+

2

m

][
1+

1

dq − 1
+

1

dp(dq − 1)

]
.�

Lemma 4.1.12 The following equality holds :

P
{
T (Z) ∈ [a, b[

}
=
N(I)

m
+Ob(1).e(K0, d, p, q) ,

where

e(K0, d, p, q) =
2(1 − 1/dp)

dq − 1
+(K0 +1)

[ 1

dq
+

2

dp
+

2

m

][
2+

1

dq − 1
+

1

dp(dq − 1)

]
.

Proof The following equalities hold :

P
{
T (Zn) ∈ [a, b[

}

=
H

m

∑

k 6=k1
f
{
α+ (k − 1)D

}
+ (K0 + 1)Ob(1)

[ 1

dq
+

2

dp
+

2

m

]

=
N(I)

m
+

2Ob(1)(1 − 1/dp)

dq − 1

+(K0 + 1)
[ 1

dq
+

2

dp
+

2

m

][
1 +

1

dq − 1
+

1

dp(dq − 1)

]

+(K0 + 1)Ob(1)
[ 1

dq
+

2

dp
+

2

m

]
. �

.

Lemma 4.1.13 If p=q,

e(K0, d, p, p) =
2(3K0 + 4)

dp
+O(K0/m).

where

O(K0/m) =
2(K0 + 1)

m

[
2 +

(dp + 1)

dp(dp − 1)

]
+

3(K0 + 1)(1 + 1/dp)

dp(dp − 1)
.
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Proof The following equality holds

e(K0, d, p, p) =
2(1 − 1/dp)

dp − 1
+ (K0 + 1)

[ 1

dp
+

2

dp
+

2

m

][
2 +

1

dp − 1
+

1

dp(dp − 1)

]

=
2

dp
+ (K0 + 1)

[ 3

dp
+

2

m

][
2 +

1

dp − 1
+

1

dp(dp − 1)

]

=
2

dp
+

6(K0 + 1)

dp
+O(K/m) =

2(3K0 + 4)

dp
+O(K0/m) ,

where

O(K0/m) =
2(K0 + 1)

m

[
2+

1

dp − 1
+

1

dp(dp − 1)

]
+

3(K0 + 1)

dp

[ 1

dp − 1
+

1

dp(dp − 1)

]

=
2(K0 + 1)

m

[
2 +

(dp + 1)

dp(dp − 1)

]
+

3(K0 + 1)(1 + 1/dp)

dp(dp − 1)
. �

.

Proof 4.1.14 In order to prove proposition 4.1.1, it is enough to apply the pre-
vious lemmas.

4.1.2 Calculation of T ∗

Now, in practice, the form of T ∗ is very particular. Indeed T ∗ permutes the
first decimals with the last ones. For example, if d = 10, p=3, q= 2, x = 45873,
T ∗(x) = 87345.

Proposition 4.1.2 We keep the notations of proposition 4.1.1. Let m = dp+q−
1, a = dq. Let x ∈ F ∗(dp+q − 1). Let x = x′dp + x” the Euclidean division of x
by dp.

Then, mT ′(x) = r = x”dq + x′.

Proof By definition x ≤ dp+q − 2 and x” ≤ dp − 1. Moreover, x′ ≤ dq − 1.
Moreover, if x′ = dq − 1, x” ≤ dp − 2.

Let X = dqx. Then, X = dqx ≤ dp+2q − 2dq.
Then, X = x′dp+q + x”dq with x”dq ≤ dp+q − dq and if x′ = dq − 1,

dqx” ≤ dp+q − 2dq.

Therefore, X = x′dp+q + x”dq = x′(dp+q − 1) + x”dq + x′ . Moreover,
x”dq + x′ < dp+q − 1 = m

Then, X = x′m+ x”dq + x′ = x′m+ r where r < m.
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Therefore, T ∗(x) = r = x”dq + x′. �.

Write x in base d : x = xp+q, xp+q−1, ......., xp+1, xp, ...., x1.
Then, T ∗(x) = xp, ...., x1, xp+q, xp+q−1, ......., xp+1.

Indeed x = xp+q, xp+q−1, .............., xp+1d
p + xp, xp−1, .............., x1, where

xp, xp−1, ......., x1 ≤ dp − 1.

For example, if d = 10, p=4, q= 4, x = 21058453, X= 21058453000, T ∗(x) =
84532105.

4.2 Some properties

Let m ∈ N
∗. Let Xn ∈ F (m) be a sequence of random variables. In this

section we study some properties of conditional probabilites when P
{
Xn ∈

I|x2, ...., xp)
}

= L(I) +Ob(1)ǫ.
First, the following result is obvious.

Proposition 4.2.1 Assume P{Xn ∈ I} = L(I)+Ob(1)ǫ for all n ∈ N
∗ and all

interval I ⊂ [0, 1].
Let Bo be a Borel set : Bo = ∪ks=1Is where the Is are disjoint interval

Is ⊂ [0, 1]. Then, P{Xn ∈ Bo} = L(Bo) +Ob(1)kǫ.

Then, one obtains the probability of Borel sets of F (m)p.

Proposition 4.2.2 Let Bo be a Borel set of F (m)p, Bo = Bo1⊗Bo2⊗ ........⊗
Bop. Assume that, for all s ∈ {1, 2, ..., p}, for all sequence xs, s=1,...,p, and
for all n ∈ N∗, P

{
Xn ∈ Bos|x2, ...., xp)

}
= L(Bos) +Ob(1)ǫ.

Then, for all injective sequence js ∈ Z such that j1 = 0 ,

P



{Xn+j1 ∈ Bo1} ∩ ...... ∩ {Xn+jp ∈ Bop}
ff

=
h

L(Bo1) + Ob(1)ǫ
i

......
h

L(Bop) + Ob(1)ǫ
i

.

In order to prove this proposition the following lemma is needed

Lemma 4.2.1 Let Ys ∈ F (m) , s=1,2,...,N, be a sequence of random vari-
ables defined over a probability space (Ω, A, P ). Let f ∈ L1 be a measurable
function defined over Y −(Ω) where Y − = (Y1, Y2, ..., Yn−1, Yn+1, ....., YN ) and
n ∈ {1, 2, ..., N} . Let Bo1 be a Borel set of F(m).

Assume P
{
Yn ∈ Bo1|y1, ...., yn−1, yn+1, ..., yN

}
= L(Bo1) + Ob(1)ǫ for all

(y1, ...., yn−1, yn+1, ..., yN ) .
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Then,

E
{

1Bo1(Yn)f(Y −)
}

= L(Bo1)E
{
f(Y −)

}
+Ob(1)ǫE

{
|f(Y −)|

}
.

Proof Let Q be the distribution of (Y1, Y2, ...., YN ) and let Q− be the distri-
bution of (Y1, Y2, ..., Yn−1, Yn+1, ....., YN ). Let Q(.|y1, ...., yn−1, yn+1, ..., yN ) be
the distribution of Yn given Ys = ys, for s=1,2,...,n-1,n+1,...,N.

Let y− = (y1, ...., yn−1, yn+1, ..., yN ). Then,

E
{

1Bo1(Yn)f(Y −)
}

=

∫
1Bo1(yn)f(y−)Q(dy)

=

∫ (∫
1Bo1(yn)Q(dyn|y1, ...., yn−1, yn+1, ..., yN )

)
f(y−)Q−(dy−)

=

∫
P
{
Yn ∈ Bo1|y1, ...., yn−1, yn+1, ..., yN )

}
f(y−)Q−(dy−)

= L(Bo1)

∫
f(y−)Q−(dy−) +

∫
Ob(1)ǫ

(
y−)

)
f(y−)Q−(dy−),

where |ǫ
(
y−)

)
| ≤ ǫ.

Then,

E
{

1Bo1(Yn)f(Y −)
}

= L(Bo1)

∫
f(y−)Q−(dy−)+Ob(1)ǫ

∫
|f(y−)|Q−(dy−) .�

Proof 4.2.2 We prove the proposition 4.2.2

We use the lemma 4.2.1 with N=p, Xn+js = Ys. Moreover, we choose f(Y −) =
1Bo2(Yn+j2).......1Bop

(Yn+jp). Then,

P
{
{Xn+j1 ∈ Bo1} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

=
(
L(Bo1) +Ob(1)ǫ

)
P
{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}
.

Then, we prove the proposition by recurence. �

Now, one obtains a similar resul about conditional probability.
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Proposition 4.2.3 Let Bo be a Borel set of F (m)p, Bo = Bo1 ⊗ ..... ⊗ Bop.
Assume that P

{
Xn ∈ Bo1|x2, ...., xp

}
= L(Bo1) +Ob(1)ǫ.

Then,

P
{
Xn ∈ Bo1

∣∣∣{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}
}

= L(Bo1) +Ob(1)ǫ.

Proof By using the proof 4.2.2 ,

P
{
Xn+j1 ∈ Bo1

∣∣∣{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}
}

=
P
{
{Xn+j1 ∈ Bo1} ∩ {Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

P
{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

=

(
L(Bo1) +Ob(1)ǫ

)
P
{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

P
{
{Xn+j2 ∈ Bo2} ∩ ...... ∩ {Xn+jp ∈ Bop}

}

= L(Bo1) +Ob(1)ǫ. �

The proof of the following theorem is a consequence of proposition 4.2.2.

Proposition 4.2.4 The sequence Xn, n=1,2,.....,N, is IID if and only if, for
all p ∈ {1, 2, ..., N − 1}, for all n ∈ N

∗, for all Borel set Bo, for all sequence xs,
s=1,...,p

P
{
Xn ∈ Bo

∣∣∣Xn+j2 = x2, ...., Xn+jp = xp

}
= L(Bo) .

4.3 Some properties of random bits

In this section, we study the property of sequence of bits defined by the following
way.

Notations 4.3.1 Let q ∈ N
∗. Let Rn ∈ F (m) be a sequence of random vari-

ables such that P (Rn ∈ Bo|x2, ....., xp) = L(Bo) + Ob(1)kǫ for all Borel set
Bo = ∪kt=1It where the It’s are intervals such that It 6= ∅.

Write Xn base d: Rn = 0, Dn
1D

n
2 ..... We set Xn = 0, Dn

1D
n
2 ....D

n
q and

Dqn−r+1 = Dn
r for n=1,...,N and r=1,...,q.
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The Dn′ ’s are obtained by taking succesively Dn
q , D

n
q−1...., D

n
1 .....

The proof of the following lemma is almost obvious.

Lemma 4.3.1 Let 1 ≤ r ≤ r′ ≤ q. Let j′1 = 0 < j′2 < .... < j′p where
r + j′p = r′ ≤ q. Then,

{Dn
r+j′1

= d1} ∩ {Dn
r+j′2

= d2} ∩ ... ∩ {Dn
r+j′p

= dp}
}

=
⋃

ds s≤r′,s 6=r+j′s

{
Xn ∈

[
0, d1d2....dr′ , 0, d1d2....dr′ + d−r

′[}
.

For example, d=10, r’=3 et r= 2. Then,

{Dn
2 = 5} ∩ {Dn

3 = 3}

= {Xn ∈ [0.053, 0.054[} ∪ {Xn ∈ [0.153, 0.154[} ∪ ...... ∪ {Xn ∈ [0.953, 0.954[}.

For example, d=10, r’=4 et r= 2. Then,

{Dn
2 = 5} ∩ {Dn

4 = 3}

= {Xn ∈ [0.0503, 0.0504[}∪{Xn ∈ [0.1503, 0.1504[}∪......∪{Xn ∈ [0.9503, 0.9504[}
∪{Xn ∈ [0.0513, 0.0514[}∪{Xn ∈ [0.1513, 0.1514[}∪......∪{Xn ∈ [0.9513, 0.9514[}
...............................................................................................................................

∪{Xn ∈ [0.0593, 0.0594[}∪{Xn ∈ [0.1593, 0.1594[}∪......∪{Xn ∈ [0.9593, 0.9594[}.

We deduce the following lemma

Lemma 4.3.2 We keep the notation of the previous lemma. Then,

P
{
{Dn

r+j′1
= d1} ∩ {Dn

r+j′2
= d2} ∩ ... ∩ {Dn

r+j′p
= dp}

}

=
1

dp
+Ob(1)dr

′−pǫ =
1

dp
+Ob(1)dq−1ǫ .

Then, one can prove the following property.

Proposition 4.3.1 Suppose 1/2 ≤ 1 − dqǫ. Then,

P
{
Dn+j1 = d1

∣∣Dn+j2 = d2, ..., Dn+jp = dp
}

=
1

d

[
1 +

2Ob(1)dqǫ

1 − dqǫ

]
.
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Proof There exists n∗ such that {Dn+j1 = d1} = {Xn∗ ∈ Bo1}.
For all s = 1, 2, ..., p, let n+ js = qns + rs be the Eucidean division of n+ js

by q. One can assume that n+ js = qn∗ + rs if and only if s = 1, 2, ..., e.

Then, there exists two Borel sets Bo1 and Bo∗1 such that

{Dn+j1 = d1} ∩ ...... ∩ {Dn+je = de} = {Xn∗ ∈ Bo1}

{Dn+j2 = d2} ∩ ...... ∩ {Dn+jp = dp} = {Xn∗ ∈ Bo∗1} .
Remark that it is possible that Bo∗1 = ∅

More generally, there exists a sequence i1 = 0, i2, ..., ip′ , p
′ ≤ p, and a

sequence of Borel sets Bos s=1,2,...,p’, such that

{Dn+j1 = d1} ∩ {Dn+j2 = d2} ∩ ...... ∩ {Dn+jp = dp}

= {Xn∗+i1 ∈ Bo1} ∩ {Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′
∈ Bop′} .

Moreover,
{Dn+j2 = d2} ∩ ...... ∩ {Dn+jp = dp}

= {Xn∗+i1 ∈ Bo∗1} ∩ {Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {{Xn∗+ip′
∈ Bop′}

if e > 1.

On the other hand,

{Dn+j2 = d2}∩......∩{Dn+jp = dp} = {Xn∗+i2 ∈ Bo2}∩......∩{Xn∗+ip′
∈ Bop′},

if e=1.

Therefore, if e = 1, by lemmas 4.2.1 and 4.3.2,

P
{
Dn+j1 = d1

∣∣Dn+j2 = d2, ..., Dn+jp = dp
}

=
P
{
{Dn+j1 = d1} ∩ {Dn+j2 = d2} ∩ ...... ∩ {Dn+jp = dp}

}

P
{
{Dn+j2 = d2} ∩ ...... ∩ {Dn+jp = dp}

}

=
P
{
{Xn∗+i1 ∈ Bo1} ∩ {Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

P
{
{Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}
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=

[
L(Bo1) +Ob(1)dr

′−eǫ
]
P
{
{Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

P
{
{Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

= L(Bo1) +Ob(1)dr
′−eǫ =

1

de
+Ob(1)dr

′−eǫ =
1

d
+Ob(1)dr

′−1ǫ .

If e > 1, one can write

P
{
Dn+j1 = d1

∣∣Dn+j2 = d2, ..., Dn+jp = dp
}

=
P
{
{Xn∗+i1 ∈ Bo1} ∩ {Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

P
{
{Xn∗+i1 ∈ Bo∗1} ∩ {Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

=

[
L(Bo1) +Ob(1)dr

′−eǫ
]
P
{
{Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

[
L(Bo∗1) +Ob(1)dr”−(e−1)ǫ

]
P
{
{Xn∗+i2 ∈ Bo2} ∩ ...... ∩ {Xn∗+ip′

∈ Bop′}
}

=
L(Bo1) +Ob(1)dr

′−eǫ

L(Bo∗1) +Ob(1)dr”−(e−1)ǫ
.

=
(1/de) +Ob(1)dr

′−eǫ

(1/de−1) +Ob(1)dr′−(e−1)ǫ

=
1

d

1 +Ob(1)dr
′

ǫ

1 +Ob(1)dr′ǫ
=

1

d

[
1 +

1 +Ob(1)dr
′

ǫ

1 +Ob(1)dr′ǫ
− 1
]

=
1

d

[
1 +

Ob(1)dr
′

ǫ+Ob(1)dr
′

ǫ

1 +Ob(1)dr′ǫ

]
=

1

d

[
1 +

2Ob(1)dr
′

ǫ

1 − dr′ǫ

]

=
1

d
+

2Ob(1)dr
′−1ǫ

1 − dr′ǫ
.

Moreover, dr
′−1ǫ ≤ 2dr′−1ǫ

1−dr′ ǫ
. Then, in all cases,
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P
{
Dn+j1 = d1

∣∣Dn+j2 = d2, ..., Dn+jp = dp
}

=
1

d

[
1 +

2Ob(1)dr
′

ǫ

1 − dr′−1ǫ

]
.

=
1

d

[
1 +

2Ob(1)dqǫ

1 − dqǫ

]
. �

We deduce the following result.

Proposition 4.3.2 Suppose d=2. Then

P
{
Dn+j1 = d1

∣∣Dn+j2 = d2, ..., Dn+p = dp
}

=
1

d
+
Ob(1)dqǫ

1 − dqǫ
.
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Chapter 5

Limit Theorems

In this chapter, we study the classical Central Limit Theorem (CLT) and a new
limit theorem : the XOR Limit Theorem (XORLT). It corresponds with OR
Exclusive (XOR) but used modulo m (and not only modulo 2).

5.1 Central Limit Theorem

The Central Limit Theorem is a classical result. It produces the limit distribu-
tion of (X1 + ....Xn)/σ when Xn is a sequence of random variables such that
E{Xn} = 0 and σ2 is the variance.

First, it has been proved for independent sequences of random variables Xn.
These results have been generalized under various hypotheses of asymptotical
independence. The most known results have been proved by Ibragimov under
the strong mixing condition or under martingale assumptions : cf [21] and [41].

Moreover, some authors have also proved the convergence of moment : cf
Cox-Kim [36], Ibragimov-Lifshits [37], Soulier [38], Rozovsky [39]. Bernstein,
[27] , Yokohama ( [34],[35]), Brown [28] , Eissein-Janson [29], Hernndorf [30],
Birkel [31], Krugov [32], Mairoboda [33]. Recall that this convergence implies
the convergence in distribution.

Now, the strong-mixing condition is too strong for most of datas. Indeed, it
is a very strong condition. Then, some authors have introduce weaker hypothe-
ses : Versik Ornstein ([22], [23]), Cogburn [25] Rosenblatt [26], Pinskers [7] ,
Doukhan-Louichi [40]

For example, Withers [24] has introduced the ℓ-mixing condition.

Definition 5.1.1 : Let σ(N)2 be the variance of
∑n
j=mXj where N=n-m+1.

Let u ∈ R, 0 ≤ k ≤ n−m, N ≥ 1.
Let ℓN (k, u) = maxm≤j≤n−kSup

∣∣cov(eiuP , e−iuF )
∣∣,

where cov is the covariance, where P = 1
σ(N)

∑j
ℓ=m δℓXℓ and F = 1

σ(N)

∑n
ℓ=j+k δℓXℓ

and the sup is over δℓ = 0 or 1.
We set ℓ(k, u) = supN :k≤N−mℓN (k, u).
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Then, Xn is ℓ−mixing if, for all u ∈ R, ℓ(k, u) → 0 as k → ∞
Then, Xn is strongly ℓ −mixing if, for all u, there exists K(u) < ∞ such

that ℓ(k, u) ≤ ℓ(k)K(u) where ℓ(k) → 0 as k → ∞

Doukhan-Louhichi [40] have introduced the weak-dependence.

Definition 5.1.2 : Let L = ∪∞
p=1Lp where Lp = {f : R

p → R} . Let
Ψ : L ⊗ L⊗ (N∗)2 → R+ and (θr)r∈N ց 0.

The sequence {Xn}n∈Z is (θ,L,Ψ) weakly dependent if
∀r ∈ N, ∀u, v ∈ N

∗, ∀(h, k) ∈ Lu ⊗ Lv,
∀ i1 < i2 < ..... < iu < iu + r ≤ j1 < ..... < jv,

∣∣Cov
(
h(Xi1 , ...., Xiu), k(Xj1 , ...., Xjv )

)∣∣ ≤ θrΨ(h, k, u, v).

But they did not studied the moments’s convergence. Moreover theses as-
sumptions are still strong. Indeed, we need very weak dependence assumptions
in order to build easily IID sequences if we want to use the method of this
report.

Fortunately, another look is possible : one can use higher order correlation
coefficients (cf Lancaster [9], Blacher [10]; cf also section A.3). Then, in [11] we
have turned the convergence of moments into an equivalent condition on these
coefficients. Then, one has minimal condition for convergence of moments. For
example we have proved the following theorem.

Theorem 2 Assume that the Xn have the same distribution with variance σ2

and that there exists bo > 0 such that |Xn| ≤ bo. Assume that

∑n
s=1

∑
r 6=s

[
E{(Xs)

2(Xr)
2} − E{(Xs)

2}E{(Xr)
2}
]

n2
→ 0 .

Let µp = E{(XG)p} where XG ∼ N(0, 1). Then, for all p ∈ N
∗,

E

{(X1 +X2 + .........+Xn√
(N2 + σ2)n

)p}
→ µp as n→ ∞

if and only if, for all p ∈ N
∗,

p!

∑n
t1=1

∑n
t2=t1+1 ....

∑n
tp=tp−1+1 E{Xt1Xt2 ......Xtp}
np/2

→ (N2)pµp .

From this type of results we have deduced CLT with minimal assumptions whose
the conditions are close to strong mixing assumptions. In particular, one has
defined condition HmI which is close to minimal assumptions : cf [14] .
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For the convergence in distribution, equivalent conditions HI have been ob-
tained : cf [15]. They are close to minimal assumptions. Then, we use these
conditions in order to be sure that the CLT holds for some of our datas.

We recall them now.

At, first, one decomposes X1 +X2 + .........+Xn in X1 +X2 + .........+Xu,
Xu+1 +Xu+2 + .........+Xu+t and Xu+t+1 +Xu+t+2 + .........+Xu+t+u where
u=u(n) and t=t(n). In this purpose, one uses the following notations

Notations 5.1.3 We denote by κ(n) ∈ N, an increasing sequence such that
κ(1) = 0, κ(n) ≤ n and κ(n)/n→ 0 . We define the sequences u(n) and t(n) by
: u(1)=1, u(n) = max

{
m ∈ N

∗∣∣2m + κ(m) ≤ n
}
, and t(1)=0, t(n) = n-2u(n)

if n ≥ 2.

Notations 5.1.4 Let σ(u)2 = E{(X1 +X2 + .........+Xu)2} . One sets

Su =
X1 +X2 + .........+Xu

σ(u)
, ξu =

Xu+1 +Xu+2 + .........+Xu+t

σ(u)

and S′
u =

Xu+t+1 +Xu+t+2 + .........+Xu+t+u

σ(u)
.

Then, one can define almost minimal assumptions for the convergence of
moments.

Notations 5.1.5 : Let k ∈ N
∗. We define conditions HmS(k) and HmI(k) by

the following way :
HmS(k) : ∀p ∈ N , p < k + 1 , E

{
(Su)p

}
− E

{
(S′
u)p
}
→ 0 as n→ ∞.

HmI(2k) : ∀(p, q) ∈ (N∗)2 , p+ q < k + 1 ,

E
{

(Su)p(S′
u)q
}
− E

{
(Su)p

}
E
{

(S′
u)q
}
→ 0

as n→ ∞.

Equivalent conditions can be defined for the convergence in distribution.

Notations 5.1.6 : We define condition HS and HI by the following way.

HS : ∀k ∈ N,∀j ∈ N, P{Ak,j} − P{Bk,j} → 0 as n→ ∞ ,

HI : ∀k ∈ N,∀(j, j′) ∈ N
2, P{Ak,j ∩Bk,j′} − P{Ak,j}P{Bk,j′} → 0

as n → ∞, where Ak,j =
{
Su ∈ Ik,j

}
and Bk,j =

{
S′
u ∈ Ik,j

}
with Ik,j =[

j.4−k, (j + 1)4−k
[}

.

72



Then the following CLT holds : cf [14] [15].

Theorem 3 We assume that HmS(∞) and HmI(∞) hold. We assume also
that, for all p ∈ N

∗, E{(ξu)p} → 0 as n→ ∞ .

Then, Sn
D→ N(0, 1) .

Theorem 4 We assume that HS , HI , HmS(4) and HmI(4) hold. We assume
also that E{(Su)2} − E{(S′

u)2} → 0 and E{ξ2u} → 0 as n→ ∞ .

Then, Sn
D→ N(0, 1) .

It is this CLT that we use with our datas (cf chapter 10).

5.2 XOR Limit Theorem

Our secund limit theorem is based on the property of XOR. But it holds also
modulo m. Then, by misusing of language, we call this this result ”XOR Limit
Theorem” (XORLT).

5.2.1 Presentation

In order to build the sequences of random bits b1(n′) in section 11.2, we suppose
that our datas are asymptotically independent. But, we are not sure that it is
the case for all datas, for example datas obtained by some informatic files. In
this case, the CLT cannot be used. Now, the XORLT holds under many weaker
hypotheses.

The XORLT does not use the sums

X1 +X2 + ....+Xn

σ(n)

but the sumsX1 +X2 + ....+Xn modulo 1 ( in this section, X1 +X2 + ....+Xn ≡
X1 +X2 + ....+Xn modulo 1).

Definition 5.2.1 Let (X1
n, X

2
n, .....X

p
n) ∈ R

p be a sequence of random vectors.
For s=1,...,p, let σs(n)2 = E{(Xs

1 + ....+Xs
n)2}. Then, we set

Ssn =
Xs

1 + ....+Xs
n

σs(n)
.

The XOR limit theorem holds for (X1
n, X

2
n, .....X

p
n) if there exists p sequences

αs(n) → ∞ as n → ∞ , such that (α1(n)S1
n, ....., αp(n)Spn) has asymptotically

the uniform distribution on [0, 1[p.
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For the data used to obtain the sequence b1(n′) in section 11.2, we always ob-
tained that X1 +X2 + ....+Xn has asymptotically the uniform distribution on
[0, 1[ i.e. α(n) = 1/σ(n). This result is true for many datas.

We can find a first reason to it by considering the following example.
Suppose that E{X2

1} = 1 : Sn = X1+...+Xn√
n

. Suppose that Xn is IID and has a

continuous probability density function. Choose n = k2 where k ∈ N
∗. Then,

X1 + ...+Xn =
√
nSn = kSn. Then, X1 + ...+Xn =

√
nSn = kSn modulo 1.

Then, let us observe the behavior of the kSn’s as soon as k is enough big. The
y’s such that x = ky are distributed in a way close to uniformity in [0,1] : for ex-
ample assume k=10. Then, if x=0.1, y=0.01 ,0.11, 0.21,....., 0.91. Now, by the
CLT, Sn has a probability density function f such that f(x) ≈ (1/

√
2π)e−x

2/2.
Then, P{kSn ∈ [x, x+ e[} → e : kSn is asymptotically uniformly distributed.

Now we recall the following theorem.

Theorem 5 Let X and Y be two independent random vectors, X, Y ∈ F ∗(m)p.
Assume that X has the uniform distribution. Then, X + Y ∈ F ∗(m)p has also
the uniform distribution.

Proof The following equalities hold

P{X + Y = k} =
∑

t∈F∗(m)p

P
{
{X + Y = k} ∩ {Y = t}

}

=
∑

t∈F (m)p

P
{
{X + t = k} ∩ {Y = t}

}

=
∑

t∈F∗(m)p

P
{
{X = k − t} ∩ {Y = t}

}

=
∑

t∈F∗(m)p

P{X = k − t}P{Y = t}

=
1

mp

∑

t∈F∗(m)p

P{Y = t} =
1

mp
. �

One deduces the following corollaries .

Corollary 5.2.1 Let Xn ∈ [0, 1[ be a sequence of random variables. Assume
that X1 has the uniform distribution and that X1 is independent of (X2, ...., Xn).
Then X1 +X2 + ....+Xn has the uniform distribution on [0,1[.

Corollary 5.2.2 Let Xn ∈ [0, 1[ be an IID sequence of uniform random vari-
ables. Then X1 +X2 + ....+Xn has the uniform distribution on [0,1[.

In this case σ(n)2 = σ2n. Moreover, σ
√
nSn has asymptotically the uniform

distribution. Then, the CLT and the XORLT hold for the sequence Xn.
This result is general : if the CLT is satisfied, then the XORLT is satisfied.
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The XORLT is more general than the CLT

Indeed, the following result holds.

Proposition 5.2.3 : Let Xn be a sequence of random variables defined over a

probability space. Assume that E{Xn} = 0 and that Sn = X1+....+Xn

σ(n)

D→ S with

E{S2} = 1. Assume that S has a probability density function f with respect to
the Lebesgue measure such that |f(x) − f(x′)| ≤ K0|x− x′|.

Then, there exists a sequence α(n) → ∞ as n → ∞ such that, for all
0 ≤ t ≤ 1, P

{
α(n)Sn ∈ [0, t[

}
→ t as n→ ∞ .

Proof : Let 0 ≤ t ≤ 1. For all K ∈ N
∗, let

EnK =
{
∪K−1
k=−K

{
Sn ∈

[ k

K3/4
,
k + t

K3/4

[}}

LK =
{
∪K−1
k=−K

{
S ∈

[ k

K3/4
,
k + t

K3/4

[}}
.

Then, P{EnK} = P{LK} + ǫKn , where ǫKn → 0 as n→ ∞.

Now, let k ∈ {−K,−K + 1, .....,K − 1}. Then, there exists x0 ∈
[

k
K3/4 ,

k+t
K3/4

[
1

such that
∫

[k/K3/4,(k+t)/K3/4[

f(x)dx =

∫

[k/K3/4,(k+t)/K3/4[

[
f(x0) +

Ob(1)K0t

K3/4

]
dx

=
t.f(x0)

K3/4
+
Ob(1)K0t

2

K3/2
.

Then,
f(x0)

K3/4
=

∫

[k/K3/4,(k+1)/K3/4[

f(x)dx+
Ob(1)K0

K3/2
.

Then,

∫

[k/K3/4,(k+t)/K3/4[

f(x)dx = t

∫

[k/K3/4,(k+1)/K3/4[

f(x)dx+
2Ob(1)K0

K3/2
.

1One can choose x0 = k/K3/4.
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Therefore,

P
{
S ∈ [k/K3/4, (k+t)/K3/4[

}
= t.P

{
S ∈ [k/K3/4, (k+1)/K3/4[

}
+

2Ob(1)K0

K3/2
.

Then,

P{EnK} = P{LK} + ǫKn =

K−1∑

k=−K
P
{
S ∈ [k/K3/4, (k + t)/K3/4[

}
+ ǫKn

=

K−1∑

k=−K
t.P
{
S ∈ [k/K3/4, (k + 1)/K3/4[

}
+

K−1∑

k=−K

2Ob(1)K0

K3/2
+ ǫKn

= t.P
{
S ∈ [−K/K3/4,K/K3/4[

}
+ (2K)

2Ob(1)K0

K3/2
+ ǫKn

= t.P
{
S ∈ [−K1/4,K1/4[

}
+

4Ob(1)K0K

K3/2
+ ǫKn

= t− tP
{
S /∈ [−K1/4,K1/4[

}
+

4.Ob(1)K0

K1/2
+ ǫKn

= t+
t.Ob(1)

K1/2
+

4.Ob(1)K0

K1/2
+ ǫKn ,

by the Bienayme-Tchebycheff Inequality.

Let Fn =
{
∪k∈Z

{
Sn ∈

[
k

K3/4 ,
k+t
K3/4

[}}
. Then, by the Bienayme-Tchebycheff

Inequality, P{Fn} = P{EnK} + Ob(1)
K1/2 .

Then, P{Fn} = t+ t.Ob(1)
K1/2 + 4.Ob(1)K0

K1/2 + ǫKn + Ob(1)
K1/2 .

One chooses a sequence Kn → ∞ such that ǫKn
n → 0 as n→ ∞. We deduce

that P{Fn} = t+ ǫ′n where ǫ′n → 0 as n→ ∞.

Now, Fn =
{
∪k∈Z

{
K

3/4
n Sn ∈

[
k, k + t

[}}
=
{
K

3/4
n Sn ∈

[
0, t
[}

.

Then, P
{
K

3/4
n Sn ∈

[
0, t
[}

→ t as n→ ∞. �

Remark that analog results hold also for random vectors (Sn1 , S
n
2 , ...., S

n
p ) ∈

R
p .

In general, σ(n)α(n) = 1 : i.e. (X1 + ....Xn) has asymptotically the uniform
distribution on [0, 1[ . For example, the proposition 5.2.4 show a such result .

In order to state this proposition, the measure µ′
n is needed.
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Notations 5.2.2 We denote by µ′
n the measure defined on

{
k

mσ(n)

∣∣k ∈ Z
}

by

µ′
n( k
mσ(n) ) = 1

mσ(n) for all k ∈ Z .

Then, µ′
n is the measure equivalent at the Lebesgue measure in the discrete

case. For example the following property holds.

Lemma 5.2.1 The following limit holds : µ′
n([0, 1]) → 1 as n→ ∞.

Proof We have µ′
n([0, 1]) =

∑
0≤k≤mσ(n) µ

′
n

{
k

mσ(n)

}
=
∑

0≤k≤⌊mσ(n)⌋
1

mσ(n)

= [⌊mσ(n)⌋+ 1] 1
mσ(n) = ⌊mσ(n)⌋

mσ(n) + 1
mσ(n) = 1− |Ob(1)|

mσ(n) + 1
mσ(n) = 1 + Ob(1)

mσ(n) . �

Then the following XORLT holds.

Proposition 5.2.4 Let (Sn1 , S
n
2 , ...., S

n
p ) ∈ R

p be a random vector such that
E{(Ssn)2} = 1 for s=1,2,...,p.

Let µA be a measure on R : one assumes that µA = µ1⊗....⊗µp where µs = µ
the Lebesgue measure for s=1,...,p or where µs = µ′

n for s=1,..,p. Assume that
(Sn1 , S

n
2 , ...., S

n
p ) has a probability density function fn with respect to µA such

that |fn(x1, ..., xp) − fn(x′1, .., x
′
p)| ≤ K0max(|xs − x′s|).

Let α(n) be a sequence such that α(n) → ∞ as n→ ∞.
Then α(n)(Sn1 , S

n
2 , ...., S

n
p ) has asymptotically the uniform distribution over

[0, 1[p.

Proof 5.2.2 We begin to prove the proposition 5.2.4

Let ts ∈ [0, 1[ for s=1,...,p. If µs = µ′
n for s=1,..,p, one assumes that ts = hs

m
where hs ∈ {0, 1, ...,m} for s=1,2,...p. Then,

P
{
α(n)(S1

n, ...., S
p
n) ∈ [0, t1[⊗......⊗ [0, tp[

}

= P
{
α(n)(S1

n, ...., S
p
n) ∈

⋃

k1∈Z

....
⋃

kp∈Z

[k1, k1 + t1[⊗......⊗ [kp, kp + tp[
}

=
∑

k1∈Z

....
∑

kp∈Z

P
{
α(n)(S1

n, ...., S
p
n) ∈ [k1, k1 + t1[⊗......⊗ [kp, kp + tp[

}

=
∑

k1∈Z

....
∑

kp∈Z

P
{

(S1
n, ...., S

p
n) ∈

[ k1

α(n)
,
k1 + t1
α(n)

[
⊗ ......⊗

[ kp
α(n)

,
kp + tp
α(n)

[}

=
∑

k1

....
∑

kp

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1, ..., dxp) . �

In order to continue the proof of proposition 5.2.4 the following lemma is
needed.
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Lemma 5.2.3 The following equality holds

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx,1.., .dxp)

= t1...tp

∫
[

k1
α(n)

,
k1+1

α(n)

[ ....
∫
[

kp
α(n)

,
kp+1

α(n)

[ fn(x1, ...xp)µ
A(dx,1.., .dxp) +

2Ob(1)K0

α(n)p+1
.

Proof : First, suppose that µ = µ′
n. Then, one assumes that ts = hs

m . Let
s ∈ {1, .., p}. Then,

[ ks
σ(n)

,
ks + ts
σ(n)

[
∩
{

0,
1

mσ(n)
,

2

mσ(n)
, ....
}

=
{ ksm

mσ(n)
,
ksm+ 1

mσ(n)
, ....,

ksm+ hs − 1

mσ(n)

}
.

Indeed
ks + ts
σ(n)

=
ksm+ tsm

mσ(n)
=
ksm+ hs
mσ(n)

.

Then,

card
([ ks
σ(n)

,
ks + ts
σ(n)

[
∩
{

0,
1

mσ(n)
,

2

mσ(n)
, ....
})

= hs .

Then,
∫
[ks/σ(n),(ks+ts)/σ(n)[

µ′
n(dx) = hs

mσ(n) = ts
σ(n) .

Now, if µ is the Lebesgue measure,
∫
[ks/σ(n),(ks+ts)/σ(n)[

µ(dx) = ts
σ(n) obvi-

ously.

Then, in all cases

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ µA(dx1, .., .dxp) =
t1.....tp
σ(n)p

.

Let (x1, ..., xp) and (x′1, ..., x
′
p) ∈

[
k1
α(n) ,

k1+t1
α(n)

[
⊗ .... ⊗

[ kp

α(n) ,
kp+tp
α(n)

[
. Then,

|xs − x′s| ≤ 1
α(n) for s=1,2,...,p. Then, |fn(x1, ..., xp) − fn(x′1, ..., x

′
p)| ≤ K0

α(n) .

Let xs0 = ks/σ(n) for s=1,...,p. Then,
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∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp))µ
A(dx1, .., .dxp)

=

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x0
1, ...x

0
p)µ

A(dx1.., .dxp)

+

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[
Ob(1)K0

α(n)
µA(dx1, .., .dxp)

= fn(x0
1, ...x

0
p)
t1...tp
α(n)p

+
Ob(1)K0

α(n)

t1...tp
α(n)p

.

Then,
fn(x0

1, ...x
0
p)

α(n)p

=

∫
[

k1
α(n)

,
k1+1

α(n)

[ ....
∫
[

kp
α(n)

,
kp+1

α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp) +

Ob(1)K0

α(n)p+1
.

Then,
∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)

= fn(x0
1, ...x

0
p)
t1...tp
α(n)p

+
Ob(1)K0

α(n)

t1...tp
α(n)p

.

= t1...tp

∫
[

k1
α(n)

,
k1+1

α(n)

[ ....
∫
[

kp
α(n)

,
kp+1

α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)+

2Ob(1)K0

α(n)p+1
. �

Proof 5.2.4 Now, we continue the proof of the proposition 5.2.4

Soit a ∈ R+. By Bienaymé-Tchebycheff Inequality, P{|Ssn − esn| ≥ a} ≤ 1
a2 ,

where esn = E{Ssn} for s=1,...,p. Moreover, by Schwarz Inequality, |esn|2 ≤
E{(Ssn)2} = 1.

Let An → ∞ as n → ∞. There exists a sequence ǫAn
→ 0 as n → ∞ such

that P{|Ssn − esn| ≥ An} ≤ ǫAn
.
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Then,

∑

k1

....
∑

kp

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)

=
∑

(k1,...,kp)∈EAn

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)

+
∑

(k1,...,kp)/∈EAn

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp) ,

where

EA =
{

(n1, ..., np) ∈ Z
p
∣∣∣ | ns
α(n)

−esn| ≤ A, and |ns + ts
α(n)

−esn| ≤ A, ∀s ∈ {1, .., p}
}
.

Then, (k1, ..., kp) ∈ EA if and only if −A+ esn− ts
α(n) ≤ ks

α(n) ≤ A+ esn− ts
α(n)

and −A+ esn ≤ ks

α(n) ≤ A+ esn for s= 1,...,p.

Then, (k1, ..., kp) ∈ EA if and only if −A + esn ≤ ks

α(n) ≤ A + esn − ts
α(n) for

s= 1,...,p.

Then, if (k1, ........, kp) /∈ EA , there exists s ∈ {1, 2, ........, p} such that
ks

α(n) < −A+ esn or A+ esn − ts
α(n) <

ks

α(n) .

Then, if (k1, ..., kp) /∈ EA , there exists s ∈ {1, 2, ..., p} such that ks ∈ Bs(A)

where Bs(A) =
{
k ∈ Z

∣∣∣ k
α(n) < −A+ esn or A+ esn − ts

α(n) <
k

α(n)

}
.

Then,

∑

(k1,...,kp)/∈EAn

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)

≤
p∑

s=1

∑

ks∈Bs(An),kt∈Z,t6=s

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)

≤
p∑

s=1

∑

ks∈Bs(An)

∫
[

ks
α(n)

, ks+ts
α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)
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≤
p∑

s=1

∫

xs≤−An+es
n+ ts

α(n)

fn(x1, ...xp)µ
A(dx1.., .dxp)

+

p∑

s=1

∫

An+es
n− ts

α(n)
≤xs

fn(x1, ...xp)µ
A(dx1.., .dxp)

=

p∑

s=1

[
P
{
Ssn ≤ −An + esn +

ts
α(n)

}
+ P

{
An + esn − ts

α(n)
≤ Ssn

}]

≤ pǫ′n ,

where ǫ′n → 0 as n→ ∞ because
∣∣ ts
α(n)

∣∣ ≤ 1.

Now, (k1, ..., kp) ∈ EAn
if and only if, for s= 1,...,p,

−Anα(n) + esnα(n) ≤ ks ≤ Anα(n) + esnα(n) − ts .

Let s ∈ {1, ..., p}. Let

Ns = card
{
k ∈ Z

∣∣−Anα(n) + esnα(n) ≤ k ≤ Anα(n) + esnα(n) − ts
}
.

Then, for s= 1,...,p, Ns ≤ 2Anα(n) + 1.

Then,

P
{
α(n)(S1

n, ...., S
p
n) ∈ [0, t1[⊗......⊗ [0, tp[

}

=
∑

(k1,...,kp)∈EAn

∫
[

k1
α(n)

,
k1+t1
α(n)

[ ....
∫
[

kp
α(n)

,
kp+tp
α(n)

[ fn(x1, ...xp)µ
A(dx1, .., .dxp) +Ob(1)pǫ′n

=
∑

(k1,...,kp)∈EAn

t1......tp

∫
[

k1
α(n)

,
k1+1

α(n)

[ ....
∫
[

kp
α(n)

,
kp+1

α(n)

[ fn(x1, ...xp)µ
A(dx1, .., .dxp)

+
∑

(k1,...,kp)∈EAn

2K0Ob(1)

α(n)p+1
+Ob(1)pǫ′n
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=
∑

(k1,...,kp)∈EAn

t1......tp

∫
[

k1
α(n)

,
k1+1

α(n)

[ ....
∫
[

kp
α(n)

,
kp+1

α(n)

[ fn(x1, ...xp)µ
A(dx1.., .dxp)

+(2Anα(n) + 1)p
2K0Ob(1)

α(n)p+1
+Ob(1)pǫ′n

=
∑

(k1,...,kp)

t1......tp

∫
[

k1
α(n)

,
k1+1

α(n)

[ ....
∫
[

kp
α(n)

,
kp+1

α(n)

[ fn(x1, ...xp)µ
A(dx1, .., .dxp)+Ob(1)pǫ′n

+2p+1K0Ob(1)
(
1 +

1

2Anα(n)

)p (An)p

α(n)
+ Ob(1)pǫ′n

= t1......tp + 2p+1K0Ob(1)
(
1 +

1

2Anα(n)

)p (An)p

α(n)
+ 2Ob(1)pǫ′n .

Then, (An)p

α(n) → 0 as n→ ∞ is supposed. Then,

P
{
α(n)(S1

n, ...., S
p
n) ∈ [0, t1[⊗......⊗ [0, tp[

}
→ t1...tp as n→ ∞ . �

In particular, assume that p=1. Suppose that Xs ∈ F (m). Suppose that
|fn(x) − fn(x′)| ≤ K0|x− x′| . Then, P

{
X1 + ....+Xn ∈ [0, t[

}
→ t as n→ ∞

where t ∈ F (m).

Now, if Xs ∈ F (m), there is always a probability density function fn with
respect to µ′

n such that ∃Kn : |fn(x) − fn(x′)| ≤ Kn|x− x′| .
Then, the condition ” ∃K0 : |fn(x) − fn(x′)| ≤ K0|x − x′| ∀ n ∈ N

∗ ” is
not a necessary condition of the CLT. Then, in some cases, the hypotheses of
proposition 5.2.4 are stronger than those of the CLT.

Generally, condition ” |fn(x) − fn(x′)| ≤ K0|x − x′| ∀ n ∈ N
∗ ” holds: one

has examples for some distributions in [43], e.g. page 54. As a matter of fact,
under the assumptions of datas studied in this report, we have never found a
single case where it is not verified.

If we want that it is not verified, it is necessary to build specially Xn for
it. For example one can choose a sequence X ′

n such that densities fn satisfy
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max(fn) → ∞ : then, one builds a sequence Xn such that Sn = X ′
n : X1 = X ′

1,
X2 = X ′

2 −X ′
1, X3 = X ′

3 −X ′
2....

Now proposition 5.2.4 suggests that if the CLT holds, then, X1 + ....+Xn

has asymptotically the uniform distribution.
It shows also that the XORLT is more general than the CLT : for example,

the XORLT holds if Xs = X1 for all s : X1 + ....+Xn = nX1 .

Corollary 5.2.5 let X be a random variable. Assume that X has a continuous
probability density function f. Then, nX has asymptotically the uniform distri-
bution.

Conclusion

We write α(n)Sn = β(n)(X1 +X2 + ....+Xn). Then, it seems that the XORLT
holds under assumptions weaker than the CLT. Let us notice that it is even
sometimes verified by the classic counterexample Xn = Yn+1 − Yn where Yn is
IID.

Moreover, generally, it holds with β(n) = 1 ,i.e. X1 +X2 + ....+Xn
D→ U

where U has the uniform distribution. At last, under the hypotheses of our
data, we did not find a single case where it is not verified.

5.3 Examples

In this section, we compare the limit distributions. In these examples we shall
note the strength of the XORLT.

Let S2
n ∈ R

2 such that S2
n
D→ S2

0 where S2
0 ∼ N2(0, C) when C is a covariance

matrix. One knows that g(S2
n)

D→ g(S2
0) if g is continuous with PS2

0
probability 1

(cf [42] page 24). Then, S2
n
D→ S2

0 . Moreover, we shall note that the dependence

of S2
0 does not exist any more for S2

0 . We shall deduce the XORLT for σ(n)S2
n.

5.3.1 Example 1

In this section we study the following example

Example 5.3.1 Let X and Y be two independent random variable with distri-
bution N(0,1). Let Z = X+aY√

1+a2
where a ∈ R.
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Test of the linear correlation coefficient Under the previous hypotheses,
Z has the N(0,1) distribution. Moreover the linear correlation coefficient of X
and Z is ρ = E{XZ} = (1+a2)−1/2E{X(X+aY )} = (1+a2)−1/2. For example,
ρ = 0.701 si a=1.

let ρn be the empirical linear correlation coefficient associated to a sample
(Xs, Zs). Let ρUn be the empirical linear correlation coefficient associated to the
sample (Xs, Zs).

Then, ρn et ρUn allow us to estimate the linear correlation coefficients of
(X0, Z0) and (X0, Z0).

Let N be the size of the sample. The following results have been obtained

ρ N ρn ρUn ρn ρUn
0.7071 1000 0.7063 -0.0607 0.6941 0.0367
0.4472 1000 0.4597 0.0017 0.4488 -0.0260
0.2425 1000 0.2472 0.0054 0.2167 -0.0252
0.7071 5000 0.7034 -0.0294 0.6996 -0.0012
0.4472 5000 0.4536 0.0002 0.4436 -0.0270
0.2425 5000 0.2351 0.0075 0.2290 0.0216
0.7071 10000 0.7108 0.0061 0.7107 0.0010
0.4472 10000 0.4469 -0.0020 0.4454 -0.0049
0.2425 10000 0.2675 0.0099 0.2478 0.0101
0.7071 100000 0.7074 -0.0011 0.7056 -0.0007
0.4472 100000 0.4433 -0.0013 0.4467 0.0002
0.2425 100000 0.2466 -0.0037 0.2445 -0.0015

Then ρUn is smaller than ρn. As a matter of fact, if we do tests, we can even
consider that ρUn is the estimate of the correlation coefficient equal to 0.

Indeed, let ρn be a empirical linear correlation coefficient associated to an

IID sample. Then, by the CLT, P
{√

nρn ≤ x
}
≈ Γ(x) cf [10].

Chi squared independence test We test the independence of Xn and Zn
by the chi squared independence test.

We use a partition (15,15). The chi-squared statistics has asymptotically a
normal distribution (cf proposition A.1.2 ) :

√
2χ2 −

√
2d− 1 where d is the

degree of freedom : (15-1)(15-1).
Assume that the linear correlation coefficient is equal to 0.7071. Then, for

some samples, the following result is obtained for
√

2χ2 −
√

2d− 1 (cf proposi-
tion A.1.2 ) .
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1.1256 -0.1246 2.0030 -0.8977 -0.7952 0.6594 -0.7758
-0.3079 0.5618 -0.3380 -1.2630 -0.5369 -1.0617 0.9458
-1.6506 -0.3484 0.9821 -0.8853 -0.1215 -0.5373 1.0599

In fact (X,Z) is enough close to an independent vector.

Conclusion Under the previous hypotheses,

(X1 + ......+Xn, Z1 + ......+ Zn) → σ(n)(X,Z) .

Now (X,Z) is already close to an independent vector. Then, it will thus be

even truer for σ(n)(X,Z) because the multiplication by σ(n) modulo 1 makes
uniform the distribution as soon as σ(n) is enough big.

In conclusion, the fact that (X, Z) is already almost independent shows the
rate of the convergence of the XORLT.

5.3.2 Example 2

In this example we have similar results when the dimensions are larger than 2.
Let (X1, X2, X3, X4, X5) be a random vector which has a independent nor-

mal distribution. We are interested by

U1 = X1

U2 = X1 +X2

U3 = X1 +X2 +X3

U4 = X1 +X2 +X3 +X4

U5 = X1 +X2 +X3 +X4 +X5.

We use the chi squared independence test on R
5. We use a statistics whose

the distribution is close to the Gaussian one :
√

2χ2 −
√

2d− 1. We assume
that we use hypercubes associated to a (5,5,5,5,5) partition and that the size of
the sample is 100000. For some various samples, the following results have been
obtained.

-0.5232 1.0150 0.6986 -1.8970 -0.7312 0.9638 0.0767
1.8270 0.1473 -0.3621 -1.1102 -0.7045 -1.1002 0.9371

These results shows that these random variables behave as if they were in-
dependent.
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5.3.3 Example using datas of this report

We study an example using the datas of section 11.2.5.
We estimate by using histogram the probability density functions fg and fh

associated to the sizes G(j) and H(j) defined in section 11.2.5. We note that
fG has a graph in form of a bell : figure 5.1 . That corresponds to the CLT.
Moreover, fH has a graph close to that one of the uniform density : figure 5.2 :
That corresponds to the XORLT

We note that the distances between the diverse values of the histogram are
important. It occurs because we took samples of size 100 for a partition in 100
intervals. We so acted it to study closer possible the real probability in every
point. If we take larger samples, we obtain a density very close to the uniform
distribution.

As a matter of fact, when we studied numerically various examples using
data of the type ”text”, ”computer programs”, ”mathematical reports”, etc.,
we always found that X1 +X2 + ....+Xn has asymptotically the uniform dis-
tribution.

We obtained results similar in several dimensions: for the data used in this re-
port, we always found that (X1,1 +X2,1 + ....+Xn,1, X1,2 +X2,2 + ....+Xn,2)
has asymptotically the uniform distribution on [0, 1]p for p=2. We obtained
similar results for p=3,4,5,6.

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 5.1: graph of fg

5.3.4 Distributions close to the uniform distribution

This result is confirmed by considering the case of sum of 5 random variables
Xn ∈ {0, 1, ..., q} for example :
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0.0092
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0.0108

0.011

Figure 5.2: Graph of fh

P{
5∑

i=1

Xi = 0}

= P
{
{X1 = 0} ∩ {X2 = 0} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 0}

}

P{
5∑

i=1

Xi = 1}

= P
{
{X1 = 1} ∩ {X2 = 0} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 0}

}

+P
{
{X1 = 0} ∩ {X2 = 1} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 0}

}

+.................................................................................................

+P
{
{X1 = 0} ∩ {X2 = 0} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 1}

}

P{
5∑

i=1

Xi = 2}

= P
{
{X1 = 2} ∩ {X2 = 0} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 0}

}
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+.................................................................................................

+P
{
{X1 = 0} ∩ {X2 = 0} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 2}

}

+P
{
{X1 = 1} ∩ {X2 = 1} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 0}

}

+.................................................................................................

+P
{
{X1 = 1} ∩ {X2 = 0} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 1}

}

+P
{
{X1 = 0} ∩ {X2 = 1} ∩ {X3 = 1} ∩ {X4 = 0} ∩ {X5 = 0}

}

+.................................................................................................

+P
{
{X1 = 0} ∩ {X2 = 1} ∩ {X3 = 0} ∩ {X4 = 0} ∩ {X5 = 1}

}
.

And so on. Finally this type of equality shows well that the curve of the
probability is smooth and has the form of bell.

More generally, let us take a sum of n terms. Let us take its values close of
n/2, the middle of [0, n]: let us look at number (x1, ..., xn) such as x1 + ....+xn
is close of n/2. There are much more of them than there are (x1, ...., xn)’s such
as x1 + x2 + ....+ xn is close to zero for example. We thus obtain a curve more
and more in the form of bell which satisfies |fn(z)− fn(z′)| ≤ Kn|x− x′| where
Kn ≤ K0. It is thus one good curve (for the CLT).

It is the same if one uses the XORLT. Indeed, if we take the curve of
X1 +X2 + .....+Xn, this one smooth down and thus becomes uniform when
n → ∞. Then, the classic methods of integration implicate the convergence to
the uniform distribution.

Another reason of convergence to the uniform distribution, it is because when
we use independent random variables with uniform distribution, X1 + ....+Xn

has exactly the uniform distribution.
All this shows that if we are in an approached case, the density probability

function of X1 +X2 + ....+Xn is very close to 1.

5.4 Numerical study

In this section, we study the rate of convergence de X1 + X2 + ..... + Xn and
X1 +X2 + .....+Xn by numerical calculations.

For that purpose, we shall choose n varying between 3 and 20 and we sup-
pose Xs ∈ {0, 1, ..., q}. In the following examples, the distributions of the
(X1, ...., Xn)’s are not independent, but chosen with dependences strong enough.

For these values, we can then notice that the graphs are about the ones of a
normal distribution or a uniform distribution except when the probability are
concentrated near a small number of points.
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5.4.1 Case n=7 or n=8

On the following graphs we choose n=7 or n = 8 for various covariance matrices
of (X1, X2, ....., Xn).

Case general Generally we obtain curves close to those of the normal or
uniform distributions : it is the case for the examples A1 and A2 : figures
5.3 , 5.4, 5.5 and 5.6 . It is not the case for the examples A3 whose some
marginal probabilities are close to zero : P{Xs = 0} = 0.35, P{Xs = 1} = 0,
P{Xs = 2} = 0.25, P{Xs = 3} = 0.1, P{Xs = 4} = 0.3 : cf figures 5.7 and 5.8.

Indeed, the more n is big, the more curves are close to limit curves. In fact,
the convergence is very fast. It confirms the results of the section 5.5.1.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q=5,n=8, Normal

Figure 5.3: Example A1 : normal convergence

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.163

0.164

0.165

0.166

0.167

0.168

0.169

0.17

0.171

0.172

q=5,n=8, Uniform

Figure 5.4: Example A1 : uniform convergence
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0.7

q=4,n=7, Normal

Figure 5.5: Example A2 : normal convergence

1 1.5 2 2.5 3 3.5 4 4.5 5
0.194

0.196

0.198

0.2

0.202

0.204

0.206

0.208

0.21

q=4,n=7, Uniform

Figure 5.6: Example A2 : uniform convergence

Case q=3 In the figures 5.9 , 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, we have
choosen sums X1 + ....+X7 with Xs ∈ {0, 1, 2, 3}.

We understand that the curve of the probability is the most remote from a
shape of bell when the marginal probabilities are concentrated near some points:
example C3, probabilities 0.56, 0, 0.037, 0.07. This is normal: for example if
the marginal probabilites is concentrated on even points, the probability of the
sums is equal to 0 in the odd points.
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q=4,n=7, Normal

Figure 5.7: Example A3 : normal convergence
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q=4,n=7, Uniform

Figure 5.8: Example A3 : uniform convergence
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Figure 5.9: Example C1 : n=7, q=3
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Proba = Unif

Figure 5.10: Example C1 : n=7, q=3
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Figure 5.11: Example C2 : n=7, q=3
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Figure 5.12: Example C2 : n=7, q=3
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Figure 5.13: Example C3 : n=7, q=3
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Figure 5.14: Example C3 : n=7, q=3
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Figure 5.15: Example C4 : n=7, q=3
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Figure 5.16: Example C4 : n=7, q=3

5.4.2 Case n=3

In this section, we calculate the exact probability that X1 +X2 +X3 = p when
Xs ∈ {0, 1, ..., q} for s=1,2,3. : cf figures 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23,
5.24, 5.25, 5.26.

It is naturally a case where we could doubt to have already a sufficient
estimate of the limit distributions.

Nevertheless, we understand that if q is enough big, the curve of the proba-
bilties of X1 +X2 +X3 has a shape of bell : examples B2 B3, B4, B5. We also
understand that it is enough that P{Xs = q} have a distribution close to the
uniform distribution to have this type of curve (example B2). But, it is not the
case if the marginal distributions are very different from uniform distribution
(example B1).

5.4.3 Calculation by estimate : variations of n

The previous results allow to verify the rate of the convergence to normal or to
the uniform distributions.

This type of numerical calculations are possible only for n and q enough
small. But, we can also verify the speed of this convergence by estimate, for
example by using histograms: we give an example in figures 5.1 and 5.2. These
results confirm our previous conclusions. As soon as n ≥ 8, the densities have
a curve which has a shape of bell for the most part of probabilities. It is even
more true for the convergence to the uniform distribution.

5.4.4 Case where there is no convergence

The only case which we found where there is not convergence is the one where
the probabilities are concentrated near a small number of points
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Figure 5.17: Example B1 : convergence to the normal distribution
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Figure 5.18: Example B1 : convergence to the uniform distribution
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Figure 5.19: Example B2 : convergence to the normal distribution
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Figure 5.20: Example B2 : convergence to the uniform distribution
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Figure 5.21: Example B3 : convergence to the normal distribution
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Figure 5.22: Example B3 : convergence to the uniform distribution
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Figure 5.23: Example B4 : convergence to the normal distribution
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Figure 5.24: Example B4 :convergence to the uniform distribution
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Figure 5.25: Example B5 : convergence to the normal distribution
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Figure 5.26: Example B5 : convergence to the uniform distribution
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There is also very particular distributions as Xn = Yn − Yn−1 where Yn is
IID (cf [21]). But it is very special case where E{(X1 + .....+Xn)2} is bounded.

In that case, there is no convergence of (X1 +X2 + .....+Xn)/
√
n to the nor-

mal distribution. On the other hand, often α(n)X1 +X2 + .....+Xn converges
nevertheless to the uniform distribution if α(n) → ∞.

In any case, it is easy to realize that the data which we choose in section
11.2 do not verify these hypotheses.

Because the only case where there is no convergence is the one where the
probability are concentrated near a small number of points, a means of speed
up this convergence is to standardize the marginal distributions. For it we use
techniques defined in section 11.1.2 and in chapter 8.

5.4.5 Comparison beetween the XORLT and the CLT

We want to study numerically the rate of convergence of the XORLT when the
CLT is satisfied. Then, we assume

Y =
X1 + ....+Xn

σ
√
n

∼ N(0, 1) .

Then,
X1 + ....+Xn = σ

√
nY ∼ N(0, nσ2) .

Then, one can study the distribution of X1 + ....+Xn.

Here we study the distribution of X1 + ....+Xn when n=10 with the fol-
lowing variances 1/15, 1/20, 1/50, 1/200 : cf figure 5.27, 5.28, 5.29, 5.30. We
see that we are enough near of the uniform distribution if σ2 is not too big.
We remind that if σ2 = 1/12 we are in the case of a uniform distribution : the
density is thus identical to 1. If the variance is 1/200, it begins to have an
important break of the uniform distribution. This one vanish enough fast if we
increase n : cf figures 5.31 and 5.32.

5.4.6 Conclusion

All the previous results confirm the fast convergence of the curves of probability
of X1 +X2 + .....+Xn and X1 +X2 + .....+Xn. The only case where there was
no convergence enough fast is the one where the probability are concentrated
near a small number of points.

For the data used in the construction of b1(n′) in section 11.2, we can think
that a sum of 10 terms is sufficient so that our hypotheses are satisfied. If we
wanted to avoid every risk of error, it would be enough to choose S=15 or 20
(because of the rate of the convergence).
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Figure 5.27: n=10, σ2 = 15
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Figure 5.28: n=10, σ2 = 20
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Figure 5.29: n=10, σ2 = 50
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Figure 5.30: n=10, σ2 = 200
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Figure 5.31: n=10, σ2 = 200
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Figure 5.32: n=20, σ2 = 200
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5.5 Rate of convergence in the XORLT

In the CLT, it is known that the convergence to the normal distribution is
very fast. It is the same in the XORLT for the convergence to the uniform
distribution.

5.5.1 One-dimensional case

In this section, the following hypotheses are used.

Notations 5.5.1 Let Xi, i=1,2,...,S, be a sequence of random variables with
values in {0, 1, ..., N − 1}. We set px1,...,xS

= P{(X1 = x1)∩ .....∩ (XS = xs)} .

Hypothesis 5.5.1 We suppose that px1,...,xS
=

p′x1,...,xS
P

x1,...,xS
p′x1,...,xS

.

We suppose that the p′x1,...,xS
are a sample of an IID sequence of random

variables P ′
x1,...,xS

defined on a probability space (Ω4, A4, P roba4) : p′x1,...,xS
=

P ′
x1,...,xS

(ω4). Let EP ′ and σ2
P ′ be, respectively, the associated expectation and

the associated variance.

For example, suppose that the probabilities are choosen at random. In order
to define mathematically this assumption, one can assume that P ′

x1,...,xS
has the

uniform distribution on [0, 1].

Let us notice that to consider the set of all the possible probabilities is a
reasonable idea because the probabilities that we consider are those which cor-
respond to a sample. There is thus a possible multitude of it.

Proposition 5.5.1 Suppose that
√
N is big and b.σP ′

EP ′

√
NS−1

is small. Then,

with a probability in the order of 1 − 2Γ(b),

∑

x1+...+xS=y

px1,...,xS
≈ 1/N +Ob(1)

bσP ′

EP ′

√
NS+1

.

Proof : Let D be a subset of {0, 1, ..., N − 1}S . Let N(D) be the number of
points of D. Asymptotically,

∑
(x1,...,xS)∈D(P ′

x1,...,xS
− EP ′)

σP ′

√
N(D)

∼ N(0, 1) .
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Let b > 0. Then, approximately,

Prob4

{∣∣∑
(x1,...,xS)∈D(P ′

x1,...,xS
− EP ′)

∣∣

σP ′

√
N(D)

≥ b

}
= Γ(b) .

Then, with a probability in the order of 1 − Γ(b),

1

N(D)

[ ∑

(x1,...,xS)∈D
p′x1,...,xS

−N(D)EP ′

]
= Ob(1)

b.σP ′

√
N(D)

N(D)
.

Then, with a probability in the order of 1 − Γ(b),

1

NS−1

∑

x1+....+xS=y

p′x1,...,xS
− EP ′ = Ob(1)

b.σP ′√
NS−1

.

Therefore, with a probability in the order of 1 − Γ(b),

1

NS

∑

x1,...,xS

p′x1,...,xS
− EP ′ = Ob(1)

b.σP ′√
NS

.

Then, if
√
N is big, with a probability in the order of 1 − 2Γ(b),

(1/NS−1)
∑
x1+...+xS=y p

′
x1,...,xS

(1/NS)
∑
x1,...,xS

p′x1,...,xS

=
EP ′ +Ob(1) b.σP ′√

NS−1

EP ′ +Ob(1) b.σP ′√
NS

=
1 +Ob(1) b.σP ′

EP ′

√
NS−1

1 +Ob(1) b.σP ′

EP ′

√
NS

≈ 1 +Ob(1)
bσP ′

EP ′

√
NS−1

+Ob(1)
b.σP ′

EP ′

√
NS

≈ 1 +Ob(1)
b.σP ′

EP ′

√
NS−1

.

Therefore, ∑
x1+...+xS=y p

′
x1,...,xS∑

x1,...,xS
p′x1,...,xS

= (1/N)
(1/NS−1)

∑
x1+...+xS=y p

′
x1,...,xS

(1/NS)
∑
x1,...,xS

p′x1,...,xS

≈ 1/N +Ob(1)
b.σP ′

EP ′

√
NS+1

.
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Then, if
√
N is big, with a probability in the order of 1 − 2Γ(b),

∑

x1+...+xS=y

px1,...,xS
≈ 1/N +Ob(1)

b.σP ′

EP ′

√
NS+1

. �

It thus gives us an idea of the rate of convergence to the uniform distribution.
For example, if S=11, N=1.000.000, b=100, if the P ′

x1,...,xS
’s have the uniform

distribution on [0,1], with a probability bigger than 1 − 2e−10000/2,

∑

x1+...+xS=y

px1,...,xS
≈ 1/N +Ob(1)

58√
NS+1

=
1

106

[
1 +Ob(1)

58

1030

]
.

It is obviously very close to the uniform law. Thus we have a rate of conver-
gence extremely fast .

5.5.2 Multidimensional case

In dimension p, we obtain results similar to the one-dimensional case for the

case (X1
i , ...., X

p
i )

D→ (X1, ...., Xp) : the convergence to the p-dimensional uni-
form distribution holds. It means that the the Xt’s are independent. It is thus
an very useful result.

We generalize the notations of one-dimensional case by the following way.

Notations 5.5.2 Let (X1
i , ...., X

p
i ), i=1,2,...,S, be a sequence of random vectors

with values in {0, 1, ..., N − 1}p. We set

px1
1,..,x

1
S ;...;xp

1 ,..,x
p
S

= P{(X1
1 = x1

1) ∩ ... ∩ (X1
S = x1

s) ∩ .... ∩ (Xp
1 = xp1) ∩ ... ∩ (Xp

S = xps)}.

Hypothesis 5.5.2 Suppose that

px1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

=
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S∑

x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

.

We assume that the p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
’s are a sample of a sequence of IID ran-

dom variables P ′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

defined on a probability space (Ω6,A6, P roba6):

p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

= P ′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
(ω6). Let EP ′ and σ2

P ′ be the associated

expectation and the associated variance, respectively .
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Then the following proposition holds.

Proposition 5.5.2 Suppose that
√
N is big and b.σP ′

EP ′

√
Np(S−1)

is small. Then,

with a probability in the order of 1 − 2Γ(b),

∑

x1
1+....+x

1
S=y1;.....;x

p
1+....+xp

S=yp

px1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
≈ 1/Np

[
1 +

Ob(1).bσP ′

EP ′

√
Np(S−1)

]
.

Proof : Let D be a subset of {0, 1, ..., N − 1}Sp. Asymptoticaly,

∑
(x1

1,...,x
1
S ;....;xp

1 ,...,x
p
S)∈D(P ′

x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
− EP ′)

σP ′

√
N(D)

∼ N(0, 1) .

Let b > 0. Then,

Prob6

{∣∣∑
(x1

1,...,x
1
S ;....;xp

1 ,...,x
p
S)∈D(P ′

x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
− EP ′)

∣∣

σP ′

√
N(D)

≥ b

}
= Γ(b) .

Then, with a probability in the order of 1 − Γ(b),

1

N(D)

[ ∑

(x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S)∈D

p′x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
−N(D)EP ′

]

= Ob(1)
b.σP ′

√
N(D)

N(D)
.

Then, with a probability in the order of 1 − Γ(b),

1

Np(S−1)

∑

x1
1+....+x

1
S=y1;.....;x

p
1+....+xp

S=yp

p′x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
− EP ′

= Ob(1)
bσP ′√
Np(S−1)

.

Therefore, with a probability in the order of 1 − Γ(b),

1

NpS

∑

x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

p′x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
− EP ′ = Ob(1)

bσP ′√
NpS

.
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Then, if
√
N is big, with a probability in the order of 1 − 2Γ(b),

1
Np(S−1)

∑
x1
1+....+x

1
S=y1;.....;x

p
1+....+xp

S=yp
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

1
NpS

∑
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

=
EP ′ +Ob(1) bσP ′√

Np(S−1)

EP ′ +Ob(1) bσP ′√
NpS

=
1 +Ob(1) bσP ′

EP ′

√
Np(S−1)

1 +Ob(1) bσP ′

EP ′

√
NpS

≈ 1 +Ob(1)
bσP ′

EP ′

√
Np(S−1)

+Ob(1)
bσP ′

EP ′

√
NpS

≈ 1 +Ob(1)
bσP ′

EP ′

√
Np(S−1)

.

Therefore,

∑
x1
1+....+x

1
S=y1;.....;x

p
1+....+xp

S=yp
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S∑

x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

= (1/Np)

1
Np(S−1)

∑
x1
1+....+x

1
S=y1;.....;x

p
1+....+xp

S=yp
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

1
NpS

∑
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
p′
x1
1,...,x

1
S ;....;xp

1 ,...,x
p
S

≈ 1/Np +Ob(1)
bσP ′

EP ′

√
Np(S+1)

.

Then, if
√
N is big, with a probability in the order of 1 − 2Γ(b),

∑

x1
1+....+x

1
S=y1,.....,x

p
1+....+xp

S=yp

px1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
≈ 1/Np +Ob(1)

bσP ′

EP ′

√
Np(S+1)
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= 1/Np
[
1 +

Ob(1).bσP ′

EP ′

√
Np(S−1)

]
. �

The approximation of the uniform distribution remains valid even when p is
big. So, in the maximum case, if p=N, with a probability of 1 − 2Γ(b),

∑

x1
1+....+x

1
S=y1;.....;x

p
1+....+xp

S=yp

px1
1,...,x

1
S ;....;xp

1 ,...,x
p
S
≈ 1

NN

[
1 +

Ob(1).bσP ′

EP ′

√
NN(S−1)

]
.

It thus gives us an idea of the rate of convergence to the uniform distribu-
tion: we have a speed of convergence extremely fast.

Consequence Now, there is Np possible (y1, ..., yp). Therefore, with a prob-
ability bigger than 1 − 2NpΓ(b), for all (y1, ...., yp),

P
{
{X1

1 +X1
2 + ....+X1

S = y1} ∩ .... ∩ {Xp
1 +Xp

2 + ....+Xp
S = yp}

}

= (1/Np)
[
1 +Ob(1)

bσP ′

EP ′Np(S−1)/2

]
.

Then, we have a speed of convergence extremely fast. Nevertheless,

P
{
{X1

1 +X1
2 + ....+X1

S = y1} ∩ .... ∩ {Xp
1 +Xp

2 + ....+Xp
S = yp}

}

can be very different of 1/Np.
This case is always possible in the set of the probabilities. But it occurs with

a very weak probability: e.g. Γ(b) ≤ 1/10197 if b=30. It occurs for example
when the Xt ’s are concentrated near a small number of points.

It occurs also when probabilities are not chosen randomly : it is an impor-
tant case. Indeed it includes the continuous case : cf section 5.5.8.

5.5.3 Case of independence

Now, we understand that if we suppose that variables are independent, there
is a probability stronger than P{X1 + ....+XS = 1} 6= 1/N . This result could
seem surprising. We are going to try to understand what it happens.

In this section we suppose that the following hypotheses hold.

Notations 5.5.3 Let Xi, i=1,2,..,S, be S independent random variables with
values in {0, 1, ..., N − 1}. We set P{Xi = xn} = pixn

= (1/N)[1 + vixn
] .
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Hypothesis 5.5.3 We keep the same notations as in section 5.5.1. But we
assume that px1,...,xS

= p1
x1
......pSxS

.
For all i ∈ {1, 2, ..., S}, we assume that pixn

is a realization of the se-
quence of random variables P ixn

defined on a probability space (Ω3,A3, P roba3):
pixn

= P ixn
(ω3) and V ixn

: vixn
= V ixn

(ω3).

One can assume that the V ixn
’s have a mean equal to zero. Indeed the

following lemma holds

Lemma 5.5.1 Under the previous assumptions,
∑N−1
xn=0 v

i
xn

= 0.

Proof We have 1 =
∑
x1
P{X1 = x1} =

∑
x1

(1/N)(1 + v1
x1

) = 1 +

(1/N)
∑
x1
v1
x1

. Therefore,
∑
x1
v1
x1

= 0. �

Then, we study py = P{X1 +X2 + ....+XS = y} . We shall understand in
section 5.5.4 that their behavior is determined by the sum

∑

x1+....+xS=y

v1
x1
v2
x2
....vSxS

.

We know that, if the v1
x1
v2
x2
....vSxS

’s are all different,
∑
x1+....+xS=y v

1
x1
v2
x2
....vSxS

can be considered as the sum of an IID sample of size N (S−1) (cf section 8.1.2).

Let σ2
V be the variance of V 1

xi1
....V SxiS

. If one can apply the CLT, one has

approximately :

Proba3

{∑
x1+....+xS=y V

1
x1
....V SxS

σVN (S−1)/2
≥ b
}
≤ Γ(b) .

Because

P{X1 +X2 + ....+XS = y} =
∑

x1+....+xS=y

(1 + v1
x1

)....(1 + vSxS
)/NS ,

by section, 5.5.4, we have again the inequality

Proba3

{ |P{X1 +X2 + ....+XS = y} − 1/N |
σV

≥ b

N (S+1)/2

}
≤ Γ(b) .

The point is to know if we can apply the CLT when we make add on sam-
ples of size NS−1 while we have NS variable P ixsi

: It would be necessary that

the number of variables is bigger than the size of samples. We shall study this
problem in section 5.5.8.
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5.5.4 Sum of v1
x1

v2
x2

....vS
xS

Now we understand that the py’s depend on sums of v1
x1
v2
x2
....vSxS

.

Proposition 5.5.3 With the previous notations,
P{X1 + ...+XS = y} = (1/N) + (1/NS)

∑
x1+...+xS=y v

1
x1
v2
x2
....vSxS

.

Proof First, P{X1 +X2 + ....+XS = y}
=
∑
x1+....+xS=y P

{
{X1 = x1} ∩ ........ ∩ {XS = xS}

}

=
∑
x1+....+xS=y P{X1 = x1}....P{XS = xS}

= (1/NS)
∑
x1+...+xS=y(1 + v1

x1
).....(1 + vSxS

).

Now,
(1 + v1

x1
).....(1 + vSxS

)

= 1 + [v1
x1

+ ......+ vSxS
] +
∑
i1<i2

vi1xi1
vi2xi2

+
∑
i1<i2<i3

vi1xi1
vi2xi2

vi3xi3

+.............................................................................
+
∑
i1<i2<....<iq

vi1xi1
vi2xi2

....v
iq
xiq

+.............................................................................
+v1

x1
v2
x2
....vSxS

.

Clearly, by the following lemma (5.5.2),
P{X1 + ...+XS = y} = (1/N) + (1/NS)

∑
x1+...+xS=y v

1
x1
v2
x2
....vSxS

. �

Lemma 5.5.2 Suppose q < S. Then,∑
x1+....+xS=y

[∑
i1<i2<....<iq

vi1xi1
vi2xi2

vi3xi3
....v

iq
xiq

]
= 0.

Proof We have∑
x1+....+xS=y

[∑
i1<i2<....<iq

vi1xi1
vi2xi2

vi3xi3
....v

iq
xiq

]

=
∑
i1<i2<....<iq

[∑
x1+....+xS=y v

i1
xi1
vi2xi2

vi3xi3
....v

iq
xiq

]
.

For example, if iq < S,∑
x1+....+xS=y v

i1
xi1
vi2xi2

vi3xi3
....v

iq
xiq

=
∑
xi1

∑
xi2

....
∑
xiS−1

∑
xS=y−x1+....−xS−1

vi1xi1
vi2xi2

vi3xi3
....v

iq
xiq

=
∑
xi1

∑
xi2

....
∑
xiS−1

vi1xi1
vi2xi2

vi3xi3
....v

iq
xiq

=
[∑

xi1
vi1xi1

]
......

[∑
xiq

v
iq
xiq

]

= 0 because
∑
xi1

vi1xi1
= 0. �
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5.5.5 Study of
∑

x1+....+xS=y v1
x1

v2
x2

....vS
xS

Then,
∑
x1+....+xS=y

[∑
i1<i2<....<iS

vi1xi1
vi2xi2

....viSxiS

]
can be regarded as the

sum of an IID sample of size N (S−1) of mean zero and of variance σ2
V .

It means that, with a probability near 1, if the CLT holds, and if b is large
enough,

P{X1 +X2 + ....+XS = y} = (1/N)
[
1 +Ob(1)

bσV
N (S−1)/2

]
.

But we understand now on examples that the CLT is not satisfied as well as
in the general case. We shall study the case where Xs ∈ {0, 2, 4, ...., }.

5.5.6 Counterexamples

We obtain results similar at those of section 5.4.1 : if the probability is con-
centrated near a small number of points, P{X1 +X2 + ....+XS = y} 6= 1/N
is a possible result. The extreme case is the one where the probabilities pixs

are
concentrated in a single point, for example xs = 1. In this point, pi1 = 1 and
vi1 = N − 1.

Now suppose that N is even. Suppose that the Xt’s have the uniform dis-
tribution over the even numbers : pi2j = 2/N and pi2j+1 = 0. In this case,

vij = (−1)j = ±1. Therefore, v1
x1
v2
x2
....vSxS

= (−1)x1+..+xS .

For example, if y is even, v1
x1
v2
x2
....vSxS

= 1. Therefore,

∑

x1+....+xS=y

v1
x1
v2
x2
....vSxS

=
∑

x1+....+xS=y

1 = NS−1.

Actually, ∑

x1+....+xS=y

v1
x1
v2
x2
....vSxS

= (−1)yNS−1

and
P{X1 +X2 + ....+XS = y} = 0 or = 2/N.

Then py = P{X1 +X2 + ....+XS = y} can be very different of 1/N. This
case is always possible in the set of all probabilities. It is the case where

∑
x1+....+xS=y(py − 1/N)

σV /N (S+1)/2
≥ b .
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But it occurs with a weak probability. Now, we need to know more this
probability if we cannot use directly the CLT.

5.5.7 Probability concentrated near even numbers

We thus want to know which is the probability that P{X1 +X2 + ....+XS = y}
is different enough of 1/N in the case of independence.

For that purpose, in this section, we are in the particular case where pxs
=

px′
s

P

xs
p′xs

, where p′xs
= P ′

xs
(ω3) and where the P ′

xs
’s are an IID sequence of

random variables which have the uniform distribution over [0,1] and which are
defined over a probability space (Ω3,A3, P roba3).

As a matter of fact, we regard a case close to the case where the probabilities
are uniformly distributed on the even numbers, that is the case where pi2j ≈ 2/N

and pi2j+1 ≈ 0.

Then, we have pxs
= p1

xs
= (1/N)[1 + vxs

]. Therefore, Npxs
= 1 + vxs

.
Then, vxs

= Npxs
− 1.

For this study the following lemma is needed.

Lemma 5.5.3 Let ZNo = (1/
√
N)
∑
xs

[P ′
xs

− 1/2]. Let I be an interval. Then
the following equivalence holds

vxs ∈ I ⇐⇒ p′xs
∈
[
1 + 2zNo/

√
N
]
(I + 1)/2 .

Proof At first, zNo
√
N =

∑
xs

[p′xs
−1/2]. Therefore,

∑
xs
p′xs

= N/2+
√
NzNo.

Therefore,

vxs
= Npxs

− 1 =
Np′xs∑
xs
p′xs

− 1 =
Np′xs

N/2 +
√
NzNo

− 1 .

Then the following equivalence holds : vxs ∈ I ⇐⇒ Np′xs

N/2+
√
NzNo

− 1 ∈

I ⇐⇒ p′xs

1/2+zNo/
√
N

− 1 ∈ I ⇐⇒ 2p′xs

1+2zNo/
√
N

− 1 ∈ I ⇐⇒ 2p′xs

1+2zNo/
√
N

∈
I + 1 ⇐⇒ p′xs

∈
[
1 + 2zNo/

√
N
]
(I + 1)/2. �

Remark that ZNo has almost the normal distribution with mean zero and
variance 1/12.
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The probability that Vxs ∈ [1−f, 1[ where f is small - that is the probability
that Pxs ≈ 2/N - is equivalent to the probability that P ′

xs
∈ (1+2ZNo/

√
N)[1−

f/2, 1[. Then, it is almost equivalent to the probability that P ′
xs

∈ [1 − f/2, 1[.
Then, it is almost equal to (f/2).

The probability that Vxs
∈ [−1,−1+f [ - that is the probability that Pxs

≈ 0
- is equivalent to the probability that P ′

xs
∈ (1 + 2ZNo/

√
N)[0, f/2[. Then, it

is almost equivalent to the probability that P ′
xs

∈ [0, f/2[ . Then, it is almost
equal to (f/2).

Then, the following property holds.

Property 5.5.4 The probability that pixs
≈ 0 for each odd numbers and that

pixs
≈ 2/N for each even number is, for each row i, (f/2)N , and for all the rows

(f/2)NS.

Comparison with the general case We compare this result with the general
result of section 5.5.1 :

Proba4

{ |P{X1 +X2 + ....+XS = y} − 1/N |
σP ′

≥ b

EP ′N (S+1)/2

}
≤ Γ(b) .

The following lemma is needed.

Lemma 5.5.5 The following equivalences hold : vxs
∈ [1 − f, 1[ ⇐⇒ pxs

∈
[2/N − f/N, 2/N [ and vxs ∈ [−1,−1 + f [ ⇐⇒ pxs ∈ [0, f/N [.

Proof We have vxs
∈ [1 − f, 1[ ⇐⇒ Npxs

= vxs
+ 1 ∈ [2 − f, 2[ ⇐⇒ pxs

=
(1/N)[vxs

+ 1] ∈ [2/N − f/N, 2/N [ . Moreover vxs
∈ [−1,−1 + f [ ⇐⇒ Npxs

=
vxs

+ 1 ∈ [0, f [ ⇐⇒ pxs
= (1/N)[vxs

+ 1] ∈ [0, f/N [. �

Now, we use the following property.

Property 5.5.6 Suppose that pxs
∈ [0 , f/N [ if N is odd and that pxs

∈
[2/N − f/N, 2/N ] if N is even.

Suppose that y is odd. Let σ2
P ′ = 1/12. Then,

|P{X1 +X2 + ....+XS = 1} − 1/N |
σP ′

≥ (1/N)[1 − 2S−1f ]√
1/12

.

Proof For example assume y=1. Then,

P{X1 +X2 + ....+XS = 1} =
∑

x1+....+xS=1

p1
x1
....pSxS

.
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In all these xs, there is at least one xs odd : xs = 2j0 + 1. Therefore,
pixs

= pi2j0+1 ≤ f/N . Therefore,

p1
x1
....pSxS

≤ (f/N)(2/N)S−1.

Therefore,

∑

x1+....+xS=1

p1
x1
....pSxS

≤ NS−1[(f/N)(2/N)S−1] = 2S−1f/N.

Therefore,

1/N − P{X1 +X2 + ....+XS = 1} ≥ 1/N − 2S−1f/N = 1/N [1 − 2S−1f ].

Then, with (σP ′)2 = 1/12,

|P{X1 +X2 + ....+XS = 1} − 1/N |
σP ′

≥ (1/N)[1 − 2S−1f ]√
1/12

. �

Under the hypotheses of section 5.5.1 , with (σP ′)2 = 1/12 and EP ′ = 1/2,
we know that

Proba3

{ |P{X1 + ....+XS = 1} − 1/N |
σP ′

≥ b

Ep′N (S+1)/2

}
≤ Γ(b) .

Now in order that

|P{X1 +X2 + ....+XS = 1} − 1/N |
σP ′

≥ b

Ep′N (S+1)/2
,

it is sufficient for example, that 2b
N(S+1)/2 = (1/N)[1−2S−1f ]√

1/12
, that is b =

√
3[1 − 2S−1f ]N (S−1)/2.

Now we know 2 that, if b is big, Γ(b) =
√

2e−b2/2
√
πb

. Therefore,

Γ(b) ≤ e−b
2/2/b =

e−1.5[1−2S−1f ]2N(S−1)

√
3|1 − 2S−1f |N (S−1)/2

≤ e−1.5NS−1

2e.g. with the notations of Matlab, Γ(b) = erfc(b/
√

2) , erfcx(b/
√

2) = eb2/2erfc(b/
√

2).

If b is big erfcx(b/
√

2) =
√

2√
πb

.
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if f is small enough .

Now, in the case of independence, we know that it occurs with a probability
in the order of (f/2)NS : cf property 5.5.4 . Of course, it is not in the same

order as e−14N(S−1)/10.

5.5.8 Consequences

Differences between the case of the independence and the general case

The previous results mean that
{

|P{X1+X2+....+XS=1}−1/N |
σP ′

≥ b
EP ′N(S+1)/2

}
has

a probability bigger to come true in the set of the independent probabilities
than in the set of all the probabilities.

This result could seem strange. Indeed, for the CLT, the convergence is
admitted faster in the case of the independence. Now the XORLT is a transfor-
mation of the CLT.

However, in a way, it is normal. By imposing the hypothesis of indepen-
dence, we lose parameters, thus probabilities : a priori there is less p1

xs1
....pSxsS

than possible px1,....,XS
.

We have just understood that the probability that

{ |P{X1 +X2 + ....+XS = 1} − 1/N |
σP ′

≥ b

EP ′N (S+1)/2

}

is much stronger in the case of the independence.

Why this difference? This difference thus results because there is less pa-
rameters. In the general case, there is NS (x1, x2, ..., xS) S-uple which have to
be considered. There is thus NS possible p′x1,....,xS

. We make sums of NS−1

terms px1,....,xS
. This is thus plausible.

In the case of independence, there is N pixs
for each row i. Then, all in all,

there is NS pixs
, i=1,..,S, xs ∈ F ∗(N). But, we make always sums of NS−1

terms p1
xs1
p2
xs2
....pSxsS

which are determined by NS parameters. It is one of rea-

sons of the problem.

Real behavior of probabilities In the case of the independence, the prob-
ability Proba3 behaves as if we made a sum of NS terms. We should thus find
a result of the type

Proba3

{ |P{X1 +X2 + ....+XS = y} − 1/N |
σP ′

≥ b

EP ′

√
NS

}
≤ Γ′(b) ,
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where Γ′(x) = O
(
Γ(x)

)
.

But, in fact, we find |P{X1+X2+....+XS=1}−1/N |
σP ′

≥ b
EP ′N(S+1)/2 only in case

where the probability of Xs is concentrated near a small number of points. And
we know that we have to eliminate this case : cf section 5.4.1.

In other cases, all our researches show that we find the same probability as
in the general case

Proba3

{ |P{X1 +X2 + ....+XS = y} − 1/N |
σP ′

≥ b

EP ′N (S+1)/2

}
≤ Γ”(b) ,

where Γ”(b) = O
(
Γ(b)

)
.

We thus find the general case where the convergence is extremely fast with
a probability infinitely close to 1. To convince itself, we can refer for example
to the elementary study made in section 5.3.4.

We understand in section 8.2.2 how eliminating the case where the Xt ’s are
concentrated near a small number of points.

One of the reason of the problem

In fact the problem comes as well from the fact as we suppose that the xn’s have
to be different some of the others in order that a sequence of real xn behaves as
an IID sequence, : cf section 8.1.2.

Of course, it is not the case when the probability is concentrated uniformly
on the even numbers: there are only 2 possible values for px1,....,xS

: 0 or 2S/Ns.
Now if the probability is concentrated on the even numbers in a random

way, we meet ourselves in the same study but we replace N by N/2. It means

that the probability that |P{X1+X2+....+XS=y}−1/N |
σP ′

≥ b′ can occur but with a

less weak probability.

Now, if the xn’s - and thus the pxt
’s - are not concentrated near a small

number of points, the number of the possible values for px1,....,xS
is much bigger

and well distributed. We shall thus have a fast convergence with a probability
infinitely close to 1.

Anyway, we understand well the difference: the sum
∑
p1
xs1
....pSxsS

can be

considered as the sum of a sample IID as soon as the pxt
’s are different enough.

The probability that such a sample satisfies |P{X1+X2+....+XS=y}−1/N |
σP ′

≥ b be-

comes again very weak. This probability increases as soon as pxs
is concentrated

near a small number of points.

Thus if the pxt
’s are different, the sums

∑
px1

s1
....pxS

sS
behave as sums of

numbers chosen at random.
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It stops if the pxt ’s are concentrated near a small number of points (as in
the case of uniform concentration near the even numbers). In that case, it is

normal that P{X1+X2+....+XS=y}−1/N)
σP ′

≥ b′ is bigger.

Thus if the pxt
’s are different enough, the sums

∑
px1

s1
....pxS

sS
behave as

sums of numbers chosen at random. We find the probability of the general case.

Let us notice that all these results are coherent.
We understand that the problem comes from the fact that the xt’s are con-

centrated near a small number of points. Otherwise, we have often a fast con-
vergence with a probability infinitely close to 1.

It is an important result : it means that, under our hypotheses, there is a
break of the XORLT if the probabilities are concentrated near a small number
of points.

We thus know which problem, it is necessary to avoid to have a fast con-
vergence. We shall use differents way for it : cf section 8.2.2. It will allow us
to admit the hypotheses that we chose for our various type of construction : cf
chapter 11 and 12

Problem in some cases

Proposition 5.5.1 is only a mathematical theorem with a measure on the set of
the probabilities chosen a priori. This measure is not thus inevitably adapted
to certain assumptions.

Continuous case It is not difficult to understand that proposition 5.5.1 gives
absurd results in the case of continuous density.

Indeed, let us consider random variables with values in F (m). We denote
by fY the densisty of the sum with respect to µm :

fY (y) = m
∑

x1+...+xS=y

px1,...,xS
.

Then, by proposition 5.5.1,

fY (y) = m
∑

x1+...+xS=y

px1,...,xS
= 1 +O

( 1

m(S−1)/2

)
.

Now, for probabilities estimated starting from sample of small size, one often
admits that the Xs have a continuous density: it is an assumption a priori
realistic and usual. Now, if Xt has values in [0,1] with a continuous density,
according to proposition 5.5.1, with a probability equal to 1,

fY (y) = 1 .

It is understood that this fact is false. Thus let us choose S=3, and suppose
that, for s=1,2, the densities of Xs with respect to µm is fXs

(x) = ηm6x5 where
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ηm → 1 as m → ∞. Suppose that the densities of X3 is fX3(x) = ηm6(1 − x)5

Then, ∑

x1+x2+x3=y

px1
px2

px3
=

∑

(x1,x2)

px1
px2

py−x1−x2

=
1

m3

∑

(x1,x2)

fX1
(x1)fX2

(x2)fX3
(y − x1 − x2)

=
η3
m63

m3

∑

(x1,x2)

(x1)5(x2)5
(
1 − y − x1 − x2

)5
.

Therefore, if y=1 and if x1 and x2 are close to 1,

∑

x1+x2+x3=y

px1
px2

px3
=
η3
m63

m3

∑

(x1,x2)

(x1)5(x2)5
(
x1 + x2 − 1

)5
.

It is not difficult to understand that

m
∑

x1+x2+x3=1

px1
px2

px3
6= m

∑

x1+x2+x3=7/8

px1
px2

px3
.

Therefore, the distribution of X1 +X2 +X3 is different from the uniform dis-
tribution.

However, this case is that where the marginal probabilities are concentrated
each one nearly one only point: (1, 1, 0). One thus finds the case which should
a priori be excluded. But is really necessary it to exclude this case?

There is indeed concentration around a point. However this concentration
is not so strong. In spite of that, one will not obtain

∑
x1+x2+x3=1 px1

px2
px3

≈
1/m.

Therefore, the result of proposition 5.5.1 does not seem to be representative
in certain cases, e.g. when the Xn’s have continuous densities.

A solution To avoid this problem, one can transform the random variables.
Indeed, the previous result will change completely if one multiplies each Xt by
a real number αt modulo 1: X ′

t = αtXt and if one uses X ′
1 +X ′

2 +X ′
3 . For

example, one can choose α1 = 9875465559300025458 in the example of section
11.2.5 with Xs = F (s, 1). One can also choose α1 = 9875465559300025458 ∗
m/10.

Indeed, if there are continuous peaks, i.e points of concentrations, this multi-
plication will remove them by distributing the probabilities in a enough random
way. One will be able to thus apply proposition 5.5.1 which uses probabilities
taken randomly.
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For example suppose that αt = 1 for s=1,2,...,S-1, that the Xs ∈ F ∗(m)
have the same distribution and that αS = a = fin0−1 and m = fin0 : that is
T (x) ≡ ax modulo m is a Fibonacci congruence. Then, p′x = P{X ′

S = x} =

P{T (XS) = x} = P{XS = T
−1

(x)} = p
T

−1
(x)

.

Then, X1 + ....+XS−1 +X ′
S has a probability close to the uniform distri-

bution. Indeed,

∑

x1+x2+...+xS=y

px1
px2

.......p′xS
=

∑

x1+x2+...+xS=y

px1
px2

.......p
T

−1
(xS)

=
∑

(x1,....,xS−1)

px1
px2

......pxS−1
p
T

−1
(y−x1−x2−....−xS−1)

=

m−1∑

t=0

∑

(x1,....,xS−1) : x1+...+xS−1=t

px1
px2

......pxS−1
p
T

−1
(y−t)

=

m−1∑

t=0

ΠtpT−1
(y−t) ,

where
Πt =

∑

(x1,....,xS−1) : x1+...+xS−1=t

px1
px2

......pxS−1
.

By the properties of Fibonacci congruences, (cf Chapter 7), the T−1(y − t)
behave as if they were chosen randomly compared to the continuous case. Then,
one can regard that p

T
−1

(y−t) and Πt are independent.

Let us remind that in the case of sequences of N random variable Xt and Yt
independent,

1/N
N∑

t=0

XtYt −
(

1/N

N∑

t=0

Xt

)(
1/N

N∑

t=0

Yt

)
P→ 0 as N → ∞ .

Therefore,

(1/m)
m−1∑

t=0

ΠtpT−1
(y−t) −

(
(1/m)

m−1∑

t=0

Πt

)(
(1/m)

m−1∑

t=0

p
T

−1
(y−t)

)
≈ 0 .

Now

(1/m)

m−1∑

t=0

Πt = (1/m)
∑

(x1,....,xS−1)

px1
px2

......pxS−1

= (1/m)
(∑

x1

px1

)
......

( ∑

xS−1

pxS−1

)
= 1/m .
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and

(1/m)

m−1∑

t=0

p
T

−1
(y−t) = 1/m .

Therefore,

(1/m)

m−1∑

t=0

ΠtpT−1
(y−t) ≈

(
(1/m)

m−1∑

t=0

Πt

)(
(1/m)

m−1∑

t=0

p
T

−1
(y−t)

)
= 1/m2 .

Therefore, ∑

x1+x2+...+xS=y

px1
px2

.......pxS
≈ 1/m .

Therefore X1 + ....+XS−1 +X ′
S has a distribution close to the uniform distri-

bution.

As a matter of fact, the multiplication by αt modulo 1 defines a permutation
if αt is suitably selected.

But in this case, one has again the problem of the choice of the permuta-
tions: the permutations too simple are not appropriate. Is this case here? This
problem is not so simple. On the one hand, Knuth ([1]) explains why one cannot
use permutations built by algorithm (cf also section 2.1.1).

On the other hand, one understands in chapter 7 that the multiplication
corresponding to a Fibonacci congruence is a good permutation. Because of
this result, one can always regard that the multiplication by αS modulo 1 cor-
responds to a good permutation if αS is suitably selected.

But what interests us here be the sums
∑
x1+...+xS=y px1px2 .....pxS−1

pT−1(xS).
Now, in the numerical studies that we have made, the px1px2 .....pxS−1

pT−1(xS)

are distributed in a enough random way so that one can considers that one is
under the assumptions of proposition 5.5.1.

Return to the continuous case Let us check if we solved the case studied
at the beginning of this subsection by multiplying the Xt by coefficients αt.

This result seems correct: if one multiplies Xt by a real number α0 chosen
randomly, one multiplies normally by an irrational number. Now, this irrational
number defines himself a random sequence (for example cf page 158, theorem F
[1]).

Model associated to a sample Let us remind that to consider the set of
all the possible probabilities is normal because there is a multitude of models
associated with a sample and a priori, one does not know which is the best model
which one can choose. However, the model which corresponds to probabilities
chosen randomly is natural if one takes samples resulting from texts for example.
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Of course, if N << m, one can also choose a model with continuous density.
But it is a very particular model and a priori it is not logically appropriate if
text is used.

5.5.9 Secund type of assumptions

In this section, we suppose again p=1 and that the Xs are independent. But
we study by another way the numbers vixn

defined in notations 5.5.3.

Notations 5.5.4 Let Xi, i=1,2,...,S, be a sequence of independent random
variables with values in {0, 1, ..., N − 1}. For all s ∈ {1, 2, ..., S}, we set p”sxs

n
=

P{Xs = xsn}.

Hypotheses

Then, we assume that p”ixn
= P”ixn

(ω7) where p”ixn
= (1/N)[1 + riN (vixn

− viN )]
and where vixn

= V ixn
(ω7) is a realization of an IID sequence defined by the

following way.

Hypothesis 5.5.4 For all i ∈ {1, 2, ..., S}, we assume that vixn
is a realiza-

tion of an IID sequence of random variables V ixn
defined on a probability space

(Ω7,A7, P roba7) such that −1 ≤ V ixn
≤ N − 1 and E{V ixn

} = 0.
Then, we set viN = (1/N)

∑
xs
vixs

and V iN = (1/N)
∑
xs
V ixs

.

Then, the following results holds

Lemma 5.5.7 There exists a sequence of random variables 0 < RiN ≤ 1 such

that −1 ≤ RiN (V ixn
− V in) ≤ N − 1 and RiN

P→ 1 as N → ∞.

Proof : Because −1 ≤ V ixn
≤ N−1, one can write −1−e ≤ V ixn

−V iN ≤ N−1+e
where e > 0. Then, one can write −1 ≤ RiN (V ixn

− V in) ≤ N − 1 where

0 < RiN ≤ 1. By the CLT, V iN
P→ 0. Therefore, RiN

P→ 1. �

Then, we can define probabilities over F ∗(N).

Proposition 5.5.4 For all xn ∈ F ∗(N), we set P”ixn
= (1/N)[1 + RiN (V ixn

−
V iN )]. Then, 0 ≤ P”ixn

≤ 1 and
∑
xn
P”ixn

= 1

Proof : We have 0 ≤ P”ixn
≤ 1 . Moreover,

∑
xn
P”ixn

=
∑
xn

(1/N)[1 +

RiN (V ixn
− V iN )] =

∑
xn

(1/N) + (RiN/N)
∑
xn

(V ixn
− V iN )] = 1. �

Then, we assume that the following hypothesis holds.

Hypothesis 5.5.5 For all i ∈ {1, 2, ..., S}, we assume that p”ixn
is a realiza-

tion of the sequence of random variables P”ixn
defined over (Ω7,A7, P roba7) :

p”ixn
= P”ixn

(ω7) where P”ixn
= (1/N)[1 +RiN (V ixn

− V iN )].
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Then, we have the following theorem.

Theorem 6 Assume that, for all s ∈ {1, 2, ..., S}, the variance of V s1 is σ2
Vs

.
Then, with a probability greater than 1 − Γ(b) approximately,

P{X1 + ...+XS = y} =
1

N

[
1 +

b.Ob(1)σV1 ....σVS√
NS−1

]
.

Remark 5.5.8 If P ix has a distribution similar to that of P ix =
P ′i

x
PN

t=1 P
′i
t

when

P ′i
x has the uniform distribution, then σ2

V = O(1).

Indeed, NP ixn
− 1 = V ixn

and pix ≈ p′ix
(N/2)[1+O(1)/

√
N ]

= O(1/N) with a prob-

ability very close to 1. Moreover, E{V ixn
} = 0. For example, one can choose

σ2
V ≤ 1.

Proof of theorem 6

At first, the following proposition holds.

Proposition 5.5.5 The following equality holds :

P{X1 + ...+XS = y} = 1
N +

r1N .....r
S
N

NS

∑
x1+...+xS=y(v1

x1
− v1

N )........(vSxS
− vSN ).

Proof At first, P{X1 +X2 + ....+XS = y} =
∑
x1+....+xS=y p”x1

....p”xS

= (1/NS)
∑
x1+...+xS=y[1 + r1N (v1

xn
− v1

N )].......[1 + rSN (vSxn
− vSN )].

Now, [1 + r1N (v1
x1

− v1
N )].......[1 + rSN (vSxS

− vSN )]

= 1 +
[
r1N (v1

x1
− v1

N ) + .....+ rSN (vSxn
− vSN )

]

+.............................................................................
+
∑
i1<i2<....<iq

ri1N (vi1xi1
− vi1N )ri2N (vi2xi2

− vi2N )........r
iq
N (v

iq
xiq

− v
iq
N )

+.............................................................................
+r1N (v1

x1
− v1

N )r2N (v2
x2

− v2
N ).........................rSN (vSxS

− vSN ).

We deduce the proposition by using the following lemma (5.5.9). �

Lemma 5.5.9 Suppose q < S. Then,∑
x1+....+xS=y

[∑
i1<i2<....<iq

ri1N (vi1xi1
− vi1N )........r

iq
N (v

iq
xiq

− v
iq
N )
]

= 0.

Proof We have∑
x1+....+xS=y

[∑
i1<i2<....<iq

ri1N (vi1xi1
− vi1N )........r

iq
N (v

iq
xiq

− v
iq
N )
]

= 0

=
∑
i1<i2<....<iq

[∑
x1+....+xS=y r

i1
N (vi1xi1

− vi1N )........r
iq
N (v

iq
xiq

− v
iq
N )
]
.

For example, if iq < S,
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∑
x1+....+xS=y(vi1xi1

− vi1N )........(v
iq
xiq

− v
iq
N )

=
∑
xi1

∑
xi2

....
∑
xiS−1

∑
xS=y−x1+....−xS−1

(vi1xi1
− vi1N )........(v

iq
xiq

− v
iq
N )

=
∑
xi1

∑
xi2

....
∑
xiS−1

(vi1xi1
− vi1N )........(v

iq
xiq

− v
iq
N )

=
∑[ [∑

xi1
(vi1xi1

− vi1N )
]
......

[∑
xiq

(v
iq
xiq

− v
iq
N )
] ]

= 0 because
∑
xi1

vi1xi1
= Nvi1N . �

Then, one can prove that
∑
x1+....+xS=y

[∑
i1<i2<....<iS

V i1xi1
V i2xi2

....V iSxiS

]
has

asymptotically a normal distribution by using theorem 2.

Proposition 5.5.6 Under the hypothesis 5.5.4,

P

xi1
+....+xiS

=y V
1

xi1
V 2

xi2
....V S

xiS

N(S−1)/2

has asymptotically a distribution N(0, σ2
V1
......σ2

VS
).

Proof By theorem 2, it is sufficient that
∑
r 6=s

[
E{(Xs)

2(Xr)
2} − E{(Xs)

2}E{(Xr)
2}
]

(N0)2
→ 0

∑
t1<t2<.....<tp

E{Xt1Xt2 ......Xtp}
(N0)p/2

→ 0 .

Then, we apply this theorem with Xts = V 1
i1
....V S−1

iS−1
V S
y−i1−.....−iS−1

and N0 =

NS−1.

The first relation is obvious. For example, if S=3, this relation is equiva-
lent to the convergence of (1/N4)

∑
r 6=s

[
E{(Xs)

2(Xr)
2}−E{(Xs)

2}E{(Xr)
2}
]
,

which is equivalent to the convergence of
∣∣∣
∑

(i,j) 6=(i′,j′)

[
E{(V 1

i V
2
j V

3
y−i−j)

2(V 1
i′V

2
j′V

3
y−i′−j′)

2}
N4

.

−E{(V 1
i V

2
j V

3
y−i−j)

2}E{(V 1
i′V

2
j′V

3
y−i′−j′)

2}
]∣∣∣

N4
.

Now, in order that

E{(V 1
i V

2
j V

3
y−i−j)

2(V 1
i′V

2
j′V

3
y−i′−j′)

2} 6= E{(V 1
i V

2
j V

3
y−i−j)

2}E{(V 1
i′V

2
j′V

3
y−i′−j′)

2} ,

it is necessary that i = i′ or j = j′. Therefore, at the maximum, there is 2N3

such V 1
i V

2
j V

3
y−i−jV

1
i′V

2
j′V

3
y−i′−j′ . Then, there exists a constant C2

3 such that

∣∣∣
∑

(i,j) 6=(i′,j′)

[
E{(V 1

i V
2
j V

3
y−i−j)

2(V 1
i′V

2
j′V

3
y−i′−j′)

2}
N4
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−E{((V 1
i V

2
j V

3
y−i−j))

2}E{(V 1
i′V

2
j′V

3
y−i′−j′)

2}
]∣∣∣

N4
≤ 2C2

3

N
.

In the general case, there is (S − 1)N ∗N2(S−2) such

V 1
i1 ....V

S−1
iS−1

V S
y−i1−.....−iS−1

V 1
i′1
....V S−1

i′S−1
V S
y−i′1−.....−i′S−1

at the maximum. Therefore, there exists a constant C2
S such that

∑
r 6=s

∣∣E{(Xs)
2(Xr)

2} − E{(Xs)
2}E{(Xr)

2}
∣∣

N2(S−1)
≤ SC2

S

N
→ 0 .

Now we study the condition p!

P

t1<t2<.....<tp
E{Xt1

Xt2
......Xtp}

(NS−1)p/2 → (N2)pµp .

First, assume S=2 : in this case, Xt1 = V 1
x1

n
V 2
y−x1

n

. Then, E{Xt1 .....Xtp} =

E{V 1
x1

n1

V 2
y−x1

n1

.....V 1
x1

np
V 2
y−x1

np

} = E{V 1
x1

n1

}..........E{V 1
x1

np
}E{V 2

y−x1
n1

.....V 2
y−x1

np

} =

0 because the x1
n are all dissimilar.

Assume S=3 : in this case, Xt1 = V 1
x1

n
V 2
x2

n2

V 3
y−x1

n1
−x2

n2

. Then,

E{Xt1Xt2 ......Xtp}

= E{V 1
xn1

V 2
x′

n1
V 3
y−xn1−x′

n1

V 1
xn2

V 2
x′

n2
V 3
y−xn2−x′

n2

........V 1
xnp

V 2
x′

np
V 3
y−xnp−x′

np

}

= E{V 1
xn1

.....V 1
xnp

}E{V 2
x′

n1
.......V 2

x′
np
}E{V 3

y−xn1−x′
n1

........V 3
y−xnp−x′

np

} .

If p=2, E{Xt1Xt2} = E{V 1
xn1

V 1
xn2

}E{V 2
x′

n1
V 2
x′

n2
}E{V 3

y−xn1−x′
n1

V 3
y−xnp−x′

np

}. Be-

cause t1 < t2, xn1
6= xn2

or x′n1
6= x′n2

. Then, E{Xt1Xt2} = 0.

If p=3,
E{Xt1Xt2Xt3}

= E{V 1
xn1

V 1
xn2

V 1
xn3

}E{V 2
x′

n1
V 2
x′

n2
V 2
x′

n3
}E{V 3

y−xn1
−x′

n1

V 3
y−xn2

−x′
n2

V 3
y−xn3

−x′
n3

} .

In order that E{Xt1Xt2Xt3} 6= 0, it is necessary that xn1
= xn2

= xn3
and

x′n1
= x′n2

= x′n3
. Then, Xt1 = Xt2 = Xt3 . It is impossible.
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If p=4,
E{Xt1Xt2Xt3Xt4}

= E{V 1
xn1

V 1
xn2

V 1
xn3

V 1
xn4

}E{V 2
x′

n1
V 2
x′

n2
V 2
x′

n3
V 2
x′

n4
}

∗E{V 3
y−xn1

−x′
n1

V 3
y−xn2

−x′
n2

V 3
y−xn3

−x′
n3

V 3
y−xn4

−x′
n4

}.

In order that E{Xt1Xt2Xt3Xt4} 6= 0, it is necessary that, or xn1
= xn2

and
xn3

= xn4
, or xn1

= xn3
and xn2

= xn4
, or xn1

= xn4
and xn3

= xn2

For example, assume xn1 = xn2 , xn3 = xn4 . Then, we had to assume also
x′n1

= x′n3
and x′n2

= x′n4
. Now, we assume that these relations hold.

Then, in order that

E{V 1
xn1

V 1
xn2

V 1
xn3

V 1
xn4

}E{V 2
x′

n1
V 2
x′

n2
V 2
x′

n3
V 2
x′

n4
}

E{V 3
y−xn1

−x′
n1

V 3
y−xn2

−x′
n2

V 3
y−xn3

−x′
n3

V 3
y−xn4

−x′
n4

} 6= 0 ,

it is necessary that
OR 1) y − xn1 − x′n1

= y − xn2 − x′n2
and y − xn3 − x′n3

= y − xn4 − x′n4
,

OR 2) y − xn1
− x′n1

= y − xn3
− x′n3

and y − xn2
− x′n2

= y − xn4
− x′n4

,

OR 3) y − xn1
− x′n1

= y − xn4
− x′n4

and y − xn2
− x′n2

= y − xn3
− x′n3

.

If 1) holds, y − x′n1
≡ y − x′n2

. Then, x′n1
≡ x′n2

. Therefore, x′n1
= x′n2

.
Then, Xt1 = V 1

xn1
V 2
x′

n1
V 3
y−xn1

−x′
n1

= V 1
xn2

V 2
x′

n2
V 3
y−xn2

−x′
n2

= Xt2 : it is impossi-

ble.

If 2) holds, xn1
≡ xn3

. Then, xn1
= xn3

. Then, V 1
xn1

V 2
x′

n1
V 3
y−xn1

−x′
n1

=

V 1
xn3

V 2
x′

n3
V 3
y−xn3−x′

n3

: it is impossible.

If 3) holds, xn1
+ x′n1

≡ xn3
+ x′n2

and xn1
+ x′n2

≡ xn3
+ x′n1

. Then,
x′n1

− x′n2
≡ xn3

− xn1
and xn1

− xn3
≡ x′n1

− x′n2
. Therefore, 2(x′n1

− x′n2
) ≡ 0

and 2(xn1 − xn3) ≡ 0. If N is odd, x′n1
= x′n2

and xn1 = xn3 : it is impossible.
If N is even, x′n1

−x′n2
= δ1(N/2) and xn1 −xn3 = δ2(N/2) where δs = 0, -1

or 1.
Therefore, there are

C′

0N
4

N2 possible variables Xt1 = V 1
xn1

V 2
x′

n1
V 3
y−xn1

−x′
n1

, Xt2 =

V 1
xn2

V 2
x′

n2
V 3
y−xn2−x′

n2

, Xt3 = V 1
xn3

V 2
x′

n3
V 3
y−xn3−x′

n3

, Xt4 = V 1
xn4

V 2
x′

n4
V 3
y−xn4−x′

n4

such that E{Xt1Xt2Xt3Xt4} 6= 0. Therefore,
∑
t1<t2<t3<t4

E{Xt1Xt2Xt3Xt4}
(N0)4/2

≤
∑
t1<t2<t3<t4

E{Xt1Xt2Xt3Xt4}
(N2)2

<
C ′

0N
2

N4
→ 0 .
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In the general case, Xtr = V 1
x1

nr
V 2
x2

nr
.....V S−1

xS−1
nr

V S
y−x1

nr
−....−xS−1

nr

. Then,

E{Xt1Xt2 ......Xtp}

= E



V 1
x1

n1

....V 1
x1

np

ff

.......E



V S−1

xS−1
n1

......V S−1

xS−1
np

ff

E



V S

y−x1
n1

−...−xS−1
n1

.....V S

y−x1
nS−1

−...−xS−1
nS−1

ff

.

In order that E{Xt1Xt2 ......Xtp} 6= 0, it is necessary that, for all t=1,2,...,S-
1, and all nr, there is one equation xtnr

= xtnr′
. At the maximum, there are

C0(NS−1)p/2 possible variables V 1
x1

nr
V 2
x2

nr
...........V S−1

xS−1
nr

, r=1,2,.........,p, such that

E

{
V 1
x1

n1

....V 1
x1

np

}
........E

{
V S−1

xS−1
n1

......V S−1

xS−1
np

}
6= 0 .

Moreover, there are⌊p/2⌋ equations y − x1
nr

− ....− xS−1
nr = y − x1

nr′
− ....− xS−1

nr′

: at the maximum there are
C′

0(N
S−1)p/2

N possible variables V 1
x1

nr
V 2
x2

nr
..........V S−1

xS−1
nr

V S
y−x1

nr
−....−xS−1

nr

. Therefore

∑
t1<t2<.....<tp

E{Xt1Xt2 ......Xtp}
(N0)p/2

≤
∑
t1<t2<.....<tp

E{Xt1Xt2 ......Xtp}
(NS−1)p/2

<
C ′

0

N
.

Then all conditions of theorem 2 hold. Then,
Pn0

i=1Xn√
N0

D→ N(0, σ2
V1
....σ2

VS
) be-

cause E
{
X2
tr

}
= E

{(
V 1
x1

nr
V 2
x2

nr
...V S−1

xS−1
nr

V S
y−x1

nr
−...−xS−1

nr

)2}
=
∏S
r=1 E

{
(V r1 )2

}
.

�

Now, one can assume that
∑
xs

n
vsxs

n
= 0.

Proposition 5.5.7 Under the previous assumptions,

1√
NS−1

∑

x1
n,x

2
n,.....,x

S−1
n

[ S−1∏

t=1

RtN (V txt
n
− V tN )

]
RSN (V S

y−x1
n−....−xS−1

n

− V SN )

has asymptotically the distribution N(0, σ2
V1
......σ2

VS
).

Proof Assume S=2. Then,

1√
N

∑

x1
n

R1
N (V 1

x1
n
− V 1

N )R2
N (V 2

y−x1
n

− V 2
N )
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=
R1
NR

2
N√

N

∑

x1
n

V 1
x1

n
[V 2
y−x1

n

− V 2
N ] − R1

NR
2
NV

1
N√

N

∑

x2
n

[V 2
x2

n
− V 2

N ]

=
R1
NR

2
N√

N

∑

x1
n

V 1
x1

n
[V 2
y−x1

n

− V 2
N ]

=
R1
NR

2
N√

N

∑

x1
n

V 1
x1

n
V 2
y−x1

n

− R1
NR

2
N√

N
V 2
N

∑

x1
n

V 1
x1

n
,

where
R1

NR
2
N√

N

∑
x1

n
V 1
x1

n
V 2
y−x1

n

and 1√
N

∑
x1

n
V 1
x1

n
have asymptotically a normal dis-

tribution (cf proposition 5.5.6). Moreover, V 2
N converges in probability to 0.

Then, 1√
N

∑
x1

n
R1
N (V 1

x1
n
− V 1

N )R2
N (V 2

y−x1
n

− V 2
N ) has asymptotically the dis-

tribution N(0, σ2
V1
σ2
V2

).

Assume S=3. Then,

1

N

∑

x1
n,x

2
n

R1
N (V 1

x1
n
− V 1

N )R2
N (V 2

x2
n
− V 2

N )R3
N (V 3

y−x1
n−x2

n

− V 3
N )

=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
(V 2
x2

n
− V 2

N )(V 3
y−x1

n−x2
n

− V 3
N )

−R
1
NR

2
NR

3
NV

1
N

N

∑

x1
n,x

2
n

(V 2
x2

n
− V 2

N )(V 3
y−x1

n−x2
n

− V 3
N )

=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
(V 2
x2

n
− V 2

N )(V 3
y−x1

n−x2
n

− V 3
N )

−R
1
NR

2
NR

3
NV

1
n

N

∑

x2
n,x

3
n

(V 2
x2

n
− V 2

N )(V 3
x3

n
− V 3

N )

=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
(V 2
x2

n
− V 2

N )(V 3
y−x1

n−x2
n

− V 3
N )
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=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
V 2
x2

n
(V 3
y−x1

n−x2
n

− V 3
N )

−R
1
NR

2
NR

3
NV

2
N

N

∑

x1
n,x

2
n

V 1
x1

n
(V 3
y−x1

n−x2
n

− V 3
N )

=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
V 2
x2

n
(V 3
y−x1

n−x2
n

− V 3
N )

−R
1
NR

2
NR

3
NV

2
N

N

∑

x1
n,x”

3
n

V 1
x1

n
(V 3
x”3

n
− V 3

N )

=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
V 2
x2

n
(V 3
y−x1

n−x2
n

− V 3
N )

=
R1
NR

2
NR

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
V 2
x2

n
V 3
y−x1

n−x2
n

− R1
NR

2
NR

3
NV

3
N

N

∑

x1
n,x

2
n

V 1
x1

n
V 2
x2

n

where
R1

NR
2
NR

3
N

N

∑
x1

n,x
2
n
V 1
x1

n
V 2
x2

n
V 3
y−x1

n−x2
n

and 1
N

∑
x1

n,x
2
n
V 1
x1

n
V 2
x2

n
have asymptot-

ically a normal and a chi squared distributions. Moreover, V 3
N converges in

probability to 0.
Then, 1

N

∑
x1

n,x
2
n
R1
N (V 1

x1
n
−V 1

N )R2
N (V 2

x2
n
−V 2

N )R3
N (V 3

y−x1
n−x2

n

−V 3
n ) has asymp-

totically the distribution N(0, σ2
V1
σ2
V2
σ2
V3

).

In the general case, we prove this proposition by the same way . �

Proof 5.5.10 Now we prove theorem 6

By proposition 5.5.5, we know that

∣∣P{X1 + ...+XS = y}− 1

N

∣∣ ≤
∣∣ri1N ...r

iS
N

∑
x1+...+xS=y(v1

x1
− v1

N ).....(vSxS
− vSN )

∣∣
NS

,

where by proposition 5.5.7,

1√
NS−1

∑

x1
n,x

2
n,.....,x

S−1
n

[ S−1∏

t=1

RtN (V txt
n
− V tn)

]
RSN (V S

y−x1
n−....−xS−1

n

− V Sn )
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has asymptotically the distribution N(0, σ2
V1
......σ2

VS
). Then,

R1
N .....R

S
N

∑
x1+...+xS=y(V 1

x1
− V 1

N )........(V SxS
− V SN )

√
NS−1

has asymptotically the distribution N(0, σ2
V1
......σ2

VS
). Then, with a probability

greater than 1 − Γ(b) approximately,

ri1N .....r
iS
N

∑
x1+...+xS=y(v1

x1
− v1

N )........(vSxS
− vSN )

NS
=
b.Ob(1)σV1

......σVS√
NS+1

. �

5.5.10 Conclusion

By applying all the results of this chapter, we can admit that the convergence
to the uniform distribution is very fast as soon as the Xt’s are not concentrated
near a small number of points and that probabilities are chosen randomly.

It remains to prove it completely. For that purpose, it would be necessary
to make another study which can possibly turn out complex.

But for our conclusions, it is not very useful. There are indeed two solutions
1) We admit that the result is true in the set of probabilities with a proba-

bility infinitely close to 1 : cf chapter 8.
2) We admit that the hypotheses which we chose in section 7.2 are verified.

In that case, it is a guess which remains to prove mathematically.
However everywhere where we were able to make numerical studies, in par-

ticular when q is small (cf figures of section 5.4.1) , we found this result without
any possible error.

Moreover the comparison made with the sum of an IID sample involve con-
sequences which seem clear: cf section 5.5.8.

5.6 Theoretical study of density

In this section, we confirm that it is more practical to use the XORLT than the
CLT by another theoretical study : we compare the densities of the functions
G(j) and H(j) defined in section 11.1.2.

For that purpose, the following lemmas are needed.

Lemma 5.6.1 Let Xm ∈ F (m) be a sequence of random variables. Assume
that fn is the probability density function of Xm with respect to µm. Suppose
that fn → f uniformly as n → ∞ where f is a continuous function bounded on
[0,1[.

Then Xm
D→ X where X has the probability density function f with respect

to µ.
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Proof Let t ∈ [0, 1[. Then, P{Xm ∈ [0, t[} =
∫ t
0
f(x).µm(dx) +

∫ t
0
(fm(x) −

f).µm(dx) =
∫ t
x=0

f(x).µm(dx) + ǫ(m) where ǫ(m) → 0 as m→ ∞.

Then, by theorem A, page 16 of [42], P{Xm ∈ [0, t[} →
∫ t
x=0

f(x).µ(dx) =
P{X ∈ [0, t[}. �

Lemma 5.6.2 Let X ∈ F (m) be a random variable. Let fX be the probability
density function of X with respect to µm. Then, P{X = x} = fX(x) 1

m .

Of course
∫
[0,1]

fX(x).µm(dx) = 1.

Moreover, |fX(x) − fX(x′)| ≤ K0|x− x′| if and only if

|P{X = x} − P{X = x′}| ≤ K0|x− x′|/m.

Lemma 5.6.3 Let x=k/m, x’=k’/m where k ∈ N and k′ ∈ N. Suppose that
|P{mX = k} − P{mX = k + 1}| ≤ K1. Then,
1) |P{X = x} − P{X = x′}| ≤ mK1|x− x′|,
2) |fX(x) − fX(x′)| ≤ m2K1|x− x′|.

Proof We have |P{X = k/m} − P{X = k/m+ 1/m}| ≤ K1 = (mK1)/m.

Then, |P{X = k/m} − P{X = k′/m}| ≤ (mK1) |k−k′|
m .

Then, |fX(x)− fX(x′)| = m|P{X = k/m}−P{X = k′/m}| ≤ m2K1|x−x′|. �

We apply these lemmas to the conditional densities of the sequences G(j)
and H(j) (cf section 11.1.2).

Notations 5.6.1 We keep the notations of the chapter 11 with mS = m :
G(j) =

∑S
i=1 F (i, j) ∈ F ∗(Sm), H(j) = G(j) ∈ F ∗(m). We set Hj = H(j) and

Gj = G(j).
Let Pg2,g3,..{Gi = g} be the conditional probability Pg2,g3,..{Gi = g} =

P
{
Gi+j1 = g

∣∣∣Gi+js = gs, s = 2, 3, ...
}
.

Suppose that
|Ph2,h3,..{Hi = h} − Ph2,h3,..{Hi = h+ 1}| ≤ KH ,
|Pg2,g3,..{Gi = g} − Pg2,g3,..{Gi = g + 1}| ≤ KG.

Let fH/m and fG/(Sm) be the probability densities functions associated to the
conditional probabilities of Hj/m and Gj/(Sm), respectively. Let KfH/m

and
KfG/(Sm)

the associated constant of Lipschitz. Then

|fH/m(x) − fH/m(x′)| ≤ m2KH |x− x′| = KfH/m
|x− x′|.

|fG/(Sm)(x) − fG/(Sm)(x
′)| ≤ (m2S2KG)|x− x′| = KfG/(Sm)

|x− x′|.
That is KfH/m

= m2KH and KfG/(Sm)
= m2S2KG.

Suppose that one can apply the proposition 4.1.1 with congruences TH and
TG to H(j) and G(j). By this theorem, there exists constants CH = O

(
6.KfH/m

)

and CG = O
(
6.KfG/(Sm)

)
such that

P{TH(H/m) ∈ I} = L(I) +Ob(1)CH/
√
m,
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P{TG(G/(Sm)) ∈ I} = L(I) +Ob(1)CG/
√
Sm.

Then, we have
P{TH(H/m) ∈ I} ≈ L(I) +Ob(1)6.KHm

3/2,
P{TG(G/(Sm)) ∈ I} ≈ L(I) +Ob(1)6.KG(mS)3/2.

Now, in the numerical results which we obtain (cf section 5.4 ) KH has the
same order of size as KG. It means that it be better to use the functions Tq (cf
definition 1.3.5 ) with the sequence H(j) than with the sequence G(j) if we use
the proposition 4.1.1. This conclusion is confirmed by the following result.

Proposition 5.6.1 Let fg2,g3,.. be the probability density function of Pg2,g3,..
with respect to µ∗

Sm. Let fh2,h3,.. be the probability density function of Ph2,h3,..

with respect to µ∗
m. Let KG such that

∣∣fg2,g3,..(g) − fg2,g3,..(g
′)
∣∣ ≤ KG|g − g′| .

Then,

∣∣fh2,h3,..(h) − fh2,h3,..(h
′)
∣∣ ≤ KG|h− h′| .

Proof Clearly
∣∣fg2,g3,..{g} − fg2,g3,..{g′}

∣∣ ≤ KG|g − g′| involves that

mS.
∣∣Pg2,g3,..{Gi = g} − Pg2,g3,..{Gi = g′}

∣∣ ≤ KG|g − g′| .

If Hi+jt = ht, then Gi+jt ∈ ∪stg
st
t where gst

t = ht + stm , st ∈ {0, 1, ...., S − 1}.
We set gs = gs1. Then, the following equalities hold

Ph2,h3,..{Hi = h} =
P
{
{Hi+j1 = h} ∩ {Hi+j2 = h2} ∩ {Hi+j3 = h3} ∩ ....}

P
{
{Hi+j2 = h2} ∩ {Hi+j3 = h3} ∩ ....}

=
P
{
{Gi+j1 ∈ ∪sgs} ∩ {Gi+j2 ∈ ∪s2gs22 } ∩ {Gi+j3 ∈ ∪s3gs33 } ∩ ....

}

P
{
{Gi+j2 ∈ ∪s2gs22 } ∩ {Gi+j3 ∈ ∪s3gs33 } ∩ ....

}

=
S−1∑

s=0

∑
s2,s3,...

P
{
{Gi+j1 = gs} ∩ {Gi+j2 = gs22 } ∩ {Gi+j3 = gs33 } ∩ ....

}

∑
s2,s3,...

P
{
{Gi+j2 = gs22 } ∩ {Gi+j3 = gs33 } ∩ ....

}
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=

S−1∑

s=0

∑

s,s2,s3,...

P
{
{Gi+j1 = gs} ∩ {Gi+j2 = gs22 } ∩ ...

}

∑
s2,s3,...

P
{
{Gi+j2 = gs22 } ∩ ...

}
P
{
{Gi+j2 = gs22 } ∩ ....

}

P
{
{Gi+j2 = gs22 } ∩ ....

}

=

S−1∑

s=0

∑

s2,s3,...

ηs2,s3,...P
{
Gi+j1 = gs

∣∣∣ Gi+j2 = gs22 ....
}

=

S−1∑

s=0

∑

s2,s3,...

ηs2,s3,...Pgs2
2 ,g

s3
3 ,..{Gi+j1 = gs} ,

where
∑
s2,s3,...

ηs2,s3,... = 1 .

Therefore,

m|Ph2,h3,..{Hi = h} − Ph2,h3,..{Hi = h′}|

= m.
∣∣
S−1∑

s=0

∑

s2,s3,...

Pgs2
2 ,g

s3
3 ,..{Gi = gs} ηs2,s3,...−

S∑

s=1

∑

s2,s3,...

Pgs2
2 ,g

s3
3 ,..{Gi = g′s} ηs2,s3,...

∣∣

≤ (1/S)

S−1∑

s=0

∑

s2,s3,...

ηs2,s3,...(mS)
∣∣∣Pgs2

2 ,g
s3
3 ,..{Gi = gs} − Pgs2

2 ,g
s3
3 ,..{Gi = g′s}

∣∣∣

≤ (1/S)
S−1∑

s=0

∑

s2,s3,...

ηs2,s3,...K
G(|gs − g′s|)

≤ (1/S)

S−1∑

s=0

∑

s2,s3,...

ηs2,s3,...K
G(|h− h′|)

≤ KG|h− h′| .

Therefore,
∣∣fh2,h3,..(h) − fh2,h3,..(h

′)
∣∣ ≤ KG|h− h′| . �

Now, we want to know what this result means. Then, we use the following
corollary.
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Corollary 5.6.2 Let f∗g2,g3,..(g/(mS)) be the conditional density of Gi/(mS)
given Gi+js = gs and let f∗h2,h3,..

{h/m} be the conditional density of Hi/m
given Hi+js = hs.

Let KH be the Lipschitz coefficient associated to fh2,h3,... Let KfG/(Sm)
and

KfH/m
be the Lipschitz coefficients associated to f∗g2,g3,.. and f∗h2,h3,..

.
Then,

KfH/m
≤
KfG/(Sm)

S
.

Proof At first, recall that fX/m(x0)/m =
∫ x0+ǫ

x0−ǫ fX/m(u).µm(du) = P{X/m =

x0} and that fX(mx0)/m =
∫mx0+1/2

mx0−1/2
fX(v).µ∗

m(dv) = P{X = mx0} where

X ∈ F (m) is a random variable, x0 = k/m, k ∈ N, and ǫ is small.
Then, fX/m(x0)/m = P{X/m = x0} = P{X = mx0} = fX(mx0)/m.
Then, f∗g2,g3,..(g/(mS)) = fg2,g3,..(g) and f∗h2,h3,..

(h/m) = fh2,h3,..(h).

Now, ∣∣fg2,g3,..(g) − fg2,g3,..(g
′)
∣∣ ≤ KG|g − g′|

∣∣fh2,h3,..(h) − fh2,h3,..(h
′)
∣∣ ≤ KG|h− h′| .

Then,

∣∣f∗g2,g3,..(g/(mS)) − f∗g2,g3,..(g
′/(mS))

∣∣ ≤ KG|g − g′|
∣∣f∗h2,h3,..(h/m) − f∗h2,h3,..(h

′/m)
∣∣ ≤ KG|h− h′| .

Then,

∣∣f∗g2,g3,..(g/(mS)) − f∗g2,g3,..(g
′/(mS))

∣∣ ≤ (mS)KG|g − g′|/(mS)

∣∣f∗h2,h3,..(h/m) − f∗h2,h3,..(h
′/m)

∣∣ ≤ m.KH |h− h′|/m .

Then, KfG/(Sm)
= (mS)KG and KfH/m

= mKH .

Therefore, KfH/m
/m = KH ≤ KG = KfG/(Sm)

/(mS).
Therefore, KfH/m

≤ KfG/(Sm)
/S. �

Then, by proposition 4.1.1 ,

P{T (H/m) ∈ I} = L(I) +
Ob(1)6.KfH/m√

m
≈ L(I) +

Ob(1)6.KfG/(Sm)√
mS

,
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P{T (G/(Sm)) ∈ I} = L(I) +
Ob(1)6.KfG/(Sm)√

Sm
.

There also, it seems better to use T with H(j) than with G(j), that is with
the XORLT rather than the CLT.

We obtain the same conclusion when we make numerical studies. These re-
sults are one of reasons for which we choose to build x(j) by applying Tq to h(j)
and not to g(j) : cf section 11.

5.7 Limit theorems for conditional probabilities

We study the case where we add the random variables F(i,j) (G(j) =
∑S
i=1 F (i, j))

where rows F (i,.) are independent : cf section 11.2.4. In that case, the dis-
tribution of the sums admitting for probabilities the conditional probabilities
is the one of a sum of independent variables. Indeed the following proposition
holds.

Proposition 5.7.1 Let Xi,j , i=1,...,I, j=1,...,p, be a sequence of random
variables. We assume that the rows Xi,. ∈ F (m)p are independent. For all

i=1,2,...,I, let Q
{x∗

i,j}
i be the conditional distribution of Xi,1 given Xi,2 = x∗i,2,

......,Xi,J = x∗i,J .
Then, for all Borel set Bo,

P
{
X1,1 + ....+XI,1 ∈ Bo

∣∣ Xi,j = x∗i,j , i = 1, ..., I, j = 2, ..., p
}

=

∫

Bo

(
x1,1 + ....+ xI,1

)
Q

{x∗

1,j}
1 (dx1,j)......................Q

{x∗

I,j}
I (dxI,j) .

Proof Let f be the probability density function of

[(
X1,1, ...., XI,1

)
,
(
X1,2, ...., XI,2, X1,3, ...., XI,3......X1,p, ...., XI,p

)]

with respect to ν ⊗ ν′ where ν is the distribution of
(
X1,1, ...., XI,1

)
and where

ν′ is the distribution of
(
X1,2, ...., XI,2, X1,3, ...., XI,3......X1,p, ...., XI,p

)
.

This probability density function exists always because we use random vec-
tors with values in the finite sets F (m)p.

Then, we write it in function of the vectors {xi,1} = {xi,1}i=1,....,I and
{x∗i,j} = {x∗i,j}i=1,...,I;j=2,...,p : f

(
{xi,1}, {x∗i,j}

)
.

Then
(
X1,1, ...., XI,1

)
given Xi,j = x∗i,j , i = 1, ..., I, j = 2, ..., p, has a prob-

ability density function with respect to ν equal to f
(
{xi,1}, {x∗i,j}

)
.
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Now, ν = ν1 ⊗ ν2 ⊗ ..... ⊗ νI where the νt’s are the distributions of Xt,1,
t=1,2,....,I.

Now, ν′ = ν′1⊗ν′2⊗....⊗ν′I where the ν′t’s are the distributions of
(
Xt,2, ...., Xt,p

)
,

t=1,2,....,p.

Let g be the probability density function of {Xi,j}, i=1,..,I, j=1,...,p, with
respect to the uniform measure µm ⊗ .....⊗ µm.

Then, g({xi,j}) = g1({x1,j})....gI({xI,j}) where gs({xi,j}) is the probability
density function of

(
Xs,1, ...., Xs,p

)
with respect to µm ⊗ .....⊗ µm.

Let fνi
and f ′ν′

i
be the probability density functions of νi and ν′i with respect

to µm. Then,
g({xi,j}) = f

(
{xi,1}, {x∗i,j}

)
fν1({x1,1})....fνI

({xI,1})f ′ν′

1
({x∗1,j})......f ′ν′

I
({x∗I,j}) .

Therefore,
f
(
{xi,1}, {x∗i,j}

)

=
g1({x1,j})....gI({xI,j})

fν1({x1,1})....fνI
({xI,1})f ′ν′

1
({x∗1,j})......f ′ν′

I
({x∗I,j})

=
g1({x1,j})

fν1({x1,1}).f ′ν′

1
({x∗1,j})

..................
gI({xI,j})

fνI
({xI,1}).f ′ν′

I
({x∗I,j})

.

It means that f
(
{xi,1}, {x∗i,j}

)
= f1

(
{x1,1}, {x∗1,j}

)
......fI

(
{xI,1}, {x∗I,j}

)
,

where

fi
(
{xi,1}, {x∗i,j}

)
=

gi({xi,j})

fνi({xi1}).f ′ν′

i
({x∗i,j})

is the probability density function of
(
Xi,1, Xi,2, ...., Xi,p

)
with respect to the

marginal distributions νi and ν′i.

Therefore,

P
{
X1,1 + ....+XI,1 ∈ Bo

∣∣ Xi,j = x∗i,j , i = 1, ..., I, j = 2, ..., p
}

=

Z

Bo

“

x1,1+....+xI,1

”

f1

“

{x1,1}, {x∗
1,j}

”

...fI

“

{xI,1}, {x∗
I,j}

”

ν1({dx1,1})............νI({xI,1})

=

Z

Bo

“

x1,1 + .... + xI,1

”h

f1

“

{x1,1}, {x∗
1,j}

”

ν1({dx1,1})
i

.......
h

fI

“

{xI,1}, {x∗
I,j}

”

νI({xI,1}
i
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=

Z

Bo

“

x1,1 + .... + xI,1

”

Q
{x∗

1,j}
1 (dx1,j)......................Q

{x∗

I,j}
I (dxI,j) . �

Then, we study the conditional probabilities of the sums given the value of
the sums. That is we shall use the following lemma

Lemma 5.7.1 Let Yj = X1,j + ....+XI,j. We set

{Yj = yj} = ∪x1,j+...+xI,j=yj

{
{X1,j = x1,j} ∩ .... ∩ {XI,j = xI,j}

}
.

Then,
P{Y1 ∈ Bo | Y2 = y2, ..., Yp = yp}

=
∑

xi,j :∀j, x1,j+...+xI,j=yj

η{xi,j}P
{
Y1 ∈ Bo

∣∣ Xi,j = xi,j , i = 1, ..., I, j = 2, ..., p
}
,

where

η{xi,j} =
P
{
∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}

}

∑
xi,j :∀j, x1,j+...+xI,j=yj

P
{{

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
}} .

Proof We have

P{Y1 ∈ Bo | Y2 = y2, ..., Yp = yp}

=
P
{

(Y1 ∈ Bo) ∩
(
Y2 = y2

)
∩ ... ∩

(
Yp = yp

)}

P
{(
Y2 = y2

)
∩ ... ∩

(
Yp = yp

)}

=

P



{Y1 ∈ Bo} ∩
»

∪xi,j :∀j,x1,j+...+xI,j=yj

n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

–ff

P



∪xi,j :∀j,x1,j+...+xI,j=yj

n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

ff

=

P



∪xi,j :∀j,x1,j+...+xI,j=yj
{Y1 ∈ Bo} ∩

n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

ff

P



∪xi,j :∀j,x1,j+...+xI,j=yj

n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

ff

=

P

xi,j :∀j,x1,j+...+xI,j=yj
P



{Y1 ∈ Bo} ∩
n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

ff

P

xi,j :∀j,x1,j+...+xI,j=yj
P



n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

ff
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=
X

xi,j :∀j,x1,j+...+xI,j=yj

η{xi,j}

P



{Y1 ∈ Bo} ∩
n

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
o

ff

P



∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
ff .

Now,

P
{
{Y1 ∈ Bo} ∩

{
∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}

}}

P
{
∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}

}

= P
{
Y1 ∈ Bo

∣∣ Xi,j = xi,j , i = 1, ..., I, j = 2, ..., p
}
. �

Remark that
∑
xi,j :∀j,x1,j+...+xI,j=yj

η{xi,j} = 1.

Then, the distribution of conditional probabilities

P{Y1 ∈ Bo | Y2 = y2, ..., Yp = yp}

is always the one of a sum of independent variables. It involves a faster conver-
gence.

The same results holds with the XORLT.

Proposition 5.7.2 We keep the notations of lemma 5.7.1. Then,

P{Y1 ∈ Bo | Y2 = y2, ..., Yp = yp}

=
∑

xi,j :∀j,x1,j+...+xI,j=yj

η′{xi,j}P
{
Y1 ∈ Bo

∣∣ Xi,j = xi,j , i = 1, ..., I, j = 2, ..., p
}
,

where

η′{xi,j} =
P
{
∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}

}

∑
xi,j :∀j,x1,j+...+xI,j=yj

P
{{

∩i {Xi,2 = xi,2}... ∩i {Xi,p = xi,p}
}} .

The proof is the same that that of the lemma 5.7.1 with sums modulo 1.
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Then, these results show that, in many cases,

P{Y1 ∈ I | Y2 = y2, ..., Yp = yp} → L(I) as n→ ∞ .

Results obtained in section 5.3.3 show that this limit is checked for all the data
used to build the random sequences b1(n′).

Another way of understanding matters it is to apply the proposition 5.5.2 :
with a probability bigger than 1 − 2Γ(b),

P
{
{Y1 = y1} ∩ .... ∩ {Yp = yp}

}
≈ 1/Np

[
1 +

Ob(1).bσP ′

EP ′

√
Np(S−1)

]
.

It means that

P{Y1 = y1 |Y2 = y2, ..., Yp = yp} ≈ P{Y1 = y1} ,

if S is big enough.

Indeed,
P{Y1 ∈ I |Y2 = y2, ..., Yp = yp}

≈ P{Y1 ∈ I}P
{
{Y2 = y2} ∩ .... ∩ {Yp = yp}

}

P
{
{Y2 = y2} ∩ .... ∩ {Yp = yp}

}

≈ P{Y1 ∈ I} ≈ L(I) .

Then, under the hypotheses of our data, we can admit the following hypoth-
esis.

Hypothesis 5.7.1 In the space of probabilities with the measure defined in
proposition 5.5.2, the following approximations hold with a probability approxi-
mately bigger than 1 − 2Γ(b),

P{Y1 = y1 |Y2 = y2, ..., Yp = yp} ≈ P{Y1 ∈ I} ≈ L(I) .
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Chapter 6

Dependence induced by
linear congruences

We study in this chapter the dependence induced by
(
Tn(x0), Tn+1(x0)

)
.

Notations 6.0.1 In this section one denotes by T a congruence T (x) ≡ ax+ c
mod(m) where 0 < a < m and where a, m et c are fixed.

6.1 Theoretical study

This study will enable us to note that in fact congruences of Fibonacci induce
the weakest dependences.

6.1.1 Notations

To study dependence amounts studying the distribution of the points (ℓ, T (ℓ)).
The following notation will thus be used.

Notations 6.1.1 We set E2 =
{
ℓ, T (ℓ) | ℓ ∈ {0, 1, .....,m− 1}

}
.

We will see that this dependence depends on the continued fraction m
a , i.e.

it depends on sequences rn and hn defined in the following way.

Notations 6.1.2 Let r0 = m, r1 = a. One denotes by rn the sequence defined
by rn = hn+1rn+1 + rn+2 the Euclidean division of rn by rn+1 when rn+1 6= 0.

One denotes by d the smallest integer such as rd+1 = 0. One sets rd+2 = 0
and hd+1 = ∞.

Therefore, hn ≥ 1 for all n=1,2,...,d and rd−1 = hdrd + rd+1 = hdrd + 0 =
hdrd, rd = hd+1rd+1 + rd+2 = 0 ∗ hd+1 + 0 = 0 ∗∞.

The full sequence rn is thus the sequence r0 = m, r1 = a, .........., rd+1 = 0,
rd+2 = 0. Then, it is easy to prove the following result.
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Proposition 6.1.1 The congruence T (x) ≡ a mod(m) is a Fibonacci conguence
if hn = 1 for n=1,2,...d-1, hd = 2 and rd = 1

In this case, rn is the Fibonacci sequence fin, except for the last terms. If
one wants to be able to have all the Fibonacci sequence, one can adopt the
following notations.

Notations 6.1.3 One sets r′0 = m, r′1 = a. Let r′n = h′n+1r
′
n+1 + r′n+2 the

Euclidean division of r′n by r′n+1 except if there exists d’ such that r′d′−2 = 3 and
r′d′−1 = 2. In this case, one sets r′d′ = r′d′+1 = 1 and h′d′ = 1 .

In addition, one considers also the following sequences.

Notations 6.1.4 One sets k0 = 0, k1 = 1 and kn+2 = hn+1kn+1 + kn if
n+ 1 ≤ d. Lastly, one sets kd+2 = ∞.

Then, we have the sequence k0 = 0, k1 = 1, .........., kd+1, kd+2 = ∞.

Remark that if hn = 1 for n=1,2,...,d-1, kn is also the Fibonacci sequence
for n=1,2,...,d.

6.1.2 Theorems

One will understand that dependence depends on the hi: more they are small,
more the dependence is weak. As hi ≥ 1, the best congruence will satisfy h′i = 1.
It will be thus the congruence of Fibonacci.

First Theorem

To understand that, first one considers the rectangles [0, kn] ⊗ [0, rn−2]. Thus,
if n is even, the set

{
(kn−1ℓ, kn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
is concentrated on the

line x 7→ (rn−1/kn−1)x. More generally, we have the following theorem (the
proof is in Proof 6.2.9 ).

Theorem 7 One supposes c=0. Let n ∈ {2, 3...., d}. Then
If n is even , E2∩

{
[0, kn[⊗[0, rn−2[

}
=
{

(kn−1ℓ , rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Moreover the points (kn−1ℓ , rn−1ℓ) are lined up.
If n is odd,

E2∩
{

]0, kn]⊗]0, rn−2]
}

=
{

(kn−2 +kn−1ℓ , rn−2−rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Moreover, the points (kn−2 + kn−1ℓ , rn−2 − rn−1ℓ) are lined up.

That means that the rectangle
{

[0, kn/2] ⊗ [rn−2/2, rn−2[ does not contain

points of E2 : E2 ∩
{

[0, kn/2] ⊗ [rn−2/2, rn−2[
}

= ∅ .
If hn−1 is large, that will mean that an important rectangle of R

2 is empty
of points of E2: that will mark a breakdown of independence.
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For example suppose n=2. First, m = r0, r1 = a, k1 = 1 and k2 = h1 =
⌊m/a⌋ ou ⌊x⌋ means the integer part of x. In this case, one regards the rectangles
[0, k2[⊗[0,m[. One thus finds a traditional technique for n=2. Indeed when one
makes chi-squared tests, one can use rectangles of type [0,m/(2a)[⊗[0,m/2[.

Thus if ”a” is not large enough compared to ”m”, there is rupture of indepen-
dence. The rectangle Rect2 = [0,m/(2a)]⊗ [m/2,m[ will not contain any point
of E2. However, this rectangle has its surface equal to m2/(4a): if the points of
E2 are distributed in a uniform way, one has about m/(2a) = h1/2 + r2/(2a)
points of E2 (and not 0). Thus if ”a” is not sufficiently large, i.e if h1 is too
large, there is breakdown of independence.

For example, choose the congruence T (x) = 103x modulo 106 − 1 : Rect1 =
[0,m/(2a)] ⊗ [0,m/2[ contains 500 points of E2 roughly and Rect2 contains 0
points. Neither the chi-squared test that one could make on such rectangles nor
the definitions 2.1.5 or 2.1.6 are satisfied.

Now choose m=99, a=5, k2 = 19 : cf figure 6.1: Rect1 roughly contains 10
points of E2 for a total sample of 99.

Choose m=99, a=10, k2 = 9 : cf figure 6.2: Rect2 roughly contains 5 points
of E2 : the breakdown is less clear.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

a=5,m=99

n=2,r 0=m,k2=19

Figure 6.1: Points in rectangles a=5
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Figure 6.2: Points in rectangles a= 10
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In these examples, we studied rectangles [0, k2/2]⊗ [0,m/2[
}

. In the general

case, it is necessary that [0, kn/2] ⊗ [rn−2/2, rn−2[
}

has not a too big size. It is
necessary thus that all the hn−1 are small.

Now, one can extend this result to other rectangles of E2.

Corollary 6.1.2 Let (x0, y0) ∈ E2. Let R0 =
{

[x0, x0 + kn] ⊗ [y0, y0 + rn−2[
}

and let R0 = R0, be the rectangle R0 modulo m. Then
If n is even, E2 ∩ R0 =

{
(x0 + kn−1ℓ , y0 + rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Moreover the points (x0 + kn−1ℓ , y0 + rn−1ℓ) are lined up modulo m .
If n is odd,

E2 ∩ R0 =
{

(x0 + kn−2 + kn−1ℓ , y0 + rn−2 − rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Moreover, the points (x0 + kn−2 + kn−1ℓ , y0 + rn−2 − rn−1ℓ) are lined up mod-
ulo m.

Remark 6.1.1 In general, it is only on the border that the rectangle modulo m
R0 satisfies R0 6= R0. If not, R0 is a normal rectangle.

This result shows this fact : so that there is not breakdown of independence
it is necessary that the hi are small.

Principal theorem

Now, one will be interested in the number of points included in rectangles other
than [0, kn] ⊗ [0, rn−2[.

Notations 6.1.5 Let xn ∈ R
q be an unspecified sample. Let Bo be a Borel set

of Rq. One denotes by N(Bo) the number of xn which belongs to Bo.

Here one takes in account the number of points of E2 contained in rectangles
of the type Rect = [x, x+ L[⊗[y, y + L′[.

To know the behavior of N(Rect), one uses the following theorem which is
based on the proof given in [13] page 47-131.

Theorem 8 It is supposed that T is invertible. Let Rect be a rectangle of
F ∗(m)2, length Lon ≥ 1, width Lar ≥ 1. Let N(Rect) be the number of points
of E2 which belong to Rect and let SRect be its surface. One denotes by Log the
Neperian logarithm : Log(e)=1. Then,

∣∣N(Rect) −
SRect

m

∣∣ ≤ (po + 1)(sup(hi) + 1) ,

where po is a function of (Lon, Lar) satisfying

2.0782.Log(min) + 2.00005 ≥ po ,

where min = Min(Lon, Lar).
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Proof According the definition of lemma 7-6 page 115 of [13], let p′ be the
number of λi 6= 0 in the factorization :

L = Lon =

T∑

i=1

λiki+c + ǫ ,

where λi ∈ N, λi ≤ hc+i, λ1 < hc+1, λi−1 = 0 if λi = hc+i and −kc ≤ ǫ < kc+1.
We suppose c+ T ≤ d+ 1.

Write differently this factorization of L : we suppress the writing of the λi’s

such that λi = 0, i.e. we write L =
∑p′

i=1 λ
′
ik

′
c+i + ǫ , where λ′i = λi+d(i) > 0,

k′c+i = kc+d(i)+i, d(i) ≥ 0, d(i) increasing.
Now, remark that the sequence kn used in the definitions 1-3 page 49 of [13]

is the sequence kn defined in this report in notations 6.1.4. Then, k′n ≥ kn.

Let fin be the Fibonacci sequence. Then kn ≥ fin. Assume that p′ ≥ 2.

Because ǫ ≥ −kc, Lon =
∑T
i=1 λikc+i+ǫ =

∑p′

i=1 λ
′
ik

′
c+i−kc = λ′p′kc+p′+d(p′)+∑p′−1

i=1 λ′ikc+i+d(i) − kc ≥ λ′p′kc+p′+d(p′) ≥ fic+p′+d(p′) ≥ fip′ .

Assume p′ = 1. Then, Lon ≥ 1 = fi1 = fip′ .

Now let p” be the number of µi 6= 0 in the factorization :

Lar =

T∑

i=1

µirc′−i + ǫ2 ,

where µi ∈ N, µi ≤ hc′−i, µ1 < hc′−1, µi−1 = 0 if µi = hc′−i and −rc′ ≤ ǫ2 <
rc′−1

1.

Let p0 = Min(p′, p”). Then, Lon ≥ fip′ ≥ fip0 . By the same way,
Lar ≥ fip0 . Then, min ≥ fip0 .

By lemma 7-6 page 115 of [13], we know that

∣∣N(Rect) −
SRect

m

∣∣ ≤ (po + 1)(sup(hi) + 1) .

Now, it is known that

fin =
1√
5

[(1 +
√

5

2

)n
−
(1 −

√
5

2

)n]
.

1The correct definition is page 112, notations 7-2 of [13]. But it is not necessary to use it
: it is enough that Lar ≥ fip”.
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Because min ≥ fipo ,

Log(min) + Log(
√

5) − Log
(

1 −
(1 −

√
5

1 +
√

5

)po)
≥ po.Log

(1 +
√

5

2

)
.

Therefore, because 1 −
√

5 < 0, the weakest increase holds for p0 = 2 :

Log(min) + 0.80472 + 0.15771 ≥ 0.4812.po .

Therefore,
2.0782.Log(min) + 2.00005 ≥ po . �

Remark 6.1.2 In [13] page 48, we define rn by the following way : r0 = m,
r1 = Min(a,m− a) and rn = hn+1rn+1 + rn+2 the Euclidean division of rn by
rn+1. It is a very small difference : results are identical.

We deduce the following corollary.

Corollary 6.1.3 Let Pe(Rect) = N(Rect)/m be the empirical probability of
Rect/m associated to the sample E2/m and let PU (Rect) = L(Rect/m) be the
uniform probability of Rect/m in [0, 1]2. Then, in F (m)2,

∣∣Pe(Rect) − PU (Rect)
∣∣ ≤ (2.0782.Log(min) + 3.00005)(sup(hi) + 1)

m
. (6.1)

Therefore, to the maximum, po = d, min = m and

∣∣Pe(Rect) − PU (Rect)
∣∣ ≤ (2.0782.Log(m) + 3.00005)(sup(hi) + 1)

m
.

Now let us consider the approximately normal distribution associated with

√
m
∣∣Pe(Rect) − PU (Rect)

∣∣
σRect

,

where σ2
Rect

is the variance associated to 1Rect/m(Un) when Un is an IID sample
with uniform distribution in [0, 1]2 : σ2

Rect
= L(Rect/m)[1 − L(Rect/m)] .

Under the IID assumption, one checks with a probability of 99 percent:

√
m
∣∣Pe(Rect) − PU (Rect)

∣∣
σRect

≤ 2.57 .
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Proposition 6.1.4 The test of independence with levels of significance equal to
1 percent and which has the statistics

√
m
∣∣Pe(Rect) − PU (Rect)

∣∣
√
L(Rect/m)[1 − L(Rect/m)]

≤ 2.57

is checked by the sample E2 except for some rectangles Rect/m, for example
those such that

0.6539.Log(m)2(sup(hi) + 1)2

m
≥ L(Rect/m) .

Proof. Indeed the test is checked if
√
m
∣∣Pe(Rect) − PU (Rect)

∣∣

2.57
√

1 − L(Rect/m)
≤
√
L(Rect/m) .

However,

∣∣Pe(Rect) − PU (Rect)
∣∣ ≤ (2.0782.Log(m) + 3.00005)(sup(hi) + 1)

m
.

Therefore, the test is checked as soon as

(2.0782.Log(m) + 3.00005)(sup(hi) + 1)

2.57
√

1 − L(Rect/m)
√
m

≤
√
L(Rect/m) .

That could be not the case if

(2.0782.Log(m) + 3.00005)(sup(hi) + 1)

2.57
√

1 − L(Rect/m)
√
m

≥
√
L(Rect/m) .

In particular, it is true if

(2.0782.Log(m) + 3.00005)(sup(hi) + 1)

2.57
√
m

≥
√
L(Rect)/m .

In particular, it is true if

2.0782.Log(m)(sup(hi) + 1)

2.57
√
m

≥
√
L(Rect/m) ,

that is to say,

0.65389.Log(m)2(sup(hi) + 1)2

m
≥ L(Rect/m) . �
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Study of the principal theorem

The previous results show that if there exist i0 such that hi0 is large, one will
have a breakdown of independence. That, one knew it by corollary 6.1.2.

It remains to be understood that the conditions of independence are well
carried out if the hi are small.

Then, suppose that the hi’s are small.
The proposition 6.1.4 means that it is necessary that L(Rect/m) is small so

that the tests of independence are not checked for some rectangles Rect.
But in this case, the increase of the proposition 6.1.4 is too weak. Indeed,

min ≤
√
m2L(Rect/m). One can thus improve it. For that, let us take again

the increase of the equation 6.1 :

∣∣Pe(Rect) − PU (Rect)
∣∣

≤ (2.0782.Log(m) + (1/2)Log
(
L(Rect/m)

)
+ 3.00005(sup(hi) + 1)

m
,

where Log
(
L(Rect/m)

)
< 0.

To improve this result, one takes again previous calculation with the new
parameters and one obtains a new equation of the type of that of proposition
6.1.4. But for the same reasons, this result will have to still be improved. One
will act again in the same way, and so on as long as the increase of L(Rect/m)
can be improved. One thus obtains rectangles Rect/m of size L(Rect/m) in-
creasingly small.

Moreover, if hi is small, the results of [13] page 47-13 can be improved : for
example for some rectangle Rect = R0, theorem 6-14, page 106-107 :

∣∣N(R0) − SR0

m

∣∣ ≤ 1 .

Then one can again improve the increases of theorem 8 :

∣∣N(Rect) −
SRect

m

∣∣ ≤ (po + 1)(sup(hi) + 1) ,

2.0782.Log(min) + 2.00005 ≥ po .

Finally, if hi is small, the only rectangles where there is maybe breakdown
of independence are the rectangles of the type R0 = [x, x + kn[⊗[y, y + rn−2[.
Besides, these rectangles do not contain enough points to make tests if hi is
small: if y = T (x) the breakdown with independence is proved by corollary
6.1.2 : there is hn−1 + 1 lined up points. If hi is small, it is easy to understand
that it is not important.

Thus, in the case of the Fibonacci sequence, there is at the most 2 points
lined up in these rectangles! It is thus a correct result if there is independence.
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Now, if y 6= T (x) , by the theorem 6-14, page 106 of [13], N(R0) =
knrn−2/m+ e where |e| ≤ 1. In the case x = T (y), N(R0) = hn−1 + 1. There-
fore, knrn−2/m = hn−1+1+e′ where |e′| ≤ 1. In the case y = T (x−1), it is easy
to understand that generally N(R0) = hn−1. Therefore, knrn−2/m = hn−1 +e”
where |e”| ≤ 1. Therefore, hn−1 ≤ knrn−2/m ≤ hn−1 +1. Then, N(R0) = hn−1

or N(R0) = hn−1 + 1.
Thus, in the case of the Fibonacci sequence, there is 1 or 2 points in these

rectangles! It is also thus a correct result if there is independence.
Thus in the case of the Fibonacci sequence, all rectangles satisfy the test of

normality. In fact, it is even statistically too. It is not important. We do not
make use of it like sample of independent couple.

Numerical examples

We confirm by graphs that it is necessary and sufficient that sup(hi) is small so
that there is independence.

In these graph, one takes m=21.
If a = 13, we have a Fibonacci congruence. The points are well distributed

in the square : cf figure 6.3.
In the figures 6.4 et 6.5 breakdowns of independence appear.
If one chooses a=10, sup(hi) = 20 : cf figure 6.4 .
If one chooses a=5, sup(hi) = 5 : cf figure 6.5.
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Figure 6.3: sup(hi) = 1

Conclusion

To avoid any dependence, it is necessary that sup(hi) is small. In the case of the
Fibonacci sequence, sup(h′i) = 1 and independence is checked on all rectangles
Rect.
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Figure 6.4: sup(hi) = 20
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Figure 6.5: sup(hi) = 5 Fig

Remark We studied independence only between two successive elements. It
does not mean there is independence for the triplets (ℓ, T (ℓ), T 2(ℓ)).

Thus, for the Fibonacci congruence T 2 = ±Id where Id is the identity 2.
Therefore there is main dependence between the elements ℓn = Tn(x0) and
ℓn+2 = ±ℓn modulo m. One cannot thus apply it to create a pseudo-random
sequence, but only to make possible that a number is independent of another.

It is what we do in section 8.1. We use only independence between two
successive elements.

6.2 Proof of theorem 7

In this section, congruences are conguences modulo m : t ≡ s means t ≡ s
modulo m. In order to prove theorem 7, few lemmas are needed. The first one
is obvious.

2With the notations of [13] page 99, kda ≡ ±1 (lemma 6-3). Moreover, if T is the Fibonacci
congruence, by lemma 6-5 of [13], m = hdkd + kd−1 = 2kd + kd−1 = 2fid + fid−1 = fid+2

and m = a + r2 = r1 + r2 = fid+1 + fid. Then, kd = r2. Then, m = r1 + r2 = a ± a−1.

Then, a−1 = a or a−1 = m − a
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Lemma 6.2.1 For n=3,4,...,d+1, kn+1 > kn > kn−1 . Moreover kn+2 =
hn+1kn+1 + kn is the Euclidean division of kn+2 by kn+1.

Now, we prove the following results.

Lemma 6.2.2 Let n=0,1,2,...,d. If n is even, kna = m − rn. If n is odd,
kna = rn.

Proof : We prove this lemma by recurrence.
For n=0, kna = 0 = 0 = m−m = m− r0. For n=1, kna = a = a = r1.

We suppose that it is true for n.
One supposes n even. Then, kn+1a ≡ ahnkn + akn−1 ≡ −hnrn + rn−1 = rn+1.
One supposes n odd. Then, kn+1a ≡ ahnkn + akn−1 ≡ hnrn− rn−1 = −rn+1 ≡
m− rn+1. Therefore, kn+1a = m− rn+1. �

Lemma 6.2.3 Let n=2,3,...,d+1. Let t ∈ {1, 2, ..., kn − 1}. If n ≥ 2 is even,
rn−1 ≤ at < m− rn . If n ≥ 3 is odd, m− rn−1 ≥ at > rn.

Moreover, if n ≥ 2 is even, kna = m− rn. If n ≥ 3 is odd, kna = rn.

Proof : The second assertion is lemma 6.2.2. Now, we prove the first
assertion by recurrence.

One supposes n=2. Then, m = r0 = h1r1 + r2 = h1a + r2. Moreover,
k2 = h1. If 1 ≤ t < h1 = k2, r1 = a ≤ at < h1a = m− r2 .

One supposes that the first assertion is true for n where 2 ≤ n ≤ d.

Let 0 < t′ < kn+1. Let t′ = fkn + e be the Euclidean division of t’ by kn :
e < kn.

Then, f ≤ hn . If not, t′ ≥ (hn + 1)kn + e ≥ hnkn + kn−1 = kn+1.

One supposes n even.
In this case, rn−1 ≤ at < m− rn for t ∈ {1, 2, ..., kn − 1}.
Moreover, at′ ≡ fakn + ae ≡ f(m− rn) + ae ≡ −frn + ae.

First, one supposes e = 0. Then, f ≥ 1.
Moreover, because n ≥ 2, m−rn ≥ m−frn ≥ m−hnrn = m− (rn−1−rn+1) =
r0 − rn−1 + rn+1 ≥ r0 − r1 + rn+1 > rn+1 .
Therefore, because at′ ≡ −frn, at′ = m− frn .
Therefore, m− rn ≥ at′ > rn+1 .

Now, one supposes f < hn and e > 0 .
By recurrence, m − rn ≥ ae ≥ ae − frn ≥ rn−1 − frn ≥ rn−1 − (hn − 1)rn =
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rn + rn+1 > rn+1.
Therefore, because at′ ≡ −frn + ae, at′ = ae− frn .
Therefore, m− rn ≥ at′ > rn+1 .

One supposes f = hn, e 6= kn−1 and e > 0.
If e 6= kn−1, ae 6= kn−1a. Indeed, if not, a(e− kn−1) = 0. For example, if
e− kn−1 > 0, kn > e− kn−1 > 0. Then, because our recurence, a(e− kn−1) >
rn−1 > 0 : it is impossible.

Now, if n = 2, kn−1a = k1a = a = r1 = rn−1.
Moreover, if n > 2, n ≥ 4. Then, by recurence kn−1a = rn−1.
Then, if e 6= kn−1, ae 6= kn−1a = rn−1. Then, ae > rn−1.

Moreover, m− rn ≥ ae ≥ ae− frn > rn−1 − frn ≥ rn−1 − hnrn = rn+1.
Therefore, because at′ ≡ −frn + ae, at′ = ae− frn .
Therefore, m− rn ≥ at′ > rn+1 .

One supposes f = hn and e = kn−1. Then, t′ = hnkn + kn−1 = kn+1. It is
oppositite to the assumption.

Then, in all the cases, for t′ ∈ {1, 2, ...., kn+1 − 1}, m − rn ≥ at′ > rn+1.
Therefore, the lemma is true for n+1 if n is even. Then, it is also true for
n+1=3.

One supposes n odd with n ≥ 3. In this case, rn < at ≤ m − rn−1 for
t ∈ {1, 2, ..., kn − 1}.
Moreover, akn = rn. Therefore, at′ ≡ fakn + ae ≡ frn + ae.

Assume e = 0. Then, f ≥ 1.
Then, rn ≤ frn ≤ hnrn = rn−1 − rn+1 < m− rn+1.
Then, because at′ ≡ frn, rn ≤ at′ = frn < m− rn+1.

Assume e > 0 and f ≤ hn − 1.
By recurrence, rn < ae + frn ≤ m − rn−1 + frn ≤ m − rn−1 + (hn − 1)rn =
m− (rn−1 − hnrn) − rn = m− rn+1 − rn < m− rn+1.
Then, because at′ ≡ frn + ae, rn < at′ = ae+ frn < m− rn+1

Assume e > 0, e 6= kn−1 and f = hn.
Because, e 6= kn−1, ae 6= m − rn−1. If not, ae = akn−1 = m − rn−1. For
example, if e > kn−1, a(e− kn−1) = 0 where 0 < e− kn−1 < kn. Then, by the
assumption of recurrence, a(e− kn−1) > 0. It is impossible.
Then, ae < m− rn−1.
Then, by recurrence, rn ≤ ae+ hnrn < m− rn−1 + hnrn = m− rn+1.
Then, because at′ ≡ hnrn + ae, rn ≤ at′ = ae+ hnrn < m− rn+1
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One supposes f = hn and e = kn−1. Then, t′ = hnkn + kn−1 = kn+1. It is
oppositite to the assumption.

Then the lemma is true for n+1. �

Lemma 6.2.4 The following inequalities holds : kd+1 ≤ m.

Proof If t ∈ {1, 2, ..., kd+1 − 1}, by lemma 6.2.3, rd ≤ at < m − rd+1 or
m− rd ≥ at > rd+1, i.e. rd ≤ at < m or m− rd ≥ at > 0 where rd > 0. Then,
0 < at < m or m > at > 0.

Then, if kd+1 > m, there exists t0 ∈ {1, 2, ..., kd+1 − 1} such that t0 = m,
i.e. at0 = am = 0. It is impossible. �

Lemma 6.2.5 Let t, t′ ∈ {1, 2, ..., kd+1 − 1} such that at = at′. Then, t=t’.

Proof Suppose t > t′. Then, a(t − t′) ≡ 0 and a(t− t′) = 0. Then, by
lemma 6.2.3, rd ≤ a(t− t′) < m− rd+1 or m− rd ≥ a(t− t′) > rd+1 = 0 where
rd > 0. Then, 0 < a(t− t′). It is a contradiction. �

Lemma 6.2.6 Let n=1,2,...,d. Let Hn = h1k1 + h2k2 + h3k3 + ....... + hnkn.
Then, Hn = kn+1 + kn − 1.

Proof We have Hn = h1k1 + h2k2 + h3k3 + .......+ hn−1kn−1 + hnkn

= k2−k0+k3−k1+k4−k2+k5−k3+k6−k4+k7−k5+........+kn−kn−2+kn+1−kn−1.

Therefore, if n=2m,
Hn =

k2−k0 +k3−k1 +k4−k2 +k5−k3 +k6−k4 + ......+k2m−k2m−2 +k2m+1−k2m−1

= k2 − k0 + k4 − k2 + k6 − k4 + ........+ k2m − k2m−2

+k3 − k1 + k5 − k3 + k7 − k5 + ........+ k2m+1 − k2m−1

= k2m − k0 + k2m+1 − k1 = kn+1 + kn − k1 − k0 = kn+1 + kn − 1.

If n=2m+1
Hn =

k2−k0 +k3−k1 +k4−k2 +k5−k3 +k6−k4 + ......+k2m+1−k2m−1 +k2m+2−k2m

= k2 − k0 + k4 − k2 + k6 − k4 + ........+ k2m+2 − k2m

+k3 − k1 + k5 − k3 + k7 − k5 + ........+ k2m+1 − k2m−1

= k2m+2 − k0 + k2m+1 − k1 = kn+1 + kn − 1 . �

153



Lemma 6.2.7 Let n=1,2,3,...,d-1 . Let Ln =
{
t
∣∣t = 0, 1, 2, ....,Hn

}
. Then,

for all n ≥ 1, Ln+1 =
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Proof Let l ∈ Ln , l ≤ Hn. Let g ≤ hn+1.
Therefore, if t = l + gkn+1, t ≤ Hn + hn+1kn+1 = Hn+1.
Therefore,

{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
⊂ Ln+1 .

Reciprocally, let t ∈ Ln+1 and let t = fkn+1 + e , e < kn+1 be the Euclidean
division of t by kn+1.

We know that Hn = kn+1 + kn − 1 ≥ kn+1. Therefore, e ≤ Hn. Therefore,
e ∈ Ln.

Therefore, if f ≤ hn+1 , t = fkn+1 + e ∈
{
t = l+ gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Moreover, if f > hn+1 + 1 , t = fkn+1 + e ≥ (hn+1 + 2)kn+1 + e ≥
hn+1kn+1 + 2kn+1 = Hn+1 −Hn + 2kn+1 = Hn+1 − kn+1 − kn + 1 + 2kn+1 =
Hn+1 + kn+1 − kn + 1 ≥ Hn+1 + 1 . Therefore, t /∈ Ln+1.

Then, suppose f = hn+1 + 1. Then, t = fkn+1 + e = (hn+1 + 1)kn+1 + e =
hn+1kn+1+kn+1+e = Hn+1−Hn+kn+1+e = Hn+1−kn+1−kn+1+kn+1+e =
Hn+1 − kn + 1 + e.
Because t ∈ Ln+1 and t = Hn+1 − kn + 1 + e, e + 1 − kn ≤ 0. Therefore,
e ≤ kn − 1.
Therefore, t = fkn+1 + e = hn+1kn+1 + kn+1 + e,
where kn+1 + e ≤ kn+1 + kn − 1 = Hn

Therefore, t = hn+1kn+1 + e′ where e′ ≤ Hn.
Therefore, t ∈

{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Therefore, Ln+1 ⊂
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
.

Therefore, Ln+1 =
{
t = l + gkn+1

∣∣l ∈ Ln, g ≤ hn+1

}
. �.

Lemma 6.2.8 Let Fn =
{
at
∣∣t = 0, 1, 2, ....,Hn

}
.

Let En =
{
at + km

∣∣t = 0, 1, 2, ....,Hn, k ∈ Z
}

. We set En = {ons |s ∈ Z}
where on0 = 0 et ons+1 > ons for all s ∈ Z.

Then, for all s ∈ Z, ons+1 − ons = rn or ons+1 − ons = rn+1.

Proof We prove this lemma by recurrence.
Suppose n=1. Then, r1 = a, H1 = h1k1 = k2 = h1. Therefore,

F1 =
{
at
∣∣t = 0, 1, 2, ..., h1

}
=
{

0, a, 2a, ..., h1a
}

=
{

0, r1, 2r1, ..., h1r1 = m−r2
}

.
Therefore, the lemma is true for n=1.

Suppose that the lemma is true for n.
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Then, En+1 =
{
at+ km

∣∣t = 0, 1, 2, ....,Hn+1, k ∈ Z
}

,
where Hn+1 = h1k1 + h2k2 + h3k3 + .......+ hn+1kn+1 = Hn + hn+1kn+1.

Because t ∈ {0, 1, 2, ....,Hn+1}, t ∈ Ln+1. By lemma 6.2.7, si t ∈ Ln+1,
t = l + gkn+1 where g ≤ hn+1. By lemma 6.2.2, at ≡ a(l + gkn+1) ≡ al +
(−1)n+2grn+1 ≡ al + (−1)ngrn+1 .

Therefore,
En+1 =

{
at+ km

∣∣t ∈ Ln+1, k ∈ Z
}

=
{
at+ km

∣∣t = l + gkn+1, l ∈ Ln, g ≤ hn+1, k ∈ Z
}

=
{
al + (−1)ngrn+1 + km

∣∣l ∈ Ln, g ≤ hn+1, k ∈ Z
}

=
{
f + (−1)ngrn+1 + km

∣∣f ∈ Fn, g ≤ hn+1, k ∈ Z
}

=
{
ons + (−1)ngrn+1 + km

∣∣s ∈ Z, g ≤ hn+1, k ∈ Z
}
.

Suppose that n is even.
Then, ons + (−1)ngrn+1 = ons + grn+1 ≤ ons + rn − rn+2 because grn+1 ≤
hn+1rn+1 = rn − rn+2 .

Use the recurrence. Suppose ons+1 − ons = rn . Then, ons + (−1)ngrn+1 ≤
ons + rn − rn+2 = ons+1 − rn+2.
Therefore,
{on+1
t | ons ≤ on+1

t < ons+1} = {ons < ons + rn+1 < .... < ons + hn+1rn+1 < ons+1} .

Therefore, on+1
t+1 − on+1

t = rn+1 or rn+2 if ons ≤ on+1
t < on+1

t+1 ≤ ons+1.

Suppose ons+1 − ons = rn+1. Then, s is fixed .
Let T = min{t = 0, 1, ..., |ons+t+1−ons+t = rn}. Therefore, ons+T+1−ons+T = rn.
Let O = ∪Tt=0{ons+t + grn+1 | 0 ≤ g ≤ hn+1}.
Then, O = {ons , ons+1, ....., o

n
s+T−1} ∪ {ons+T + grn+1| 0 ≤ g ≤ hn+1}.

Therefore, O = {o′s, o′s+1, ....., o
′
s+K} where o′s′+1 − o′s′ = rn+1. Moreover,

ons+T+1 − o′s+K = rn − hn+1rn+1 = rn+2.

Therefore, if on+1
t′ and on+1

t′+1 ∈ {on+1
t | ons ≤ on+1

t ≤ ons+T+1}, on+1
t′+1−on+1

t′ = rn+1

or rn+2.

Suppose that n is odd.
Then, ons + (−1)ngrn+1 = ons − grn+1 ≥ ons − rn + rn+2 because grn+1 ≤
hn+1rn+1 = rn − rn+2 .

Suppose ons − ons−1 = rn . Then, ons + (−1)ngrn+1 ≥ ons − rn + rn+2 =
ons−1 − rn+2.
Therefore,
{on+1
t | ons ≥ on+1

t > ons−1} = {ons > ons − rn+1 > ..... > ons − hn+1rn+1 > ons−1}.

Therefore, on+1
t − on+1

t−1 = rn+1 or rn+2 if ons ≥ on+1
t > on+1

t−1 ≥ ons−1.
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Suppose ons − ons−1 = rn+1. Let T = min{t = 0, 1, ..., |ons−t − ons−t−1 = rn}.
Therefore, ons−T − ons−T−1 = rn
Let O = ∪Tt=0{ons−t − grn+1 | 0 ≤ g ≤ hn+1}.
Then, O = {ons , ons−1, ....., o

n
s−T+1} ∪ {ons−T − grn+1| 0 ≤ g ≤ hn+1}.

Therefore, O = {o′s, o′s−1, ....., o
′
s−K} where o′s′ − o′s′−1 = rn+1. Moreover,

o′s−K − ons−T−1 = rn − hn+1rn+1 = rn+2.

Therefore, if on+1
t′ and on+1

t′−1 ∈ {on+1
t | ons ≥ on+1

t ≥ ons−T−1}, on+1
t′ −on+1

t′−1 = rn+1

or rn+2. �

Proof 6.2.9 Now one proves theorem 7.

Suppose that n is even.
Then, kn−1a = rn−1, 2kn−1a = 2rn−1, ......hn−1kn−1a = hn−1rn−1 = rn−rn−2.

Now, akn−1ℓ = ℓrn−1 = ℓrn−1 for ℓ = 0, 1, 2, ...., hn−1.
Therefore,{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
=
{

(kn−1ℓ, akn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂

E2 .
Moreover, rn−2 = hn−1rn−1 + rn. On the other hand, by lemma 6.2.8 , all

the points of E2 = (t, at), t ≤ Hn−1, have ordinates distant of rn or rn−1.
Therefore, if there is other points of E2 ∩

{
[0, Hn−1] ⊗ [0, rn−2[

}
that the

points
{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
, there exists ℓ0 ∈ {1, 2, ...., hn−1}

and (x1, y1) ∈ E2 ∩
{

[0, Hn−1] ⊗ [0, rn−2]
}

such that rn−1ℓ0 − y1 = rn.

Because Hn−1 = kn + kn−1 − 1 < kn+1 ≤ kd+1, by lemma 6.2.5, there exists
an only t ∈ {1, ....,Hn−1}, such that at = y1 : t = x1. Because y1 6= 0, there
exists an only t ∈ {0, 1, ....,Hn−1}, such that at = y1.

Now, rn−1ℓ0−y1 = aℓ0kn−1−at = rn = −akn. Then, aℓ0kn−1−−akn = at.
Then, a(ℓ0kn−1 + kn) = at.

Because rd−1 = hdrd with rd−1 > rd, hd ≥ 2. Moreover, d ≥ n ≥ 2. Then,
d− 1 > 0. Then, kd−1 > 0.

Then, by lemma 6.2.4, 0 < kn−1 + kn ≤ ℓ0kn−1 + kn ≤ hn−1kn−1 + kn ≤
kn − kn−2 + kn = 2kn − kn−2 ≤ 2kd < 2kd + kd−1 ≤ hdkd + kd−1 = kd+1 ≤ m.
Then, 0 < ℓ0kn−1 + kn < kd+1.

Now 0 < t ≤ Hn−1 = kn + kn−1 − 1 < kd + kd−1 ≤ kd+1. Moreover,
0 < ℓ0kn−1 + kn < kd+1.

Then, because a(ℓ0kn−1 + kn) = at, by lemma 6.2.5, t = ℓ0kn−1 + kn.
Then, t = ℓ0kn−1 + kn ≥ kn−1 + kn > Hn−1. It is a contradiction.

Therefore, there is not other points of E2 ∩
{

[0, Hn−1] ⊗ [0, rn−2[
}

that{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Therefore, there is not other points of E2∩
{

[0, kn[⊗[0, rn−2[
}

that the points{
(kn−1ℓ, rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
.
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Therefore,

E2 ∩
{

[0, kn[⊗[0, rn−2[
}

=
{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

According to what precedes,

{
(kn−1ℓ, akn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
=
{

(kn−1ℓ, rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}

is located on the straight line y = (rn−1/kn−1)x if n is even.

Suppose that n is odd. Then, kn−2a = rn−2, kn−2a+ kn−1a = rn−2 − rn−1,
kn−2a+ 2kn−1a = rn−2 − 2rn−1, ......, kn−2a+ hn−1kn−1a = rn−2 − hn−1rn−1.

Therefore,

{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

=
{

(kn−2 + kn−1ℓ , kn−2a+ ℓkn−1a
∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂ E2.

For ℓ = 0, 1, 2, ...., hn−1, kn−2 + kn−1ℓ ≤ kn−2 + hn−1kn−1 = kn. Therefore,

{
(kn−2 +kn−1ℓ , rn−2−rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
⊂ E2∩

{
]0, kn]⊗]0, rn−2]

}
.

Moreover, rn−2 − hn−1rn−1 = rn. On the other hand, by lemma 6.2.8 , all
the points of E2 = (t, at), t ≤ Hn−1, have ordinates distant of rn or rn−1.

Therefore, if there is other points of E2 ∩
{

[0, Hn−1]⊗]0, rn−2]
}

that the

points
{

(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
, there exists ℓ0 ∈

{1, 2, ...., hn−1} and (x1, y1) ∈ E2∩
{

[0, Hn−1]⊗ [0, rn−2]
}

such that y1−(rn−2−
rn−1ℓ0) = rn.

Because Hn−1 = kn + kn−1 − 1 < kn+1 ≤ kd+1, by lemma 6.2.5, there exists
an only t ∈ {1, ....,Hn−1}, such that at = y1. Because y1 6= 0, there exists an
only t ∈ {0, 1, ....,Hn−1}, such that at = y1.

Then, y1 − (rn−2 − rn−1ℓ0) = at − kn−2a+ ℓ0kn−1a = rn = akn. Then,
at = kn−2a+ ℓ0kn−1a+ akn. Then, at = a(kn−2 + ℓ0kn−1 + kn).

Now, because rd−1 = hdrd with rd−1 > rd, hd ≥ 2. Now, n ≥ 3. Then,
d− 1 ≥ n− 1 > 1. Then, kd−1 > 0.

Then 0 < kn−2 + ℓ0kn−1 + kn ≤ kn−2 + hn−1kn−1 + kn ≤ 2kn ≤ 2kd <
2kd + kd−1 ≤ hdkd + kd−1 = kd+1 ≤ m.

Now 0 < t ≤ Hn−1 = kn + kn−1 − 1 < kd + kd−1 ≤ kd+1.
Then, because a(kn−2 + ℓ0kn−1 + kn) = at, by lemma 6.2.5, t = kn−2 +

ℓ0kn−1 + kn.
Then, t = kn−2 + ℓ0kn−1 + kn ≥ kn−1 + kn > Hn−1. It is a contradiction.
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Therefore, there is not other points of E2 ∩
{

[0, Hn−1]⊗]0, rn−2]
}

that the

points
{

(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

Therefore, there is not other points of E2∩
{

]0, kn]⊗]0, rn−2]
}

that the points{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}
: i.e.

E2∩
{

]0, kn]⊗[0, rn−2[
}

=
{

(kn−2+kn−1ℓ , rn−2−rn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}
.

According to what precedes,

{
(kn−2 + kn−1ℓ , rn−2 − rn−1ℓ)

∣∣ℓ = 0, 1, 2, ...., hn−1

}

=
{

(kn−2 + kn−1ℓ , akn−2 + akn−1ℓ)
∣∣ℓ = 0, 1, 2, ...., hn−1

}

is located on a straight line. �
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Chapter 7

Congruences of Fibonacci

In this chapter, we study the transformation of a random variable Y ∈ F (m) de-

fined a probability space (Ω,A, P ) : X = T̂ (Y ) where T is Fibonacci congruence

and et where T̂ is defined by the following way.

Notations 7.0.1 We set T̂ (k/m) = T (k)/m.

We suppose that the probability density function of Y with respect to µm is
written in a form :

h(y)
[
1 +

η(y)

co

]
,

where η(y) is a sample of a white noise independent of h and where
∫
h(y)µm(dy) ≈ 1.

One will study P{X ∈ I} where I is an interval I = [c/m, c′/m[. One will
study especially the cases where h is the probability density function of the
normal or uniform distribution.

7.1 Distribution of normal type

One thus will calculate P{X ∈ I} = P{Y ∈ T̂−1(I)} = PY {T̂−1(I)} = PX{I}.
It will be supposed that y 7→ h(y) has a curve in the shape of bell, (e.g. a

Gaussian curve). That will result in the following assumption.

Hypothesis 7.1.1 Let I be an interval of F(m). Let N(I) be the number of
points of F(m) belonging to I. We assume that, for all I such that N(I) >> 1,

√
N(I)

[ c′∑

k=c

h
(
T̂−1(k/m)

)

N(I)
− 1
]
≈ 0 .
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This assumption means well that the curve of h has properties enough close to
those of a normal curve. Indeed, by property 7.1.11 the following approximation
holds

1

N(I)

c′∑

k=c

h
(
T̂−1(k/m)

)
= 1 +

O(1)

N(I)
,

when h is the Gaussian curve : y 7→ 10.e−[10(y−0.5)]2/(2σ2)

2πσ2 .

Now, it is thus a question of calculating the approximation of L(I) by PX{I}.

We set ǫGI =
∣∣(N(I))/m− PY {T̂−1(I)}

∣∣

For example, let us suppose that h is an approximation of the normal law
N(0, σ2) corresponding to a summation of S terms Zn ∈ F (m), with S=10,
E{Zn} = 1/2, E{(Zn − 1/2)2} = σ2 : 0 ≤ Z1 + ....+ Z10 < 10, i.e. Z1 + ....+
Z10 − 10/2 has a distribution close to N(0, 10.σ2) . One thus considers that
Y = (Z1 + ....+ Z10 − 5)/

√
10 has a distribution close to N(0, σ2). Finally,

PX{I} =
c′−1∑

k=c

PY (T̂−1(k/m))

≈
c′−1∑

k=c

10

m

e−[10( bT−1(k/m)−0.5) ]2/(2σ2)

√
2πσ2

[
1 +

η(T̂−1(k/m))

co

]
.

7.1.1 Case co ≥ 10

At first, let us consider the following example where co ≥ 10 : it represents an
approximation of the law of g(j) =

∑10
i=1 f(i, j) used in the construction of the

random bits b1(n′) : cf section 11.1.2.

Example 7.1.1 Suppose that η(y) = u(y) is a sample which has the uniform
distribution over [-1/2,1/2]. Suppose that co ≥ 10. Assume that h(y) ≈
10 e−[10(y−0.5)]2/(2σ2)

√
2πσ2

.

Study Under these assumptions,

PY (Y = y) ≈ 10

m

e−[10(y−0.5)]2/(2σ2)

√
2πσ2

[
1 +

η(y)

co

]
.

Let us notice that to suppose that η(y) is a sample of uniform distribution
is a difficult assumption to ensure in the construction of the random bits b1(n′)
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used in section 11.2.5 ). But the important thing, it is the variance associated
with η(y) (e.g. cf proposition 7.2.2). �

In the general case, one can consider the model

PX(I) =

c′−1∑

k=c

1

m
h
(
T̂−1(k/m)

) [
1 +

η(T̂−1(k/m))

co

]
.

In order to simplify, the following notations are adopted.

Notations 7.1.1 We set

PX(I) =
N(I)

m

c′−1∑

k=c

g(k)

N(I)

[
1 +

Uk(ω)

co

]
,

where g(k) = h
(
T̂−1(k/m)

)
and where Uk is an IID sequence of random variable

with mean 0 satisfying Uk(ω) = uk = η(T̂−1(k/m)).

One can then study the approximation of L(I). At first, one will use the
following notation.

Notations 7.1.2 We set ǫGI = PX(I) −N(I)/m.

For this study, the following lemmas are used.

Lemma 7.1.2 The following equalities hold.

ǫGI =
N(I)

m

(∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)

)
=

√
N(I)

m

∑

k

g(k)
[
1 + Uk

co

]
− 1√

N(I)
.

Lemma 7.1.3 Let σ2
g be the variance of

∑
k

g(k)
[
1+

Uk
co

]
−1

N(I) . Let σ2
U be the vari-

ance of U1.

Then, σ2
g =

σ2
UE(g2)
co2N(I) , where E(g2) =

∑
k
g(k)2

N(I)

Proof At first, E
{∑

k

g(k)
[
1+

Uk
co

]

N(I)

}
=
∑
k
g(k)
N(I) .

Moreover,

E
{[∑

k

g(k)
[
1 + Uk

co

]

N(I)

]2}

= E
{∑

k,k′

g(k)g(k′)
[
1 + Uk/co+ Uk′/co+ UkUk′/co

2
]

N(I)2

}
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=
∑

k,k′

g(k)g(k′)

N(I)2
+
∑

k,k′

g(k)g(k′)E{UkUk′/co2}
N(I)2

=
[∑

k

g(k))

N(I)

]2
+
∑

k

g(k)2E{U2
k/co

2}
N(I)2

=
[∑

k

g(k))

N(I)

]2
+
∑

k

σ2
Ug(k)2

co2N(I)2

=
[∑

k

g(k))

N(I)

]2
+

σ2
U

co2N(I)

∑

k

g(k)2

N(I)

=
[∑

k

g(k))

N(I)

]2
+
σ2
UE(g2)

co2N(I)
.

Moreover,

σ2
g = E

{[∑

k

g(k)
[
1 + Uk

co

]

N(I)
− 1
]2}

−
[∑

k

g(k)

N(I)
− 1
]2

= E
{[∑

k

g(k)
[
1 + Uk

co

]

N(I)

]2}
−2E

{[∑

k

g(k)
[
1 + Uk

co

]

N(I)

}
+ 1 −

[∑

k

g(k)

N(I)

]2
+2
∑

k

g(k)

N(I)
−1

= E
{[∑

k

g(k)
[
1 + Uk

co

]

N(I)

]2}
− 2

∑

k

g(k)

N(I)
−
[∑

k

g(k)

N(I)

]2
+ 2

∑

k

g(k)

N(I)

= E
{[∑

k

g(k)
[
1 + Uk

co

]

N(I)

]2}
−
[∑

k

g(k)

N(I)

]2

=
σ2
UE(g2)

co2N(I)
. �

This result means that σ2
g decreases if N(I) increase.

Example 7.1.4 Assume that the assumptions of the example 7.1.1 hold with
co=10. Assume that σ is not too big. Assume that the points T̂−1(k/m) are
well distributed in F(m). Assume m and N(I) are enough big. Then,

σ2
g ≈ 1

120
√

4πσ2 N(I)
.
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Proof We have

∑

k

g(k)2E{U2
k/co

2}
N(I)2

=
∑

k

g(k)2

12 ∗ 100 ∗N(I)2

=
1

1200N(I)

∑

k

g(k)2

N(I)

=
1

120N(I)

1

N(I)

∑

k

10e−[10 bT−1(k/m)−0.5]2/σ2

2πσ2

=
1

120 N(I)

1√
2 ∗ 2πσ2

1

N(I)

∑

k

10e−[10 bT−1(k/m)−0.5]2/(2σ2/2)

√
2π[σ2/2]

≈ 1

120
√

4πσ2 N(I)
. �

Lemma 7.1.5 Let Y ∗
No =

∑
k
g(k)

Uk
co

N(I)σg
. If N(I) is enough big, if σU and E(g2)

are not too small,

Y ∗
No ≈

∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)σg
.

Proof By hypothesis 7.1.1, we know that
√
N(I)

[∑
k
g(k)
N(I) − 1

]
≈ 0 if N(I)

is enough big. Then,

Y ∗
No =

∑

k

g(k)Uk

co

N(I)σg

=
∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)σg
−
∑

k

g(k) − 1

N(I)σg

=
∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)σg
−
∑
k
g(k)
N(I) − 1

σg

=
∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)σg
− co

√
N(I)

∑
k
g(k)
N(I) − 1

σU
√
E(g2)

≈
∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)σg
. �
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Lemma 7.1.6 Let YNo =
∑
k

g(k)
[
1+

Uk
co

]
−1

N(I)σg
. Then,

P
{ m.co|ǫGI |
σU
√
E(g2)

√
N(I)

≥ b
}

= P{|YNo| ≥ b} .

Proof We have

ǫGI =
N(I)

m

(∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)

)
=
N(I)σg
m

(∑

k

g(k)
[
1 + Uk

co

]
− 1

N(I)σg

)

=
N(I)σg
m

YNo =
N(I)

m

σU
√
E(g2)

co
√
N(I)

YNo =

√
N(I)

m

σU
√
E(g2)

co
YNo . �

Of course, E{Y 2
No} = 1 and YNo has asymptotically the distribution N(0,1).

Then one can use the following result.

Proposition 7.1.1 If N(I) is enough big,

P
{ m.co|ǫGI |
σU
√
E(g2)

√
N(I)

≥ b
}
≈ Γ(b) .

This result means that, if b is enough big, one will be able to admit that

|ǫGI | ≤
σU
√
E(g2)

√
N(I).b

m.co
. (7.1)

By this way, one has an increase of |ǫGI |.

Normal distribution

Now assume that h(y) is a normal probability density function and apply the
previous result. Under the condition of example 7.1.1

P
{ m

√
σ|ǫGI |

0.0485
√
N(I)

≥ b
}
≈ Γ(b) .

This result thus gives us a probable increase of |ǫGI |.

Example 7.1.7 Suppose that we do not have more than 106 possible intervals
I. We know that Γ(6) ≤ 10−9.Then, if N(I) is not too small, one can assume

|ǫGI | ≤
0.291

√
N(I)

m
√
σ

. (7.2)
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Therefore, normally, ǫGI increases if σ decrease or if N(I) increases.

In fact, the checking of inequality 7.2 depends on the number of possible
intervals I in F(m) (that is equal to m(m+1)/2). Indeed, at first, one can
suppose that the intervals behave like a sample. In this case, one must choose
b according to m(m+1)/2 as one will do it in section 7.2.

Thus, if there are much more possible intervals ” I ” than 2 ∗ 109, the in-
equality 7.2 can be not checked, and, this, with a non-negligible probability :
P{|YNo| ≥ 6} ≈ 2 ∗ 109. For example, if m ≥ 109, there is 109(109 + 1)/2
possible intervals ” I ”.

However, generally, one can have a better increase. That is confirmed by
various numerical results.

Example 7.1.8 Suppose m= 267914296 , a= 165580141. We choose intervals
I length L(I) = (1/5)10−j for j =1,...,6 .

Choose standard deviations σ = 1/2, 1/4, 1/8, 1/40.

Study For each j, one calculated each ǫGI for 50 intervals Is, s=1,2,...,50 length
(1/5)10−j .
Then, one obtains the following table of the maxima Maxs{0.5∗106|ǫGI | | Is, σ}
on these 50 terms.

L(I) \ σ 1/2 1/4 1/8 1/40
(1/5)10−1 0.0708 0.0837 -0.0321 0.5361
(1/5)10−2 0.1096 -0.0114 -0.1507 -0.1077
(1/5)10−3 0.0067 0.0328 0.0097 -0.1834
(1/5)10−4 -0.0008 0.0004 0.0046 0.0083
(1/5)10−5 -0.0008 -0.0014 0.0025 -0.0152
(1/5)10−6 -0.0000 -0.0010 0.0010 0.0013
(1/5)10−7 -0.0006 0.0002 -0.0032 -0.0044

As each term Maxs{0.5∗106|ǫGI |} of the table is to be multiplied by 2/10−6,
it is understood that one has results much better than those given by the ex-
ample 7.1.7. �

One could thus admit that for our calculations of construction of the se-
quence b1(n′) used in section 11.2, the inequality 7.2 is always checked.

Hypothesis 7.1.2 In the construction of the sequence g(j) used in section
11.2.5 , one can suppose that

|ǫGI | ≤
0.291 ∗ 121/4 ∗ 10

√
N(I)

m
≤ 5.42

√
N(I)

m
.

Indeed, that amounts supposing the inequality 7.2 with σ2 ≥ 8.334 ∗ 10−6 ≥
1
12

1
10000 .
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Now, σ2 = 1
12

1
10000 means that the variance of the conditional probability

of the Gn, P{Gn ∈ I | Gn+j2 = g2, ...., Gn+jp = gp} is 10000 times smaller than
the variance of the uniform distribution. It is a completely reasonable increase
with the data used in section 11.2.

Because N(I) ≤ m, the following result holds.

Proposition 7.1.2 Suppose that hypothese 7.1.2 holds. Then,

|ǫGI | ≤
5.42√
m

.

Remark 7.1.9 The proof of previous results have only numerical proofs about
sequences g(j). We only give these results to carry out a complete study of con-
gruences of Fibonacci, but not to build the sequences of bits IID b1(n′). For this
construction we use indeed the sequences h(j) and mathematically proved results .

Another distributions

We gave the previous results when h is a Gauss density. They remain equiva-
lent for other curves in the shape of bell, especially those which one obtains as
densities of sums of S random variables.

7.1.2 Case co = ∞
Now, it is possible that the curve of the law of the sums of random variables
associated with our data is smoother than that which we have just studied: cf
figures of section 5.4. It is the case co = ∞. In this section, we study this case
: then, we assume that the probability of Y is

Proba{Y = y} =
10

m

e−[10(y−0.5)]2/(2πσ2)

√
2πσ2

.

Remark 7.1.10 It is an assumption which could be checked for the curves of
the conditional probabilities of the sequence G(j) obtained in section 11.2. In-
deed, we impose in section 11.2 that the lines are independent. Moreover we
make uniform the probabilities by pseudo-random generators and functions of
Fibonacci to avoid finding models like those of the section 5.4 : figures 5.7 and
5.8. Finally in the example of the figures 5.26 and 5.25 the laws are with values
in F ∗(q + 1) = {0, 1, ...., 80}, whereas the laws which we use in section 11.2
are with values in F ∗(m) where m > 3220. However, the numerical results of
the section 5.4 show that more m is large, better is convergence to the normal
distribution.
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General study

As previously,

PY (T̂−1(I)) =
∑

k

PY (T̂−1(k/m)) =
N(I)

m

∑

k

gN (k)

N(I)
,

where gN (k) = hN
(
T̂−1(k/m)

)
and where hN (y) = c0

10.e−[10(y−0.5)]2/(2σ2)
√

2πσ2
with∫

hN (y).µm(dy) = 1 : c0 is an adequate constant.

Then, the following property holds.

Property 7.1.11 Let KN be the Lipschitz’s coefficient of the curve

y 7→ 10.e−[10(y−0.5)]2/(2σ2)

√
2πσ2

.

Then, the following approximation holds

1

N(I)

N(I)∑

r=1

gN (k) = 1 +O(1)
KN

N(I)
.

Proofs We point out that a more complete proof of this property in section
7.1.3.

The T̂ (k)’s are almost uniformly distributed : that derives from the proper-
ties of congruences of Fibonacci (one can also understand this result by numer-
ical simulations).

One deduce from these numerical studies that

1

N(I)

∑

r

hN (r/N(I)) = 1 +
2Ob(1)KN

N(I)
,

if N(I) and m are big (cf also lemma 7.1.16).

As a matter of fact,

1

N(I)

∑

r

hN (r/N(I)) ≈
∫
hN (y)dy = 1

if N(I) and m are big.

Now compute these sums. For that, one can use the method of Riemann :
it is noted that

1

N(I)

N(I)∑

r=1

hN (r/N(I)) = 1 +
O(1)K0

N(I)
.
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The numerical studies confirm that one obtains the same results for the
function gN :

1

N(I)

N(I)∑

k=1

gN (k) = 1 +
O(1)K0

N(I)
.

We recall that a more complete proof of this property in section 7.1.3. �

Then, we deduce from these results that PX(I) = N(I)/m + O(1)CN

N(I) where

CN is a constant as soon as N(I) is not too small.

The previous results are confirmed by numerical studies.

Example 7.1.12 One takes the same parameters as in the example 7.1.8. One
calculates the maximum of 0.5 ∗ 107ǫGI .

We have the following table.

L(I) \ σ 1/2 1/4 1/8 1/40
(1/5)10−1 0.0033 -0.0160 0.0197 -0.0613
(1/5)10−2 -0.0003 -0.0168 0.0097 0.0643
(1/5)10−3 -0.0080 -0.0014 0.0048 0.1157
(1/5)10−4 -0.0032 -0.0059 0.0176 -0.1179
(1/5)10−5 -0.0002 -0.0118 -0.0153 0.0058
(1/5)10−6 -0.0001 0.0079 -0.0314 -0.0266
(1/5)10−7 0.0020 -0.0247 0.0051 -0.0186

It is noticed that the ǫGI ’s seem almost independent of L(I). Then, one can
admit the following increases.

Property 7.1.13 If N(I) and m are enough big, the following inequalities hold

|ǫGI | ≤
Ob(1)CN
N(I)

,

|ǫGI | ≤
Ob(1)CN

m
.

Remark 7.1.14 Of course, these results confirm our study of the section 7.1.1:

one can admit the hypothesis 7.1.2 : ǫGI ≤ 5.42
√
N(I)

m .
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Numerical study

We suppose that X = T (Y )/m ∈ F (m). We suppose again that the probability
of Y is

P{Y = y} ≈ 10

m

10.e−[10(y−0.5)]2/(2σ2)

√
2πσ2

.

We suppose that T is a congruence T (x) ≡ ax mod m. One will carry out

the calculation of ǫ =
∣∣∣N(I)/m− PX(I)

∣∣∣ for various intervals I, a, m and σ2.

Some results are consigned in the following paragraphs. We carried out many
others of them. All of them give equivalent results.

Variation of I In this paragraph, we suppose a = 1346269, m= 2178309 ,
σ2 = 1/4, and one varies intervals I.

The second column indicates the coefficient by which it is necessary to mul-
tiply the result.

I x ǫ ǫ
N(I)

ǫ
N(I)/m

[0, 10000[ 10−3 0.00171 0.0000001 0.373341
[0, 100000[ 10−4 0.010658 0.00000010 0.232165650
[0, 1000000[ 10−5 0.111392 0.0000001 0.242646
[51236, 1000000[ 10−6 0.24874828 0.00000026 0.57111213
[151236, 1000000[ 10−7 -0.3573127 0.00000042 0.9170246
[851236, 1000000[ 10−4 0.0169700 0.000000114 0.24848780
[851236, 974502[ 10−4 0.02839505 0.00000023 0.501786457
[951236, 974502[ 10−3 0.00261713 0.0000001 0.245032
[951236, 952502[ 100 0.00000069 0.00000000055 0.0011915
[952236, 952502[ 100 0.0000005 0.000000002 0.004321

Variation of a In this paragraph, we suppose m= 2178309 , σ2 = 1/4, I =
[1250312,1948077[ .

One varies a. One does not suppose more that a is in the Fibonacci sequence
: only a= 1346269 belongs to the Fibonacci sequence.
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a x ǫ ǫ
N(I)

ǫ
N(I)/m

1346269 10−5 0.0708762 0.0000001 0.2212642
1000000 10−5 0.1209353 0.00000017 0.3775404
2034476 10−5 0.237045 0.00000033 0.7400157
1985474 10−5 0.264947 0.00000038 0.8271217
1407735 10−4 0.032717 0.000000047 0.102137
1250149 10−4 0.06093 0.000000087 0.1902183
425987 10−4 0.0723728 0.0000001 0.225936
54812 10−4 0.0715460 0.0000001 0.223355
5412 10−3 0.07495 0.0000001 0.233986

Variation of m : 1 In this paragraph, we suppose m= 2178309 , σ2 = 1/4,
I = [980235,1730228[ .

One varies m. One does not suppose more that m is in the Fibonacci se-
quence : only m=2178309 belongs to the Fibonacci sequence.

m x ǫ ǫ
N(I)

ǫ
N(I)/m

2178309 10−5 0.2535020117322 0.0000003380058 0.7362811568567
2000000 10−5 0.1304767415277 0.0000001739706 0.3479412248588
3520470 10−5 0.0290115355239 0.0000000386824 0.1361802583036
1988242 10−5 0.1736900782922 0.0000002315889 0.4604548424371

Variation of m : 2 In this paragraph, we suppose σ2 = 1/4. Moreover, we
suppose I = [541231,1905574[ .

One suppose that m and a are in the Fibonacci sequence : T is a Fibonacci
congruence. One varies m.

It is noted that ǫ is about divided by 2 with each step: it is pointed out that
m and a are also about multiplied by 2 (fin+1 = 2.O(fin)).

m a x ǫ ǫ
N(I)

ǫ
N(I)/m

2178309 1346269 10−5 0.423066 0.000000 0.675468
3524578 2178309 10−5 0.261470 0.0000002 0.675469
5702887 3524578 10−5 0.161597 0.0000001 0.675468
267914296 165580141 10−5 0.003439 2 ∗ 10−9 0.675468
3 295128 2036 501 10−5 0.00002 2 ∗ 10−11 0.675468

Variation of σ2 In this paragraph, we suppose m= 2178309. Moreover, we
suppose I = [541231,1905574[.
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One varies σ2 : ǫ is about divided by 2 with each step.

σ2 x ǫ ǫ
N(I)

ǫ
N(I)/m

1/4 10−5 0.4230665591742 0.00000031008812 0.6754677478084
1/2 10−5 0.2848750343620 0.00000020880016 0.4548312640048
1 10−5 0.1654087269709 0.00000012123691 0.2640914481470
1/16 10−4 0.2253644022687 0.00000016518163 0.3598166338974
1/128 10−3 0.15111108927857 0.0000001107574 0.2412638506411
1/1024 10−3 0.3016983971605 0.00000022113090 0.4816914323014

Distribution different from the Normal distribution

The previous results hold when hN is a Gauss density. Many numerical stud-
ies of the same type show that they remain equivalent for other curves in the
shape of bell which one can obtain as limit densities of sums of random variables.

7.1.3 Theoretical study

Ones can almost prove mathematically a result similar at that one of property
7.1.11 when T is a Fibonacci congruence :

P{T̂ (Y ) ∈ I} = L(I)
[
1 +

O(1)K0

N(I)

]
.

As a matter of fact, it will be necessary to complete our mathematical study
of Fibonacci congruences in order to completely prove this result. But we can
already study this property with numerical simulations : all those give the same
result. Remark that theses simulations are used to know if some mathematical
results hold.

First, we use the following notations.

Notations 7.1.3 Let hN be the probability density function of Y with respect

to µm :
∫ 1

0
hN (u)µm(du) = 1.

Let h′N = (1/c0)hN be the probability density function such that
∫ 1

0
h′N (u)du =

1. Let K0 ∈ R+ such that |hN (r)−hN (r′)| ≤ K0|r′− r| and |h′N (r)−h′N (r′)| ≤
K0|r′ − r| when r, r′ ∈ [0, 1].

Then, we need the following lemmas.

Lemma 7.1.15 The following equality holds :

c0 =
1

1 + Ob(1)K0

m

= 1 +
O(1)K0

m
.
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Proof The following equalities hold :

1 =

∫ 1

0

h′N (u)du =
∑

t

∫ (t+1)/m

t/m

h′N (u)du

=
∑

t

∫ (t+1)/m

t/m

[
h′N (t/m) +Ob(1)K0/m

]
du

=
1

m

∑

t

h′N (t/m) +
Ob(1)K0

m

=

∫ 1

0

h′N (u)µm(du) +
Ob(1)K0

m
.

Then,
∫ 1

0
h′N (u)µm(du) = 1 + Ob(1)K0

m .

Therefore,

1 =

∫ 1

0

hN (u)µm(du) = c0

∫ 1

0

h′N (u)µm(du) = c0

[
1 +

Ob(1)K0

m

]
.

Then,

c0 =
1

1 + Ob(1)K0

m

= 1 +
O(1)K0

m
. �

Lemma 7.1.16 We keep the notations of lemma 7.1.15. Assume that N(I) is
large enough. Then

1

N(I)

∑

r

hN (r/N(I)) = 1 +
2Ob(1)K0

N(I)
.

Proof The following equalities hold :

1 =

∫ 1

0

h′N (u)du =
∑

r

∫ (r+1)/N(I)

r/N(I)

h′N (u)du

=
∑

r

∫ (r+1)/N(I)

r/N(I)

[
h′N (r/N(I)) +Ob(1)K0/N(I)

]
du
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=
1

N(I)

∑

r

h′N (r/N(I)) +
Ob(1)K0

N(I)
.

Therefore 1 = 1
N(I)

∑
r h

′
N (r/N(I))+Ob(1)K0

N(I) . Therefore c0 = 1
N(I)

∑
r hN (r/N(I))+

Ob(1)c0K0

N(I) .

Therefore, if N(I) is large enough, by lemma 7.1.15,

c0 = 1 +
O(1)K0

m
=

1

N(I)

∑

r

hN (r/N(I)) +
Ob(1)[1 + O(1)K0

m ]K0

N(I)
.

Therefore, if N(I) is large enough,

1

N(I)

∑

r

hN (r/N(I)) = 1 +
2Ob(1)K0

N(I)
. �

Remark 7.1.17 If N(I) << m,

1

N(I)

∑

r

hN (r/N(I)) ≈ 1 +
Ob(1)K0

N(I)
.

Then, the following property holds.

Property 7.1.18 Let gN (k) = hN
(
T̂−1(k/m)

)
. Assume again that T is a

Fibonacci congruence. The following approximation holds

1

N(I)

N(I)∑

k=1

gN (k) = 1 +
6Ob(1)K0

N(I)
.

Proof Let kn, n=1,2,...,c’-c, be a permutation of T−1(I) = {a1, ..., ac′−c}
such that T

−1
(k1) < T

−1
(k2) < T

−1
(k3) < ...... < T

−1
(kc

′−c). Then, for all
numerical simulations which we executed, one has always obtained that

|T−1(kr/m) − r/N(I)| ≤ 4/N(I) .

We deduce that |gN (kr) − hN (r/N(I))| ≤ 4K0/N(I).
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Therefore,
1

N(I)

∑

k

gN (k) =
1

N(I)

∑

r

gN (kr)

=
1

N(I)

∑

r

hN (r/N(I)) +
1

N(I)

∑

r

[
gN (kr) − hN (r/N(I))

]

=
1

N(I)

∑

r

hN (r/N(I)) +
1

N(I)

∑

r

4Ob(1)K0/N(I)

=
1

N(I)

∑

r

hN (r/N(I)) +
4Ob(1)K0

N(I)

= 1 +
2Ob(1)K0

N(I)
+

4Ob(1)K0

N(I)

= 1 +
6Ob(1)K0

N(I)
. �

Remark 7.1.19 The only result which is not proven mathematically is

|T−1(kr) − r/N(I)| ≤ 4/N(I) .

It is enough to prove this result in order that property 7.1.20 is mathematically
proven. We point out that, by our numerical study, this result seems sure.

From the previous result, we deduce the following property.

Property 7.1.20 The following equality holds :

P{T̂ (Y ) ∈ I} = L(I)
[
1 +

O(1)K0

N(I)

]
.

Proof By the previous equalities,

P{T̂ (Y ) ∈ I} =
1

m

∑

k

gN (k) =
N(I)

m

1

N(I)

∑

k

gN (k)

=
N(I)

m

[
1 +

6Ob(1)K0

N(I)

]
= L(I)

[
1 +

1

m

][
1 +

6Ob(1)K0

N(I)

]

= L(I)
[
1 +

O(1)K0

N(I)

]
. �
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Remark 7.1.21 One can easily generalize the proof of proposition 7.1.20 to the
two-dimensional case:

Indeed, P{X ∈ I} = L(I)
[
1 + O(1)K0

N(I)

]
. Now, if p=2, N(I1) = N(I2) and

with a Lipchitz coefficient K ′
0,

P
{

(X1, X2) ∈ I1 ⊗ I2
}

= L(I1)L(I2)
[
1 +

O(1)K ′
0

N(I1)

]
.

The previous results can be proved in another manner. In this case, there is
a less fine approximation. But the assumptions that we deduce from the digital
simulations seem easier to prove. We give this result to show that one is almost
sure approximation of P{T̂ (Y ) ∈ I}.

Then, the following result holds.

Property 7.1.22 Let Y ∈ F (m) be a random variable which has a probability
density function f with respect to µm such that |f(k/m) − f(k′/m)| ≤ K0|k −
k′|/m where K0 is not too large.

Let I = [c/m, c′/m[⊂ [0, 1]. Assume that T̂−1(I) = {a1, a2, ...., ac′−c}.
Then, there exists a constant c2 which is not too large, such that

P{T̂ (Y ) ∈ I} = L(I)
[
1 +

c2√
c′ − c

]
.

Proof There exists a sequence ηj , j=0,1,2,...,c’-c such that ηj−1 < aj < ηj ,
η0 = 0, ηc′−c = 1.
By numerical computations one understand that one can assume ηj+1 − ηj ≤
3/(c′ − c).
We set ηj − ηj−1 = 1

c′−c + ej . Then,

1 =

∫ 1

0

f(u)µm(du) =

c′−c∑

j=1

∫ ηj

ηj−1

f(u)µm(du)

=

c′−c∑

j=1

∫ ηj

ηj−1

[
f(aj) +Ob(1)K0Max(aj − ηj−1, ηj − aj)

]
µm(du)

=
c′−c∑

j=1

[
(ηj − ηj−1)f(aj) + (ηj − ηj−1)Ob(1)K0Max(aj − ηj−1, ηj − aj)

]

=

c′−c∑

j=1

( 1

c′ − c
+ ej

)
f(aj) +Ob(1)K0Maxj

{
Max(aj − ηj−1, ηj − aj)

}
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=
1

c′ − c

c′−c∑

j=1

f(aj) +

c′−c∑

j=1

ejf(aj) +Ob(1)K0
3

c′ − c
.

In order to have an idea of the value of
∑c′−c
j=1 ejf(aj) one can use the fact

that one has a sum and generalize the corollary 8.1.4. Then, one can admit that
the ej ’s are a realization of a sequence of random variables Ej :

c′−c∑

j=1

ejf(aj) =

c′−c∑

j=1

Ej(ω)f(aj),

where E(Ej) = 0. As a matter of fact, because one uses sums, one can assume
that Ej is IID (cf corollary 8.1.4 ).

Then, by theorem page 103 of [19],

∑c′−c
j=1 Ej(ω)f(aj)√∑c′−c
j=1 E(E2

j )f(aj)2

has asymptotically the N(0,1) distribution.

Because 0 < ηj − ηj−1 = 1
c′−c + ej ≤ 3

c′−c , E(E2
j ) ≤

[
2

c′−c
]2

. Moreover,
∑c′−c
j=1 f(aj)

2 ≤ (c′ − c).K2. For example,
∑c′−c
j=1 f(aj)

2 ≤ (c′ − c)[K0 + 1]2.
Then, one can admit

∑c′−c
j=1 Ej(ω)f(aj)√∑c′−c
j=1 E(E2

j )f(aj)2
=

∑c′−c
j=1 Ej(ω)f(aj)

σE

√∑c′−c
j=1 f(aj)2

=

∑c′−c
j=1 Ej(ω)f(aj)

2Ob(1)
c′−c

√
Ob(1)K2(c′ − c)

.

Then, if b is large enough

1 ≈ 1 − Γ(b) ≈ P
{ ∑c′−c

j=1 Ej(ω)f(aj)
2Ob(1)
c′−c

√
Ob(1)K2(c′ − c)

< b
}

= P
{ c′−c∑

j=1

Ej(ω)f(aj) <
2b.Ob(1)

c′ − c

√
K2(c′ − c)

}

≤ P
{ c′−c∑

j=1

Ej(ω)f(aj) <
2b
√
K2√

c′ − c

}
.
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Then, normally,

1 − Γ(b) ≤ P
{ c′−c∑

j=1

Ej(ω)f(aj) <
2b
√
K2√

c′ − c

}
≤ 1 .

Then,
c′−c∑

j=1

ejf(aj) =
2b
√
K2Ob(1)√
c′ − c

=
c1√
c′ − c

,

where c1 is a constant not too large.

Finally,

1 =
1

c′ − c

c′−c∑

j=1

f(aj) +

c′−c∑

j=1

ejf(aj) +
2O(1)K0

c′ − c

=
1

c′ − c

c′−c∑

j=1

f(aj) +
c1√
c′ − c

+
2O(1)K0

c′ − c

=
1

c′ − c

c′−c∑

j=1

f(aj) +
c′1Ob(1)√
c′ − c

.

Then,
c′−c∑

j=1

f(aj) = (c′ − c) − c′1(c′ − c)√
c′ − c

.

Then,

P{T̂ (Y ) ∈ I } =
c′−c∑

j=1

(1/m)f(aj)

=
c′ − c

m

[
1 − c′1√

c′ − c

]

= L(I)
[
1 +Ob(1)/m)

][
1 − c′1√

c′ − c

]

= L(I)
[
1 +

c2√
c′ − c

]
. �
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This result has not the same form as property 7.1.20. It does not correspond
either to the preceding numerical studies: too strong increases are obtained.

It is normal because the same techniques are not employed. Here, the ej are
increased: it is a result easier to check than the distribution of the aj compared
to the r/N(I) used in the study of property 7.1.20. Let us notice that the
smaller K0 will be, the more this result is probable. Therefore, in a certain way,
this result seems surer.

In fact, it seems well that in all the cases one has at minimum

P{T̂ (Y ) ∈ I } = L(I)
[
1 +

c2√
c′ − c

]
.

But, more precisely, as we already said, it seems that

P{T̂ (Y ) ∈ I } = L(I)
[
1 +

O(1)K0

c′ − c

]
.

It remain to prove mathematically these results which are yet only almost
sure conjectures.

7.1.4 Connexion with the Lipschitz coefficient

We now will detail the function of the Lipschitz coefficient KN in the method
used in section 11.

Indeed, in the section 11, we do not use in the same way the Lipschitz coef-
ficient KN as in the fundamental theorem 1.

First, we remind the following result.

Lemma 7.1.23 Let Pe(y, σ2) be the slope in y of the Gaussian curve h(y) =
e−y2/(2σ2)
√

2πσ2
. Let KN = Supy{|Pe(y, σ2)}|. Then,

KN =
1

σ2

e−1/2

√
2π

.

Proof First, h′(y) = −(y/σ2) e−y2/(2σ2)
√

2πσ2
.

Then,

h”(y) = −(1/σ2)
e−y

2/(2σ2)

√
2πσ2

+ (−y/σ2)(−y/σ2)
e−y

2/(2σ2)

√
2πσ2

= −(1/σ2)
e−y

2/(2σ2)

√
2πσ2

+ (y2/σ4)
e−y

2/(2σ2)

√
2πσ2
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= (1/σ2)
[
y2/σ2 − 1

]e−y2/(2σ2)

√
2πσ2

,

which is cancelled in y = ±σ.

Therefore,

KN = sup
{

(|y|/σ2)
e−y

2/(2σ2)

√
2πσ2

}
= (σ/σ2)

e−σ
2/(2σ2)

√
2πσ2

= (1/σ)
e−1/2

√
2πσ2

=
1

σ2

e−1/2

√
2π

. �

Therefore 1√
σ

=
(2π)1/8K

1/4
N

e−1/8 .

Let KG be the Lipschitz coefficient associated to G(j) used to build the se-
quences of random bits b1(n′) (cf section 11.2.5). One can write KN = cGKG.
In particular, one can choose cG = 1.

Therefore, 1√
σ

=
(2π)1/8c

1/4
G K

1/4
G

e−1/8 .

If the inequality 7.2 is admitted, |ǫGI | ≤
0.291

√
N(I)

m
√
σ

. Then, because of the

CLT applied to G(n) and to conditional probabilities P{G(n) = g | G(n+ js) =
g(s)} (cf section 5.7),

|ǫGI | ≤
0.291

√
N(I)

m

(2π)1/8c
1/4
G (KG)1/4

e−1/8
.

Then, one has the following property.

Property 7.1.24 Let C0 =
0.291(2π)1/8c

1/4
Gj

e−1/8 . Assume that the inequality 7.2
holds. Then,

|ǫGI | ≤
C0.(KG)1/4

√
N(I)

m
.

Remark 7.1.25 The fact that one obtains an equality of the type

|ǫGI | ≤
C0K

1/4
G

√
N(I)

m

instead of

|ǫGI | ≤
C1.KG√

m
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as one obtained for the theorem 1 (or for the proposition 4.1.1 which is equiva-
lent) should not surprise.

In the proof of the proposition 4.1.1, one used increases of bad quality. Here
one refined them by using numerical calculations.

But contrary to the proposition 4.1.1 the result is not proved mathematically.
However, one can consider that it is true: we chose sufficiently strong increases
to be sure of the result. That will be even surer if one takes b larger in the
equation 7.1 .

Nonnormal distribution

Logically these results should relate to only case

PY {Y = y} =
10

m

e−[10(y−0.5)]2/(2πσ2)

√
2πσ2

[
1 +

u(y)

co

]
.

But increases which we chose are sufficiently strong so that they remain true
for the other cases

PY {Y = y} =
h(y)

m

[
1 +

η(y)

co

]
.

Moreover, we carried out various numerical simulations. They show that this
result is always checked if one takes the numerical data used for the construction
of the sequences of random bits b1(n′) (cf section 11.2.5 ).

In fact the following assumption is verified per many files that one generally
finds on computers : e.g. texts, programmings, musics, etc.

Hypothesis 7.1.3 We suppose that the following inequality hold.

|ǫGI | ≤
0.291(2π)1/8

e−1/8

K
1/4
G

√
N(I)

m
.

We studied these results only to specify the connection between the fun-
damental theorem using congruences modulo dp+q − 1 and congruences of Fi-
bonacci: in the construction of the sequences of random bits b1(n′), we do not
use this assumption, but the assumption 7.1.2 which is much weaker.

Numerical increase of K0

We now calculate the increase of K0 with the numerical data which we used
in the construction of b1(n′) in section 11.2. It is the K0 associated with the
conditional probabilities of D(j) and E3(j) defined in section 11.2.3.

We studied many numerical examples : for example, for the conditional
probability P{D(j) = d | D(j + j2) = d2, ...., D(j + jp) = dp} we have the
following increases
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K0 3.4 1.2 3.8 15.7 2.2 0.6 4.1 1.5 3.3

For P{E3(j) = e | E3(j + j2) = e2, ...., E
3(j + jp) = ep}, we have the

following increases

K0 0.15 0.9 1.1 0.3 0.2 0.05 0.6 0.2

The K0 are thus enough small, especially those associated with the e3(j).
It is not surprising because, first we made uniform our data by the applications
defined in chapter 8. But this transformation makes them also independent : cf
section 8.4.

7.2 Uniform distribution

In the construction of the sequence of random bits b1(n′), we apply the functions
of Fibonacci after having applied the XORLT (cf section 11.2.5). One thus has
the uniform distribution as limit distribution. Then, in this section we study
the model

PY {Y = k/m} =
1

m

[
1 + uk

]
,

where uk is a sample of an IID sequence Uk.

We use the following property.

Lemma 7.2.1 Let I be an interval. We set ǫI = PX(I) −N(I)/m. Let YNu =∑
k/m∈I

Uk

σU

√
N(I)

. Then,

P
{ m|ǫI |
σU
√
N(I)

≥ b
}

= P{|YNu| ≥ b} .

Proof We have

PX(I) =
∑

bT (k/m)∈I

1

m

[
1 + uk

]
.

Then, ǫI = PX(I) −N(I)/m = N(I)
m

∑
k

1
N(I)

[
1 + uk

]
−N(I)/m

= N(I)
m

(∑
k

uk

N(I)

)
=

√
N(I)σU

m

(∑
k

uk

σU

√
N(I)

)
=

√
N(I)σU

m YNu(ω).

Then, m.ǫI

σU

√
N(I)

= YNu(ω) .

Then,

P
{ m|ǫI |
σU
√
N(I)

≥ b
}

= P{|YNu| ≥ b}. �
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Now, YNu has asymptotically the normal distribution. Then, the following
assumption can be admitted when N(I) is enough big.

Hypothesis 7.2.1 In this section, we suppose

P
{ m|ǫI |
σU
√
N(I)

≥ b
}
≈ Γ(b) .

For example choose b = 10. Because Γ(10) = 1.524 ∗ 10−23, generally

|ǫI | ≤
10σU

√
N(I)

m
.

As previously, ǫI can increase if N(I) increases.

In a more general way, let us consider the set F (2q) = {0/2q, ....., (2q−1)/2q}.
There are 2q intervals Ik = [k/2q, (k+1)/2q[. Then, choose bq such that Γ(bq) =
4−q.

Let NIel = Supk

∣∣∣card
[
F (m) ∩ [k/2q, (k + 1)/2q[

]∣∣∣.
Then, NIel = ⌊m/2q⌋ + 1.

Then, for all interval Ik, generally,

P
{ m|ǫIk

|
σU

√
NIel

≥ bq

}
≤ 4−q .

Because there are only 2q intervals Ik = [k/2q, (k + 1)/2q[ , the following
property holds

Property 7.2.2 Assume that the hypothesis 7.2.1 holds. Then, one can admit

|ǫIk
| ≤ bqσU

√
NIel

m
.

Now one wants numerical results usable in the construction of the random
sequence b1(n′). However, what is important in this model, it is the variance
σ2
U of Uk. In fact with our data, one can admit the increase σ2

U ≤ 1. It is even
maybe too weak.

For example, let m ≥ 1.4 ∗ 1031. If σU ≤ 1 and if q=84, 284 ≈ 1.9343 ∗ 1025,
one choose bq = 15, NIel ≈ 7520. Then, one can suppose

|ǫIk
| ≤ b84

√
NIel

m
≤ 15

√
7520

1.4 ∗ 1031
≤ 9.3

1029
.

182



Chapter 8

To make uniform by the
functions of Fibonacci

8.1 Study of the problem

In this section, one will understand how one can make uniform the marginal
distributions of a sequence of random variable thanks to the congruence of
Fibonacci. It will be understood that this technique can also to make these
variables independent

8.1.1 Function Tq of Fibonacci

One reminds the following definition (cf Definition 1.3.5).

Definition 8.1.1 Let q, d ∈ N
∗. Let T be the congruence of Fibonacci modulo

m where m belongs to the Fibonacci sequence.
We define the Fibonacci functions T dq : F (m) → F (dq) by T dq = Prdq ◦ T̂ ,

where Prdq (z) = 0, d1d2....dq when z = 0, d1d2... is the writing of z base d.

If d=2, one simplifies T dq in Tq and Prdq in Prq.

Some notations

In this chapter, the following notations are used.

Notations 8.1.2 In this chapter 8, q, d ∈ N
∗. Moreover, m is an element of

the Fibonacci sequence : m = fin0
. Moreover, Yn ∈ F (m) is a sequence of

random variables defined on a probability space (Ω,A, P ) and Xn = T dq (Yn) .

Notations 8.1.3 We denote by k a element of F ∗(dq) : k ∈ {0, 1, ...., dq − 1}.
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Then, P
{
Xn = k/dq

}
= P

{
T̂ (Yn) ∈ [k/dq, k′/dq[

}
.

Notations 8.1.4 Let Ik = [k/dq, (k+1)/dq[. We define the interval [ck/m, c
′
k/m[

with ck, c
′
k ∈ F ∗(m) by [ck/m, c

′
k/m[∩F (m) = [k/dq, (k + 1)/dq[∩F (m).

More generally, we denote by I the intervals I = [k/dq, k′/dq[. Then, we de-
fine [c/m, c′/m[ with c, c′ ∈ F ∗(m) by [c/m, c′/m[∩F (m) = [k/dq, k′/dq[∩F (m).

Sometimes, by misusing of our notations, we set also Ik = I = [k/dq, k′/dq[=
[c/m, c′/m[.

Then, P
{
Xn = k/dq

}
= P

{
T̂ (Yn) ∈ [k/dq, k′/dq[

}
= P

{
T̂ (Yn) ∈ [ck/m, c

′
k/m[

}
.

Notations 8.1.5 We set m = dQ where Q ∈ R+ .

Now, the following lemma holds.

Lemma 8.1.1 With the previous notations, (ck − 1)/m < k/dq ≤ ck/m and
(c′k − 1)/m < (k + 1)/dq ≤ c′k/m.

Lemma 8.1.2 Let N(Ik) be the number of t/m ∈ F (m) such that k/dq ≤
t/m < (k + 1)/dq. Then, N(Ik) = c′k − ck.

Let 1/dq = h0/m+ r where 0 ≤ r < 1/m and h0 ∈ N. Then, N(Ik) = h0 or
N(Ik) = h0 + 1.

Lemma 8.1.3 We keep the notation of lemma 8.1.2. Then, m/dq = h0 + e
where 0 ≤ e < 1.

Notations 8.1.6 Let xs ∈ F (m). We set pxs = P
{
T (mYn) = mxs

}
=

P
{
T̂ (Yn) = xs

}
.

Of course, we can write P
{
T dq (Yn) = k/dq

}
= P

{
T̂ (Yn) ∈ [k/dq, k′/dq[

}
=

P
{
T̂ (Yn) ∈ [ck/m, c

′
k/m[

}
=
∑
xs∈[ck/m,c′k/m[ pxs

.

8.1.2 Sequence of real numbers regarded as IID

We show now that about any sequence of real numbers can be regarded as the
permutation of an IID sequence. It is thus also the case if zn = Zn(ω) where
Zn is a sequence of unspecified random variables, even if Zn is deterministic.

Proposition 8.1.1 Let zn , n = 1, 2, ..., n0 be a sequence of integers zn ∈
F ∗(m) such that all the zn’s are different.

Then, there exists a permutation φ such that z′n = zφ(n), n = 1, 2, ..., n0 can
be regarded as an IID sample having a distribution MZ .
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Proof Let xn = x(n) be an IID sample with uniform distribution. For any
function f, f(xn) is a priori an IID sample. But it is necessary to be careful: it
is better than f is not too complicated. For example f(xn) can be increasing :
it is a classical problem of the samples.

To avoid it, we denote by rx and rz the number of order of x(n) and z(n) =
zn, respectively : rx(n) and rz(n) are the permutations of {1, 2, ...., n0} such
that xr−1

x (1) < xr−1
x (2) < .... < xr−1

x (n0)
and zr−1

z (1) < zr−1
z (2) < .... < zr−1

z (n0)
.

Then, there exists a continuous function f such that f(xr−1
x (n)) = zr−1

z (n) for
n = 1, 2, ...., n0. One can force this function to be smoothest possible

For this function f , f(xn) can be regarded as an IID sample which has the
same law as f(X1).

Now, {f(xn) | n = 1, 2, ..., n0} = {zn | n = 1, 2, ..., n0}. Then, there exists a
permutation φ such that zφ(n) = f(xn) for n = 1, 2, ..., n0. Then, zφ(n) can be
regarded as an IID sample. �.

We deduce the following propositions.

Corollary 8.1.4 Let
∑
n∈F zn where F ⊂ {1, 2, ...., n0}.

Then
∑
n∈F zn =

∑
n∈F ′ z′n , where z′n = zψ(n) is an IID sample which has

the distribution MZ and where F ′ = ψ(F ) and ψ = φ−1.

Proof Let n = φ(n′). Then, n = φ(n′) ∈ F is equivalent to n′ ∈ φ−1(F ). Then,∑
n∈F zn =

∑
n∈F zφ(n′) =

∑
n′∈φ−1(F ) zφ(n′) =

∑
n′∈φ−1(F ) z

′
n′ . �

Corollary 8.1.5 Let
∑
n∈F ′ z′n be a sum where z′n is an IID sample which has

the distribution MZ .
Then, for all sets F” = ψ′(F ′), except a negligible minority,

∑
n∈F” z

′
n be-

haves as the sum of an IID sample which has this same distribution MZ .

Proof If the sequence of random variables Z ′
n = Zψ(n) is IID, any sequence

Z ′
ψ′(n) is IID (where ψ′ is a permutation). The sequence z′ψ′(n) will not behave

like a sample IID only with one negligible probability given by the traditional
laws about IID sample. �

Now, let us suppose that F is chosen randomly. Then, one can admit that
F’ is also chosen randomly.

Thus each time one has a sum over a set chosen randomly, one carries out a
sum of a sample of an IID sequence of random variable Z ′

n. One thus finds the
usual limit distributions, for example, 1

card(F )

∑
n∈F Z

′
n → L where L = E{Z ′

1},

and where Z ′
1 has a fixed distribution MZ .

We deduce the following result.

Corollary 8.1.6 For almost all the sets F, 1
card(F )

∑
n∈F zn ≈ L where L does

not depend on F.
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Remark 8.1.7 A sum can thus always be comparable to a sum of an IID
sample. But, it is necessary to pay attention to which sum it is in ques-
tion exactly. For example, let us consider the sequence of the x′n ∈ F ∗(108)
: x′1, x

′
2, ... = 110000, 250000, 780000, 1020000, 111000, ..... It will not be trans-

formed into a IID sequence belonging to F ∗(m), but to a subset of F ∗(m). If
one does not pay attention to that, one can have certain problems during the
use of the CLT : cf section 5.4.4.

8.1.3 To make uniform the marginal distributions

We will try to understand why the functions Tq make uniform the marginal
probabilities. For that, we suppose for example that our data are provided by
text.

Then, we have P{Xn = k/dq} =
∑
xs∈[ck/m,c′k/m[ pxs

.

Now, there is no logical connection between text (translated in numbers)

and the distribution of the points of {a1, a2, ....} = T̂−1(I) where I is an
interval. These two events are logically independent. Indeed, the sequence
{a1, a2, ....} = T̂−1(I) is built by a specific and relatively simple mathematical
application whereas the data yn are the realization of a succession of random
variables Yn and thus unpredictable in an exact way. Moreover the sequence
{a1, a2, ....} is well distributed in F(m). It is reasonable to think that this set
is independent of sequences obtained starting from text. One can thus regard
this set as randomly chosen.

That means that
∑
xs∈[ck/m,c′k/m[ pxs

can be regarded as a sum
∑
s∈F pxs

where the set F is a Borel set chosen randomly. According to the corollary 8.1.6,
that means that, for all k, (dq/m)

∑
xs∈[k/dq,(k+1)/dq [ pxs

converges to the same
limit L.

One is all the more sure of this result that only a negligible minority of
the possible sets F will not check this property: because there is only dq ”k”
possible, it is thus enough to choose m enough large compared to dq.

At last,
∑
k

∑
xs∈[k/dq,(k+1)/dq [ pxs

= 1. Therefore,
∑
xs∈[k/dq,(k+1)/dq [ pxs

≈
1/dq.

Now, in order to understand this approximation more, it is necessary to use
the CLT: it is what we will do in sections 8.2 and 8.3

Example

Let us suppose that the curve of the probabilities of Yn have the shape of

a normal curve. The {a′1, a′2, ....} = T
−1(

[c, c′[∩F ∗(m)
)

are about uniformly
distributed.
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For example, in figure 8.1, one supposes card
(
[c, c′[∩F ∗(m)

)
= 10. One

understands that {a′1, a′2, ...., a′10} is about uniformly distributed in [-4,4].

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.1: Example : Normal curve

Let D be the length of interval [-4,4] on which one studied the normal curve
f1
N and let N=10 be the number of points. Then, the sum (D/N)

∑
s f

1
N (ys)

over 10 points xs distributed about uniformly is then close to 1. Therefore,
P{Xn = k/dq} ≈ 1/dq .

8.1.4 Empirical Probability

Let us be interested with a sample x∗n = Tq(yn), n = 1, 2, ...., n0, where all the
yn are distinct. For the empirical associated probabilities Pe, one has

Pe
{
Tq(Yn) ∈ [c/m, c′/m[

}
=

∑

xs∈[c/m,c′/m[

pexs
,

where pexs = Pe
{
T̂ (Yn) = xs

}
.

Let us set T̂−1([c/m, c′/m[) = {a1, ....., ac′−c}. Then,

Pe
{
Tq(Yn) ∈ [c/m, c′/m[

}
=

1

n0
Nomb

{
yn ∈ {a1, ....., ac′−c}

}
,

where Nomb
(
yn ∈ {a1, ....., ac′−c}

)
is the number of points of the sample yn

such that yn ∈ {a1, ....., ac′−c}.

One can write Nomb
(
yn ∈ {a1, ....., ac′−c}

)
in two ways:

Nomb
{
yn ∈ {a1, ....., ac′−c}} =

n0∑

n=1

1{a1,.....,ac′−c}(yn) =
∑

i

1{y1,.....,yn0}(ai) .
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Let us suppose that the yn’s are data resulting from texts: a priori, there is
no logical connection between the yn and {a1, a2, ....}.

For example, choose the text beginning by << Newton’s theory of gravita-
tion was soon accepted without question, and it remained unquestioned until
the beginning of this century. Then Albert Einstein shook the foundations of
physics with the introduction of his Special Theory of Relativity in 1905, and
his General Theory of Relativity in 1915 (Here is an example of a thought ex-
periment in special relativity). .....>>. There is no logical connection between
the set J =

[Newton’s theory ]
[of gravitation was]
[ soon accepted wit]
[hout question, and ]
[it remained unques]
[tioned until the begin]
[ning of this century. ]
[Then Albert Einstein]
[ shook the foundation]
[s of physics with the i]
[ntroduction of his Spe]
....................................

and the set H =

[whgkudf ly cuqhjg]
[aamxgusdggbxckmp]
[x;cbkutcc ze xycyc x]
[qtdxucdzlcxy yx vyxy]
[uezuxcuazvxaoaqzq]
[ ,hqdsgcize cqy bxq]
[a picykhgkkl hfqfqqq]
[ory of Relativity in 190]
[xwtex pez! i yi qy yqhfg]
.........................................

Thus a priori, the probability that [Newton′stheory] ∈ H is approximatively
of card(H)/3218 (if it is considered that the 26 letters, capital letters and small
letters and punctuation belong to a set with 32 elements and if each yn contains
18 letters or signs or space).

Finally, one can admit that Nomb
(
yn ∈ {a1, ....., ac′−c}

)
is the number of

points yn belonging to a set selected randomly of size c’-c.
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Therefore, one can admit that the ai are taken randomly compared to
{y1, ....., yn0}. Therefore, one can apply the limit laws. LetNA = card{a1, a2, ....}
= c′ − c and n0 = card{yn}. Then

1

NA

c′−c∑

i=1

1{y1,.....,yn0
}(ai) →

n0

m
as c′ − c→ ∞ .

Now, it was known already that, under simple assumptions,

Pe
{
Yn ∈ {a1, ....., ac′−c}

}
=

1

n0

n0∑

n=1

1{a1,.....,ac′−c}(yn) → NA
m

as n0 → ∞ .

This result means that, if the set {a1, ....., ac′−c} is well chosen randomly, in
all the cases, 1

n0

∑n0

n=1 1{a1,.....,ac′−c}(yn) → NA

m .
Therefore, that does not depend on the sequence yn. This result is due

to the independence of both events between the sequence yn and the sequence
ai: since it is admitted that {a1, ....., ac′−c} is chosen randomly, one can apply
corollary 8.1.6

Finally, Pe
{
Xn ∈ [k/dq, (k + 1)/dq[

}
= Pe

{
Yn ∈ {a1, ....., ac′−c}

}
converges

to 1/dq for any k, i.e. one has well the uniformity for empirical measures.

Let us notice that it is possible that the {a1, a2, ....} have a connection with
the empirical probability. It is always possible. But that is likely to occur with
a negligible probability as it is the case when one tests if an IID sample is well
IID.

Thus it is always possible that, despite all our constructions, the sequence bi
which we finally obtain in section 11 is not IID, but it would be with a negligible
probability.

Tests

One checked these results by testing them with the sample provided for each
line i by the sequence f(i,j), j=1,2,... : cf section 11.2.4. One has tested the
uniformity of the law of the f(i, j), j=1,2,.... (which have been made uniform
by the transformation e3(j) = m.Tm1 (e2(j)/m1) ). All the tests conclude to the
uniformity

In figure 8.2 , we have the histogram for the first line f(1,j), j=1,2,.... One
can compare this figure with the figure 8.3 which represents the histogram for
a pseudo-random sequence of uniform distribution.

8.2 Theoretical probabilities: first method

To simplify the presentation, we consider the case where data yn, n = 1, 2, ..., n0

are provided by text. There are several possible models representing this text
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Figure 8.2: Histogram of f(1,j)
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Figure 8.3: Histogram of uniform data

(there is even an infinity of it). I.e. there is several possible random sequences
Yn such as yn = Yn(ω). That thus means that there are several systems of
possible probabilities py1,y2,.....,yn0 = P{Y1 = y1, Y2 = y2, ...., Yn0

= yn0}.
In this section, we want to prove that the marginal distributions of the Tq(Yn)

are close to the uniform distribution. We are thus interested in the marginal
probability pys = P{Yn = ys} for the ys ∈ {0/m, 1/m, ....., (m− 1)/m}.

It is equivalent to study the pxs
: pxs

= P{T̂ (Yn) = xs} = P{Yn = ys} =
pys .

Because there are several possible correct models meaning this text, we will
study the various possible probabilities pxs .

One will provide the set of the pxs of a law of probability. I.e. the set of the
possible probabilities pxs

is itself the realization of a probability space.

In this section, one admits the following assumptions.

Definition 8.2.1 One supposes that the set of possible probabilities of T̂ (Yn)
over F(m) is symbolised by

{(
p′1/m∑m
i=1 p

′
i/m

,
p′2/m∑m
i=1 p

′
i/m

, .....,
p′m/m∑m
i=1 p

′
i/m

) ∣∣∣∣∣ p
′
i/m ∈ R+

}
.
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One supposes that p′i/m = P ′
i/m(ω1), ω1 ∈ Ω1, where the P ′

i/m ≥ 0 are IID

random variables with a law M, defined on a probability space (Ω1,A1, P roba1).

Then, pxs =
p′xs

Pm
i=1 p

′

i/m
.

Now, we shall need the following notations.

Notations 8.2.2 One supposes that the P ′
xt

have a fixed distribution M. For all
b > 0, we denote by Γ0(b) the function Γ0(b) = 2.Maxn1≥n2

Proba1

{
|Sn1 | ≥ b

}
,

where n2 = mink∈F∗(dq)(card{r/m|k/dq ≤ r/m < (k + 1)/dq)}, and where

Sn1
=
P ′

1/m + P ′
2/m + .....+ P ′

n1/m

σM
√
n1

.

Of course Γ0(b) ≈ 2Γ(b) as soon as m/dq is big.

For example, if one wants to choose the probability of Xn randomly, one can
admit that M has the uniform distribution on [0,1].

This choice is reasonable. Indeed, according to the proposition 8.1.1, there
exists a permutation ψ0 such as the sequence pψ0(ys) = pfys

can be regarded as
an IID sample of random variables which have the distribution MZ .

Therefore, for almost all the permutations ψ, the sequence pfψ(ys) can be

regarded as an IID sample of random variables which have the distribution MZ .
Because T can be regarded as independent of the text (therefore independent

of probabilities pys
) the permutation ψ1(ys) = ψ−1

0 (T (ys)) - associated to pfys
7→

pfψ1(ys) = pψ0(ψ1(ys)) = pψ0(ψ
−1
0 (T (ys)) = pT (ys) = pxs

- can be regarded as chosen

randomly.
Therefore, the sequence pxs

= pfψ1(ys) can be regarded as an IID sample of

random variables which have the distribution MZ .

Then, we use this model. Now, we study it.

First, the following proposition holds.

Proposition 8.2.1 We assume m/dq is great enough. Then, the following ap-
proximation holds.

P
{
Xn = k/dq

}
≈ 1/dq .

Proof Let c = ck and c′ = c′k. We have

P
{
Xn = k/dq

}
= P

{
T̂ (Yn) ∈ [c/m, c′/m[

}
=

∑

xs∈[c/m,c′/m[

pxs
.

Because pxs
=

p′xs
Pm

i=1 p
′

i/m
and because the P ′

xs
have the distribution M,

P
{
Yn ∈ T̂−1([c/m, c′/m[)

}
=
c′ − c

m

(1/(c′ − c))
∑
xs∈[ck/m,c′k/m[ p

′
xs

(1/m)
∑m
i=1 p

′
i/m
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which converges in probability to c′−c
m considering that p′ss/m is an IID sample

: 1
c′−c

∑
xs∈[c/m,c′/m[ p

′
xs

=
P

s P
′

xs
(ω1)

N(I) where I = [c/m, c′/m[, N(I) = c′− c. �

Then,
P
{
Xn = k/dq

}
≈ 1/dq .

For example, if b=20,

Proba1

{ |∑s(P
′
xs

− EM )|√
N(I)σM

≥ b
}
≤ Γ0(b)/2 ≈ Γ(b) ≈ 5.6

1089
,

where EM =
∫
x.M(dx) and where σ2

M is the variance of M .

Therefore, if b is big enough, one can admit, with a very strong probability

|∑s(P
′
xs

− EM )|√
N(I)σM

≤ b .

For example, if M has the uniform distribution on [0,1], |∑s(P
′
xs

− 1/2)| ≤
20√

12.N(I)
.

More precisely the following lemma holds.

Lemma 8.2.1 Suppose that m is big enough with respect to N(I) and suppose
N(I) big enough. Let us suppose that b and σM are not too large. Let us suppose
that EM is not too small. Then, with a probability larger than 1 − Γ0(b),

P
{
Yn ∈ T̂−1([c/m, c′/m[)

}
≈ c′ − c

m

[
1 +

Ob(1).bσM

EM
√
N(I)

]
.

Proof With a probability larger than 1 − Γ0(b)/2,

1

N(I)

∑

xs∈[c/m,c′/m[

p′xs
= EM +

Ob(1).bσM√
N(I)

.

Then, with a probability larger than 1 − Γ0(b),

P
{
Yn ∈ T̂−1([c/m, c′/m[)

}
=
c′ − c

m

[1/(c′ − c)]
∑
xs∈[c/m,c′/m[ p

′
xs

(1/m)
∑m
i=1 p

′
i/m

=
c′ − c

m

EM + Ob(1).bσM√
N(I)

EM + Ob(1).bσM√
m

=
c′ − c

m

1 + (Ob(1).bσM )/[EM
√
N(I)]

1 + (Ob(1).bσM )/[EM
√
m]
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=
c′ − c

m

[
1 +

Ob(1).bσM

EM
√
N(I)

+
O(1)√
m.N(I)

+
Ob(1).bσM
EM

√
m

]

≈ c′ − c

m

[
1 +

Ob(1).bσM

EM
√
N(I)

]
.�

Then, generally,

P
{
Xn = k/dq

}
≈ 1

dq

[
1 +

Ob(1).bσM

EM
√
N(Ik)

]
.

More precisely the following proposition holds.

Proposition 8.2.2 Let us suppose that m is enough large compared to dq and
N(Ik). Let us suppose that b and σM are not too large. Let us suppose that EM
is not too small. Then, with a probability larger than 1 − Γ0(b),

P
{
Xn = k/dq

}
=

1

dq

[
1 +

Ob(1).2bσM

EM
√
N(Ik)

]
.

Proof In this case, one can choose [c/m, c′/m[= Ik. By the proof of lemma
8.2.1,

P
{
Yn ∈ T̂−1([c/m, c′/m[)

}
=
c′ − c

m

[
1 +

Ob(1).bσM

EM
√
N(Ik)

+
O(1)√
m

]
.

By lemma 8.1.3 and 8.1.2, h0/m ≤ 1/dq ≤ (h0 + 1)/m. By lemma 8.1.2,
N(Ik) = c′ − c = h0 or N(Ik) = h0 + 1. Then,

c′ − c

m
=

1

dq
+
Ob(1)

m
.

Then,

P
{
Yn ∈ T̂−1([c/m, c′/m[)

}
=

1

dq

[
1 +

Ob(1).2bσM

EM
√
N(Ik)

]
.�

For example, if d=10, b=20, if m ≥ 10Q
′

, Q’=100, and q=50 : N(Ik) ≥ 1050.
Then, if M is the uniform distribution on [0,1], one can admit with a probability
very close to 1, that,

P{Xn = k/dq} ≈ 1

1050

[
1 +

80.Ob(1)√
12.1025

]
=

1

1050

[
1 +

23.2

1025

]
.

This result is true for a n and a k fixed. But, one can have a result for all
the k and all the Xn, n=1,2,., N. Indeed one has the following lemma.
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Lemma 8.2.2 One supposes m = dQ big. Let us suppose m enough large com-
pared to dq and suppose dq large enough. Let us suppose that b << dQ−q and
that M is the uniform law. One supposes that the size of sequence Xn is N. Let
PXn

(k) = P{Xn = k/dq}. Then,

Proba1

{
⋂

n,k

{∣∣PXn(k) − 1

dq
∣∣ ≤ 4b√

12.dQ+q

}}
≥ 1 −NdqΓ0(b) .

This lemma is proved by the same way as lemma 8.2.3.

One keep the same example as previously and one takes a sample x∗n of size
108. Then, because, Γ(20) = 5.6

1089 approximately,

Proba1

{
⋂

n,k

{∣∣PXn (k)− 1

dq
∣∣ ≤ 2b√

12.dQ+q

}}
= 1− 5.6 ∗ 1050 ∗ 108

1089
≥ 1− 5.6

1031
.

Moreover, P{Xn = k/dq} = PXn
(k/dq) ≈ 1

1050

[
1 + 23.2.Ob(1)

1025

]
. Therefore, for

a sample of x∗n of size 108, the Xn have a distribution extremely close to the
uniform distribution for a vast majority of the possible models.

However, if for example, the probability Γ(20) = 5.6/1089 were still too large,
it would be enough to choose b even larger. Thus, for b = 40,

Proba1

{ |∑s(Pxs
− EM )|√

N(I)σM
≥ 40

}
≈ 1

10340
.

In this case, for q=50, P{Xn = k/dq} ≈ 1
1050

[
1 + 46.4

1025

]
.

For q=48 : P{Xn = k/dq} ≈ 1
1048

[
1 + 46.4

1026

]
.

Then, one notices that if the marginal probabilities are taken randomly,
these marginal probabilities are close to the uniform law for almost all the mod-
els possible of probability.

8.2.1 Case of Borel sets

One has just understood that the probabilities of the Xn = k/dq are very close
to the uniform probability. One studies now the probability Xn ∈ Bo where Bo
is Borel set of {0/dq, 0/dq, ......, (dq − 1)/dq} : we set Bo = ∪k∈Θ{k/dq} , where
Θ ⊂ {0, 1, ...., dq − 1}. Let KΘ = card(Θ).

One can also consider that Bo = ∪k∈Θ{[k/dq, (k + 1)/dq[}. Then, L(Bo) =
KΘ

dq .
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Here we write Ik = [ck/m, c
′
k/m[ : P{Xn = k/dq} =

∑
xs∈[ck/m,c′k/m[ pxs .

Donc, P{Xn ∈ Bo} =
∑
xs∈∪k∈Θ[ck/m,c′k/m[ pxs . Let N(Bo) be the number of

t/m ∈ ∪k∈Θ[ck/m, c
′
k/m[. Then, by the CLT,

Proba1

{ |∑xs∈∪k∈Θ[ck/m,c′k/m[(P
′
xs

− EM )|
√
N(Bo)σM

≥ b
}
≈ Γ(b) .

Then, one has the following property.

Proposition 8.2.3 Let us suppose m enough large compared to dq and N(Ik).
Let us suppose that b and σM are not too large. Let us suppose that EM is not
too small. Then, with a probability larger than 1 − Γ0(b),

P
{
Xn ∈ Bo

}
= L(Bo)

[
1 +

Ob(1).2bσM
EMd(Q−q)/2

]
.

Proof Clearly KΘ ≤ dq. By the proof of proposition 8.2.2,

P
{
Xn ∈ Bo

}
=
∑

k∈Θ

P
{
Yn ∈ T̂−1([ck/m, c

′
k/m[)

}

=
[∑

k∈Θ(c′k − ck)

m

] [
1 +

Ob(1).bσM√
N(Ik)

+
O(1)√
m

]

=
[∑

k∈Θ

( 1

dq
+
Ob(1)

m

)] [
1 +

Ob(1).bσM

EM
√
N(Ik)

+
O(1)√
m

]

=
[KΘ

dq
+
Ob(1)KΘ

m

] [
1 +

Ob(1).bσM

EM
√
Inf(N(Ik))

+
O(1)√
m

]

=
[KΘ

dq
+
Ob(1)dq

dQ

] [
1 +

O(1).bσM
EMd(Q−q)/2 +

O(1)√
m

]

=
KΘ

dq

[
1 +

Ob(1).2bσM
EMd(Q−q)/2

]

= L(Bo)
[
1 +

Ob(1).2bσM
EMd(Q−q)/2

]
.�

For example, for b = 40, d = 10, m ≥ 10100, L(Bo) = 1/10, q = 50, if M is
the uniform distribution, then, with a probability larger than 1 − 1

10340 in the
set of the probabilities,

P{Xn ∈ Bo} ≈ 1

10

[
1 +

4.64

1049

]
.

195



It is thus understood that one still has completely satisfactory results for all
the Borel sets.

A priori, this result is normal: there is always no logical connection between
the set of the type J =

[Newton’s theory ]
[of gravitation was]
[ soon accepted wit]
[hout question, and ]
[it remained unques]
....................................

and the union of the set of the type Hs =

[whgkudf ly cuqhjg]
[aamxgusdggbxckmp]
[a picykhgkkl hfqfqqq]
[ory of Relativity in 190]
[xwtex pez! i yi qy yqhfg]
.........................................

However, it is not exact. Indeed, there exist some connections : if one chooses
Borel sets built from the Hk = T−1

q (k/dq) containing more parts of text than
the others ones, one will obtain Borel sets which have measure enough different
from uniform measure.

It is just the same for the empirical probabilities when the sample size n0 is
much smaller than dq: in general, the T−1

q (k/dq) contains 0 or 1 points.
But in the case of empirical probability, one knows that one can always find

Borel sets of nonuniform measure however associated with an IID sample.

It is not astonishing when one considers the number of possible Borel sets :
it is equal to the number of subsets of F (dq). A priori, there is
1 subset of F (dq) which is empty
dq subsets of F (dq) containing 1 element
C2
dq subsets of F (dq) containing 2 element

.............................
Altogether, there is

∑
t C

t
dq = 2d

q

possible subsets of F (dq).

Therefore, one can prove the following lemma.

Lemma 8.2.3 Let us suppose m enough large compared to dq and N(Ik). Let
us suppose that b << dQ−q and that M is the uniform law. Let 1 ≤ n ≤ N . Let
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PXn(Bo) = P
{
Xn ∈ Bo

}
. Then,

Proba1

{ ⋂

n,Bo

{∣∣PXn(Bo) − L(Bo)
∣∣ ≤ L(Bo)

4b√
12.dQ−q

}}
≥ 1 −N2d

q

Γ0(b) .

(8.1)

Proof By proposition 8.2.3, for all Borel set Bo, we have thus

Proba1

{∣∣PXn
(Bo) − L(Bo)

∣∣ > L(Bo)
4b.√

12.dQ−q

}
≤ Γ0(b) .

For h ∈ {0, 1, ..., dq}, there are Chdq Borel sets Boh such that card(Boh) = h.
Moreover, there is at the most N possible ”n”. Then

Proba1

{
⋂

n,Bo

{∣∣PXn(Bo) − L(Bo)
∣∣ ≤ L(Bo)

4b√
12.dQ−q

}}

= Proba1

{
⋂

n,h,Boh

{∣∣PXn
(Boh) − L(Boh)

∣∣ ≤ L(Boh)
4b√

12.dQ−q

}}

= 1 − Proba1

{
∁
⋂

n,h,Boh

{∣∣PXn
(Boh) − L(Boh)

∣∣ ≤ L(Boh)
4b√

12.dQ−q

}}

= 1 − Proba1

{
⋃

n,h,Boh

{∣∣PXn(Boh) − L(Boh)
∣∣ > L(Boh)

4b√
12.dQ−q

}}

≥ 1 −
∑

n,h,Boh

Proba1

{{∣∣PXn
(Bo) − L(Boh)

∣∣ > L(Boh)
4b√

12.dQ−q

}}

= 1 −
∑

h

∑

n,Boh

Γ0(b)

= 1 −
∑

h

NChdq Γ0(b)

= 1 −N2d
q

Γ0(b) . �

In order that the probability can be uniform for all Borel sets, certain con-
ditions will thus have to be imposed.

Property 8.2.4 In order that the inequality 8.1 is useful, b = K10d
q/2 should

be imposed, where the Kt ’s are constant and K10 > 1.
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Proof Indeed, (1/2)Γ0(b) ≈ Γ(b) ≈
√

2√
πb
e−b

2/2 when b is big (cf (28)’ page

56 [44]). Then,

Proba1

{
⋂

n,Bo

{∣∣PXn(Bo) − L(Bo)
∣∣ ≤ L(Bo)

4b√
12.dQ−q

}}

≥ 1 −N2d
q

Γ0(b) ≈ 1 −N2d
q

√
2√
πb

e−b
2/2 .

In order that this inequality are useful, It is necessary that

N2d
q

√
2√
πb

e−b
2/2 ≤ 1 .

One will thus impose that

eLog(2)d
q ≤ K7e

b2/2 .

One will thus impose that

2Log(2)dq ≤ K8b
2 .

One will thus impose that

√
2Log(2)dq/2 ≤ K9b .

One will thus impose that

b = K10d
q/2 . �

Thus,

N2d
q

√
2√
πb

e−b
2/2 = Nelog(2)d

q

√
2√

πK10dq/4
e−(K2

10/2)d
q

= N

√
2√

πK10dq/4
e−(K2

10/2−log(2))dq

.

For example, if dq ≥ 106, K10 = 2, N
√

2√
πK10dq/4 e

−(K2
10/2−log(2))dq

= ǫ8 where
ǫ8 ≈ 0.

Now, b has to be not too large.

Property 8.2.5 One supposes b large. In order that the inequality 8.1 is useful,
one can impose 2q < Q.
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Proof Choose b = K10d
q/2. There are the following relations

Proba1

{
⋂

n,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ L(Bo)
4b√

12.d(Q−q)

}}

= Proba1

{
⋂

nBo

{∣∣PXn(Bo) − L(Bo)
∣∣ ≤ L(Bo)

4K10d
q/2

√
12.d(Q−q)/2

}}

= Proba1

{
⋂

nBo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ L(Bo)
4K10√

12.d(Q−2q)/2

}}

≥ 1 −N2d
q

Γ0(b) .

In order that this inequality is useful, one can impose

4K10√
12.d(Q−2q)/2

≤ 1 .

One will thus impose that

2q < Q . �

One must thus choose 2q < Q and b = K10d
q/2 so that 4K10√

12.d(Q−2q)/2
<< 1

and 2N2d
q

Γ(b) ≈ 0 pour b = O(dq/2).

Are we obliged to impose this condition to have xn IID? The answer seems
not. Indeed, let us suppose that the sample size n0 checks n0 << dq : in this
case, the sets {yn | Tq(yn) = k/dq} contain 0 points yn in general. Some ones
contain 1 point. There are obligatorily important breakdowns of empirical in-
dependence for some Borel sets. Then, it is not annoying if that results also in
breakdowns of theoretical independence.

8.2.2 Well distributed measure

The previous results were obtained by considering that one chose randomly a
measure in the set of the possible probabilities.

But, so that one can associated a probability chosen randomly with a sample,
one needs that the probabilities of the Xn are not concentrated nearly a small
number of points. If not, this choice is not correct. Indeed, in this case, the
majority of the pxs will be equal to 0 and could not thus be regarded as chosen
randomly, at least not according to a uniform law for example.

That means that it is necessary that there is not some P{Xn = k/m} too
large.
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Now let us take into account the empirical probability.
For example, if one chooses data resulting from texts and if m is not too

large, (for example m = 327), certain words of 7 letters can appear several
times in the text, for example ”theorem” if mathematical text is used. In this
case, one will have to consider that there is a too strong probability in certain
points.

The previous model of the section 8.2 is not then appropriate.

That thus should be avoided. For that, first, it is necessary that one has a
sample of yn which all are different.

A simple method for that is to choose m large enough, compared to the size
N of the sample, for example m ≥ 10100, N = 107. Indeed, in this case, it is not
much possible that there is two yn and yn′ which are equal. If not, that would
mean that two sequences of approximately 70 letters could be identical in a set
of N terms. There is a quasi negligible number of chances that such an event
occurs.

Now, it is necessary that a priori all the possible values of F(m) can exist
in a sample.

It is reasonably the case when one adds modulo m a pseudo-random se-
quence gn of period m : my′n = gn +myn. Normally any value k/m has a
chance reasonable to be realized a priori. There is no reason that can not occur.
Moreover, a priori all k/m has about as much chance to be an image than any
other k’/m.

With this method, there is very little chance that there is y′n = y′n′ when
n 6= n′. In particular, an empirical sample will not be associated a priori with
a probability concentrated in a small number of points.

Moreover, by using this way, there is a first standardization of the marginal
laws.

8.2.3 Counterexample

One has just understood that, for the set of the probabilities chosen randomly
with the uniform law, one can consider that

P{Xn ∈ Bo} = L(Bo)
[
1 +

4b.Ob(1)√
12.N(Bo)

]
.

We made this study in the section 8.2 without supposing that T is the con-
gruence of Fibonacci. Then, this result is true for any function Prq ◦ Perm
where Perm is a permutation of F(m).
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Let us suppose that Perm is the identity and that the curve of the proba-
bilities of Yn have the shape of a normal curve. Then,

{Xn = k/dq} = {Yn ∈ T−1
q (I)} =

{
Yn ∈ {ck/m, (ck + 1)/m, ....., (c′k−1)/m}

}
,

where I = [ck/m, c
′
k/m[ .

For example, suppose dq = 1050. Then, P{Yn ∈ T−1
q (I)} depends on ck and

varies considerably according to ck. Therefore there is no a uniform probability.
Then, the form of the probability intervenes. In the case of a curve of normal

law, to study the probabilities as if they were randomly selected as above is not
appropriate.

Let us notice that, contrary to the congruence of Fibonacci, there is a de-
pendence between T and text. If yn means an extract of texts, T (yn) means
the same extract of text. Therefore, T−1

q (k/m) is a set of extract of texts. This
counterexample is thus not valid in the case of a congruence of Fibonacci.

One would obtain the same type of result (that with Perm = Id), if one
used congruences T (x) ≡ dpx modulo d2p − 1 defined in proposition 4.1.1, con-
sidering in this case, T inverts the first decimals with the last ones : cf section
4.1.2. Then, T−1

q (k/m) means also a set of extracts of text.

Also let us notice that, a priori, this counterexample does not use probabil-
ities associated to numbers built with text according to the method described
in section 11.1.2. Indeed, in this case, one can consider that the probabilities
associated can be regarded as chosen randomly.

8.2.4 Validity of the previous system

Let us suppose again that one is in the case where T is the congruence of
Fibonnacci and that our data are provided by text yn to which one adds a
pseudo-random generator gn : my′n = gn +myn.

We will understand that to use the probability space (Ω1,P1, P roba1) de-
fined in the definition 8.2.1 is a reasonable assumption.

First reason of validity

Let us suppose that the probability p′xs
= P ′

xs
(ω1) corresponding to these y′n is

not extracted from an IID sequence P ′
xs

, but of a sequence of random variables
which have a certain law.

One has always

P{Xn = k/dq} =
∑

xs∈[ck/m,c′k/m[

pxs
.
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One knows that there is no logical connection between text and the points
of the {a1, a2, ....}. Therefore,

∑
xs∈[ck/m,c′k/m[ pxs

can be regarded as a sum∑
s∈F pxs

where the set F is a Borel set chosen randomly. According to the
results of the section 8.1.1, the sum

∑
xs∈[ck/m,c′k/m[ pxs

is also the sum of an

IID sample which has a distribution Q.
Therefore,

∑
xs∈[ck/m,dk/m[ Pxs

→ EQ.

One thus has indeed sums of an IID sequence P ′
xs

with a law Q.
Therefore, one can indeed apply the results of the section 8.2 : that validates

this system.

Second reason of validity

The results of section 8.2 were obtained in considering that one randomly chose
a measure in the set of the possible probabilities.

Now, if one wants to have a complete idea of the marginal probability for
a sample, it is necessary that the size of this one is sufficiently large. Without
that, one does not know enough this probability.

Therefore, one can imagine that one complements the sample y′n by a virtual
sample of big size which constitutes a natural continuation of the y′n. For this
virtual sample, there is nothing a priori which prevents from having all the
points of {0, 1, ....,m− 1} even several times.

For example, for a = 1346269 m=2178309 , d= 10, q = 4, one has used
samples of size 30m of data yn to which one added a pseudo-random sequence
gn ∈ F (m) of period larger than 30m: my′n = gn +myn . The number of
times nxs

where each xs ∈ F (m) was equal to a y′n/m : y′n/m = xs checked
2 ≤ nxs

≤ 10.
Now it is known that, if one makes uniform with a pseudo-random generator,

one can logically admit that this probability can be enough close to uniform
distribution.

Then, a correct model is that where the probabilities pxs
are not too different

from each other: it is generally the case when the probabilities of Yn are taken
randomly.

Thus, one can admit that one is in this case here.

Conclusion

Thus, the model chosen for the probabilities of the section 8.2 seems valid for
the two previous reasons.

Thus one can consider that the distribution of Xn is very close to the uni-
form distribution : that takes place with a probability Proba1 extremely near
to”1.
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8.3 Theoretical probability: second method

8.3.1 Introduction

In this section, one will not suppose that the probabilities are chosen randomly
with a certain distribution. This one will remain fixed. They are the ai that
one will choose randomly where I = Ik and where T̂−1(I) = {a1, a2, ...., ac′−c}.
Therefore, one supposes the pxs

fixed.
Moreover, let us suppose that the yn’s mean text and that gn is a pseudo-

random generator.
At last, the following notations are always used.

Notations 8.3.1 We suppose that I = [c/m, c′/m[ with c = ck and c′ = c′k. We

set T̂−1([c/m, c′/m[) = {a1, a2, ...., ac′−c}. We denote by pxs
the probabilities of

the xi’s for the model associated to my′n = gn +myn.
Moreover, one suppose that c′ − c is small compared to m.

Then, one can write pai by the following way.

Lemma 8.3.1 We have the equality pai
=
∑m−1
s=0 pxs

1xs
(ai).

Distribution of the sets chosen randomly

Now, if one chooses a set F randomly, that means that the set F = {f1, ...., fp}
has as much chance to be selected than the set F ′ = {f ′1, ...., f ′p} :

Proba
{
F = {f1, ...., fp}

}
= Proba

{
F ′ = {f ′1, ...., f ′p}

}

for all p, for all F and F’.

In particular, for p=1, Proba
{
F = {f1}

}
= Proba

{
F ′ = {f ′1}

}
= C7 where

C7 is a constant. At first, one thus chooses f1 randomly, therefore with a uniform
probability. Then, one chooses f2 randomly, i.e. independent and so on.

In fact, it would be necessary to choose f2 being able to be equal to f1. But
if p is small compared to m and if m is large, one can regard such a possibility
as negligible. It is what one will do in this section.

Therefore, the fi’s forms an independent sequence. Finally, one can consider
that the fi are an IID sample with uniform distribution.

One can thus admit that to choose a set {a1, a2, ...., ac′−c} ⊂ F (m) of size
p = c′ − c randomly, it is to choose a1, ...., ap with a uniform distribution and
independent for each ai ∈ F (m). Thus one can admit the following assumption.

Hypothesis 8.3.1 For all i, one supposes ai = Ai(ω2) where ω2 ∈ Ω2 and
where Ai is an IID sequence of random variables with the uniform distribution
on F(m), defined on a probability space (Ω2,A2, P roba2).
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Expectation and variance

With the previous notations, P{T̂−1(I)} =
∑c′−c
i=1 pai

. Therefore, the following
lemma holds.

Lemma 8.3.2 Let NA = c′ − c. The following equalities hold:
E{pAi

} = 1/m ,
E{p2

Ai
} = (1/m)

∑m
s=1 p

2
xs

,

V ar = E

{(∑c′−c
i=1 [pAi

− 1/m]
)2}

= (NA/m)
∑m
s=1[pxs

(pxs
− 1/m)] .

Proof We have

E{pAi} = E

{ m∑

s=1

pxs1xs(Ai)
}

=

m∑

s=1

pxsE

{
1xs(Ai)

}

=
m∑

s=1

pxs

∫
1xs

(u)µm(du) =
m∑

s=1

pxs
(1/m) = 1/m .

Moreover,

E{p2
Ai
} = E

{[ m∑

s=1

pxs1xs(Ai)
]2}

= E

{∑

s,s′

pxspxs′
1xs(Ai)1xs′

(Ai)
}

=

m∑

s=1

E

{
p2
xs

1xs
(Ai)

}
= (1/m)

m∑

s=1

p2
xs
.

Now the Ai’s are independent. Then,

E

{( c′−c∑

i=1

[pAi
− 1/m]

)2}
=

c′−c∑

i=1

E

{(
pAi

− 1/m
)2}

=

c′−c∑

i=1

(
E{p2

Ai
} − 1/m2

)

= (NA/m)

m∑

s=1

p2
xs

−NA/m
2

= (NA/m)
[ m∑

s=1

p2
xs

− 1/m
]

= (NA/m)

m∑

s=1

[pxs
(pxs

− 1/m)] . �
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8.3.2 Study of the Central Limit Theorem

CLT for double independent sequences

Having an IID sequence ai, it is easier to obtain results with the Central Limit
Theorem. But, to have infinite limits with sequences of ai smaller than m,
one will have to employ the results on the double sequences. Indeed, one can-
not choose samples ai increasingly large when m is fixed. One thus will make
increase m and, thus the number of ai.

The aim is to understand by using the CLT that P{T̂−1(I)}− 1/dq is small

One thus will suppose that one has IID sequences ani ∈ F (mn), i = 1, ....,mn

and that one makes to tend m = mn to infinity. As a matter of fact, one studies
the samples of ani ∈ F (mn), all distinct, of size NAn . Then, one uses sequences
of probabilities pnxs

= pxs
, s ∈ {0, 1, ....,mn}.

Moreover what interests us, it is to apply the functions Tq when q is fixed:
i.e. one admits that LAn = NAn/mn = 1/dq + Ob(1)/mn remains about con-
stant.

On the other hand, one will admit also the following assumption.

Hypothesis 8.3.2 In this section, one supposes that mnpxs ≤ mβ
n where β <

1/4. We set nxs = mnpxs .

This assumption means that the associated probability is not concentrated
nearly a small number of points.

Is what this assumption is correct?
A priori, that could be not always the case. Thus, for an unspecified sample,

it would be always possible that a sample of elements all distinct with size 1010

corresponds for example to a uniform probability concentrated in 1030 points.
Such a model would be a priori a correct model.

But, other assumptions intervene: it would not be a logical model for our
model my′n = gn +myn. Indeed, any point k ∈ {0, 1, ....,m−1} has a reasonable
chance to be a my′n. One must thus reject this possibility.

Moreover, to suppose that nxs
≥ m

1/4
n , that means that as soon as mn is

large, there is a point which is likely much more to appear in a sequence my′n.
It is not the case.

It is even known that, normally the probability of y′n is close to a uniform
probability (cf above). However, it is always possible that an estimate of the
density can be slightly different from the uniform distribution. That means
that there remain unknown properties about this law. We use the function of
Fibonacci to eliminate these unknown properties.

Therefore, the assumption nxs
≤ m

1/4
n is logical with the sample which we

have. In fact, it is even too strong. For the same reasons that described above,
one can even admit the following assumption.
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Hypothesis 8.3.3 In this section, in some cases, one will suppose β < 1/5.

Some lemmas

To avoid complicating the notations, one keeps the notations ai and Ai instead
of ani and Ani . Then,

p2
ai

V ar
=

p2
ai

(NAn/mn)
[∑

s[pxs(pxs − 1/mn)]
]

=
n2
ai
/m2

n

LAn

[∑
s(nxs

/mn)(nxs
/mn − 1/mn)

] =
n2
ai

LAn

[∑
s nxs

(nxs
− 1)

] .

Let d > 0. By the theorem of page 103 of [19], we know that
∑c′−c
i=1

pAi
−1/mn√
V ar

D→
N(0, 1) if and only if, for all d > 0,

c′−c∑

i=1

E
{

1]d,∞[

(∣∣∣
pAi

− 1/mn√
V ar

∣∣∣
) (pAi

− 1/mn)2

V ar

}

=

c′−c∑

i=1

E
{

1]d,∞[

(∣∣∣
nAi − 1√
m2
n.V ar

∣∣∣
) (nAi − 1)2

m2
n.V ar

}
→ 0.

In order to study this limit, we shall need the following lemma.

Lemma 8.3.3 Let d > 0 . Let α(n) = d
√
LAn

(∑
s nxs(nxs − 1)

)
. We denote

by Fn,j the distribution of
pAj

−1/mn√
V ar

. Then,

∑

j

∫
1]d,∞[(|x|)x2.dFn,j(x) =

∑

s,nxs−1>α(n)

(nxs
− 1)2(∑

s nxs
(nxs

− 1)
) .

Proof We have ∫
1]d,∞[(|x|)x2.dFn,j(x)

= E
{

1]d,∞[

( |pAj
− 1/mn|√
V ar

) (pAj
− 1/mn)2

V ar

}

= E
{∑

s

1xs(Aj)1]d,∞[

( |pAj
− 1/mn|√
V ar

) (pAj
− 1/mn)2

V ar

}

=
∑

s

E
{

1xs
(Aj)1]d,∞[

( |nAj − 1|
mn

√
V ar

) (pAj − 1/mn)2

V ar

}
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=
∑

s

E
{

1xs
(Aj)1]d,∞[

( |nAj − 1|
mn

√
LAn

(∑
s pxs

(pxs
− 1/mn)

)
) (pAj − 1/mn)2

V ar

}

=
∑

s

E
{

1xs(Aj)1]d,∞[

( |nAj
− 1|√

LAn

(∑
s nxs(nxs − 1)

)
) (pAj

− 1/mn)2

V ar

}

=
∑

s

E
{

1xs
(Aj)1]d,∞[

( |nAj − 1|
α(n)/d

) (pAj − 1/mn)2

V ar

}

=
∑

s,nxs−1>α(n)

E
{

1xs(Aj)1]d,∞[

(d|nAj
− 1|

α(n)

) (pAj
− 1/mn)2

V ar

}

=
∑

s,nxs−1>α(n)

E
{

1xs(Aj)
(pAj

− 1/mn)2

V ar

}

=
∑

s,nxs−1>α(n)

E
{

1xs
(Aj)

(nAj
− 1)2

LAn

(∑
s nxs

(nxs
− 1)

)
}

=
∑

s,nxs−1>α(n)

E
{

1xs
(Aj)

(nxs − 1)2

LAn

(∑
s nxs(nxs − 1)

)
}

=
1

mn

∑

s,nxs−1>α(n)

(nxs
− 1)2

LAn

(∑
s nxs

(nxs
− 1)

) .

Therefore, ∑

j

∫
1]d,∞[(|x|)x2.dFn,j(x)

=
N(An)

mn

∑

s,nxs−1>α(n)

(nxs
− 1)2

LAn

(∑
s nxs

(nxs
− 1)

)

=
∑

s,nxs−1>α(n)

(nxs − 1)2(∑
s nxs(nxs − 1)

) . �

Study of the assumption ”
∑
s nxs

(nxs
− 1) → ∞”.

In the set of the probabilities pxs , the assumption
∑
s nxs(nxs − 1) → ∞ is an

often satisfied assumption. Now, one will understand that, or∑
s,nxs−1>α(n)

(nxs−1)2

LAn

(
P

s nxs (nxs−1)
) → 0, or the uniformity holds.
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Let us try to understand why.

First, let us suppose that
∑
s nxs

(nxs
− 1) → ∞ and consider the xs = xnsn

such as
(nxs−1)2

P

s nxs (nxs−1) does not converge to 0. Let us consider two cases.

1) Either
∑
s nxs

(nxs
− 1) tends very quickly to ∞, i.e. is normally much

larger than any (nxs − 1)2. In this case, it is possible that there exists such xs.
But, for all d, for n large enough, d2(nxs−1)2 is much smaller than

∑
s nxs(nxs−

1), and therefore, E
{

1xs
(Aj)1]d,∞[

( |nAj
−1|

mn

√
V ar

)
(pAj

−1/mn)2

V ar

}
= 0.

Therefore
∑
s,nxs−1>α(n)E

{
1xs(Aj)

(nxs−1)2

LAn

(
P

s nxs (nxs−1)
)
}

= 0.

2) Or,
∑
s nxs

(nxs
− 1) tends slowly to ∞.

In this case, (1/mn)
∑
s nxs

(nxs
− 1) ≈ 0 means that nxs

≈ 1. Therefore
pxs

≈ 1/mn. Therefore the uniformity holds.

These results are proved by the many numerical simulations that we made.
It are also confirmed for the following examples.

Example 8.3.4 Let us suppose that the probability is concentrated in m
3/4
n dis-

tinct points xs such as nxs
= m

1/4
n .

Study Under these assumptions,
∑
s nxs

(nxs
−1) = m

3/4
n (m

1/4
n )(m

1/4
n −1) ≈

m
5/4
n . Moreover, n2

ai
≤ m

1/2
n Therefore,

{∣∣∣∣∣
n2
ai

LAn

[∑
s nxs

(nxs
− 1)

]
∣∣∣∣∣ ≥ d

}
=
{
n2
ai

≥ d.LAnm3/4
n m1/4

n (m1/4
n −1)

}
→ ∅ .�

Example 8.3.5 Suppose
∑
s nxs(nxs − 1) → ∞ as n→ ∞ and nai < K.

Study In a obvious way, close to infinity,

{∣∣∣∣∣
n2
ai

LAn

[∑
s nxs

(nxs
− 1)

]
∣∣∣∣∣ > d

}
= ∅ .�

In order to prove asymptotic normality, one could try to completely make
the mathematical proofs associated with the previous reasoning. But, there is
simpler: it is enough to use the following example.
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Example 8.3.6 Suppose that, for all s, nxs = 1 + uns , where for all n, uns =
Uns (ω2) , and where Uns , s = 1, 2, ...mn is a sequence of IID random variables,
with mean 0, defined on a probability space (Ω2,A2, P2) such that E{(Un1 )t} = ent
for t=2,3,4.

Study First, remark that one is interested only in the sum
∑
s n

2
xs
−∑s nxs

.
Then, because

∑
s nxs = mn, according to proposition 8.1.1, one can always sup-

pose nxs = 1 + Uns .

Under these assumptions

∑
s nxs

(nxs
− 1) −mne

n
2√

mn

=

∑
s n

2
xs

−∑s nxs
−mne

n
2√

mn

=

∑
s[1 + (Uns )2 + 2Uns − 1 − Uns ] −mne

n
2√

mn

=

∑
s[(U

n
s )2 − en2 ] + Uns√

mn

which has asymptotically a Gaussian distribution.

The associated variance is

σ2
Vn

= E
{[

(Uns )2 − en2 + Uns
]2}

= E
{

(Uns )4 + (en2 )2 + (Uns )2 − 2en2 (Uns )2 + 2(Uns )3 − 2en2U
n
s

}

= E
{

(Uns )4
}

+ (en2 )2 + en2 − 2(en2 )2 + 2E
{

(Uns )3
}

= E
{

(Uns )4
}

+ 2E
{

(Uns )3
}
− (en2 )2 + en2

= (en4 ) + 2(en3 ) − (en2 )2 + en2 .

Therefore, if b is large enough, with a probability very close to 1,

∑

s

n2
xs

−
∑

s

nxs = mne
n
2 +Ob(1)bσVn

√
mn → ∞ . (8.2)

Indeed, nxs
≤ mβ

n, β < 1/4. Therefore, en4 ≤ m4β
n , en3 ≤ m

3/4
n . Finally, one

can admit σ2
Vn

≤ 3m4β
n .

Therefore, bσVn

√
mn/mn → 0. Therefore, if en2 ≥ C3 > 0,

mne
n
2 +Ob(1)bσVn

√
mn → ∞ .

209



Now, because n2
xs

≤ m
1/2
n , for all d > 0, there exists N0 such that, for all

d′ ≤ dLAn [en2 +Ob(1)bσVn/
√
mn],

{∣∣∣∣∣
n2
ai

LAn

[∑
s nxs(nxs − 1)

]
∣∣∣∣∣ > d

}
⊂
{
n2
ai
> d′mn

}
= ∅

This result holds again if
∑
s n

2
xs

−∑s nxs
≥ γ(n)m

1/2
n where γ(n) > c6 > 0

where c6 is a constant. �

Therefore, finally, if
∑
s nxs(nxs −1) ≥ γ(n)m

1/2
n , one can always admit that

we have or the CLT whose we shall deduce uniformity or the uniformity itself.

8.3.3 Study of the other assumptions

Case m
−1/2
n

∑
s nxs

(nxs
− 1) < K1.

It one of the cases not studied in the example 8.3.6. It occurs if en2 → 0.
However, this case is simpler: it implies obligatorily the uniformity.

Indeed if
∑
s nxs

(nxs
− 1) < K1m

1/2
n ,

∑

s

(nxs − 1)2 =
∑

s

nxs(nxs − 1) −
∑

s

(nxs − 1)

=
∑

s

nxs(nxs − 1) − (mn −mn) < K1m
1/2
n .

Then, we can admit O(en2 ) = (1/mn)
∑
s(nxs

− 1)2 < K1/m
1/2
n .

Now, let V arU (NAi) be the variance of Nxs = 1 + Uns . Then

V arU (NAi
) = en2 → 0 .

If V arU (NAi) is close to 0, that means that nai is close to 1, i.e. pai is close
to 1/mn. i.e. that one has a uniform probability.

There is thus always the uniformity in this case. Therefore, finally that
proves that the quasi-uniformity of the marginal probabilities is satisfied in all
the cases.
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Case en2 → 0.

It is the last case not studied of the example 8.3.6. However, it is the same case
as previously. Indeed,

V arU (NAi
) = en2 → 0 .

There is thus always the uniformity in this case. Therefore, finally that
proves that the quasi-uniformity of the marginal probabilities is satisfied in all
the cases.

Case m
−1/2
n

∑
s nxs

(nxs
−1) is not bounded and does not converge to ∞

In fact, these cases do not interest us. One is in a concrete study. One chose a

”m”, i.e. ”n”. The nxs = nnxs
are fixed. Thus m

−1/2
n

∑
s nxs(nxs − 1) is fixed.

It is large or small, not both. The probabilities that we will really obtain will
check, either

∑
s nxs

(nxs
− 1) enough large, or

∑
s nxs

(nxs
− 1) enough small.

One will be able to thus consider that one is in the case
∑
s nxs

(nxs
− 1) → ∞

quickly or in the case
∑
s nxs

(nxs
− 1) < K1m

1/2.

We want only that, numerically,
∣∣P (T̂−1(I)− 1/dq

∣∣ is small. Now, in all the
cases, one obtains this result.

8.3.4 Numerical study of the Central Limit Theorem

Thus the uniformity is checked in all the limit theoretical cases. Now, the
nAi

−1√
LAn

P

s nxs (nxs−1)
are IID. Now, convergence for an IID sequence is very fast.

Moreover, which interests us, it is that
∣∣∑

i(pai
− 1/mn)

∣∣ is small enough.
It is a result less strong than the CLT.

Thus, because convergence is very fast, one could almost do without the
theoretical study of the double sequences. Numerically, it will be almost always
found that

∣∣∑
i pai − 1/dq

∣∣ is enough small. It is what is arisen from the nu-
merical simulations that we made (but it was good to confirm this result by a
theoretical study).

Thus, for a = 165580141 , m= 267914296 , d= 10, q = 4, one tested more
than 250 different probabilities in 100 possible points k/m. The maxima for∣∣∑

i(pai − 1/104)
∣∣ are

4.715 ∗ 10−9 11.7052 ∗ 10−9 6.0254 ∗ 10−9 0.8687 ∗ 10−9 2.1077 ∗ 10−9
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8.3.5 Consequences of the Central Limit Theorem

Meaning of the assumption CLT

Therefore, one supposes that
∑
i(nAi

− 1)√
LAn

∑
s nxs(nxs − 1)

has asymptotically a standard Gaussian distribution. I.e. , for the probability
of Ai,

Proba2

{ |∑i(pAi
− 1/mn)|

(1/mn)
√
LAn

∑
s nxs(nxs − 1)

≥ b
}
≈ Γ(b) .

Therefore,

Proba2

{∣∣∑

i

(pAi − 1/mn)
∣∣ ≥

√
LAn

√∑
s nxs

(nxs
− 1) b

mn

}
≈ Γ(b) .

Now we have the assumption nxs ≤ m
1/4
n : cf hypothesis 8.3.2. Therefore,∑

s nxs
(nxs

− 1) ≤ mn(m
1/4
n )(m

1/4
n − 1) ≤ m

3/2
n . Therefore, generally,

Prob
{∣∣∑

i

(pAi
− 1/mn)

∣∣ ≥

√
LAnm

3/2
n .b

mn

}
≤ Γ(b) .

It is thus that which means that the CLT holds.

Consequences under assumptions nxs
≤ m

1/5
n

Now, the previous results are not specific enough: if they thus are applied one
could lose data during construction of the random sequence b1(n′). Also we will
study now what occurs under hypothesis 8.3.3.

First, let us suppose that one has a probability concentrated in a number of

points xs near of m
4/5
n where nxs

≈ m
1/5
n for these points. In this case, one has

about
∑
s nxs

(nxs
− 1) ≤ m

4/5
n (m

1/5
n )(m

1/5
n − 1) ≤ m

6/5
n .

One can understand that the result is true by numerical studies. In fact, the
maximum seems reached for a probability concentrated in a number of points

xs near to m
4/5
n with nxs

≈ m
1/5
n .

In this case, one has about
∑
s nxs(nxs − 1) ≤ m

6/5
n .

Remark 8.3.7 This result remain true in all the cases if one admits the as-

sumption m
1/5
n ≥ nxs

. That seems rather difficult to show completely by math-
ematical reasoning, but intuitively, it appears true. In any case, one can always
circumvent the problem during the construction of b1(n′) by choosing better pa-
rameters. But that would probably lead to an useless loss of data.
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Let us suppose again that one has a probability close to m
4/5
n concentrated

in a number of points xs such that nxs
≈ m

1/5
n . Then, generally,

Proba2

{∣∣∑

i

(pAi − 1/mn)
∣∣ ≥

√
LAnm

6/5
n .b

mn

}
≤ Γ(b) .

Therefore,

Proba2

{∣∣∑

i

(pAi − 1/mn)
∣∣ ≥

√
LAn .b

m
4/10
n

}
≤ Γ(b) .

Let us deal the case where one uses the application Tm1 : F (m1) → F (m),
i.e. q=1, d=m, where m and m1 belong to the Fibonacci sequence : cf section
11.1.2. As a matter of fact, with our current notations, it would be better to

write (m1)n and (m)n instead of m1 and m. Suppose that (m)n ≈ (m1)
3/5
n . In

this case, LAn ≈ (m1)
−3/5
n . Therefore, we have

Proba2

{∣∣∑

i

(pAi
− 1/(m1)n)

∣∣ ≥ b

(m1)
2/5
n (m1)

3/10
n

}
≤ Γ(b) .

Therefore, with a probability approximately larger than 1 − Γ(b),

∣∣PXn
{Xn = k/(m)n} − 1/(m)n

∣∣ ≤ b

(m1)
7/10
n

.

Therefore,

PXn
{Xn = k/(m)n} =

1

(m)n

[
1 +

O(1).b

(m1)
1/10
n

]
.

For example, if (m1)n ≥ 1030, (m)n ≈ 1020, b=20, with a probability larger
than 1 − Γ(b) = 1 − 10−89 ,

PXn
{Xn = k/(m)n} =

1

(m)n

[
1 +

O(1).20

1030/10

]
=

1

(m)n

[
1 +

O(1)

50

]
.

These results are sufficient to guarantee that the marginal laws are suffi-
ciently close to the uniform law. They are the assumptions that one will choose
in section 11.1.2.
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Case where the assumption CLT is not satisfied

Therefore the assumption CLT means that

Proba2

{ |∑i(pAi
− 1/mn)|

(1/mn)
√
LAn

∑
s nxs

(nxs
− 1)

≥ b
}
≈ Γ(b) .

Now with a very weak probability on the Aj , it is possible that
∣∣∑

i(pai
−1/mn)

∣∣
is not very small and thus that

∣∣P (T̂−1(I) − 1/dq
∣∣ is not small enough.

What is what that means?
We keep the notations of example 8.3.6 : nxs = 1 + uns where uns = Uns (ω)

and where Uns is a IID sequence of random variables.
The fact that

∣∣∑
i(pai

− 1/mn)
∣∣ is not too small can happen, for example,

if a large number of the nai
checks nai

≥ 3/2 for i=1,2,...,c’-c.
But, in this case, that would mean that there is a connection between the set

of {a1, a2, ....} and the probability induced by the yn. Then, it was understood
that it is not the case.

In reality, this possibility always exists. That means that the sample of the
data yn does not behave as it should. It is known that it is always possible, but
with a very weak probability: in this case, the {a1, a2, ....} can indeed have a
connection with the empirical probability associated with the text yn.

But that does not correspond to our assumption a priori. One thus rejects
it with regard to the theoretical probabilities (but not with regard to empirical
probabilities).

Thus the random sequences of bits b1(n′) obtained in section 11.2 will check
the theoretical assumption IID. But it is always possible that, despite all our
constructions, the sequence bi which we obtain finally does not check all the
tests of randomness, as it is the case for any sample really IID, i.e. with a
negligible probability.

8.3.6 Conclusion

Finally under our assumptions, one finds no theoretical case where the pxs
are

not close to 1/m. As a matter of fact, one can prove that it is also true for
many Borel sets Bo.

It is an important result. Indeed, for a sequence of data yn, there exists
very large number of possible models Yn. But the reasoning above shows that∣∣Proba2{T̂−1(I)} − L(I)

∣∣ is small for all the reasonable and logical models.

It is concluded that, for all the correct models Xn of the sequence of data
x∗n = Tq(yn) the marginal probability of the Xn is very close to the uniform
probability. That is thus true for sequences e3S(j) = mST

mS
1 (e2S(j)/m1

S) (cf
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section 11.2).

This result is important : in the section 11.2, we will be sure that
our model for the sequence E3(j) is good : the probability marginal of the
E3(j) is very close to the uniform probability.

8.4 Multidimensional case

One will understand now that the previous results seems to be again valid in
the multidimensional case. We did not make a detailed study of this problem
because the techniques which we employ in the chapters 11 and 12 do not require
it.

8.4.1 Empirical probability

Let x∗n = Tq(yn), n = 1, 2, ...., n0, be a sample of the random variables Xn =

Tq(Yn), where all the yn’s are distincts. For t=1,2,...,p, we set It =
[
ct

m ,
c′t
m

[

where ct, c
′
t ∈ F ∗(m). In order to simplify notations, in some cases we iden-

tify It, It ∩ F (m) and It ∩ F (dq). We denote by Pe the associated empirical
probabilities. Therefore, we have

Pe

{{
Tq(Yn+j1) ∈ I1

}
∩ .... ∩

{
Tq(Yn+jp) ∈ Ip

}}
=

∑

x1
s1

∈I1
....

∑

xp
sp∈Ip

pex1
s1
,..,xp

sp
,

where pex1
s1
,..,xp

sp
= Pe

{{
T̂ (Yn+j1) = x1

s1

}
∩ .... ∩

{
T̂ (Yn+jp) = xpsp

}}
.

We set At = T̂−1(It) = {at1, ....., atc′t−ct
} for t=1,2,...,p.

Let us suppose that the yn is obtained starting from text. The yn thus
represent parts of texts. There is then no logical connection between this text
and the sets At.

Relationship between texts and the sets At : 1

As in section 8.1.4 there is no logical connection between the set J =

[Newton’s theory ]
[of gravitation was]
[ soon accepted wit]
....................................
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and the sets of type H1 =

[whgkudf ly cuqhjg]
[aamxgusdggbxckmp]
[x;cbkutcc ze xycyc x]
[oeHlm mlk Rdfg yu]
.........................................

In multidimensional case, the probability that {[Newton’s theory ], [of grav-
itation was], [ soon accepted wit]} ⊂ H1 ⊗ H2 ⊗ H3 is approximatively equal

to
∏3
t=1

[
card(Hst)/3218

]
. These results can also be understood by numerical

studies.

Relationship between texts and the sets At : 2

Because there is always no connection between parts of texts (yn+j1 , ....., yn+jp)
and the sets A1 ⊗ .... ⊗ Ap, it is thus logical that sums on the various possible
sets A1⊗ ....⊗Ap (where p ≤ Log(n0)/log(2) ), behave as sums over sets chosen
randomly, i.e. ∑

x1
s1

∈I1
.....

∑

xp
sp∈Ip

pex1
s1
,..,xp

sp
≈ C1

for almost all the sets which have a same size : cf corollary 8.1.6 (C1 is a con-
stant).

As it is true for all the sets A1 ⊗ ....⊗Ap , C1 must check C1 ≈∏p
t=1 L(It).

For example, one can apply this result to several hypercubes of the same size
I1 ⊗ ....⊗ Ip forming a partition of F (m)p.

Example : continuous functions

Consider the vector (Xn+j1 , ..., Xn+jp). We know that

∑

x1
s1

∈
[

c1
m ,

c′1
m

[
.....

∑

xp
sp∈
[

cp
m ,

c′p
m

[
px1

s1
,..,xp

sp

=
∑

(yn+j1
,....,yn+jp )∈A1⊗....⊗Ap

E
{

1A1⊗....⊗Ap(yn+j1 , ...., yn+jp)
}
.

Let us suppose that (Yn+j1 , ...., Yn+jp) is approximately a function with con-
tinuous density and that the c′t−ct are large enough. By applying the traditional
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methods of integration, it is then clear that

∑

x1
s1

∈I1

.....
∑

xp
sp∈Ip

px1
s1
,..,xp

sp
≈

p∏

t=1

L(It) .

Under the assumption of this continuous model, one thus obtains easily IID
sequences. Let us recall that, when n0 << dp, one often accepts like model a
model with continuous density. That shows that the functions Tq are a good
tool to obtain IID sequences.

8.4.2 Theoretical probability

Let us choose a random vector (Xn, Xn+1, ...., Xn+p). One generalizes the no-
tations of section 8.2 . We set

px1
s1
,..,xp

sp
= P

{
(Xn+1 = x1

s1) ∩ ... ∩ (Xn+p = xpsp
)
}
.

Probabilities chosen randomly

One generalizes the reasoning of the unidimensional case. At first a natural order
is defined in F (m)p. According to proposition 8.1.1, there exists a permutation

ψ0 such that the sequence pψ0(y1
s1
,..,yp

sp ) = pf
y1

s1
,..,yp

sp
can be regarded as an IID

sample of random variables (according to the order defined on F (m)p) which
have the distribution MZ .

Because T can be regarded as independent of the text, therefore independent
of probabilities pf

y1
s1
,..,yp

sp
, the permutation ψ1(y1

s1 , .., y
p
sp

) = ψ−1
0 (T (y1

s1), .., T (ypsp
))

corresponding to

pf
y1

s1
,..,yp

sp
7→ pf

ψ1(y1
s1
,..,yp

sp )
= pψ0(ψ

−1
0 (T (y1

s1
),..,T (yp

sp ))) = pT (y1
s1

),..,T (yp
sp ) = px1

s1
,..,xp

sp

can be regarded as chosen randomly.
Therefore, the sequence px1

s1
,..,xp

sp
= pf

ψ1(y1
s1
,..,yp

sp )
can be regarded as an IID

sample of random variables which have the distribution MZ .

Model

Therefore, one can consider that the associated theoretical probabilities behave
as if they were chosen randomly.

Hypothesis 8.4.1 Suppose that

px1
s1
,..,xp

sp
=

p′
x1

s1
,..,xp

sp∑m
i1=1 ....

∑m
ip=1 p

′
i1/m,...,ip/m

.
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We assume that the p′
x1

s1
,..,xp

sp
’s are a sample of a sequence of IID random

variables P ′
x1

s1
,..,xp

sp
defined on the probability space (Ω1,A1, P roba1) : p′

x1
s1
,..,xp

sp
=

P ′
x1

s1
,..,xp

sp
(ω1). One supposes that P ′

x1
s1
,..,xp

sp
has the distribution M. Let EM and

σ2
M be the associated expectation and the associated variance, respectively .

We shall need the following notations.

Notations 8.4.1 Let pm = ⌊Log(n0)/log(2)⌋. For all b > 0, we denote by
Γ1(b) the fonction Γ1(b) = 2.Maxp≤pm,ns≥n2Proba1

{
|S(n),p| ≥ b

}
where n2 =

mink∈F∗(dq)(card{r/m | k/dq ≤ r/m < (k + 1)/dq)}, (n) = (n1, ...., np), and
where

S(n),p =

∑n1

i1=1 ....
∑np

i1=1 P
′
i1/m,...,ip/m

σM
√
n1n2....np

.

Of course Γ1(b) ≈ 2Γ(b) as soon as m/dq is large enough.

Independence in each point

Now, one will understand that one has a good approximation of the indepen-
dence in each point. First, one has the following proposition.

Proposition 8.4.1 The following approximation holds.

P
{

(Xn, ...., Xn+p) = (k1, ...., kp)/d
q
}
≈ 1/dpq .

Proof We assume that It =
[
kt/d

q, (kt + 1)/dq
[
. Then,

P
{

(Xn, ...., Xn+p) = (k1, ...., kp)/d
q
}

=
∑

x1
s∈I1

.....
∑

xp
s∈Ip

px1
s1
,...,xp

sp
.

Because px1
s1
,..,xp

sp
=

p′
x1

s1
,..,x

p
sp

Pm
i1=1 ....

Pm
ip=1 p

′

i1/m,...,ip/m
and because the P ′

x1
s1
,..,xp

sp

have the distribution M,

P
{{
T̂ (Y1) ∈ I1

}
∩ .......... ∩

{
T̂ (Yp) ∈ Ip

}}

=

∏
s(c

′
s − cs)

mp

1
Q

s(c′s−cs)

∑
x1

s∈I1 .....
∑
xp

s∈Ip
p′
x1

s1
,...,xp

sp

1
mp

∑m
i1=1 ....

∑m
ip=1 p

′
i1/m,...,ip/m

which converges in probability to
Q

s(c′s−cs)

mp because the p′
x1

i1
,...,xp

ip

are an IID

sample. �

More precisely the following lemma hold.
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Lemma 8.4.1 We assume that It =
[
kt/d

q, (kt + 1)/dq
[
. Let N(It) be the

number of r/m ∈ F (m) such that kt/d
q ≤ r/m < (kt + 1)/dq. We suppose

It ∩ F (m) = [ct/m, c
′
t/m[∩F (m).

Let us suppose m enough large compared to dq and to the N(It). Let us
suppose that b and σM are not too large. Let us suppose that EM is not too
small.

Then, with a probability larger than 1 − Γ1(b),

P
{{
Y1 ∈ T̂−1(I1)

}
∩.....∩

{
Yp ∈ T̂−1(Ip)

}}
≈
∏
s(c

′
s − cs)

mp

[
1+

Ob(1).bσM

EM
√∏

sN(Is)

]
.

Proof We use the CLT. Then, with a probability larger than 1 − Γ1(b)/2,

1∏
sN(Is)

∑

x1
s∈I1

.....
∑

xp
s∈Ip

p′x1
s1
,...,xp

sp
= EM +

Ob(1).bσM√∏
sN(Is)

.

Then, with a probability larger than 1 − Γ1(b),

P
{{
Y1 ∈ T̂−1(I1)

}
∩ ..... ∩

{
Yp ∈ T̂−1(Ip)

}}

=

∏
s(c

′
s − cs)

mp

1
Q

s(c′s−cs)

∑
x1

s∈I1 .....
∑
xp

s∈Ip
p′
x1

s1
,...,xp

sp

(1/mp)
∑m
i1=1 ....

∑m
ip=1 p

′
i1/m,....,ip/m

=

∏
s(c

′
s − cs)

mp

EM + Ob(1).bσM√
Q

s N(Is)

EM + Ob(1).bσM√
mp

=

∏
s(c

′
s − cs)

mp

1 + (Ob(1).bσM )/[EM
√∏

sN(Is)]

1 + (Ob(1).bσM )/[EM
√
mp]

≈
∏
s(c

′
s − cs)

mp

[
1 +

Ob(1).bσM

EM
√∏

sN(Is)
+
Ob(1).bσM

EM
√
mp

]

≈
∏
s(c

′
s − cs)

mp

[
1 +

Ob(1).bσM

EM
√∏

sN(Is)

]
. �

We deduce the following proposition.

Proposition 8.4.2 Let us suppose m enough large compared to dq and to the
N(Ik)’s. Let us suppose that b and σM are not too large. Let us suppose that
EM is not too small. Then, with a probability larger than 1 − Γ1(b),

P ′{X1 = k1/d
q, ....., Xp = kp/d

q
}

=
1

dpq

[
1 +

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM
√∏

sN(Is)

]
.
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Proof In this case, [ck/m, c
′
k/m[= Ik. By the proof of lemma 8.4.1,

P
{{
Y1 ∈ T̂−1(I1)

}
∩ ..... ∩

{
Yp ∈ T̂−1(Ip)

}}

=

∏
s(c

′
s − cs)

mp

[
1 +

Ob(1).bσM

EM
√∏

sN(Is)
+
O(1).bσM

EM
√
mp

]
.

By our definition h0/m ≤ 1/dq ≤ (h0 + 1)/m. By the lemma 8.1.2, N(Ik) =
c′k − ck = h0 or N(Ik) = h0 + 1. Then,

c′s − cs
m

=
1

dq
+
Ob(1)

m
.

Then,
∏ c′s − cs

m
=
[ 1

dq
+
Ob(1)

m

]
....
[ 1

dq
+
Ob(1)

m

]

=
1

dpq
+

pOb(1)

m.d(p−1)q
+
Ob(1)p(p− 1)/2

m2.d(p−2)q
+ ....

=
1

dpq

[
1 +

p.dqOb(1)

m
+
p(p− 1)d2qOb(1)

2m2
+ ....

]
.

Then,

P
{{
Y1 ∈ T̂−1(I1)

}
∩ ..... ∩

{
Yp ∈ T̂−1(Ip)

}}

=
1

dpq

[
1+

p.dqOb(1)

m
+
p(p− 1)d2qOb(1)

2m2
+....

][
1+

Ob(1).bσM

EM
√∏

sN(Is)
+
O(1).bσM

EM
√
mp

]

=
1

dpq

[
1 +

Ob(1)(3/2)p.dq

m

][
1 +

Ob(1).(3/2)bσM

EM
√∏

sN(Is)

]

=
1

dpq

[
1 +

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM
√∏

sN(Is)

]
. �

8.4.3 Case of Borel sets

One supposes ”p” fixed with p ≤ pm = ⌊Log(n0)/log(2)⌋.
Now, we study the probability that (Xn+j1 , ...., Xn+jp) ∈ Bo where Bo is

a Borel set of F (dq)p : we set Bo = ∪(k1,...,kp)∈Θ{(k1/d
q, ..., kp/d

q)} , where
Θ ⊂ {0, 1, ...., dq − 1}p. Let KΘ = card(Θ).

One can also write that

Bo = ∪(k1,...,kp)∈Θ

{
[k1/d

q, (k1 + 1)/dq[, ..., [kp/d
q, (kp + 1)/dq[

}
.

Then, L(Bo) = KΘ

dpq .
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Let Ikt = [kt/d
q, (kt + 1)/dq[. Then,

Proba1

{
∣∣∑

(x1
s1
,...,xp

sp )∈∪(k1,...,kp)∈ΘIk1
⊗....⊗Ikp

(P ′
x1

s1
,...,xp

sp
− EM )

∣∣
√
N(Bo)σM

≥ b
}
≤ Γ1(b)/2 .

Moreover, we have the following proposition.

Proposition 8.4.3 Let us suppose m enough large compared to dq and to the
N(Iks

). Let us suppose that b and σM are not too large. Let us suppose that
EM is not too small. Then, with a probability larger than 1 − Γ1(b),

P
{

(Xn+j1 , ...., Xn+jp) ∈ Bo
}

= L(Bo)
[
1+

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM .Inf
{√∏

sN(Iks
)
}
]
.

Proof By proposition 8.4.2 ,

P
{

(Xn+j1 , ...., Xn+jp) ∈ Bo
}

=
∑

(k1,...,kp)∈Θ

1

dpq

[
1 +

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM .Inf
{√∏

sN(Iks)
}
]

=
KΘ

dpq

[
1 +

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM .Inf
{√∏

sN(Iks
)
}
]

= L(Bo)
[
1 +

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM .Inf
{√∏

sN(Iks
)
}
]
. �

Now, one can prove the following lemma.

Lemma 8.4.2 We assume that the assumptions of proposition 8.4.3 holds. Let
1 ≤ n ≤ n0. Let PXn

(Bo) = P
{

(Xn+j1 , ...., Xn+jp) ∈ Bo
}
. One supposes that

M is the uniform distribution. Then,

Proba1

{
⋂

n+jt,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ L(Bo)
[2p.dq

m
+

√
3b.√

dp(Q−q)

]}}

≥ 1 − np02d
pq

Γ1(b) . (8.3)

Proof For all Borel set Bo, by proposition 8.4.3, we have thus with a
probability larger than 1 − Γ1(b),

P
{

(Xn+j1 , ...., Xn+jp) ∈ Bo
}

= L(Bo)
[
1+

Ob(1)2p.dq

m
+

Ob(1).2bσM

EM .Inf
{√∏

sN(Iks)
}
]
.
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Then, because σ2
M = 1/12, EM = 1/2,

Proba1

{∣∣PXn
(Bo) − L(Bo)

∣∣ > L(Bo)
[2p.dq

m
+

3b√
3.dp(Q−q)

]}
≤ Γ1(b) .

For h ∈ {0, 1, ..., dpq}, there are Chdpq Borel sets Boh such that card(Boh) =
h. Moreover, there is at the maximum (n0)p ”n+ jt” possible. Then,

Proba1

{
⋂

n+jt,Bo

{∣∣PXn(Bo) − L(Bo)
∣∣ ≤ L(Bo)

[2p.dq

m
+

3b.√
3.dp(Q−q)

]}}

= Proba1

8

<

:

\

n+jt,h,Boh



˛

˛

˛
PXn (Boh) − L(Boh)

˛

˛

˛
≤ L(Boh)

»

2p.dq

m
+

3b.√
3.dp(Q−q)

–ff

9

=

;

= 1 − Proba1

8

<

:

∁
\

n+jt,h,Boh



˛

˛

˛
PXn (Boh) − L(Boh)

˛

˛

˛
≤ L(Boh)

»

2p.dq

m
+

3b.√
3.dp(Q−q)

–ff

9

=

;

= 1 − Proba1

8

<

:

[

n+jt,h,Boh



˛

˛

˛
PXn (Boh) − L(Boh)

˛

˛

˛
> L(Boh)

»

2p.dq

m
+

3b.√
3.dp(Q−q)

–ff

9

=

;

≥ 1 −
X

n+jt,h,Boh

Proba1



˛

˛

˛
PXn (Boh) − L(Boh)

˛

˛

˛
> L(Boh)

»

2p.dq

m
+

3b.√
3.dp(Q−q)

–ff

= 1 −
∑

h

∑

n+jt,Boh

Γ1(b)

= 1 −
∑

h

np0C
h
dpq Γ1(b)

= 1 − np02d
pq

Γ1(b) . �

We deduce the following properties.

Property 8.4.3 One supposes b big. In order that the inequality 8.3 is useful,
we have to impose b = K11d

qp/2 where K11 > 1.

Proof One use the study of property 8.2.4. One reminds that (1/2)Γ1(b) ≈
Γ(b) ≈

√
2√
πb
e−b

2/2 if b is large.

Then, if one choose b = K11d
qp/2 with K11 suitably chosen, np02d

pq

Γ1(b) <<
1. Then, 1 − np02d

pq

Γ1(b) ≈ 1. �.

Now, b has to be not too large.

Property 8.4.4 One supposes b large. In order that the inequality 8.3 is useful,
we can impose 2q < Q.

222



Proof One use the study of property 8.2.5. One reminds that if one chooses
b = K11d

qp/2,
2p.dq

m
+

√
3b√

dp(Q−q)
=

2p.dq

m
+

√
3K11√

dp(Q−2q)
.

In order that this equality is usefull, on can impose
√

3K11

dp(Q−2q)/2 = ǫ3 << 1,

and therefore, 2q < Q. Now, 2p.dq

m = ǫ4 ≈ 0. Then, ǫ5 = ǫ4 + ǫ3 ≈ 0. We deduce
that

Proba1

{
⋂

n+jt,Bo

{∣∣PXn(Bo) − L(Bo)
∣∣ ≤ L(Bo)

[2p.dq

m
+

√
3b√

dp(Q−q)

]}}

= Proba1

{
⋂

n+jt,Bo

{∣∣PXn
(Bo) − L(Bo)

∣∣ ≤ L(Bo)ǫ5

}}

≥ 1 − np02d
pq

Γ1(b) ≈ 1 . �

As in the case p=1, one notices that it seems that one is not obliged to
impose this condition to have xn IID when the size of the sample n0 checks
n0 << dq .

Remark 8.4.5 Conditions 2q < Q of property 8.4.4 is much too strong. Indeed
in lemma 8.4.2 one can decrease the number of conditions about Borel Set : cf
[18]

The problem of marginals laws

In the choice of spaces (Ω1,A1, P roba1) there is a problem: one does not take
account of the marginal probabilities.

In fact with the measure defined into hypothesis 8.4.1, p is fixed. There
will not be the same results if p is changed: in this case one changes space of
measure. Thus let us note (Ωp1,Ap

1, P roba
p
1) the probability spaces associated

with the (Xn+j−1, ., Xn+jp) for each p fixed.
Thus, in (Ω2

1,A2
1, P roba

2
1) with a probability very close to 1 one has

P
{{
X1 ∈ I1

}
∩
{
X2 ∈ I2

}}
≈ (c′1 − c1)(c′2 − c2)

m2

[
1 +

Ob(1).b√
3N(I1)N(I2)

]
.

Therefore,

P
{
X1 ∈ I1

}
= P

{{
X1 ∈ I1

}
∩
{
X2 ∈ F (m)

}}
≈ c′1 − c1

m

[
1 +

Ob(1)b√
3N(I1)m

]
.
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Now, in space (Ω1
1,A1

1, P roba
1
1), one has

P
{
X1 ∈ I1

}
≈ c′1 − c1

m

[
1 +

Ob(1)b√
3N(I1)

]
.

This difference comes from the marginal probabilities. In space (Ω2
1,A2

1, P roba
2
1)

those will be already a sum of probabilities taken randomly. That means that
with this measure, the marginal probabilities px1

s1
=
∑
x2

s2

px1
s1
,x2

s2
in their vast

majority will have a priori uniform distribution.
One thus does not take in account that the px1

s1
are probabilities in two

dimensions with marginal laws, i.e. with constraints. It is thus a result which
seems not to correspond to reality.

However it is not completely true. Let us place in empirical probabilities,
which is always the case because n0 << m. Then, the yn seems quite indepen-
dent of the sets T−1

q (Ik) ⊗ T−1
q (Ik′). It is not true any more for the theoretical

probabilities. It is normal : it is impossible to estimate pxs for each point xs.
because n0 << m.

For this reason, one can choose functions with continuous densities instead
of estimating the probabilities in each points pxs

. But that also does not cor-
respond to the case of the functions with continuous densities which are also a
reasonable model cf remark 7.1.21.

Anyway, this is not very important : measures of spaces (Ω1,A1, P roba1)
are only measures giving an idea of the numbers of models close to a sequence
IID.

Moreover, that does not change anything with the ultimate result. The ap-
proximation P{xn = k/dq} is always very fine with one or other space. More-
over, for all the logical models that we studied the result is always the same
one: e.g. the case with continuous density. Indeed, the sums associated to
Xn = Tq(Yn) behave as sums taken randomly. That shows well that only a
negligible minority of models does not check relations of lemma 8.4.1.

To have probabilities not checking relations of lemma 8.4.1 it is necessary to
choose especially selected nonnatural probabilities for the occasion: therefore
our results are true for all the logical models: cf chapter 13.

8.5 Use of the T d
q

In the construction of the random sequences of bits b1(n′) we use the functions
T dq . twice. The selection criteria of the parameters are not the same.
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8.5.1 First use

One considers the transformation Tm1 used in section 11.1.2 : we remind e3S(j) =
mTm1 (e2(j)/m1) where m and m1 belong to the Fibonacci sequence.

In order to choose parameters m and m1, one can use the results studied in
section 8.3.5 : m ≤ (m1)3/5. These results are sufficient to guarantee that the
marginal laws are sufficiently close to the uniform law.

Because m ≤ (m1)3/5 ≤ (m1)3/4, one supposes only m ≤ (m1)3/4. For
example, if m1 = O(1028), one can admit nxs

≤ (m1)3/4 = O(1021). In fact,
this assumption is still too strong. It corresponds for example to the fact that
the probability is concentrated in approximately 1021 points. Indeed, in section
11.2, one uses a sample e2(j), j = 1, 2, ..., J where J ≥ 107, where the e2(j) are
well distributed To suppose that for such a sample, the probability is concen-
trated in 1021 points does not have any logical support.

Any way, it is better to choose the parameters in a way which will be good
for the two methods studied in this chapter in sections 8.2 and 8.3. In the first
method one obtains

P
{
Xn = k/dq

}
≈ 1

dq

[
1 +

Ob(1).b.σM

EM
√
N(I)

]
.

Generally, it is a result stronger than that obtained in the second method :

PXn{Xn = k/dq} ≈ 1

m
3/5
n

[
1 +

Ob(1).b

m
1/10
n

]
.

In the concrete cases, in order to choose well the probability that one wants
for Ω1 or Ω2, best is to use the two previous studies together. This is why we
conclude that the assumption ”m ≤ (m1)3/4” is quite sufficient.

8.5.2 Second use

One considers the transformation of the h(n) which are obtained by using the
XORLT in section 11.1.2 : x(n) = Tq(k(n)) . This choice depends on the
quality of the approximation of an IID sequence which one desired to have for
the sequence X(n).

In fact what interests us it is that the assumption studied in section 7.2 is
correct :

PY {Y = k/m} =
1

m

[
1 + uk

]
,

where uk is a sample of an IID sequence of random variables Uk with σ2
U ≤ 1.

But, it is necessary that this assumption is checked by the conditional prob-
abilities P{H(j) = h|h2, ...., hp}, i.e.

P{H(j) = h|h2, ...., hp} =
1

m

[
1 + uk

]
.
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One can deduce this result from the hypothesis 5.7.1 which results from the
section 5.7.

To confirm this assumption, one will detail here the behavior of the condi-
tional probabilities.

One transforms the H(j)’s by using the functions Tq: to calculate P{H(j) =
h} (or P{H(j) = h|h2, ...., hp}) amounts to summon the probabilities pxs asso-
ciated with the F(i,j)’s. Then according to the corollary 8.1.4, one can always to
consider that one has this model. The problem is to prove that one has σ2

U ≤ 1.

Probability of G(j) One reminds that H(j) = G(j) modulo m : cf section
11.1.2. Then, by proposition 5.6.1, it is enough that this model is correct for
the conditional probabilities of the G(j), P{G(j) = g|g2, ...., gp}.

Let us suppose again that one uses text. One understood in section 3.1.3
that, in the worst case, pxs

≤ 32/32r0 as soon as r0 is large enough. After
transformation in F ∗(m), that amounts to pxs

≤ 32/m. It is noticed that this
increase pxs

≤ 32/m is much better than nxs
≤ m1/4 .

But it is difficult to study a priori all the conditional probabilities associated
with a text. One thus will choose a worse increase to be sure of this increase.
Finally, by using text, according to various numerical simulations and the logi-
cal study carried out in chapter 10, one can admit that pxs

≤ m1/8 for m ≥ 1010.

Distribution of the sums of the conditional probabilities Now, one can
apply the results to the laws of sums to the sums of conditional probabilities :
cf proposition 5.7.1. One will thus use the sum of the conditional probabilities
of the F(i,j)’s : cf section 11.1.2,

One knows that in almost all the cases, as soon as the probability is not con-
centrated nearly a small number of points, the speed of convergence of the sums
to a probability having a density in shape of bell is extremely fast. Now, our
study of the conditional probabilities in section 3.1.3 show that the conditional
probabilities are not concentrated nearly a small number of points. Moreover,
various numerical studies confirm this result.

Finally, the curve of the sums has the shape of bell: cf section 5.4 and 7.1.2.

Preliminary standardization We remind that the F(i,j)’s (cf section 11.1.2)
are variables made uniform : e3(j) = mTm1 (e2(j)/m1). Moreover, by section
8.4, Tm1 makes the E2(j) independent.

That consolidates the fact that the P{G(j) = g|g2, ...., gp} are not concen-
trated nearly a small number of points.

Probability of H(j) The distributions of the H(j)’s have a convergence (to
the uniform distribution) even clearer than that of the G(j)’s. One of the rea-
sons, it is that to have the distributions of the H(j)’s, it is necessary to make
various mixtures which make uniform the distributions : cf proposition 5.7.2.
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Moreover, by proposition 5.2.4, this convergence is a convergence to the
uniform distribution. There will be thus

P{H(j) = h | H(j + js) = hs} ≈ P{H(j) = h} = 1/m .

In dimension p, there will be

P{H(j + js) = hs|s = 1, 2, ..., p} ≈ 1/mp .

Rate of convergence By proposition 5.2.4, P{H(j) = h|h2, ...., hp} ≈ 1/m.
This result is checked with a rate of convergence extremely fast : cf section
5.5.2.

Conclusion All these results show that, so that the assumption P{H(j) =

h|h2, ...., hp} = 1
m

[
1 + uk

]
, with σ2

U ≤ 1 is not satisfied, it would be necessary

that the probabilities P{H(j) = h|h2, ...., hp} are concentrated nearly a small
number of point. Now, even if one used simply sums of F(i,j) not made uniform
by Tm1 , it would not be the case. One can thus admit that the assumption
”σ2

U ≤ 1” is checked.

However, this is, for the moment, only one conjecture because not completely
proved. There are thus two solutions.

1) Or one admits this conjecture which is very probably checked
2) Or it is noted that the results are checked with a probability infinitely

close to 1 in the set of the possible probabilities : cf section 5.5.
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Chapter 9

Empirical Theorems

9.1 Notations and assumptions

We keep the classical notations for the stochastics ”O(.)” and ”o(.)” (cf notation
A.2.1. cf also [42] page 8, section 1.2.5). In particular, Xn = OP (1) if Xn

converges in distribution to a random variable X.

Notations 9.1.1 A sequence of random variable Xn is bounded in probability,
if, for every ǫ > 0, there exists Mǫ and Nǫ such that P{|Xn| ≤Mǫ} ≥ 1 − ǫ for
all n ≥ Nǫ . Then, one writes Xn = OP (1) .

Moreover, we write Xn = oP (1) for sequence of random variable Xn if Xn

converges in probability to 0.

In this chapter, we use the following notations.

Notations 9.1.2 Let js , s=1,2,...,p, js ∈ Z, be an injective sequence such that
j1 = 0. Let d0 =

∣∣min(js|s = 1, 2, .., p)
∣∣.

Notations 9.1.3 Let m ∈ N
∗ be a fixed integer. Suppose ǫ fixed and statisfying

0 < ǫ ≤ 1/4. Let X0
n ∈ F (m), n ∈ N

∗ be a sequence of random variables defined
on a probability space (Ω,A, P ).

One supposes that, for all Borel set Bo ⊂ F (m) , for all p ∈ N
∗ , for all

sequence js, for all x2, ....., xp, for all n ∈ N
∗, such that n > d0,

P
{
X0
n ∈ Bo

∣∣X0
n+j2 = x2, ....., Xn+jp = xp

}
= L(Bo) +Ob(1)ǫ .

Notations 9.1.4 We set Xn = X0
n+d0

.

In this chapter, we shall suppose also that Bo is a fixed Borel set.

Notations 9.1.5 Let Bo = Bo1 ⊗ Bo2 ⊗ .... ⊗ Bop ⊂ F (m)p be a Borel set
where L(Bos) ≤ 1/2 for s=1,...,p.

We set 1Bo(Xn) = 1Bo1(Xn+j1)1Bo2(Xn+j2)....1Bop
(Xn+jp).
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Then, by proposition 4.2.2, for all Borel set Bo, for all p, for all sequence js,

E
{

1Bo(Xn)
}

=
[
L(Bo1) +Ob(1)ǫ

]
......

[
L(Bop) +Ob(1)ǫ

]
.

We deduce the following property.

Proposition 9.1.1 For all p ∈ N
∗, we set ǫp = Rp(ǫ) = (1/2 + ǫ)p − (1/2)p.

Then, for all Borel set Bo such that L(Bos) ≤ 1/2 for s=1,...,p.

E
{

1Bo(Xn)
}

= L(Bo) +Ob(1)ǫp .

Proof One can write

E
{

1Bo(Xn)
}
− L(Bo) =

(
L(Bo1) + ǫ′1

)
......

(
L(Bop) + ǫ′p

)
− L(Bo1)....L(Bop)

where |ǫ′s| ≤ ǫ.

Then,

(
L(Bo1) + ǫ′1

)
......

(
L(Bop) + ǫ′p

)
− L(Bo1)....L(Bop)

= L(Bo1)ǫ′2....ǫ
′
p + L(Bo2)ǫ′1ǫ

′
3.....ǫ

′
p + ......

+L(Bo1)L(Bo2)ǫ′3.....ǫ
′
p + L(Bo1)L(Bo3)ǫ′2ǫ

′
4.....ǫ

′
p + ......

+........................................

≤ (1/2)
[
ǫ′2....ǫ

′
p + ǫ′1ǫ

′
3.....ǫ

′
p + ......

]

+(1/4)
[
ǫ′3.....ǫ

′
p + ǫ′2ǫ

′
4.....ǫ

′
p + ......

]

+........................................

≤ (1/2)pǫp−1 + (1/4)[p(p− 1)/2]ǫp−2 + ...... ≤ (1/2 + ǫ)p − (1/2)p . �

In this chapter one will study the asymptotic behavior of the empirical prob-
ability of a Borel set Bo ⊂ F (m)p.

Hypothesis 9.1.1 In the three following sections 9.2 , 9.3 and 9.4, p means
an fixed integer. Moreover, Bo means a fixed Borel set. Finally the sequence js
is fixed.
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9.2 First Theorem

9.2.1 Definition of H(n,q)

At first, we have to define the set H(n,q).

Notations 9.2.1 We set j(e) = je for e=1,2,...,p. We denote by c(1) < c(2) <
.... < c(Q) , c(s) ∈ Z, the integers c(µ) = j(e) − j(e′), where e and e’ ∈
{1, 2, ..., p}.

That is to say that, if c(µ) = m−n , there exist e and e’ such that Xn+j(e) =
Xm+j(e′).

Then, there exists e and e’ ∈ {1, 2, ..., p} such that c(µ) + j(e′) = j(e). That
is to say n+ c(µ) + j(e′) = n+ j(e). That is to say m+ j(e′) = n+ j(e).

Then, if m 6= n + c(µ) for all µ, Xn+j(e) 6= Xm+j(e′) for all e and e’
∈ {1, 2, ..., p}.

Notations 9.2.2 For all n, we set H(n) =
{
m ∈ N

∗∣∣∃µ : m = n + c(µ)
}
,

H∗(n) =
{
m ∈ N

∗∣∣∃µ : m = n+ c(µ),m 6= n
}

.

Notations 9.2.3 Let q ∈ N
∗. For all n, we set

H(n, q) =
{
m ∈ N∗∣∣∃ µ : |n+ c(µ) −m| ≤ q

}

and H∗(n, q) = H(n, q) \H(n) .

9.2.2 Notations

We suppose that there exists a certain asymptotic independence.

Hypothesis 9.2.1 For all n ∈ N
∗, let Ln = Ln(Bo) = E

{
1Bo(Xn)

}
. Let

δd = Maxn∈N∗

∣∣∣E
{(

1Bo(Xn) − Ln
)(

1Bo(Xn+d) − Ln+d

)}∣∣∣.
We suppose that there exists q ∈ N

∗ and kB > 0 such that
∑
n+d/∈H(n,q) δd ≤

(kB/10)ǫp.

For example, if there is a Qd-dependence, one can choose q = Qd : in this
case

∑
n+d/∈H(n,q) δd = 0.

Notations 9.2.4 Let N ∈ N
∗ . We set

σ2
1 = (1/N)E

{[ N∑

n=1

(
1Bo(Xn) − Ln

)]2}
,
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σ2
B = σ2

B(Bo) = (1/N)E
{[ N∑

n=1

(
1Bo(X

′
n) − L(Bo)

)]2}
,

when X ′
n is an IID random sequence which have the uniform distribution on

F (m).

For example, if p=1, σ2
B = L(Bo)[1 − L(Bo)]. Remark that L(Bo) =

N(Bo)/m.

9.2.3 Wording of the first theorem

Now, we can expound the first empirical theorem.

Theorem 9 Let A(p) = 1 − (p2 − p+ 1)2−p . Let LN (Bo) = (1/N)
∑N
n=1 Ln.

Let
β1,p =

√
N [LN (Bo) − L(Bo)]/σB(Bo) .

We set

γ1,p =
1

2A(p)L(Bo)

[
(p2−p+1)

(
ǫp+2qǫ2p+(1+2q)

[
21−pǫp+ ǫ2p

])
+kB0.1ǫp

]
.

Let Pe = 1
N

∑N
n=1 1Bo(Xn). Then, the following inequality holds

P

{
√
N
∣∣Pe − L(Bo)

∣∣ ≥ σB(Bo)x

}
≤ K1

(1 − β1,p/x

1 + γ1,p
x
)
,

where K1(x) = P
{√

N |Pe−LN (Bo)|
σ1(Bo)

≥ x
}

.

For example, if Xn is Qd-dependent,
√
N(Pe−LN (Bo))

σ1(Bo)
has asymptotically the

distribution N(0,1).

9.2.4 Proof of theorem 9

First, we suppose ǫ is small enough. Then, the following lemma is needed.

Lemma 9.2.1 We suppose ǫ is small enough. In particular, we suppose ǫ ≤
1/4. Then, ǫp ≥ ǫp+1 if p ≥ 2 and ǫp < ǫp+1 if p = 1.

Proof We have Rp(ǫ) = exp
(
p.log(1/2 + ǫ)

)
− exp

(
p.log(1/2)

)
.

Therefore,

d
(
Rp(ǫ)

)

dp
= log(1/2 + ǫ)exp

(
p.log(1/2 + ǫ)

)
− log(1/2)exp

(
p.log(1/2)

)
,
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which is equal to 0 if and only if

log(1/2 + ǫ)exp
(
p.log(1/2 + ǫ)

)
= log(1/2)exp

(
p.log(1/2)

)
,

i.e.

exp
(
p.log(1/2 + ǫ) − p.log(1/2)

)
=

log(1/2)

log(1/2 + ǫ)
,

i.e.

exp
(
p
[
log(1/2 + ǫ) − log(1/2)

])
=

log(1/2)

log(1/2 + ǫ)
,

which has an alone zero

p
[
log(1/2 + ǫ) − log(1/2)

]
= log

( log(1/2)

log(1/2 + ǫ)

)
,

that is to say

p =
log
(

log(1/2)
log(1/2+ǫ)

)

[
log(1/2 + ǫ) − log(1/2)

] =
log
(

log(1/2)
log((1/2)[1+2ǫ])

)

[
log((1/2)[1 + 2ǫ]) − log(1/2)

]

≈
log
(

log(1/2)
Log(1/2)+log(1+2ǫ)

)

log(1 + 2ǫ)
≈
log
(

log(1/2)
Log(1/2)+2ǫ

)

2ǫ
≈
log
(

1
1+2ǫ/log(1/2)

)

2ǫ

≈ −2ǫ/log(1/2)

2ǫ
= 1/log(2) = 1.4427 .

Now Rp(ǫ) ≈ 2pǫ
2p if p ≥ 2. For example for p = 3 > 1.4427, Rp(ǫ) ≥ Rp+1(ǫ).

Then,
d
(
Rp(ǫ)

)

dp < 0 if p > 1.4427. Then, Rp(ǫ) is decreasing if p > 1.4427 (and

also p > 2).

If p=2, Rp(ǫ) = ǫ+ ǫ2 and Rp+1(ǫ) = 3ǫ/22 + 3ǫ2/2 + ǫ3.

Therefore,

Rp(ǫ) −Rp+1(ǫ) = ǫ+ ǫ2 − 3ǫ/4 − 3ǫ2/2 − ǫ3

= (1/4)ǫ− (1/2)ǫ2 − ǫ3 = (1/4)ǫ
(
1 − 2ǫ− 4ǫ2

)
= −(1/4)ǫ

(
4ǫ2 + 2ǫ− 1

)
,

where 4x2 + 2x − 1 = 0 has the following zero : x =
−2±

√
4−4(−1∗4)
2∗4 =

−2±
√

4+16
8 = −1±

√
1+4

4 = −1±
√

5
4 ≈ −1±2,25

4 = 0,312 or = -0,812.
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Therefore, if 0 < ǫ ≤ 0.25 ≤ 0.312, Rp(ǫ) −Rp+1(ǫ) ≥ 0 if p = 2.

Therefore, Rp(ǫ) ≥ Rp+1(ǫ) if p ≥ 2. �

We deduce from notation 9.2.1, the following property.

Lemma 9.2.2 With the previous notations,

{c(1), c(2), ..., c(Q)} = {j(e) − j(e′)|(e, e′) ∈ {1, 2, ..., p}2} ,

{c(1), c(2), ..., c(Q)|c(µ) 6= 0} = {j(e) − j(e′)|(e, e′) ∈ {1, 2, ..., p}2, e 6= e′} .

We deduce the following lemma.

Lemma 9.2.3 The following inequalities hold :
card

(
H∗(n)

)
≤ p2 − p ,

card
(
H(n)

)
≤ p2 − p+ 1 ,

card
(
H(n, q)

)
≤ (1 + 2q)(p2 − p+ 1) ,

card
(
H∗(n, q)

)
≤ 2q(p2 − p+ 1).

Lemma 9.2.4 The following inequality holds : σ2
B ≥ A(p)L(Bo).

Proof One can write

σ2
B = (1/N)E

{[ N∑

n=1

[
1Bo(X

′
n) − L(Bo)

]]2}

= (1/N)

N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(X
′
n)1Bo(X

′
m)
}
− L(Bo)2

)

= (1/N)

N∑

n=1

(
E
{

1Bo(X
′
n)
}

+
∑

m∈H∗(n)

E
{

1Bo(X
′
n)1Bo(X

′
m)
}
−

∑

m∈H(n)

L(Bo)2
)

≥ (1/N)

N∑

n=1

(
E
{

1Bo(X
′
n)
}
− (p2 − p+ 1)L(Bo)2

)

= L(Bo)
(

1 − (p2 − p+ 1)L(Bo)
)
. �

Lemma 9.2.5 The following inequalities hold : σ2
B ≥ A(p)L(Bo) ≥ L(Bo)/8.
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Proof At first, (p2 − p+ 1)L(Bo) ≤ (p2 − p+ 1)2−p. Now,

d(p2 − p+ 1)2−p

dp
= (2p− 1)2−p − Log(2)(p2 − p+ 1)2−p

= 2−p
[
(2p− 1) − Log(2)p2 + Log(2)p− Log(2)

]

= −2−p
[
Log(2)p2 −

[
2 + Log(2)

]
p+

[
1 + Log(2)

]]

which has the following roots

[
2 + Log(2)

]
±
√[

2 + Log(2)
]2 − 4Log(2)

[
1 + Log(2)

]

2Log(2)

=
2.6931 ±

√
2.69312 − 4 ∗ 0.6931 ∗ 1.6931

2 ∗ 0.6931
=

2.6931 ±
√

2.5586

2 ∗ 0.6931

=
2.6931 ± 1.5996

2 ∗ 0.6931
= 0.7888 ou 3.5423.

Therefore, (p2 − p+ 1)2−p decreases and converges to 0 if p ≥ 4. Moreover,
(p2 − p+ 1)2−p = 3/4 if p=2, 7/8 if p=3, 13/16 if p=4, 21/32 if p=5.

Then, (p2 − p+ 1)L(Bo) ≤ 7/8 . �

Lemma 9.2.6 If m ∈ H∗(n, q),

E
{

1Bo(Xn)1Bo(Xm)
}

= L(Bo1)2.....L(Bop)
2 +Ob(1)ǫ2p,

If m ∈ H(n)

E
{

1Bo(Xn)1Bo(Xm)
}

= E
{

1Bo(X
′
n)1Bo(X

′
m)
}

+Ob(1)ǫp .

Proof The first equality results from proposition 9.1.1.

Let us study the second equality.
If n=m, that results also from proposition 9.1.1.
If p=1, it is the case n=m : 1Bo(Xn)1Bo(Xm) = 1Bo′(Xn), where Bo′ ⊂ Bo.

Suppose p ≥ 2 and n 6= m. One can assume n < m.
Then, there exists a sequence is, s=1,...,p’, p′ < 2p, and a sequence of Borel sets
Bo′s, s=1,...,p’, such that

1Bo(Xn)1Bo(Xm)
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= 1Bo1(Xn)1Bo2(Xn+j2).....1Bop(Xn+jp)1Bo1(Xm)1Bo2(Xm+j2).....1Bop(Xn+jp)

= 1Bo′1(Xn)1Bo′2(Xn+i2).......1Bo′
p′

(Xn+ip′
) .

Therefore

1Bo(Xn)1Bo(Xm) = 1Bo′1(Xn)1Bo′2(Xn+i2).......1Bo′
p′

(Xn+ip′
) . (9.1)

Clearly p ≤ p′ < 2p. Therefore, because p ≥ 2, E
{

1Bo(Xn)1Bo(Xm)
}

=

E
{

1Bo(X
′
n)1Bo(X

′
m)
}

+Ob(1)ǫp′ = E
{

1Bo(X
′
n)1Bo(X

′
m)
}

+Ob(1)ǫp, consider-
ing ǫp ≥ ǫp′ (cf proposition 9.1.1). �

Lemma 9.2.7 The following equality holds

LnLm = L(Bo1)2.....L(Bop)
2 + 21−pOb(1)ǫp +Ob(1)ǫ2p.

Proof We have

LnLm =
[
L(Bo1)....L(Bop) +Ob(1)ǫp

][
L(Bo1).....L(Bop) +Ob(1)ǫp

]

= L(Bo1)2.....L(Bop)
2 + 2 ∗ 2−pOb(1)ǫp +Ob(1)ǫ2p . �

Lemma 9.2.8 The following equality holds

σ2
1 = σ2

B

[
1 +Ob(1)2γ1,p

]
.

Proof Let X ′
n be an IID sequence with uniform distribution. Then,

σ2
1 = (1/N)E

{[ N∑

n=1

(
1Bo(Xn) − Ln

)]2}

= (1/N)E
{ N∑

n=1

N∑

m=1

(
1Bo(Xn) − Ln

)(
1Bo(Xm) − Lm

)}

= (1/N)E
{ N∑

n=1

∑

m∈H(n,q)

(
1Bo(Xn) − Ln

)(
1Bo(Xm) − Lm

)}

+(1/N)E
{ N∑

n=1

∑

m/∈H(n,q)

(
1Bo(Xn) − Ln

)(
1Bo(Xm) − Lm

)}
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= (1/N)E
{ N∑

n=1

∑

m∈H(n,q)

(
1Bo(Xn) − Ln

)(
1Bo(Xm) − Lm

)}

+(1/N)E
{ N∑

n=1

∑

n+d/∈H(n,q)

(
1Bo(Xn) − Ln

)(
1Bo(Xn+d) − Ln+d

)}

= (1/N)
N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(Xn)1Bo(Xm)
}
− LnLm

)

+(1/N)
N∑

n=1

∑

m∈H∗(n,q)

(
E
{

1Bo(Xn)1Bo(Xm)
}
− LnLm

)

+2Ob(1)

∞∑

d=q+1

δd

= (1/N)

N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(X
′
n)1Bo(X

′
m)
}
− L(Bo)2

)
+ Φ

+(1/N)

N∑

n=1

∑

m∈H∗(n,q)

Ob(1)ǫ2p

+(1/N)

N∑

n=1

∑

m∈H(n,q)

[
21−pOb(1)ǫp +Ob(1)ǫ2p

]

+(Ob(1)kB/10)ǫp ,

where

Φ = (1/N)

N∑

n=1

∑

m∈H(n)

[
E
{

1Bo(Xn)1Bo(Xm)
}
−E

{
1Bo(X

′
n)1Bo(X

′
m)
}]

. (9.2)
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Then, Φ ≤ (1/N)
∑N
n=1

∑
m∈H(n)Ob(1)ǫp.

Then,

σ2
1

= (1/N)

N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(X
′
n)1Bo(X

′
m)
}
− L(Bo)2

)

+(1/N)

N∑

n=1

∑

m∈H(n)

Ob(1)ǫp

+(1/N)

N∑

n=1

∑

m∈H∗(n,q)

Ob(1)ǫ2p

+(1/N)

N∑

n=1

∑

m∈H(n,q)

[
21−pOb(1)ǫp +Ob(1)ǫ2p

]

+(Ob(1)kB/10)ǫp

= σ2
B + (p2 − p+ 1)(Ob(1)ǫp + (p2 − p+ 1)(2q)Ob(1)ǫ2p

+(p2 − p+ 1)(1 + 2q)Ob(1)
[
21−pǫp + ǫ2p

]
+ (Ob(1)kB/10)ǫp

= σ2
B

[
1 +Ob(1)2γ1,pA(p)L(Bo)/σ2

B

]
= σ2

B

[
1 +Ob(1)2γ1,p

]
. �

Lemma 9.2.9 The following inequality holds :

σ1 ≤ (1 + γ1,p)σB .

Proof Let e 7→ ψ(e) be the function defined by
√

1 + 2e = 1 + e + ψ(e)e2 if

e > 0, that is ψ(e) =
√

1+2e−1−e
e2 . This function has the following derivative:

(
2(1/2)(1 + 2e)−1/2 − 1

)
e2 −

(√
1 + 2e− 1 − e

)
2e

e4
.
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It is equal to 0 for

e(1 + 2e)−1/2 − e− 2
√

1 + 2e+ 2 + 2e = 0.

That is to say
e− 2(1 + 2e) + 2

√
1 + 2e+ e

√
1 + 2e = 0,

or
(2 + e)

√
1 + 2e = 2 + 3e ,

or
(4 + e2 + 4e)(1 + 2e) = 4 + 9e2 + 12e,

or
4 + e2 + 4e+ 8e+ 2e3 + 8e2 = 4 + 9e2 + 12e,

or
2e3 + 9e2 + 12e+ 4 = 9e2 + 12e+ 4,

that is e = 0.

Moreover, in e = 4, the value of this derivative is 4/
√

9−4−2
√

9+2+8
43 = 4/3

43 > 0.

Therefore, ψ is increasing for e > 0 . In 4 its value is
√

9−1−4
42 = −2

43 < 0. More-

over, ψ(e) =
√

1+2e−1−e
e2 → 0 as e → ∞. Therefore ψ < 0 if e > 0. Therefore√

1 + 2e < 1 + e.

Therefore, σ1 = σB
√

1 + 2Ob(1)γ1,p ≤ σB
√

1 + 2γ1,p ≤ σB(1 + γ1,p). �

Proof 9.2.10 We prove now the theorem 9

The following inequalities hold.

P

{∣∣∣∣∣
√
N
[
Pe − L(Bo)

∣∣∣∣∣ > σBx

}

≤ P

{∣∣∣∣∣
√
N
[
Pe − LN (Bo)

]
∣∣∣∣∣ > σBx−

√
N |LN − L(Bo)|

}

≤ P

{∣∣∣∣∣
√
N
[
Pe − LN (Bo)

]
∣∣∣∣∣ > σBx[1 − β1,p/x]

}

≤ P

{∣∣∣∣∣
√
N
[
Pe − LN (Bo)

]
∣∣∣∣∣ >

1 − β1,p/x

1 + γ1,p
σ1x

}

= K1

(1 − β1,p/x

1 + γ1,p
x
)
. �
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9.3 Second Theorem

9.3.1 Notations and assumptions

In this section, we use a Borel set, Bo ⊗ J , where Bo = Bo1, J = J2 ⊗ J3 ⊗
......⊗ Jp, and Js = Bos for s=2,3,...,p.

Notations 9.3.1 Let p ∈ N
∗ . Let N ∈ N

∗ . Let Bo ⊗ J = Bo ⊗ J2 ⊗
J3 ⊗ ......⊗ Jp where Bo and the Js, s=2,...,p, are Borel sets. We suppose that
L(Js) = L(Bo) = 1/2 for s=2,...,p.

We set
1J(Xn+j) = 1J2(Xn+j(2))....1Jp(Xn+j(p)), 1Bo⊗J(Xn) = 1Bo(Xn)1J(Xn+j),

Ln = E
{

1Bo⊗J(Xn)
}
, ln = E

{
1J(Xn+j)

}
,

LN (Bo⊗ L) = (1/N)
∑N
n=1 Ln, l

N (J) = (1/N)
∑N
n=1 ln.

The following assumptions are admitted.

Hypothesis 9.3.1 Let Dn = E
{

[1Bo(Xn) − L(Bo)]1J(Xn+j)
}

. Let

δ′d =

Maxn∈N∗

{∣∣∣E
{[

1Bo(Xn)−L(Bo)
][

1bo(Xn+d)−L(Bo)
]
1J (Xn+j)1J (Xn+d+j)

}
−DnDn+d

∣∣∣
}

lN (J)
.

One supposes that there exists q ∈ N
∗ and KB > 0 such that, for all n ∈ N

∗,∑
n+d/∈H(n,q) δ

′
d ≤ (KB/10)ǫ.

Hypothesis 9.3.2 Let δd = Maxn∈N∗

∣∣∣E
{(

1J(Xn) − ln
)(

1J(Xn+d) − ln+d

)}∣∣∣.
One supposes that there exists q ∈ N

∗ and kB > 0 such that
∑
n+d/∈H(n,q) δd ≤

(kB/10)ǫp−1.

Notations 9.3.2 One simplifies lN (J) in l : l = lN (J). We set ǫM(l) =
1/L(J) − 1/l.

Let

ξp = (1/2)

[
2L(J)M(l) +

8L(J)

l
(1 − 2L(I)) + (3/2)(p− 1)L(J)M(l)

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]
+

8[p(p− 1) +KB/10]L(J)

l

+
[
1 + ǫ]

8L(J)[L(J) + ǫp−1]

l
(2q + 1)(p2 − p+ 1)

]
.
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Let σB(J)2 = (1/N)E
{(∑N

n=1[1J(X ′
n) − L(J)]

)2}
when X ′

n is IID. Let

A(p) = 1 − (p2 − p+ 1)2−p. Then, we set

θp =
8σB(J)2L(J)

l2

+(p2 − 3p+ 3)
8ǫp−1L(J)

l2
+ (p2 − 3p+ 3)(2q)

8ǫ2p−2L(J)

l2

+(p2 − 3p+ 3)(1 + 2q)
8
[
22−pǫp−1 + ǫ2p−1

]
L(J)

l2
+

0.8kBǫp−1L(J)

l2
.

We set
2γ2,p = ǫ

(
2ξp + 2[1 + ǫξp]

√
θp + ǫθp

)
.

Moreover the following assumption will be admitted.

Hypothesis 9.3.3 One supposes that

NE
{

(Pe − L(Bo)pe)
2
}
≥ (1/4)L(Bo)L(J)

if Xn is IID.

In fact, this assumption probably holds in all the cases when Xn ∈ {0, 1} : cf
section 9.6.

9.3.2 Wording of the second theorem

Now, we have the second emprical theorem.

Theorem 10 Let p ∈ N
∗. Let N ∈ N

∗. We assume that ǫ is small enough and
p is not too large

Let D = LN (Bo⊗ J) − L(Bo)lN (J). One supposes that

√
N
Pe − L(Bo)pe −D

l
= OP (1) ,

√
N(pe − lN (J)) = OP (1) ,

pe
P→ l as N → ∞ ,

l → L(J) as N → ∞ ,
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L→ L(Bo)L(J) as N → ∞ ,

Pe − LN (Bo⊗ J)
P→ 0 as N → ∞ .

We keep the assumptions of section 9.1. One supposes that the assumptions
9.3.1, 9.3.2 and 9.3.3 hold.

We set pe = 1
N

∑N
n=1 1J(Xn), Pe = 1

N

∑N
n=1 1Bo⊗J(Xn).

We denote by σ2
2 the variance of

√
N
[
Pe−L(Bo)pe−D

lN (J)
+ DlN (J)−Dpe

lN (J)2

]
.

We denote σ2
cp instead of σ2

2 when Xn is IID

Let β2,p = N1/2D
σcplN (J)

+ η where η > 0.

One supposes that
√
NHe =

√
N
(
Pe−L(Bo)pe−D

lN (J)
+ DlN (J)−Dpe

lN (J)2

)
converges in

distribution to a random variable which has the distribution function FHe
(x) >

0.

Then, for all η > 0, there exists N0 ∈ N such that, for all N ≥ N0,

P

{
√
N

∣∣∣∣∣
Pe
pe

− L(Bo)

∣∣∣∣∣ > σcp x

}
≤ K2

(1 − β2,p/x

1 + γ2,p
x
)
,

where K2(x) = P
{√

N
σ2

∣∣∣Pe−L(Bo)pe−D
lN (J)

+ DlN (J)−Dpe

lN (J)2

∣∣∣ > x
}

.

For example, if the Xn’s have the same distribution and if Xn is a sequence

Qd-dependent,
√
N
σ2

[
Pe−L(Bo)pe−D

lN (J)
+ DlN (J)−Dpe

lN (J)2

]
has asymptotically the distri-

bution N(0,1).

9.3.3 Proof of theorem 10

To clear up the notations, in certain lemmas, one will pose Bo = I. In this
proof we simplify LN (Bo⊗ J) in L and lN (J) in l : L = LN (I ⊗ J), l = lN (J).

9.3.4 Lemmas of introduction

Notations 9.3.3 For all n, we denote by

G(n) = {m | ∃ s, s′ : m = n+ js and n = m+ js′} .

We set G∗(n) = G(n) \ {0}.
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Lemma 9.3.1 The following increase holds : card(G∗(n)) ≤ p− 1.

Proof If m ∈ G∗(n), n = m + js0 and m = n + js1 . Then, js0 = −js1 .
Therefore, for any n, there is at the most p-1 ”m = n + js” such that there
exists s0 et s1 satisfying js0 = −js1 and s0 6= 0. �

Lemma 9.3.2 Let n = m+ js0 and m = n+ js1 . We set
J1 = J2 ⊗ J3 ⊗ .......⊗ Js1−1 ⊗ Js1+1 ⊗ ......⊗ Jp,
J0 = J2 ⊗ J3 ⊗ .......⊗ Js0−1 ⊗ Js0+1 ⊗ ......⊗ Jp.

We denote by j1 the sequence j1(s) = {j2, j3, ...., js1−1, js1+1, ...., jp} and by j0

the sequence j0(s) = {j2, j3, ...., js0−1, js0+1, ...., jp}.
Then, one sets

1J1(Xn+j1) =

1J2(Xn+j2)1J3(Xn+j3)....1Js1−1(Xn+js1−1)1Js1+1(Xn+js1+1)......1Jp(Xn+jp).

1J0(Xn+j0) =

1J2(Xn+j2)1J3(Xn+j3)....1Js0−1(Xn+js0−1)1Js0+1(Xn+js0+1)......1Jp(Xn+jp).

Then,

E
{

[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j)
}

=
[
L(I∩Js0)−L(I)L(Js0)

][
L(I∩Js1)−L(I)L(Js1)

]
E
{

1J1(X ′
n+j1)1J0(X ′

m+j0)
}

+(1/16)Ob(1)ǫp−1 +Ob(1)(3/8)(1 + 2ǫ)L(J) + (3/2)ǫOb(1)ln ,

where X ′
n is an IID sequence.

Proof We have

E
{

[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j)
}

= E



[1I(Xn) − L(I)]1Js0
(Xm+js0

)[1I(Xm) − L(I)]1Js1
(Xn+js1

)1J1 (Xn+j1 )1J0 (Xm+j0 )

ff

= E



[1I(Xn) − L(I)]1Js0
(Xn)[1I(Xm) − L(I)]1Js1

(Xm)1J1 (Xn+j1 )1J0 (Xm+j0 )

ff

= E



h

1I∩Js0
(Xn)−L(I)1Js0

(Xn)
ih

1I∩Js1
(Xm)−L(I)1Js1

(Xm)
i

1J1 (Xn+j1 )1J0 (Xm+j0 )

ff
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= E
{

1I∩Js0
(Xn)

[
1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J2(Xm+j2)

}

−L(I)E
{

1Js0
(Xn)

[
1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J0(Xm+j0)

}

= L(I ∩ Js0)E
{[

1I∩Js1
(Xm) − L(I)1Js1

(Xm)
]
1J1(Xn+j1)1J0(Xm+j0)

}

+Ob(1)ǫE
{∣∣[1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J0(Xm+j0)

∣∣
}

−L(I)L(Js0)E
{[

1I∩Js1
(Xm) − L(I)1Js1

(Xm)
]
1J1(Xn+j1)1J0(Xm+j0)

}

−L(I)Ob(1)ǫE
{∣∣[1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J0(Xm+j0)

∣∣
}
,

(by lemma 4.2.1), and where, because m = n+ js1 ,

[
1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J0(Xm+j0)

≤ 1I∩Js1
(Xm)1J1(Xn+j1)1J0(Xm+j0)

≤ 1I∩Js1
(Xn+js1

)1J1(Xn+j1) ≤ 1J(Xn+j) ,

and where

−
[
1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J0(Xm+j0)

≤ L(I)1Js1
(Xm)1J1(Xn+j1)1J0(Xm+j0) ≤ L(I)1J(Xn+j) .

Therefore,

∣∣[1I∩Js1
(Xm) − L(I)1Js1

(Xm)
]
1J1(Xn+j1)1J0(Xm+j0)

∣∣ ≤ 1J(Xn+j) .

Therefore,

E
{∣∣[1I∩Js1

(Xm) − L(I)1Js1
(Xm)

]
1J1(Xn+j1)1J0(Xm+j0)

∣∣
}
≤ ln .

Therefore,
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E
{

[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j)
}

= L(I ∩ Js0)E
{[

1I∩Js1
(Xm) − L(I)1Js1

(Xm)
]
1J1(Xn+j1)1J0(Xm+j0)

}

−L(I)L(Js0)E
{[

1I∩Js1
(Xm) − L(I)1Js1

(Xm)
]
1J1(Xn+j1)1J0(Xm+j0)

}

+(3/2)ǫOb(1)ln

=
h

L(I ∩ Js0 ) − L(I)L(Js0 )

–

E



h

1I∩Js1
(Xm) − L(I)1Js1

(Xm)
i

1J1 (Xn+j1 )1J0 (Xm+j0 )

ff

+(3/2)ǫOb(1)ln

=
[
L(I ∩ Js0) − L(I)L(Js0)

]
E
{

1I∩Js1
(Xm)1J1(Xn+j1)1J0(Xm+j0)

}

−
[
L(I ∩ Js0) − L(I)L(Js0)

]
E
{
L(I)1Js1

(Xm)1J1(Xn+j1)1J0(Xm+j0)
}

+(3/2)ǫOb(1)ln

=
[
L(I ∩ Js0) − L(I)L(Js0)

]
L(I ∩ Js1)E

{
1J1(Xn+j1)1J0(Xm+j0)

}

+Ob(1)ǫ
[
L(I ∩ Js0) − L(I)L(Js0)

]
E
{

1J1(Xn+j1)1J0(Xm+j0)
}

−
[
L(I ∩ Js0) − L(I)L(Js0)

]
L(I)L(Js1)E

{
1J1(Xn+j1)1J0(Xm+j0)

}

+Ob(1)ǫ
[
L(I ∩ Js0) − L(I)L(Js0)

]
L(I)E

{
1J1(Xn+j1)1J0(Xm+j0)

}

+(3/2)ǫOb(1)ln .

There exists ”t” such that

E
{

1J1(Xn+j1)1J0(Xm+j0)
}
≤ E

{
1J1(Xn+j1)1Jt

(Xm+jt)
}

=
(
L(Jt) +Ob(1)ǫ

)
E
{

1J1(Xn+j1)
}

=
(
1/2 +Ob(1)ǫ

)
22−p

=
(
1 +Ob(1)2ǫ

)
L(J) .
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Therefore,

E
{

[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j)
}

=
[
L(I∩Js0)−L(I)L(Js0)

][
L(I∩Js1)−L(I)L(Js1)

]
E
{

1J1(Xn+j1)1J0(Xm+j0)
}

+Ob(1)(3/2)ǫ
[
L(I ∩ Js0) − L(I)L(Js0)

](
1 + 2ǫ

)
L(J)

+(3/2)ǫOb(1)ln

=
[
L(I∩Js0)−L(I)L(Js0)

][
L(I∩Js1)−L(I)L(Js1)

]
E
{

1J1(Xn+j1)1J0(Xm+j0)
}

+Ob(1)(3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫOb(1)ln

=
[
L(I∩Js0)−L(I)L(Js0)

][
L(I∩Js1)−L(I)L(Js1)

]
E
{

1J1(X ′
n+j1)1J0(X ′

m+j0)
}

+
[
L(I ∩ Js0) − L(I)L(Js0)

][
L(I ∩ Js1) − L(I)L(Js1)

]
Ob(1)ǫp′−1

+Ob(1)(3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫOb(1)ln

(where p′ − 1 ≥ p− 1 ≥ 2 because s0 6= s1)

=
[
L(I∩Js0)−L(I)L(Js0)

][
L(I∩Js1)−L(I)L(Js1)

]
E
{

1J1(X ′
n+j1)1J0(X ′

m+j0)
}

+(1/16)Ob(1)ǫp−1 +Ob(1)(3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫOb(1)ln . �

On the other hand, by using lemma 9.3.1, one obtains the following result.

Lemma 9.3.3 Let

L(p) = N(p− 1)
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

l2σ2
PC

.

Then,

∑

n

∑

m∈G∗(n)

(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫln
l2σ2

PC

≤ L(p) .
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Lemma 9.3.4 If ǫ is small enough, if p is not too great,

L(p) ≤ N
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]
.

Proof We have

l = L(J)+Ob(1)ǫp−1 ≈ L(J)−2(p−1)Ob(1)ǫ/2p−1 = L(J)
[
1−2Ob(1)(p−1)ǫ

]
.

Therefore, by hypothesis 9.3.3 ,

N(p− 1)
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

l2σ2
PC

≤ N(p− 1)
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

l2(1/4)L(I)L(J)/L(J)2

≤ 8N(p− 1)L(J)
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

l2

≈ 8N(p− 1)L(J)
(1/16)(p− 1)ǫ/2p−2 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

l2

≤ N(p− 1)L(J)ǫ
(p− 1)L(J) + 3(1 + 2ǫ)L(J) + 12l

l2

≈ N(p− 1)L(J)ǫ
[ (p− 1)L(J) + 3(1 + 2ǫ)L(J)

L(J)2
[
1 − 2(p− 1)ǫ

]2 +
12l

lL(J)
[
1 − 2(p− 1)ǫ

]
]

≤ N(p− 1)ǫ
[ (p− 1) + 3 + 6ǫ
[
1 − 2(p− 1)ǫ

]2 +
12[

1 − 2(p− 1)ǫ
]
]

= N
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 12

]
.

Then, one suppresses the approximation with the increase

L(p) ≤ N
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]
. �
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9.3.5 Study of E{(Pe − L(I)pe − D)2}.
Now, one need some properties. At first, one reminds the following lemma : cf
lemma 4.2.1.

Lemma 9.3.5 Let f be a measurable function defined on (X1, X2, ..., Xn−1, Xn+1,
...., XN ). Then,

E
{

1J(Xn)f(X)
}

= L(J)E
{
f(X)

}
+Ob(1)ǫE

{
|f(X)|

}
.

We deduce the following lemmas.

Lemma 9.3.6 The following equality holds :

E
{(

1J(Xn) − L(J)
)
f(X)

}
= Ob(1)ǫE

{
|f(X)|

}
.

Lemma 9.3.7 The following equalities hold :

Dn = Ob(1)ǫln,

D = Ob(1)ǫl.

Proof We have Dn = E
{(

1I(Xn)−L(I)
)
1J(Xn+j)

}
= Ob(1)ǫE

{
1J(Xn+j)

}
=

Ob(1)ǫln.
Moreover D = (1/N)

∑
nDn = Ob(1)ǫ

∑
n ln = Ob(1)ǫl. �

Lemma 9.3.8 The following equality holds :

E{1Bo(Xn)1J(Xn+j} =
[
L(Bo) +Ob(1)ǫ

]
E{1J(Xn+j} .

Proof By lemma 9.3.5,

E{1Bo(Xn)1J(Xn+j} =
[
L(Bo) +Ob(1)ǫ

]
E{1J(Xn+j} . �

Lemma 9.3.9 If m /∈ H(n), the following equality hold

E
{

1J(Xn+j)1J(Xm+j)
}

= Ob(1)
[
L(J) + ǫp−1

]
E
{

1J(Xn+j)
}
.

Proof By proposition 4.2.2 and by lemma 9.3.8,

E
{

1J(Xn+j)1J(Xn+j)
}

= (L(J2) +Ob(1)ǫ).....(L(Jp) +Ob(1)ǫ)E
{

1J(Xn+j)
}
.

Now,

(L(J2) +Ob(1)ǫ).....(L(Jp) +Ob(1)ǫ) = (1/2 +Ob(1)ǫ).....(1/2 +Ob(1)ǫ)

≤ (1/2 + ǫ)p−1 = (1/2)p−1 + ǫp−1 = L(J) + ǫp−1 . �

Then, by using the previous lemmas, one obtains the following property.
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Lemma 9.3.10 The following equality holds :

N2E{(Pe − L(I)pe −D)2}

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]
[Nl]

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)[Nl]

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)[Nl]

+N(KB/10)ǫl .

Proof We know that NPe =
∑
n 1I(Xn)1J(Xn+j) , Npe =

∑
n 1J(Xn+j)

and
N(Pe − L(I)pe) =

∑

n

[
1I(Xn)1J(Xn+j) − L(I)1J(Xn+j)

]

=
∑

n

[1I(Xn) − L(I)]1J(Xn+j).

Then, N(Pe − L(I)pe − D) =
∑
n

(
[1I(Xn) − L(I)]1J(Xn+j) − Dn

)
, where

Dn = E{[1I(Xn) − L(I)]1J(Xn+j)}.

Then, the following equalities hold

N2E{(Pe − L(I)pe −D)2}

= E
{∑

n,m

({
[1I(Xn)−L(I)]1J(Xn+j)−Dn

}{
[1I(Xm)−L(I)]1J(Xm+j)−Dm

})}

= E
{∑

n,m

(
[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j) −DnDm

)}

=
∑

n=m

E
{(

[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j) −DnDm

)}

+
∑

n,m∈G∗(n)

E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}

+
∑

n,m∈H(n)\G(n)

E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}
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+
∑

n,m,m∈H∗(n,q)
E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}

+
∑

n,m,m/∈H(n,q)

E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}

= E
{∑

n

[1I(Xn) − L(I)]21J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+
∑

n,m∈G∗(n)

[
(1/16)Ob(1)ǫp−1 + ob(1)(3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫOb(1)ln

]

+
∑

n,m∈H(n)\G(n)

Ob(1)ǫE
{

1J(Xn+j)1J(Xm+j)
}

+
∑

n,m,m∈H∗(n,q)

Ob(1)ǫE
{

1J(Xn+j)1J(Xm+j)
}

−
∑

n,m∈H(n,q)

DnDm

+
∑

n

∑

n+d/∈H(n,q)

δ′dl

=
∑

n

E
{

1I(Xn) − 2L(I)1I(Xn) + L(I)2]1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)(p− 1)
∑

n

[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫln

]

+Ob(1)ǫ
∑

n,m∈H(n)\G(n)

E
{

1J(Xn+j)1J(Xm+j)
}

+Ob(1)ǫ
∑

n,m,m∈H∗(n,q)

E
{

1J(Xn+j)1J(Xm+j)
}

+
∑

n,m∈H(n,q)

Ob(1)ǫ2E
{

1J(Xn+j)
}
E
{

1J(Xm+j)
}

+
∑

n∈N

(KB/10)ǫl
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=
∑

n

E
{

[(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2]1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ
∑

n,m∈H(n)\G(n)

E
{

1J(Xn+j))
}

+Ob(1)ǫ
∑

n,m∈H∗(n,q)

E
{

(L(J) + ǫp−1)1J(Xn+j)
}

+Ob(1)ǫ2
∑

n,m∈H(n,q)

[
L(J) +Ob(1)ǫp−1

]
E
{

1J(Xn+j)
}

+N(KB/10)ǫl

=
∑

n

[(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2]E
{

1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)
∑

n

E
{

1J(Xn+j)
}

+Ob(1)ǫ
[
L(J) + ǫp−1

] ∑

n,m∈H∗(n,q)
E
{

1J(Xn+j)
}

+Ob(1)ǫ2
[
L(J) + ǫp−1

] ∑

n,m∈H(n,q)

E
{

1J(Xn+j)
}

+N(KB/10)ǫl

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]∑

n

E
{

1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]
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+Ob(1)ǫ(p2 − p)[Nl]

+Ob(1)ǫ
[
L(J) + ǫp−1

]
(2q)(p2 − p+ 1)

∑

n

E
{

1J(Xn+j)
}

+Ob(1)ǫ2
[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)

∑

n

E
{

1J(Xn+j)
}

+N(KB/10)ǫl

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]
[Nl]

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)[Nl]

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)[Nl]

+N(KB/10)ǫl . �

We deduce a ratio with the variance.

Lemma 9.3.11 If ǫ is small enough and if p is not too large, the following
equality holds :

NE
{ (Pe − L(I)pe −D)2

l2

}
= σ2

cp

[
1 +Ob(1)2ǫξp

]
.

Proof We have

NE
{ (Pe − L(I)pe −D)2

l2

}

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]
/l

+
1

Nl2

X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )
ih

L(I∩Js1 )−L(I)L(Js1 )
i

E
n

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)
o

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)/l
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+(KB/10)ǫ/l

=
[
(1 − 2L(I))L(I) + L(I)2

]
/l +Ob(1)(1 − 2L(I))ǫ/l

+
1

NL(J)2

X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

#

h

L(I∩Js1
)−L(I)L(Js1

)

#

E

(

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)

)

+
h 1

Nl2
− 1

NL(J)2

i

X

n,m

h

L(I∩Js0
)−L(I)L(Js0

)

#

h

L(I∩Js1
)−L(I)L(Js1

)

#

E

(

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)

)

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p+KB/10)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)/l

= (1/L(J)) L(I)[1−L(I)]+
[
1/l−1/L(J)

]
L(I)[1−L(I)]+(Ob(1)/l)(1−2L(I))ǫ

+
1

NL(J)2

X

n,m∈G∗(n)

h

L(I∩Js0
)−L(I)L(Js0

)

#

h

L(I∩Js1
)−L(I)L(Js1

)

#

E

(

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)

)

+Ob(1)

[
1/L(J) − 1/l

][
1/L(J) + 1/l

]

N

∑

n,m∈G∗(n)

(1/16)E
{

1J1(X ′
n+j1)1J0(X ′

m+j0)
}

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p+KB/10)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)/l

= σ2
cp + [Ob(1)/4]

[
1/l − 1/L(J)

]
+ (Ob(1)/l)(1 − 2L(I))ǫ

+Ob(1)

[
1/L(J) − 1/l]

][
3/L(J)

]

N

∑

n,m∈G∗(n)

(1/16)Ob(1)L(J)

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p+KB/10)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)/l

252



= σ2
cp + [Ob(1)/4]

[
1/l − 1/L(J)

]
+ (Ob(1)/l)(1 − 2L(I))ǫ

+Ob(1)
[
1/L(J) − 1/l]

][
3/L(J)

]
(p− 1)(1/16)Ob(1)L(J)

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p+KB/10)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
(2q + 1)(p2 − p+ 1)/l

= σ2
cp +Ob(1)σ2

cp

[
∣∣1/l − 1/L(J)

∣∣ 1

4σ2
cp

+
1

lσ2
cp

(1 − 2L(I))ǫ

+
∣∣1/L(J) − 1/l]

∣∣ 3

σ2
cpL(J)

(p− 1)(1/16)L(J)

+
p− 1

σ2
cpl

2

[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+ǫ
p2 − p+KB/10

lσ2
cp

+ǫ
[
1 + ǫ]

L(J) + ǫp−1

lσ2
cp

(2q + 1)(p2 − p+ 1)

]

= σ2
cp +Ob(1)σ2

cp

[
∣∣1/l − 1/L(J)

∣∣ 1

L(I)/L(J)
+

1

l(1/4)L(I)/L(J)
(1 − 2L(I))ǫ

+
∣∣1/L(J) − 1/l

∣∣ 3

(1/4)[L(I)/L(J)]L(J)
(p− 1)(1/16)L(J)

+
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+ǫ
p2 − p+KB/10

l (1/4)L(I)/L(J)

+ǫ
[
1 + ǫ]

L(J) + ǫp−1

l(1/4)L(I)/L(J)
(2q + 1)(p2 − p+ 1)

]

(by assumptions 9.3.3 and by lemma 9.3.4)
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= σ2
cp +Ob(1)σ2

cp

[
M(l)ǫ

L(J)

L(I)
+

8L(J)

l
(1 − 2L(I))ǫ

+M(l)ǫ
12

L(I)
(p− 1)(1/16)L(J)

+
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+ǫ
8[p(p− 1) +KB/10]L(J)

l

+ǫ
[
1 + ǫ]

8L(J)
[
L(J) + ǫp−1

]

l
(2q + 1)(p2 − p+ 1)

]

(where, by notation 9.3.2, ǫM(l) = |1/L(J) − 1/l| )

= σ2
cp +Ob(1)ǫ σ2

cp

[
2L(J)M(l) +

8L(J)

l
(1 − 2L(I)) + (3/2)(p− 1)L(J)M(l)

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+
8[p(p− 1) +KB/10]L(J)

l

+
[
1 + ǫ]

8L(J)[L(J) + ǫp−1]

l
(2q + 1)(p2 − p+ 1)

]

= σ2
cp

[
1 +Ob(1)2ǫξp

]
. �

9.3.6 Study of E
{[

Pe−L(I)pe−D
l

+ Dl−Dpe

l2

]2}

Lemma 9.3.12 We denote by σ1(J) and σB(J) the variances σ1 et σB de-
fined in notations 9.2.4, but associated to J instead of Bo. Then, the following
inequality holds

σ1(J)2/l2

σ2
cp

≤ θp .
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Proof For p’=p-1, p′2−p′+1 = (p−1)2−(p−1)+1 = p2−2p+1−p+1+1 =
p2 − 3p+ 3.

Therefore, by using hypothesis 9.3.3 and lemma 9.2.8,

σ1(J)2/l2

σ2
cp

≤ σ1(J)2/l2

0.25L(I)/L(J)
=

8σ1(J)2L(J)

l2
≤ θp . �

We deduce the following lemma.

Lemma 9.3.13 The following equality holds :

N.E
{ [ǫ(l − pe)]

2

l2σ2
cp

}
= Ob(1)ǫ2θp.

Then, one obtains the following lemma.

Lemma 9.3.14 The following equality holds

N.E
{(Pe − L(I)pe −D

l
+
Dl −Dpe

l2

)2}

= σ2
cp

[
1 +Ob(1)ǫ

(
2ξp + 2[1 + ǫξp]

√
θp + ǫθp

)]
.

Proof On the one hand, by the proof of lemma 9.2.9 and by lemma 9.3.11,

√
N.E

{ (Pe − L(I)pe −D)2

l2

}
≤
√
σ2
cp[1 + 2ǫξp] ≤ σcp[1 + ǫξp].

On the other hand, by using lemma 9.3.7, we have D = Ob(1)ǫl.

Therefore,
Dl −Dpe

l2
=
Ob(1)ǫ(l − pe)

l
.

Therefore,

Pe − L(I)pe −D

l
+
Dl −Dpe

l2
=
Pe − L(I)pe −D

l
+
Ob(1)ǫ(l − pe)

l
.

By Schwarz Inequality,

N.E
{∣∣∣
Pe − L(I)pe −D

l
Ob(1)

ǫ(l − pe)

l

∣∣∣
}
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≤
√
NE

{ (Le − L(I)le −D)2

l2

} √
NE

{ǫ2(l − pe)2

l2

}

≤ ǫ
√
σ2
cp[1 + 2ǫξp]

√
σ2
cpθp.

≤ ǫσ2
cp[1 + ǫξp]

√
θp .

Therefore,

N.E
{(Pe − L(I)pe −D

l
+
Dl −Dpe

l2

)2}

= σ2
cp

[
1 +Ob(1)ǫ

(
2ξp + 2[1 + ǫξp]

√
θp + ǫθp

)]
. �

We deduce the following lemma

Lemma 9.3.15 The following equality holds

σ2 = σcp

[
1 +Ob(1)γ2,p

]
.

Proof By the previous lemma

σ2
2 = σ2

cp

[
1 +Ob(1)2γ2,p

]
.

By the proof of lemma 9.2.9,

σ2 = σcp

[
1 +Ob(1)γ2,p

]
. �

9.3.7 Proof of theorem 10

By our assumptions , N1/2(pe− l) = OP (1) and N1/2(Pe−L(I)pe−D) = OP (1)
and pe − l converges in probability to 0.

We keep notation 9.1.1 : oP (1)
P→ 0. Then,

√
N
(Pe
pe

− L(I)
)

=
√
N
(Pe − L(I)pe −D

pe
+
D

pe

)
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=
√
N
(Pe − L(I)pe −D

l

)
+
√
N
(
Pe − L(I)pe −D

)[ 1

pe
− 1

l

]
+

√
ND

pe

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

pe
+ oP (1)

(because
√
N Pe−L(I)pe−D

l = OP (1) and pe − l
P→ 0 )

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

l
+

√
ND

pe
−

√
ND

l
+ oP (1)

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

l
+
√
N
Dl −Dpe

lpe
+ oP (1)

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

l
+
√
N
Dl −Dpe

l2
+
√
N
Dl −Dpe

l

[ 1

pe
−1

l

]
+oP (1)

=
√
N
(Pe − L(I)pe −D

l

)
+
√
N
Dl −Dpe

l2
+

√
ND

l
+ oP (1)

(because pe − l
P→ 0 ).

We set

He =
Pe − L(I)pe −D

l
+
Dl −Dpe

l2
.

Then,

P

{
√
N

∣∣∣∣∣
Pe
pe

− L(I)

∣∣∣∣∣ > σcpx

}

= P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2
+
D

l
+
oP (1)√
N

∣∣∣∣∣ > σcpx

}

≤ P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2

∣∣∣∣∣+
∣∣oP (1)

∣∣ > σcpx− N1/2D

l

}

≤ P

{
√
N
∣∣He

∣∣ > σcpx− N1/2D

l
−
∣∣oP (1)

∣∣
}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp −

∣∣oP (1)
∣∣
}
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≤ P

{{√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp −

∣∣oP (1)
∣∣
}
∩
{∣∣oP (1)

∣∣ ≤ ησcp
2

}}

+P

{{√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp −

∣∣oP (n)
∣∣
}
∩
{∣∣oP (1)

∣∣ > ησcp
2

}}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp/2

}

+P
{∣∣oP (1)

∣∣ > ησcp
2

}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
}

−P
{
σcpx

(
1 − β2,p

x

)
+ ησcp/2 ≥

√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
}

+P
{∣∣oP (1)

∣∣ > ησcp
2

}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
}

(for N large enough, considering that
√
NHe converges in distribution to a

random variable which has a distribution function FHe(x) > 0 and considering
the convergence in probability to 0 of oP (1) )

= P

{
√
N
∣∣He

∣∣ > σ2x
1 − β2,p/x

1 +Ob(1)γ2,p

}

= P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2

∣∣∣∣∣ > σ2x
1 − β2,p/x

1 +Ob(1)γ2,p

}

≤ P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2

∣∣∣∣∣ > σ2x
1 − β2,p/x

1 + γ2,p

}
. �
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9.4 Third and Fourth Theorems

Now assume that the hypotheses 9.2.1 and 9.3.1 do not hold or that they are
too difficult to compute. Then, one can use more general theorems. It is the
aim of this section.

9.4.1 Wordings

Now, we generalize theorem 9.

Theorem 11 We suppose that the notations of section 9.1 and 9.2 hold except
the hypothesis 9.2.1 . We set

γ”1,p =
1

2A(p)L(Bo)

[
(p2 − p+ 1)ǫp +N

(
21−pǫp + ǫ2p

)
+Nǫ2p

]
.

Then, the following inequality holds

P

{
√
N
∣∣Pe − L(Bo)

∣∣ ≥ σB(Bo)x

}
≤ K1

(1 − β1,p/x

1 + γ1,p
x
)
,

where K1(x) = P
{√

N |Pe−LN (Bo)|
σ1(Bo)

≥ x
}

.

Now, we take an interest to theorem 10. First, we generalize notations 9.3.2.

Notations 9.4.1 We keep the notations of section 9.3. We define ξ”p, θ”p and
γ”2,p by the following way :

ξ”p =

1

2

[
2L(J)M(l) +

8L(J)

l
(1 − 2L(I)) + (3/2)(p− 1)L(J)M(l)

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]
+

8[p(p− 1)]L(J)

l

+
[
1 + ǫ]

8L(J)N [L(J) + ǫp−1]

l

]

θ”p =
8σB(J)2L(J)

l2
+ (p2 − 3p+ 3)

8ǫp−1L(J)

l2

+
8N
[
22−pǫp−1 + ǫ2p−1

]
L(J)

l2
+

8Nǫ2p−2L(J)

l2
.

259



2γ”2,p = ǫ
(

2ξ”p + 2[1 + ǫξ”p]
√
θ”p + ǫθ”p

)
.

Then, one can generalize theorem 10 by the following way.

Theorem 12 We keep the notations and assumptions of section 9.3 except the
hypothseses 9.3.1 and 9.3.2. Let p ∈ N

∗. Let N ∈ N
∗. One supposes that

√
N
Pe − L(Bo)pe −D

l
= OP (1) ,

√
N(pe − lN (J)) = OP (1) ,

pe
P→ l as N → ∞ ,

l → L(J) as N → ∞ ,

L→ L(Bo)L(J) as N → ∞ ,

Pe − LN (Bo⊗ J)
P→ 0 as N → ∞ .

One supposes that
√
NHe =

√
N
(
Pe−L(Bo)pe−D

lN (J)
+ DlN (J)−Dpe

lN (J)2

)
converges in

distribution to a random variable which has the distribution function FHe
(x) >

0.

Then, for all η > 0, there exists N0 ∈ N such that, for all N ≥ N0,

P

{
√
N

∣∣∣∣∣
Pe
pe

− L(Bo)

∣∣∣∣∣ > σcp x

}
≤ K2

(1 − β2,p/x

1 + γ”2,p
x
)
,

where K2(x) = P
{√

N
σ2

∣∣∣Pe−L(Bo)pe−D
lN (J)

+ DlN (J)−Dpe

lN (J)2

∣∣∣ > x
}

.

9.4.2 Proof of theorem 11

First, we generalize lemma 9.2.8.

Lemma 9.4.1 The following equality holds

σ2
1 = σ2

B

[
1 +Ob(1)2γ”1,p

]
.
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Proof Let X ′
n be an IID sequence with uniform distribution. We recall the

equalities (cf lemmas 9.2.6 and 9.2.7) :

if m /∈ H(n), E
{

1Bo(Xn)1Bo(Xm)
}

= L(Bo)2 +Ob(1)ǫ2p,

if m ∈ H(n), E
{

1Bo(Xn)1Bo(Xm)
}

= E
{

1Bo(X
′
n)1Bo(X

′
m)
}

+Ob(1)ǫp ,

LnLm = L(Bo)2 + 21−pOb(1)ǫp +Ob(1)ǫ2p .

Then,

σ2
1 = (1/N)E

{[ N∑

n=1

(
1Bo(Xn) − Ln

)]2}

= (1/N)E
{ N∑

n=1

N∑

m=1

(
1Bo(Xn) − Ln

)(
1Bo(Xm) − Lm

)}

= (1/N)

N∑

n=1

N∑

m=1

(
E
{

1Bo(Xn)1Bo(Xm)
}
− LnLm

)

= (1/N)

N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(Xn)1Bo(Xm)
}
− LnLm

)

+(1/N)E
{ N∑

n=1

∑

m/∈H(n)

(
E
{

1Bo(Xn)1Bo(Xm)
}
− LnLm

)

= (1/N)

N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(X
′
n)1Bo(X

′
m)
}

+Ob(1)ǫp

)

−(1/N)

N∑

n=1

∑

m∈H(n)

(
L(Bo)2 + 21−pOb(1)ǫp +Ob(1)ǫ2p

)

+(1/N)

N∑

n=1

∑

m/∈H(n)

(
L(Bo)2 +Ob(1)ǫ2p − L(Bo)2 − 21−pOb(1)ǫp −Ob(1)ǫ2p

)

261



= (1/N)

N∑

n=1

∑

m∈H(n)

(
E
{

1Bo(X
′
n)1Bo(X

′
m)
}
− L(Bo)2

)

−(1/N)
N∑

n=1

∑

m∈H(n)

Ob(1)ǫp

+(1/N)

N∑

n=1

∑

m/∈H(n)

Ob(1)ǫ2p

+(1/N)

N∑

n=1

N∑

m=1

(
21−pOb(1)ǫp +Ob(1)ǫ2p

)

= σ2
B + (p2 − p+ 1)Ob(1)ǫp

+
[
N − (p2 − p+ 1)

]
Ob(1)ǫ2p

+N
(

21−pOb(1)ǫp +Ob(1)ǫ2p

)

= σ2
B + σ2

B

[ (p2 − p+ 1)Ob(1)ǫp
σ2
B

+
NOb(1)ǫ2p

σ2
B

+
N
(

21−pOb(1)ǫp +Ob(1)ǫ2p

)

σ2
B

]

= σ2
B + 2

σ2
BOb(1)

2A(p)L(Bo)

[
(p2 − p+ 1)ǫp +Nǫ2p +N

(
21−pǫp + ǫ2p

)]
. �

Proof 9.4.2 We prove now the theorem 11

The following inequalities hold.

P

{∣∣∣∣∣
√
N
[
Pe − L(Bo)

∣∣∣∣∣ > σBx

}

≤ P

{∣∣∣∣∣
√
N
[
Pe − LN (Bo)

]
∣∣∣∣∣ > σBx−

√
N |LN − L(Bo)|

}
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≤ P

{∣∣∣∣∣
√
N
[
Pe − LN (Bo)

]
∣∣∣∣∣ > σBx[1 − β1,p/x]

}

≤ P

{∣∣∣∣∣
√
N
[
Pe − LN (Bo)

]
∣∣∣∣∣ >

1 − β1,p/x

1 + γ”1,p
σ1x

}

= K
(1 − β1,p/x

1 + γ”1,p
x
)
. �

9.4.3 Proof of theorem 12

At first, we generalize lemma 9.3.10.

Lemma 9.4.3 The following equality holds :

N2E{(Pe − L(I)pe −D)2}

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]
[Nl]

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)[Nl]

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
[N2l] .

Proof We recall the properties of section 9.3.5 :

E
{

1J(Xn)f(X)
}

= L(J)E
{
f(X)

}
+Ob(1)ǫE

{
|f(X)|

}
,

E
{(

1J(Xn) − L(J)
)
f(X)

}
= Ob(1)ǫE

{
|f(X)|

}
,

Dn = Ob(1)ǫln ,

D = Ob(1)ǫl ,

E{1I(Xn)1J(Xn+j} =
[
L(I) +Ob(1)ǫ

]
E{1J(Xn+j} ,

If m /∈ H(n), E
{

1J(Xn+j)1J(Xm+j)
}

=
[
L(J) + ǫp−1

]
E
{

1J(Xn+j)
}
,

NPe =
∑

n

1I(Xn)1J(Xn+j) , Npe =
∑

n

1J(Xn+j) ,

N(Pe − L(I)pe) =
∑

n

[1I(Xn) − L(I)]1J(Xn+j) ,
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N(Pe − L(I)pe −D) =
∑

n

(
[1I(Xn) − L(I)]1J(Xn+j) −Dn

)
.

Moreover, we use notations 9.3.3 and lemmas 9.3.2 and 9.3.3. Then, the
following equalities hold

N2E{(Pe − L(I)pe −D)2}

= E
{∑

n,m

({
[1I(Xn)−L(I)]1J(Xn+j)−Dn

}{
[1I(Xm)−L(I)]1J(Xm+j)−Dm

})}

= E
{∑

n,m

(
[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j) −DnDm

)}

=
∑

n=m

E
{(

[1I(Xn) − L(I)][1I(Xm) − L(I)]1J(Xn+j)1J(Xm+j) −DnDm

)}

+
∑

n,m∈G∗(n)

E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}

+
∑

n,m∈H(n)\G(n)

E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}

+
∑

n,m,m/∈H(n)

E
{(

[1I(Xn)−L(I)][1I(Xm)−L(I)]1J(Xn+j)1J(Xm+j)−DnDm

)}

= E
{∑

n

[1I(Xn) − L(I)]21J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+
∑

n,m∈G∗(n)

[
(1/16)Ob(1)ǫp−1 +Ob(1)(3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫOb(1)ln

]

+
∑

n,m∈H(n)\G(n)

Ob(1)ǫE
{

1J(Xn+j)1J(Xm+j)
}

+
∑

n,m,m/∈H(n)

Ob(1)ǫE
{

1J(Xn+j)1J(Xm+j)
}
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−
∑

n,m

DnDm

=
∑

n

E
{

1I(Xn) − 2L(I)1I(Xn) + L(I)2]1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)(p− 1)
∑

n

[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫln

]

+Ob(1)ǫ
∑

n,m∈H(n)\G(n)

E
{

1J(Xn+j)1J(Xm+j)
}

+Ob(1)ǫ
∑

n,m/∈H(n)

E
{

1J(Xn+j)1J(Xm+j)
}

+
∑

n,m

Ob(1)ǫ2E
{

1J(Xn+j)
}
E
{

1J(Xm+j)
}

=
∑

n

E
{

[(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2]1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ
∑

n,m∈H(n)\G(n)

E
{

1J(Xn+j))
}

+Ob(1)ǫ
∑

n,m/∈H(n)

E
{

(L(J) + ǫp−1)1J(Xn+j)
}

+Ob(1)ǫ2
∑

n,m

[
L(J) +Ob(1)ǫp−1

]
E
{

1J(Xn+j)
}

=
∑

n

[(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2]E
{

1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]
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+Ob(1)ǫ(p2 − p)
∑

n

E
{

1J(Xn+j)
}

+Ob(1)ǫ
[
L(J) + ǫp−1

] ∑

n,m/∈H(n)

E
{

1J(Xn+j)
}

+Ob(1)ǫ2
[
L(J) + ǫp−1

]∑

n,m

E
{

1J(Xn+j)
}

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]∑

n

E
{

1J(Xn+j)
}

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)[Nl]

+Ob(1)ǫ
[
L(J) + ǫp−1

]
N
∑

n

E
{

1J(Xn+j)
}

+Ob(1)ǫ2
[
L(J) + ǫp−1

]
N
∑

n

E
{

1J(Xn+j)
}

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]
[Nl]

+
X

n,m∈G∗(n)

h

L(I∩Js0 )−L(I)L(Js0 )

–

h

L(I∩Js1 )−L(I)L(Js1 )

–

E



1J1 (X′
n+j1

)1J0 (X′
m+j0

)

ff

+Ob(1)N(p− 1)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)[Nl]

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
[N2l] . �

We deduce a ratio with the variance.

Lemma 9.4.4 If ǫ is small enough, the following equality holds :

NE
{ (Pe − L(I)pe −D)2

l2

}
= σ2

cp

[
1 +Ob(1)2ǫξ”p

]
.
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Proof We have

NE
{ (Pe − L(I)pe −D)2

l2

}

=
[
(1 − 2L(I))(L(I) +Ob(1)ǫ) + L(I)2

]
/l

+
1

Nl2

X

n,m∈G∗(n)

h

L(I∩Js0
)−L(I)L(Js0

)
ih

L(I∩Js1
)−L(I)L(Js1

)
i

E
n

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)
o

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
N/l

=
[
(1 − 2L(I))L(I) + L(I)2

]
/l +Ob(1)(1 − 2L(I))ǫ/l

+
1

NL(J)2

X

n,m∈G∗(n)

h

L(I∩Js0
)−L(I)L(Js0

)

#

h

L(I∩Js1
)−L(I)L(Js1

)

#

E

(

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)

)

+
h 1

Nl2
− 1

NL(J)2

i

X

n,m

h

L(I∩Js0
)−L(I)L(Js0

)

#

h

L(I∩Js1
)−L(I)L(Js1

)

#

E

(

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)

)

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
N/l

= (1/L(J)) L(I)[1−L(I)]+
[
1/l−1/L(J)

]
L(I)[1−L(I)]+(Ob(1)/l)(1−2L(I))ǫ

+
1

NL(J)2

X

n,m∈G∗(n)

h

L(I∩Js0
)−L(I)L(Js0

)

#

h

L(I∩Js1
)−L(I)L(Js1

)

#

E

(

1J1 (X
′

n+j1
)1J0 (X

′

m+j0
)

)

+Ob(1)

[
1/L(J) − 1/l

][
1/L(J) + 1/l

]

N

∑

n,m∈G∗(n)

(1/16)E
{

1J1(X ′
n+j1)1J0(X ′

m+j0)
}

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
N/l
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= σ2
cp + [Ob(1)/4]

[
1/l − 1/L(J)

]
+ (Ob(1)/l)(1 − 2L(I))ǫ

+Ob(1)

[
1/L(J) − 1/l]

][
3/L(J)

]

N

∑

n,m∈G∗(n)

(1/16)Ob(1)L(J)
}

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
N/l

= σ2
cp + [Ob(1)/4]

[
1/l − 1/L(J)

]
+ (Ob(1)/l)(1 − 2L(I))ǫ

+Ob(1)
[
1/L(J) − 1/l]

][
3/L(J)

]
(p− 1)(1/16)Ob(1)L(J)

}

+Ob(1)(p− 1)(1/l2)
[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+Ob(1)ǫ(p2 − p)/l

+Ob(1)ǫ
[
1 + ǫ]

[
L(J) + ǫp−1

]
N/l

= σ2
cp +Ob(1)σ2

cp

[
∣∣1/l − 1/L(J)

∣∣ 1

4σ2
cp

+
1

lσ2
cp

(1 − 2L(I))ǫ

+
∣∣1/L(J) − 1/l]

∣∣ 3

σ2
cpL(J)

(p− 1)(1/16)L(J)
}

+
p− 1

σ2
cpl

2

[
(1/16)ǫp−1 + (3/8)(1 + 2ǫ)ǫL(J) + (3/2)ǫl

]

+ǫ
p2 − p

lσ2
cp

+ǫ
[
1 + ǫ]

N(L(J) + ǫp−1)

lσ2
cp

]

= σ2
cp +Ob(1)σ2

cp

[
∣∣1/l − 1/L(J)

∣∣ 1

L(I)/L(J)
+

1

l(1/4)L(I)/L(J)
(1 − 2L(I))ǫ

+
∣∣1/L(J) − 1/l

∣∣ 3

(1/4)[L(I)/L(J)]L(J)
(p− 1)(1/16)L(J)
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+
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+ǫ
p2 − p

l (1/4)L(I)/L(J)

+ǫ
[
1 + ǫ]

N(L(J) + ǫp−1)

l(1/4)L(I)/L(J)

]

(by assumptions 9.3.3 and by lemma 9.3.4)

= σ2
cp +Ob(1)σ2

cp

[
M(l)ǫ

L(J)

L(I)
+

8L(J)

l
(1 − 2L(I))ǫ

+M(l)ǫ
12

L(I)
(p− 1)(1/16)L(J)

+
(p− 1)ǫ

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+ǫ
8[p(p− 1)]L(J)

l

+ǫ
[
1 + ǫ]

8L(J)N
[
L(J) + ǫp−1

]

l

]

(where, by notation 9.3.2, ǫM(l) = |1/L(J) − 1/l| )

= σ2
cp +Ob(1)ǫ σ2

cp

[
2L(J)M(l) +

8L(J)

l
(1 − 2L(I)) + (3/2)(p− 1)L(J)M(l)

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+
8[p(p− 1)]L(J)

l

+
[
1 + ǫ]

8L(J)N [L(J) + ǫp−1]

l

]

= σ2
cp

[
1 +Ob(1)2ǫξ”p

]
. �
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Lemma 9.4.5 The following inequality holds

σ1(J)2/l2

σ2
cp

≤ θp .

Proof For p’=p-1, p′2−p′ + 1 = p2−3p+ 3. Therefore, by using hypothesis
9.3.3 and lemma 9.2.8,

σ1(J)2/l2

σ2
cp

≤ σ1(J)2/l2

0.25L(I)/L(J)
=

8σ1(J)2L(J)

l2
≤ θ”p . �

We deduce the following lemmas.

Lemma 9.4.6 The following equality holds :

N.E
{ [ǫ(l − pe)]

2

l2σ2
cp

}
= Ob(1)ǫ2θ”p.

Lemma 9.4.7 The following equality holds

N.E
{(Pe − L(I)pe −D

l
+
Dl −Dpe

l2

)2}

= σ2
cp

[
1 +Ob(1)ǫ

(
2ξ”p + 2[1 + ǫξ”p]

√
θ”p + ǫθ”p

)]
.

Proof On the one hand, by the proof of lemma 9.2.9 and by lemma 9.4.4,

√
N.E

{ (Pe − L(I)pe −D)2

l2

}
≤
√
σ2
cp[1 + 2ǫξ”p] ≤ σcp[1 + ǫξ”p].

On the other hand, by using lemma 9.3.7, we have D = Ob(1)ǫl.

Therefore,
Dl −Dpe

l2
=
Ob(1)ǫ(l − pe)

l
.

Therefore,

Pe − L(I)pe −D

l
+
Dl −Dpe

l2
=
Pe − L(I)pe −D

l
+
Ob(1)ǫ(l − pe)

l
.
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By Schwarz Inequality,

N.E
{∣∣∣
Pe − L(I)pe −D

l
Ob(1)

ǫ(l − pe)

l

∣∣∣
}

≤
√
NE

{ (Le − L(I)le −D)2

l2

} √
NE

{ǫ2(l − pe)2

l2

}

≤ ǫ
√
σ2
cp[1 + 2ǫξ”p]

√
σ2
cpθ”p.

≤ ǫσ2
cp[1 + ǫξ”p]

√
θ”p .

Therefore,

N.E
{(Pe − L(I)pe −D

l
+
Dl −Dpe

l2

)2}

= σ2
cp

[
1 +Ob(1)ǫ

(
2ξ”p + 2[1 + ǫξ”p]

√
θ”p + ǫθ”p

)]
= σ2

cp

[
1 +Ob(1)2γ”2,p

]
. �

By the proof of lemma 9.2.9, we deduce the following lemma

Lemma 9.4.8 The following equality holds

σ2 = σcp

[
1 +Ob(1)γ”2,p

]
.

Proof 9.4.9 Now, we prove theorem 12

By our assumptions , N1/2(pe − l) = OP (1) and N1/2(Pe − L(I)pe −D) =
OP (1) and pe − l converges in probability to 0.

We keep notation 9.1.1 : oP (1)
P→ 0. Then,

√
N
(Pe
pe

− L(I)
)

=
√
N
(Pe − L(I)pe −D

pe
+
D

pe

)

=
√
N
(Pe − L(I)pe −D

l

)
+
√
N
(
Pe − L(I)pe −D

)[ 1

pe
− 1

l

]
+

√
ND

pe

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

pe
+ oP (1)
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(because
√
N Pe−L(I)pe−D

l = OP (1) and pe − l
P→ 0 )

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

l
+

√
ND

pe
−

√
ND

l
+ oP (1)

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

l
+
√
N
Dl −Dpe

lpe
+ oP (1)

=
√
N
(Pe − L(I)pe −D

l

)
+

√
ND

l
+
√
N
Dl −Dpe

l2
+
√
N
Dl −Dpe

l

[ 1

pe
−1

l

]
+oP (1)

=
√
N
(Pe − L(I)pe −D

l

)
+
√
N
Dl −Dpe

l2
+

√
ND

l
+ oP (1)

(because pe − l
P→ 0 ).

We set

He =
Pe − L(I)pe −D

l
+
Dl −Dpe

l2
.

Then,

P

{
√
N

∣∣∣∣∣
Pe
pe

− L(I)

∣∣∣∣∣ > σcpx

}

= P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2
+
D

l
+
oP (1)√
N

∣∣∣∣∣ > σcpx

}

≤ P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2

∣∣∣∣∣+
∣∣oP (1)

∣∣ > σcpx− N1/2D

l

}

≤ P

{
√
N
∣∣He

∣∣ > σcpx− N1/2D

l
−
∣∣oP (1)

∣∣
}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp −

∣∣oP (1)
∣∣
}

≤ P

{{√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp −

∣∣oP (1)
∣∣
}
∩
{∣∣oP (1)

∣∣ ≤ ησcp
2

}}

+P

{{√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp −

∣∣oP (n)
∣∣
}
∩
{∣∣oP (1)

∣∣ > ησcp
2

}}
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≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
+ ησcp/2

}

+P
{∣∣oP (1)

∣∣ > ησcp
2

}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
}

−P
{
σcpx

(
1 − β2,p

x

)
+ ησcp/2 ≥

√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
}

+P
{∣∣oP (1)

∣∣ > ησcp
2

}

≤ P

{
√
N
∣∣He

∣∣ > σcpx
(
1 − β2,p

x

)
}

(for N large enough, considering that
√
NHe converges in distribution to a

random variable which has a distribution function FHe
(x) > 0 and considering

the convergence in probability to 0 of oP (1) )

= P

{
√
N
∣∣He

∣∣ > σ2x
1 − β2,p/x

1 +Ob(1)γ”2,p

}

≤ P

{
√
N

∣∣∣∣∣
Pe − L(I)pe −D

l
+
Dl −Dpe

l2

∣∣∣∣∣ > σ2x
1 − β2,p/x

1 + γ”2,p

}
. �

9.5 Practical applications

In this section, we study how the assumptions of the previous theorems are used
concretely and how one can apply them.

We are interested by the sequence of random bits b1(n′) built in section 11.2
: we assume that B1(n′) is a sequence of random bits satisfying

P
{
B1(n′) = b

∣∣ B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
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= 1/2 +Ob(1)ǫ = 1/2 +
Ob(1)α√
Nq0

,

where α = 0.02, N= 1.000.000 and q0 = 57 : ǫ = α/
√
Nq0 = 0.000002649.

To simplify the notations, in this section we will replace Nq0 by N. We keep
the notations of the previous sections: we study the sequence Xn introduced in
section 9.1 when it equal to the sequence B1(n′). Thus, we have the following
notations.

Notations 9.5.1 In this section we assume that Xn = B1(n′) is a sequence of
random bits such that

P
{
B1(n′) = b

∣∣ B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
= 1/2 +

Ob(1)α√
N

,

with α = 0.02, N= 57.000.000 : ǫ = α/
√
N = 0.000002649.

Now, the sequence C(j) defined in section 11.2 is Qd-dependent with Qd=22.
Therefore KB = kB = 0 for q ≥ Qd.

Obviously, all Borel set Bos are intervals I if p=1. Then, in this section we
impose the following notations.

Notations 9.5.2 In this section, we keep the notations of this chapter. But,
we assume that Bo1 is an interval I : Bo1 = I.

Then,
1) One can write ǫp = (1/2 + ǫ)p − (1/2)p ≈ pǫ

2p−1 = 2pǫ
2p .

2) On suppose p ≤ Log(N)/log(2).
Indeed, the study of Pe has none sense if p ≥ Log(N)/log(2) : it is known

that it is useleess to study P{
√
N |Pe −L(Bo)| ≥ σBx} for IID sequences when

L(Bo) is too small.
It is no possible to test the independence of p variables in this case: the

samples are too small. For example a sample with 3 elements do not allow
to study the dependence between two random variables. Thus, if one uses the
chi-squared test, a sample with size N0 ≥ 2p is necessary.

Example 9.5.1 Assume that N = 57.000.000, p ≤ log(N)/log(2) < 25, 7 .

9.5.1 Study of Theorem 9

Now, we study the assumptions of theorem 9.

Hypothesis 9.5.1 We assume also that the sequence B1(n′) satisfies the the-
orem 9.
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Then, we have the following properties.
1) Obviously, LN (Bo) = (1/N)

∑N
n=1 Ln = 1

N (
∑N
n=1(L(Bo) + Ob(1)ǫp) =

L(Bo) +Ob(1)ǫp.
2) We remind σ2

B ≥ A(p)L(Bo).

3) Then, β1,p =
√
N [LN (Bo) − L(Bo)]/σB(Bo) ≤

√
Nǫp√

A(p)L(Bo)
.

Now,
√
Nǫp√

A(p)L(Bo)
≈ 2

√
Npǫ√

A(p)L(Bo)2p
≈ 2

√
Npǫ

A(p)1/22p/2 ≈ 2pα
A(p)1/22p/2 .

Then, generally

β1,p ≤
2pα

A(p)1/22p/2
. (9.3)

4) Moreover,

γ1,p = 1
2A(p)L(Bo)

[
(p2 − p+ 1)

(
ǫp + 2qǫ2p + (1 + 2q)

[
21−pǫp + ǫ2p

])
+ kB0.1ǫp

]
.

Then, if kB = 0,

γ1,p ≈ (p2−p+1)2p

2A(p)

[
2pǫ
2p + 2q 2(2p)ǫ

22p + (1 + 2q)
[
21−p 2pǫ

2p + 4p2ǫ2

22p

]]

≈ (p2−p+1)ǫ2p

2A(p)2p

[
2p+ 2q 2(2p)

2p + (1 + 2q)
[
2 2p

2p + 4p2ǫ
2p

]]

≈ (p2−p+1)α

2A(p)
√
N

[
2p+ (1 + 4q) 4p

2p + (1 + 2q) 4p2ǫ
2p

]
.

Remark 9.5.2 We impose the condition ”ǫ = α/
√
N” because β1,p ≤

√
Nǫp√

A(p)L(Bo)
.

Therefore,

(p2 − p+ 1)α

2A(p)
√
N

[
2p+ (1 + 4q)

4p

2p
+ (1 + 2q)

4p2ǫ

2p

]

≤ 0.0000026(p2 − p+ 1)

2A(p)

[
2p+ (1 + 4q)

4p

2p
+ (1 + 2q)

4p20.0000026

2p

]

≤ 0.0413 .

Remark that ifB1(n′) is Qd-dependent, under simple assumptions,
√
N(Pe−LN (Bo))

σ1(Bo)

has asymptotically a normal distribution. It is the case under the assumptions
of our data.

Moreover, the 1I(B
1(n′))’s satisfy condition HmS (cf Notation 5.1.5 and

section 11.2.2). At last, by definition, E
{[√

N(Pe − LN (I))
]2}

= σ1(I)2 is
indeed equal to σ(u)2/N introduced in the CLT : cf notations 5.1.4. Therefore,√
N(Pe−LN (Bo))

σ1(Bo)
has asymptotically the N(0,1) distribution.

Moreover, if Bn is IID,
√
N Pe−L(Bo)

σB
has asymptotically the standard normal

distribution.
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We want that Bn behaves like an IID sequence.

We thus increase P
{√

N |Pe−L(Bo)|
σB

≥ x
}

by using theorem 9 :

P
{√

N
∣∣Pe − L(Bo)

∣∣ ≥ σB(Bo)x
}
≤ K1

(1 − β1,p/x

1 + γ1,p
x
)
.

Let H1 be the hypothesis 9.5.1. Under assumptions IID and H1, one has the

following tables of increases of P
{√

N
∣∣Pe − L(Bo)

∣∣ ≥ σB(Bo)x
}

regarded as

function of (x,p).

(x,p) (1,1) (1,2) (1,3) (1,4) (1,5) (1,10) (1,15) (1,20)
Under IID 0.317 0.317 0.317 0.317 0.317 0.317 0.317 0.317
Under H1 0.334 0.359 0.356 0.357 0.346 0.340 0.361 0.380

(x,p) (2,1) (2,2) .(2,3) (2,4) (2,5) (2,10) (2,15) (2,20)
Under IID 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
Under H1 0.049 0.052 0.051 0.052 0.053 0.050 0.061 0.073

9.5.2 Study of Theorem 10

We keep the notations of section 9.3 with Bo1 = I.

General case

First, we study the assumptions of theorem 10.

Hypothesis 9.5.2 We assume that the sequence B1(n′) satisfies theorem 10.

Then, the following properties hold.

Lemma 9.5.3 The following equalities hold
D = LN (I ⊗ J) − L(I)lN (J) = Ob(1)ǫL(J),
D = LN (I ⊗ J) − L(I)lN (J) = Ob(1)ǫlN (J).

Proof By the lemma 4.2.1,∣∣∣E{
[
1I(Xn) − L(I)

]
1J(Xn+j)}

∣∣∣ ≤ ǫE{1J(Xn+j}.

Then, the following relations hold :
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∣∣LN (I ⊗ J) − L(I)lN (J)
∣∣

=
∣∣∣(1/N)

∑
E{1I(Xn)1J(Xn+j)} − (1/N)

∑
L(I)E{1J(Xn+j)}

∣∣∣

≤ (1/N)
∣∣∣
∑
E{
[
1I(Xn) − L(I)

]
1J(Xn+j)}}

∣∣∣.

≤ (1/N)
∣∣∣
∑
ǫE{1J(Xn+j}

∣∣∣ ≤ ǫ(1/N)
∑
E{1J(Xn+j} = ǫlN (J). �

Lemma 9.5.4 Under the hypothesis 9.3.3, σ2
cp ≥ 1/8

L(J) .

Proof By definition σ2
2 is the variance of

√
N
[
Pe−L(I)pe−D

lN (J)
+DlN (J)−Dpe

lN (J)2

]
where

D = LN (I ⊗ J) − L(I)lN (J). We denote σ2
cp instead of σ2

2 when Xn is IID .

In this case, LN (I ⊗ J) = L(I)L(J) and lN (J) = L(J). Therefore D = 0.

Therefore σ2
cp is the variance of

√
N
[
Pe−L(I)pe

L(J)

]

Therefore, by our hypothesis 9.3.3, σ2
cp ≥ (1/4)L(I)L(J)

L(J)2 = (1/4)L(I)
L(J) = 1/8

L(J) . �.

Lemma 9.5.5 If η is small, approximately β2,p ≈ Ob(1)16α
2p .

Proof We have β2,p = N1/2D
σcplN (J)

+ η where η > 0.

Now,
N1/2D

σcplN (J)
≤ N1/2ǫlN (J)

σcplN (J)
≤ N1/2ǫ

σcp

≤ N1/2ǫ

(1/8)/L(J)
≤ 8N1/2αL(J)

N1/2
≤ 16α

2p
. �

Lemma 9.5.6 The following equalities hold : lN (J) = L(J) + Ob(1)ǫp−1 =
L(J)[1 +Ob(1)2ǫ(p− 1)].

Proof We have

lN (J) = (1/N)
∑

n

ln = (1/N)
∑

n

E{1J(Xn+j) = (1/N)
∑

N

[L(J) +Ob(1)ǫp−1]

= L(J) +Ob(1)ǫp−1 = L(J) +Ob(1)
2ǫ(p− 1)

2p−1
= L(J)[1 +Ob(1)2ǫ(p− 1)] . �

Lemma 9.5.7 One supposes that Bn is Qd-dependent. Then,

ξp ≈
Ob(1)

2

[
(p− 1)[11p+ 16] +

16(2q + 1)(p2 − p+ 1)

2p

]
.
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Proof We have

ǫM(l) = 1/L(J) − 1/l = 1/L(J) − 1

L(J)[1 + 2Ob(1)ǫ(p− 1)]

= [1/L(J)]
[
1 − 1

1 + 2Ob(1)ǫ(p− 1)

]
= [1/L(J)]

1 + 2Ob(1)ǫ(p− 1) − 1

1 + 2Ob(1)ǫ(p− 1)

= Ob(1)[1/L(J)]
2ǫ(p− 1)

1 − 2ǫ(p− 1)
.

Then, M(l) = [1/L(J)] 2Ob(1)(p−1)
1−2ǫ(p−1) .

For q = Qd = 57, we have KB = 0. then

ξp = (1/2)

[
2L(J)M(l) +

8L(J)

l
(1 − 2L(I)) + (3/2)(p− 1)L(J)M(l)

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+
8[p(p− 1) +KB/10]L(J)

l

+
[
1 + ǫ]

8L(J)[L(J) + ǫp−1]

l
(2q + 1)(p2 − p+ 1)

]

= (1/2)

[
2L(J)

2(p− 1)Ob(1)

L(J)[1 − 2ǫ(p− 1)]
+ 0 ∗ 8L(J)

L(J)[1 − 2ǫ(p− 1)]

+(3/2)(p− 1)Ob(1)L(J)
2(p− 1)

L(J)[1 − 2ǫ(p− 1)]

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+
8[p(p− 1)]L(J)Ob(1)

L(J)[1 − 2ǫ(p− 1)]

+
[
1 + ǫ]

8L(J)[L(J) + ǫp−1]Ob(1)

L(J)[1 − 2ǫ(p− 1)]
(2q + 1)(p2 − p+ 1)

]
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= (1/2)

[
4(p− 1)Ob(1)

1 − 2ǫ(p− 1)
+

3(p− 1)2Ob(1)

1 − 2ǫ(p− 1)

+
(p− 1)

[1 − 2(p− 1)ǫ]

[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+
8p(p− 1)Ob(1)

1 − 2ǫ(p− 1)

+
[
1 + ǫ]

8[L(J) + ǫp−1]Ob(1)

1 − 2ǫ(p− 1)
(2q + 1)(p2 − p+ 1)

]

=
1

2
(
1 − 2(p− 1)ǫ

)
[

4(p− 1)Ob(1) + 3(p− 1)2Ob(1)

+(p− 1)
[ p+ 2 + 6ǫ

[1 − 2(p− 1)ǫ]
+ 13

]

+8p(p− 1)Ob(1)

+[1 + ǫ]Ob(1)
[
8[L(J) + ǫp−1

]
](2q + 1)(p2 − p+ 1)

]

≈ 1

2

[
4(p− 1)Ob(1) + 3(p− 1)2Ob(1) + (p− 1)[(p+ 2) + 13]

]

+8p(p− 1)Ob(1) + 8Ob(1)L(J)(2q + 1)(p2 − p+ 1)
]

≈ Ob(1)

2

[
(p− 1)

[
4 + 3(p− 1) + [p+ 15] + 8p

]
+

16(2q + 1)(p2 − p+ 1)

2p

]

≈ Ob(1)

2

[
(p− 1)[12p+ 16] +

16(2q + 1)(p2 − p+ 1)

2p

]

≈ Ob(1)

2

[
(p− 1)[12p+ 16] +

1840(p2 − p+ 1)

2p

]
. �
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Lemma 9.5.8 One supposes that Bn is Qd-dependent. Then,

θp ≈
8σB(J)2

L(J)
+ 16(p2 − 3p+ 3)(p− 1)ǫ

[
1 +

2

2p−1
+

8q

2p−1

]
.

Proof We set q = Qd = 57. We have KB = kB = 0. Then, the following
relations hold :

θp =
8σB(J)2L(J)

l2

+(p2 − 3p+ 3)
8ǫp−1L(J)

l2
+ (p2 − 3p+ 3)(2q)

8ǫ2p−2L(J)

l2

+(p2 − 3p+ 3)(1 + 2q)
8
[
22−pǫp−1 + ǫ2p−1

]
L(J)

l2
+

0.8kBǫp−1L(J)

l2

≈ 8σB(J)2

L(J)

+
8(p2 − 3p+ 3)[2(p− 1)ǫ/2p−1]

L(J)
+ (p2 − 3p+ 3)(2q)

8[2(2p− 2)ǫ/22p−2]

L(J)

+(p2 − 3p+ 3)(1 + 2q)
8
[
22−p[2(p− 1)ǫ/2p−1] + [2(p− 1)ǫ/2p−1]2

]

L(J)

≈ 8σB(J)2

L(J)

+16(p2 − 3p+ 3)(p− 1)ǫ+ (p2 − 3p+ 3)(2q)
8[2(2p− 2)ǫ]

2p−1

+(p2 − 3p+ 3)(1 + 2q)
8
[
2[2(p− 1)ǫ] + [2(p− 1)]2ǫ2

]

22(p−1)L(J)

≈ 8σB(J)2

L(J)

+16(p2 − 3p+ 3)(p− 1)ǫ+ (p2 − 3p+ 3)(2q)
32(p− 1)ǫ

2p−1

+(p2 − 3p+ 3)(1 + 2q)
32(p− 1)ǫ+ 32(p− 1)2ǫ2

]

2p−1

280



≈ 8σB(J)2

L(J)

+(p2 − 3p+ 3)(p− 1)ǫ
[
16 +

32(2q)

2p−1
+ (1 + 2q)

32 + 32(p− 1)ǫ
]

2p−1

]

≈ 8σB(J)2

L(J)
+ 16(p2 − 3p+ 3)(p− 1)ǫ

[
1 +

4q

2p−1
+

2(1 + 2q)

2p−1

]

≈ 8σB(J)2

L(J)
+ 16(p2 − 3p+ 3)(p− 1)ǫ

[
1 +

2

2p−1
+

8q

2p−1

]
. �

Then, one will adopt the following assumption : cf section 9.7.

Hypothesis 9.5.3 One supposes that σB(J)2 ≤ 4L(J).

Study under the assumptions of section 11.2

Now, we study the numerical results obtained with the data used in section
11.2: ǫ = α/

√
N = 0.000002649 , L(J) = 21−p.

Then, 2γ2,p = ǫ
(

2ξp + 2[1 + ǫξp]
√
θp + ǫθp

)]
and β2,p ≈ 16αB

2p .

Then, for p ≥ 3, we have the following increases.

p 3 5 10 15 20 32
ξp 1176 987.3 681.5. 1275.3 2242.5. 2959.1
θp 32 33 40 58.3 98.8 136.4
γ2,p 0.018 0.015 0.010 0.0023 0.035 0.047

Remark that, if Bn is Qd-dependent, in many cases, the distribution of

de
√
N( Pe

pe
−L(I))

σ2(I)
is close to a normal distribution. It is the case under the

assumptions of our data.
By refering to the proof of theorem 10 in section 9.3.7, we deduce of it that√

N( Pe
pe

−L(I))

σ2(I)
has asymptotically a normal distribution if

√
N
(
Pe−L(I)pe−D

l

)
+

√
N Dl−Dpe

l2 has asymptotically a normal distribution.

It is the same when Bn is IID.
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Proposition 9.5.1 Suppose that Bn is IID. Then,
√
N

Pe
pe

−L(I)

σ2(I)
has asymptot-

ically the standard normal distribution

Proof By our assumptions, D = 0.

We keep notations 9.1.1 : oP (1)
P→ 0 . Then,

√
N
(Pe
pe

− L(I)
)

=
√
N
(Pe − L(I)pe

pe

)

=
√
N
(Pe − L(I)pe

l

)
+
√
N
(
Pe − L(I)pe

)[ 1

pe
− 1

l

]

=
√
N
(Pe − L(I)pe

l

)
−
√
N(pe − l)

Pe − L(I)pe
pel

.

By our assumptions
√
N(pe − l) is asymptotically normal. Moreover, Pe −

L(I)pe
P→ 0 and pel

P→ l2.
Then,

√
N
(Pe
pe

− L(I)
)

=
√
N
(Pe − L(I)pe

l

)
+ oP (1).

Moreover,
√
N
(
Pe−L(I)pe

σcpl

)
is asymptotically normally distributed. �

Then, if Bn is IID,
√
N

Pe
pe

−L(I)

σcp
has asymptotically the standard normal

distribution.
We want that Bn behaves like an IID sequence.

Then, we increase P
{√

N |Pe/pe−L(I)|
σcp

≥ x
}

by using theorem 10 :

P
{√

N
∣∣∣
Pe
pe

− L(I)
∣∣∣ > σcp x

}
≤ K2

(1 − β2,p/x

1 + γ2,p
x
)

if N is large enough.

Then, we have the following table of P
{√

N |Pe/pe−L(I)|
σcp

≥ x
}

regarded as

function of (p,x)

(x,p) ) (1,2) (1,3) (1,4) (1,5) (1,10) (1,15) (1,20)
Sous IID 0.317 0.317 0.317 0.317 0.317 0.317 0.317
Sous H1 0.332 0.334 0.330 0.324 0.319 0.335 0.346
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(x,p) (2,2) (2,3) (2,4) (2,5) (2,10) (2,15) (2,20)
Sous IID 0.030 0.030 0.030 0.030 0.030 0.030 0.030
Sous H1 0.053 0.055 0.052 0.049 0.049 0.050 0.054

9.6 First assumption about variances

In this section one wants to know if assumption 9.3.3 holds in all the cases. One
thus places oneself under the following assumptions.

Hypothesis 9.6.1 One supposes that Xn is IID, Xn ∈ {0, 1}. Then, one sup-
poses that Bo is an interval I : Bo=I .

We set V 2 = NE
{

(Pe − L(I)pe)
2
}
.

Thus, one wants to know if the following assumption is satisfied.

V 2 = NE
{

(Pe − L(I)pe)
2
}
≥ (1/4)L(I)L(J) .

First, this assumption is always satisfied for some sequences js , for example
if js is increasing : cf 9.6.2 below.

As a matter of fact, this assumption is probably all the time satisfied. But
to prove it risks to be complicated considering the complexity of each case as
soon as p increases a little. For better revealing the reasons why assumption
9.3.3 probably holds always, one uses the following lemma.

Lemma 9.6.1 Under the previous assumptions,

N2E
{

(Pe − L(I)pe)
2
}

=
∑

n

E
{

[1I(Xn) − L(I)]21J(Xn+j)
}

+
∑

n

∑

s: s 6=1,m=n+js,n=m+jt

E
{[∏

u 6=s
1J(Xn+ju)

][∏

v 6=t
1J(Xm+jv )

]}
...................

..............................E
{[

1I(Xn)−L(I)
]
1Js

(Xn)
}
E
{[

1I(Xm)−L(I)
]
1Jt

(Xm)
}
.

Proof We have the following equalities

N2E
{

(Pe − L(I)pe)
2
}

= N2E
{[

(1/N)
∑

n

1I(Xn)1J(Xn+j) − L(I)(1/N)
∑

n

1J(Xn+j)
]2}

283



= E
{[∑

n

[1I(Xn) − L(I)]1J(Xn+j)
]2}

=
∑

n,m

E
{

[1I(Xn) − L(I)]1J(Xn+j)[1I(Xm) − L(I)]1J(Xm+j)
}

=
∑

n

E
{

[1I(Xn) − L(I)]21J(Xn+j)
}

+
∑

n

∑

s: s 6=1,m=n+js,n=m+jt

E
{[∏

u 6=s
1J(Xn+ju)

][∏

v 6=t
1J(Xm+jv )

]}
...................

................................E
{

[1I(Xn)−L(I)]1Js
(Xn)

}
E
{

[1I(Xm)−L(I)]1Jt
(Xm)

}
.�

Therefore, hypothesis 9.3.3 is statisfied if js is increasing.

Lemma 9.6.2 One supposes that the sequence js is increasing. Then

NE
{

(Pe − L(I)pe)
2
}

= L(I)[1 − L(I)]L(J)

Proof We have {s 6= 1 : m = n+ js, n = m+ jt} = ∅. Therefore,

N2E
{

(Pe − L(I)pe)
2
}

=
∑

n

E
{

[1I(Xn) − L(I)]21J(Xn+j)
}

= L(J)
∑

n

E
{

[1I(Xn) − L(I)]2
}

= L(J)
∑

n

(
L(I) − L(I)2

)
. �

In order to study the general case, one rewrites the sequence js by the
following way.

Notations 9.6.1 One rewrites the sequence js by using to sequences j′s > 0
and j”t > 0 , where {js} = {−j”t} ∪ {j′s} : that is the sequence {js} =
{....,−j”2,−j”1, j1, j

′
1, j

′
2, ....}.

One rewrites the sequence Js by using two sequences J ′
s and J”t correspond-

ing to the sequences j′s and −j”t : {......J”−2, J”−1, J0, J
′
1, J

′
2, ....}.

With these notations, one has the following property.

Lemma 9.6.3 The following equality hold :

E
{

[1I(Xn) − L(I)]1J”(Xm+jt)
}
E
{

[1I(Xm) − L(I)]1J′(Xn+js)
}

= δ(1/16) ,

where δ = 1 si J ′ = J” and δ = −1 if J” 6= J ′ .
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Proof We have

E
{

[1I(Xn) − L(I)]1J”(Xm+jt)
}
E
{

[1I(Xm) − L(I)]1J′(Xn+js)
}

= E
{

[1I(Xn) − L(I)]1J”(Xn)
}
E
{

[1I(Xm) − L(I)]1J′(Xm)
}
.

Moreover,

E
{

[1I(Xn) − L(I)]1J”(Xn)
}

= E
{

[1I∩J”(Xn) − L(I)L(J”)
}

= E
{

[1I∩J”(Xn) − 1/4
}

= 0 - 1/4 if I ∩ J” = ∅ , i.e. if I 6= J”
= 1/2 -1/4 if I = J”.

We deduce the result. �

Therefore,
NE

{
(Pe − L(I)pe)

2
}

= (1/4)L(J) +
∑

n

∑

s:s 6=,m=n+js,n=m+j′t

(δs/16)H(s)L(J) ,

where H(s) is a function of s.
If H(s) > 0, that increases the possibility that NE

{
(Pe − L(I)pe)

2
}
>

(1/4)L(I)L(J).
If H(s) < 0, that decreases it. It will be the case when J ′ 6= J”.
In all the examples which we studied, we have obtainedN ′E

{
(Pe−L(I)pe)

2
}
≥

(1/4)L(I)L(J). It is thus very probable that this assumption is always satisfied.

To support this assertion, one now will study some examples. One will
represent them by graphs with the following definitions.

Symbols 9.6.4 In the following graphs, for n fixed, the first line represents the
n+ js, s=1,2,...,p, around point n.

The points ”x” represent the points t 6= n+ js, s=1,2,...,p.
The symbol ”O” represents the point n : n = n+ j1 = n avec I = {0}
The symbol ”0” represent the points n+ js : Js = {0},
The symbol ”1” represent the points n+ js : Js = {1}.

The second line represents, for a ”m” fixed, the m+ js, s=1,2,...,p, around
the point m with the same notations : e.g. the points ”x” of the second line
represent the points t 6= m+ js, s=1,2,...,p.
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We set Mini = L(I)L(J)/4 = L(J)/8.

In the first examples, J ′
t = {1} : that corresponds to the js positive. More-

over, J”r = {0} that corresponds to the js negative. Finally one supposes
I = {0} . In example 9.6.6 js = 0 ± 1 . Therefore, p=3.

In theses example we compute (δs/16)H(s)L(J) for each case, i.e. for each
values of ”s”.

Example 9.6.5 It is the case where js is increasing. In this case, the variance
V2 is equal to L(J)/4 .

Example 9.6.6 One supposes {js} = {−1, 0, 1}, I = {0} , J”t = {0} for t =
-1, J ′

r = {1} for r=1 .

Therefore the points of each line are represented by x 0 O 1 x .
Moreover, L(J) = 2−2 , L(I)L(J) = 2−3 , (1/4)L(I)L(J) = 2−5.
Case 1 : Result = (−1/16)2−2 .

x 0 O 1
0 O 1 x

Case 2 : Result = (1/4)L(J)

0 O 1
0 O 1

Therefore, altogether : V 2 = (1/4)L(J)− 2 ∗ (1/16)2−2 = (1/16)− (1/32) =
1/32 = (1/4)L(I)L(J) = Mini. �

Example 9.6.7 One supposes {js} = {−2,−1, 0, 1, 2}, I = {0} , J”t = {0} for
t = -2,-1 J ′

r = {1} for r=1,2 .

Therefore the points of each line are represented by x 0 0 O 1 1 x .
Moreover, L(J) = 2−4 , L(I)L(J) = 2−5 , (1/4)L(I)L(J) = 2−7.
Case 1 : Result = 0

x x 0 0 O 1 1
0 0 O 1 1 x x

Case 2 : Result = (−1/16)2−4 .

x 0 0 O 1 1
0 0 O 1 1 x
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Case 3 : Result = (1/4)L(J)

0 0 O 1 1
0 0 O 1 1

Therefore, altogether : V 2 = (1/4)L(J) − 2 ∗ (1/16)2−4 = L(J)[(1/4) −
(1/8)] = L(J)[(1/8)] = L(I)L(J)/4 = Mini. �

Example 9.6.8 One supposes {js} = {−2,−1, 0, 1, 2}, I = {0} , J”−2 = J ′
1 =

{0} and J”−1 = J ′
2 = {1} .

Therefore the points of each line are represented by x 0 1 O 0 1 x
Moreover, L(J) = 2−4 , L(I)L(J) = 2−5 , (1/4)L(I)L(J) = 2−7.

Case 1 : Result = 0

x x 0 1 O 0 1
0 1 O 0 1 x x

Case 2 : Result = 0

x 0 1 O 0 1
0 1 O 0 1 x

Case 3 : Result = (1/4)L(J)

0 1 O 0 1
0 1 O 0 1

Case 4 : Result = 0

0 1 O 0 1 x
x 0 1 O 0 1

Case 5 : Result = 0

0 1 O 0 1 x x
x x 0 1 O 0 1

Therefore, altogether : V 2 = (1/4)L(J) > Mini. �

Example 9.6.9 One supposes {js} = {−2,−1, 0, 1, 2}, I = {0} , J”−2 = J ′
2 =

{0} and J”−1 = J ′
1 = {1} .
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Therefore the points of each line are represented by x 0 1 O 1 0 x . Moreover,
L(J) = 2−4 , L(I)L(J) = 2−5 , (1/4)L(I)L(J) = 2−7.

Case 1 : Result = (1/16)(1/2)L(J)

x x 0 1 O 1 0
0 1 O 1 0 x x

Case 2 : Result = 0

x 0 1 O 1 0
0 1 O 1 0 x

Case 3 : Result = (1/4)L(J)

0 1 O 1 0
0 1 O 1 0

Case 4 : Result = 0

0 1 O 1 0 x
x 0 1 O 1 0

Case 5 : Result = (1/16)(1/2)L(J)

0 1 O 1 0 x x
x x 0 1 O 1 0

Therefore, altogether : V 2 = (1/4)L(J) + (1/16)L(J) > Mini. �

Example 9.6.10 One supposes {js} = {−3,−1, 0, 1, 2}, I = {0} , J”−2 =
J ′

2 = {0} and J”−1 = J ′
1 = {1} .

Therefore the points of each line are represented by par x 0 x 1 O 1 0 x .
Moreover L(J) = 2−4 , L(I)L(J) = 2−5 , (1/4)L(I)L(J) = 2−7.

Case 1 : Result = 0

x x x 0 x 1 O 1 0
0 x 1 O 1 0 x x x

Case 2 : Result = 0

x x 0 x 1 O 1 0
0 x 1 O 1 0 x x

Case 3 : Result = 0

288



x 0 x 1 O 1 0
0 x 1 O 1 0 x

Case 4 : Result = (1/4)L(J)

0 x 1 O 1 0
0 x 1 O 1 0

Case 5 : Result = 0

0 x 1 O 1 0 x
x 0 x 1 O 1 0

Case 6 : Result = 0

0 x 1 O 1 0 x x
x x 0 x 1 O 1 0

Case 7 : Result = 0

0 x 1 O 1 0 x x x
x x x 0 x 1 O 1 0

Therefore, altogether : V 2 = (1/4)L(J) > Mini. �

Example 9.6.11 One supposes {js} = {−2,−1, 0, 1, 2}, I = {0} , J”−2 =
J”−1 = J ′

2 = {0} and J ′
1 = {1} .

Therefore the points of each line are represented by x 0 0 O 1 0 x . Moreover,
L(J) = 2−4 , L(I)L(J) = 2−5 , (1/4)L(I)L(J) = 2−7.

Case 1 : Result = 0

x x 0 0 O 1 0
0 0 O 1 0 x x

Case 2 : Result = 0

x 0 0 O 1 0
0 0 O 1 0 x

Case 3 : Result = (1/4)L(J)

0 0 O 1 0
0 0 O 1 0

Case 4 : Result =0
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0 0 O 1 0 x
x 0 0 O 1 0

Case 5 : Result =0

0 0 O 1 0 x x
x x 0 0 O 1 0

Therefore, altogether : V 2 = (1/4)L(J) ≥Mini. �

Example 9.6.12 One supposes {js} = {−3,−2,−1, 0, 1, 2, 3}, I = {0} , J”t =
{0} for t = -3,-2,-1, J ′

r = {1} for r=1,2,3 .

Therefore the points of each line are represented by x x x 0 0 0 O 1 1 1 .
Moreover, L(J) = 2−6 , L(I)L(J) = 2−7 , (1/4)L(I)L(J) = 2−9.

Case 1 : Result = 0.

x x x 0 0 0 O 1 1 1
0 0 0 O 1 1 1 x x x

Case 2 : Result = 0.

x x 0 0 0 O 1 1 1
0 0 0 O 1 1 1 x x

Case 3 : Result =(1/4)(−1/4)2−6 = −(1/16)L(J)

x 0 0 0 O 1 1 1
0 0 0 O 1 1 1 x

Case 4 : Result = (1/4)L(J)

0 0 0 O 1 1 1
0 0 0 O 1 1 1

Therefore, altogether : V 2 = (1/4)L(J) − 2 ∗ (1/16)L(J) = (1/8)L(J) =
(1/4)L(I)L(J) = Mini .�

Example 9.6.13 One supposes {js} = {−4,−3,−1, 0, 1, 2, 3}, I = {0} , J”t =
{0} for t = -3,-2,-1 J ′

r = {1} for r=1,2,3 .

Therefore the points of each line are represented by x x x 0 0 x 0 O 1 1 1 .
Moreover, L(J) = 2−6.

Case 1 : Result = 0.
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x x x 0 0 x 0 O 1 1 1
0 0 x 0 O 1 1 1 x x x

Case 2 : Result = 0

x x 0 0 x 0 O 1 1 1
0 0 x 0 O 1 1 1 x x

Case 3 : Result = (1/16)2−7 = −(1/16)L(J)/2

x 0 0 x 0 O 1 1 1
0 0 x 0 O 1 1 1 x

Case 4 : Result = (1/4)L(J)

0 0 x 0 O 1 1 1
0 0 x 0 O 1 1 1

Case 25 : Result = (1/16)2−7 = −(1/16)L(J)/2

0 0 x 0 O 1 1 1 x
x 0 0 x 0 O 1 1 1

Case 6 : Result = 0

0 0 x 0 O 1 1 1 x x
x x 0 0 x 0 O 1 1 1

Case 7 : Result = 0

0 0 x 0 O 1 1 1 x x x
x x x 0 0 x 0 O 1 1 1

Therefore, altogether : V 2 = L(J)/4 − 2 ∗ (1/16)L(J)/2 = L(J)/4 −
L(J)/16 = 3L(J)/16 = (3/2)[L(I)L(J)/4] > Mini. �

Example 9.6.14 One supposes {js} = {−4,−3,−1, 0, 1, 3, 4}, I = {0} , J”t =
{0} for t = -3,-2,-1 J ′

r = {1} for r=1,2,3 .

Therefore the points of each line are represented by x x x 0 0 x 0 O 1 x 1 1 .
Moreover, L(J) = 2−6.

Case 1 : Result =0

x x x x 0 0 x 0 O 1 x 1 1
0 0 x 0 O 1 x 1 1 x x x x
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Case 2 : Result = −(1/16)2−8 = −(1/16)L(J)/4

x x x 0 0 x 0 O 1 x 1 1
0 0 x 0 O 1 x 1 1 x x x

Case 3 : Result = 0

x x 0 0 x 0 O 1 x 1 1
0 0 x 0 O 1 x 1 1 x x

Case 4 : Result = −(1/16)2−8 = −(1/16)L(J)/4

x 0 0 x 0 O 1 x 1 1
0 0 x 0 O 1 x 1 1 x

Case 5 : Result = L(J)/4

0 0 x 0 O 1 x 1 1
0 0 x 0 O 1 x 1 1

Therefore, altogether : V 2 = L(J)/4 − 4 ∗ (1/16)L(J)/4 = L(J)/4 −
L(J)/16 = 3L(J)/16 > Mini. �

Example 9.6.15 One supposes {js} = {−6,−3,−1, 0, 1, 3, 6}, I = {0} , J”t =
{0} for t = -3,-2,-1 J ′

r = {1} for r=1,2,3 .

Therefore the points of each line are represented by
x x x 0 x x 0 x 0 O 1 x 1 x x 1 .

Moreover, L(J) = 2−6.

Case 1 : Result = 0

x x x x x x 0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1 x x x x x x

Case 2 : Result = 0 (because O)

x x x x x 0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1 x x x x x

Case 3 : Result = 0 (because O)

x x x x 0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1 x x x x
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Case 4 : Result = −(1/16)2−8 = −(1/16)L(J)/4

x x x 0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1 x x x

Case 5 : Result = 0 (because O)

x x 0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1 x x

Case 6 : Result = −(1/16)2−10 = −(1/16)L(J)/16

x 0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1 x

Case 7 : Result = L(J)/4

0 x x 0 x 0 O 1 x 1 x x 1
0 x x 0 x 0 O 1 x 1 x x 1

Therefore, altogether : V 2 = L(J)/4−2∗(1/16)L(J)/4−2∗(1/16)L(J)/16 =
L(J)/4 − (5/8)L(J)/16 = (L(J)/4)[1 − (5/32)] = (L(J)/4)(27/32) > Mini. �

Example 9.6.16 One supposes {js} = {−3,−2,−1, 0, 1, 2, 3}, I = {0} , J”t =
{0} for t = -3,-2, J”t = {1} for t = -1, J ′

r = {0} for r=1 , J ′
r = {1} for r=2,3 .

Therefore the points of each line are represented by x x x 0 0 1 O 0 1 1 .
Moreover, L(J) = 2−6 , L(I)L(J) = 2−7 , (1/4)L(I)L(J) = 2−9.

Case 1 : Result = (−1/16)2−8

x x x 0 0 1 O 0 1 1
0 0 1 O 0 1 1 x x x

Case 2 : Result = 0.

x x 0 0 1 O 0 1 1 x
0 0 1 O 0 1 1 x x x

Case 3 : Result = 0

x 0 0 1 O 0 1 1 x x
0 0 1 O 0 1 1 x x x

Case 4 : Result =(1/4)L(J)
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0 0 1 O 0 1 1 x x
0 0 1 O 0 1 1 x x

Therefore, altogether : V 2 = L(J)/4 − 2 ∗ (−1/16)2−8 = L(J)[(1/4) −
(1/32)] = [L(J)L(I)/4][2 − (1/4)] > Mini. �

Example 9.6.17 One supposes {js} = {−3,−2,−1, 0, 1, 2, 3}, I = {0} , J”t =
{0} for t = -3,-2,-1, J ′

r = {0} for r=1, J ′
r = {1} for r=2,3 .

Therefore the points of each line are represented by x x x 0 0 0 O 0 1 1 .
Moreover, L(J) = 2−6

Case 1 : Result = 0

x x x 0 0 0 O 0 1 1
0 0 0 O 0 1 1 x x x

Case 2 : Result = 0

x x 0 0 0 O 0 1 1
0 0 0 O 0 1 1 x x

Case 3 : Result = 0

x 0 0 0 O 0 1 1
0 0 0 O 0 1 1 x

Case 4 : Result = (1/4)L(J)

0 0 0 O 0 1 1
0 0 0 O 0 1 1

Case 5 : Result = 0

0 0 0 O 0 1 1 x
x 0 0 0 O 0 1 1

Case 6 : Result = 0

0 0 0 O 0 1 1 x x
x x 0 0 0 O 0 1 1

Case 7 : Result = 0

0 0 0 O 0 1 1 x x x
x x x 0 0 0 O 0 1 1
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Therefore, altogether : V 2 = L(J)/4 > Mini. �

Example 9.6.18 Example 9.6.6 is made more complex.

In order to make more complex this example, one adds ”0” and ”1”.
The worst case is that where it is necessary to subtract 2∗L(J)/16 = L(J)/8.

Then, it is understood that it is necessary to add 0 on the left and 1 on the
right in order to remain in the case where V 2 is minimal. If not, the result of
this addition will be null. On the other hand, if one adds n ”x” between the 0
or the 1, one will decrease the value which one has to substract: one will obtain
[2 ∗ L(J)/16]/2n

′

, 1 ≤ n′ ≤ n.
Finally, one always obtains V 2 ≥ (1/8)L(J).
But this is not a complete proof. If one wants to be surer about used result,

one can choose increases weaker, for example V 2 ≥ (1/16)L(J).

9.7 Second assumption about variances

9.7.1 Study of variances

Now we study the hypothesis 9.5.3. We keep the notations of section 9.3 : X ′
n

is an IID sequence of bits and J = J1 ⊗ ....⊗ Jp′ ⊂ {0, 1}p′ where p’=p-1. One

reminds that σB(J)2 = (1/N)E
{(∑N

n=1(1J(X ′
n) − L(J)]

)2}
.

The strongest increase of the assumption 9.5.3 takes place when all the Ji’s
are identical, which we will thus suppose.

Then, in this section one wants to prove the following assumption.

Hypothesis 9.7.1 Let p’=p-1. One supposes that Js = {bs}, bs ∈ {0, 1}.
Then, one supposes that σB(J)2 ≤ 4L(J).

In this section, one will understand why this assumption seems correct.
First, by the proof of lemma 9.2.4, we know that

σ2
B(J) = (1/N)

∑N
n=1

(∑
m∈H(n)E

{
1J(X ′

n)1J(X ′
m)
}
−∑m∈H(n) L(J)2

)
.

Moreover, by lemma 9.2.3 , σB(J)2 ≤ (p2 − p+ 1)L(J) .

Of course the hypothesis 9.7.1 is a much better increase. One will under-
stand why it holds.

First, it holds for p’=1, σB(J)2 = L(J)[1 − L(J)] = L(J)/2 .

In the general case, there is first the following proposition.
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Proposition 9.7.1 Let l0 ∈ N
∗. Suppose that js = (s− 1)l0 for s = 1, 2, ..., p′.

Then ∑

m∈H(n)

E
{

1J(X ′
n)1J(X ′

m)
}
≤ 3L(J) .

Proof Let Gn,m = {n+ jt | n+ jt = m+ js, s = 1, .., p′; t = 1, .., p′}. Then,
for n ≤ m,

if m = n+ (p′ − 1)l0, Gn,m = {n+ (p′ − 1)l0},
if m = n+ (p′ − 2)l0, Gn,m = {n+ (p′ − 2)l0, n+ (p− 1′)l0}
...........................
if m = n+ rl0, 0 ≤ r < p′, Gn,m = {n+ rl0, n+ (r + 1)l0, ...., n+ (p′ − 1)l0}
if m 6= n+ rl0, 0 ≤ r < p′ Gn,m = ∅.

Suppose Js = {b} for s=1,2,...,p’, b ∈ {0, 1}. Then, because L(J) = 1/2p
′

,
if m = n+ (p′ − 1)l0, E

{
1J(X ′

n)1J(X ′
m)} = L(J)/2p

′−1

if m = n+ (p′ − 2)l0, E
{

1J(X ′
n)1J(X ′

m)} = L(J)/2p
′−2

...........................
if m = n+ rl0, E

{
1J(X ′

n)1J(X ′
m)} = L(J)/2r

if m 6= n+ rl0, E
{

1J(X ′
n)1J(X ′

m)} = L(J)/2p
′

.

if n ≥ m, we obtain the same type of results.

Then,

∑

m∈H(n)

[
E
{

1J(X ′
n)1J(X ′

m)
}
− L(J)2

]

≤ L(J) + 2L(J)
[
1/2 + 1/22 + ...+ 1/2p

′−1
]

≤ L(J) + 2L(J) = 3L(J) .�

In this case, card(H(n)) = 2p′−1. One can understand by numerical studies
that it is the case where

∑
m∈H(n)E

{
1J(X ′

n)1J(X ′
m)
}

is maximum.

It is understood easily that this result becomes widely usable in the following
way.

Proposition 9.7.2 Suppose that js = (s − 1)l0 for s = −p1,−p1 + 1, ... −
1, 0, 1, 2, ..., p2 where pS > 0. Then

∑

m∈H(n)

E
{

1J(X ′
n)1J(X ′

m)
}
≤ 3L(J) .
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Now, we study the minimal case.

Proposition 9.7.3 Let p′ ≥ 2. Suppose Js = {b} for s=1,2,...,p. Suppose
card(H∗(n)) = p′2 − p′. In this case,

∑

m∈H(n)

E
{

1J(X ′
n)1J(X ′

m)
}
≤ [L(J)/2](p′2 − p′)/2p

′

) + L(J) ≤ (11/8)L(J).

Proof If card(H∗(n)) = p′2 − p′, then, E
{

1J(X ′
n)1J(X ′

m)} = L(J)2/2 :
otherwise card(H∗(n)) < p′2 − p′ (simplest to understand it is to make graphs).

Therefore, ∑

m∈H∗(n)

E
{

1J(X ′
n)1J(X ′

m)
}

= (p′2 − p′)L(J)2/2 = [(p′2 − p′)/2p
′

]L(J)/2 ≤ (3/8)L(J).

Therefore,
∑

m∈H(n)

E
{

1J(X ′
n)1J(X ′

m) = (p′2 − p′)/2p
′

)(L(J)/2) + L(J) ≤ (11/8)L(J). �

It is the case where
∑
m∈H(n)E

{
1J(X ′

n)1J(X ′
m)
}

is minimal.
Finally, in the numerical studies, one understands that the maximum is

reached when card(H(n)) = 2p′ − 1 : σB(J)2 ≤ 3L(J).

9.7.2 Study of Φ

In some cases, γ1,p defined in theorem 9 is too big. Indeed, in equation 9.2 in

the proof of lemma 9.2.8, the increase Φ ≤ (1/N)
∑N
n=1

∑
m∈H(n)Ob(1)ǫp is not

fine enough.
Indeed, study

Φ = (1/N)
N∑

n=1

∑

m∈H(n)

[
E
{

1Bo(Xn)1Bo(Xm)
}
− E

{
1Bo(X

′
n)1Bo(X

′
m)
}]

.

Now we suppose that Xn is a sequence of bits. Therefore, Bos = {b} where
b=0 or b=1.

First, let us use again the equation 9.1 in the proof of lemma 9.2.6 : there
exists a sequence is s=1,...,p’, p′ < 2p and a sequence of Borel sets Bo′s, s=1,...,p’
such that

1Bo(Xn)1Bo(Xm) = 1Bo′1(Xn)1Bo′2(Xn+i2).......1Bo′
p′

(Xn+ip′
) .

Therefore, |E
{

1Bo(Xn)1Bo(Xm)
}
− E

{
1Bo(X

′
n)1Bo(X

′
m)
}
| ≤ ǫp′ .
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To calculate the p’, we should use results of the same type that those of
section 9.7.1. Of course, for sequences of bits, the case which it should be
studied is that where Bos = {b}.

First, let us interest in the case where φ is maximum.

Proposition 9.7.4 Let l0 ∈ N
∗. Suppose Bos = J = {b}, for s=1,2,...,p. Let

ζ(p) = 2p
2p +2

∑p−1
r=1

2(p+r)
2p+r . Suppose that js = (s−1)l0 pour s = 1, 2, ..., p. Then

Φ ≤ c(ǫ)ǫζ(p) ,

where c(ǫ) > 1 and c(ǫ) ≈ 1.

Proof One uses again the technique used in proposition 9.7.1.
If m = n, 1Bo(Xn)1Bo(Xm) = 1J(Xn)1J(Xn+l0).......1J(Xn+(p−1)l0). Then,
p’=p.
Ifm = n+1, 1Bo(Xn)1Bo(Xm) = 1J(Xn)1J(Xn+l0).....1J(Xn+pl0)1J(Xn+(p+1−1)l0).
Then, p’=p+1. It is the same for m=n-1.

.......................................................................................

If m=n+r, 1Bo(Xn)1Bo(Xm) = 1J(Xn)1J(Xn+l0).......1J(Xn+(p+r−1)l0). Then,
p’=p+r. It is the same for m=n-r.

If m=n+p-1, 1Bo(Xn)1Bo(Xm) = 1J(Xn)1J(Xn+l0).......1J(Xn+(2p−1−1)l0). Then,
p’=2p-1. It is the same for m=n-(p-1).

Then,
Φ ≤ ǫp + 2[ǫp+1 + ǫp+2 + .....+ ǫp+p−1]

≈ ǫ
[2p

2p
+ 2
(2(p+ 1)

2p+1
+

2(p+ 2)

2p+2
+ .....+

2(p+ p− 1)

2p+p−1

)]

≤ ǫζ(p) .�

Lemma 9.7.1 The following inequality holds

ζ(p) ≤ 10p− 4

2p
.

Proof The following inequalities hold

ζ(p) ≤ 2p

2p
+ 2
(2(p+ 1)

2p+1
+

2(p+ 2)

2p+2
+ .....+

2(p+ p− 1)

2p+p−1

)

≤ 2p

2p
+ 4(2p− 1)

( 1

2p+1
+

1

2p+2
+ .....+

1

2p+p−1

)
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≤ 2p

2p
+

4(2p− 1)

2p+1

(
2
)

≤ 2p

2p
+

4(2p− 1)

2p
≤ 2p+ 8p− 4

2p
≤ 10p− 4

2p
.�

Now, let us interest in the case where Φ is minimal.

Proposition 9.7.5 Let p′ ≥ 2. Suppose that Js = {b}, for s=1,2,...,p. Suppose
card(H∗(n)) = p2 − p. In this case,

Φ ≤ c(ǫ)2(p2 − p)(2p− 1))ǫ

22p−1
,

where c(ǫ) > 1 and c(ǫ) ≈ 1.

Proof One uses again the technique used in proposition 9.7.3. If card(H∗(n)) =
p′2 − p′, then 1Bo(Xn)1Bo(Xm) = 1Bo′1(Xn)1Bo′2(Xn+i2).......1Bo′

p′
(Xn+ip′

) ,

with p’=2p-1 : otherwise card(H∗(n)) < p′2 − p′.
Therefore,

∣∣∣
∑

m∈H∗(n)

[
E
{

1Bo(Xn)1Bo(Xm)
}
− E

{
1Bo(X

′
n)1Bo(X

′
m)
}]∣∣∣ ≤ (p2 − p)ǫ2p−1 .

Therefore,

Φ ≤ c(ǫ)(p2 − p)
2(2p− 1)ǫ

22p−1
≤ c(ǫ)2(p2 − p)(2p− 1)ǫ

22p−1
�

Finally, in the numerical studies, one understands that the maximum is
reached when card(H(n)) = 2p− 1 : Φ ≤ c(ǫ)ǫζ(p).

Then, one can write the following proposition.

Lemma 9.7.2 Let ζ ′(p) = 2p + 2
∑p−1
r=1

2(p+r)
2r . We keep the notations of the

proof of lemma 9.2.8 .
Let

γ′1,p = c(ǫ)
ζ ′(p)ǫ

2A(p)
+

(p2 − p+ 1)(2q)ǫ2p
2A(p)L(Bo)

+
(p2 − p+ 1)(1 + 2q)

2A(p)L(Bo)

[
21−pǫp + ǫ2p

]
+

(kB/10)ǫp
2A(p)L(Bo)

]
.

Then,
σ2

1 = σ2
B

[
1 +Ob(1)2γ′1,p

]
.
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Proof In this case, with the notations of the proof of lemma 9.2.8 and if Xn is
q-dependent,

σ2
1

= σ2
B + Φ + (p2 − p+ 1)(2q)Ob(1)ǫ2p

+(p2 − p+ 1)(1 + 2q)Ob(1)
[
21−pǫp + ǫ2p

]
+ (Ob(1)kB/10)ǫp

= σ2
B

[
1 +

Φ

σ2
B

+
(p2 − p+ 1)(2q)Ob(1)ǫ2p

σ2
B

+
(p2 − p+ 1)(1 + 2q)

σ2
B

Ob(1)
[
21−pǫp + ǫ2p

]
+

(Ob(1)kB/10)ǫp
σ2
B

]

= σ2
B

[
1 +

Φ

A(p)L(Bo)
+

(p2 − p+ 1)(2q)Ob(1)ǫ2p
A(p)L(Bo)

+
(p2 − p+ 1)(1 + 2q)

A(p)L(Bo)
Ob(1)

[
21−pǫp + ǫ2p

]
+

(Ob(1)kB/10)ǫp
A(p)L(Bo)

]

= σ2
B

[
1 +Ob(1)2γ′1,p

]
. �

Then, we have the following approximation.

Lemma 9.7.3 We assume that Xn is a sequence of q-dependent bits satisfying
ǫ = α√

q0N
. Then,

γ′1,p ≈
ζ ′(p)α

2A(p)
√
q0N

+
(p2 − p+ 1)α

2A(p)
√
q0N

[
(1 + 4q)

4p

2p
+ (1 + 2q)

4p2ǫ

2p

]
.

Proof By our assumptions, L(Bo) = 1/2p, kB = 0 considering Xn is q-
dependent. Then,

2γ′1,p =
c(ǫ)ζ ′(p)ǫ

A(p)
+

(p2 − p+ 1)(2q)ǫ2p
A(p)L(Bo)

+
(p2 − p+ 1)(1 + 2q)

A(p)L(Bo)

[
21−pǫp + ǫ2p

]
+

(kB/10)ǫp
A(p)L(Bo)

]

≈ c(ǫ)ζ ′(p)ǫ

A(p)
+

(p2 − p+ 1)(2q)2(2p)ǫ

A(p)L(Bo)22p
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+
(p2 − p+ 1)(1 + 2q)

A(p)L(Bo)

[
21−p 2pǫ

2p
+

4p2ǫ2

22p

]]

=
c(ǫ)ζ ′(p)ǫ

A(p)
+

(p2 − p+ 1)(2q)(4p)ǫ

A(p)2p

+
(p2 − p+ 1)(1 + 2q)

A(p)

[4pǫ
2p

+
4p2ǫ2

2p
]]

=
c(ǫ)ζ ′(p)ǫ

A(p)
+

(p2 − p+ 1)ǫ

A(p)

[
(1 + 4q)

4p

2p
+ (1 + 2q)

4p2ǫ

2p

]

≈ ζ ′(p)α

A(p)
√
q0N

+
(p2 − p+ 1)α

A(p)
√
q0N

[
(1 + 4q)

4p

2p
+ (1 + 2q)

4p2ǫ

2p

]
. �
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Chapter 10

Study of some files

10.1 Introduction

In this chapter, we study the data resulting from certain electronic files, espe-
cially from texts. By a study of these data based on logic, we will understand
that one will be able to conclude that they behave like asymptotically indepen-
dent sequences (and even Qd-dependent sequences).

We understood that, to build xn, we use a sequence yn which one can regard
as a realization of a sequence of random variables.

In this chapter, we denote by yn, a such sequence and by Yn the associated
sequence of random variables defined an a probability space (Ω,∆, P ) : there
exists ω ∈ Ω such that, for all n, yn = Yn(ω) for all n=1,...,N .

We do not impose that the Yn are independent or identically distributed.
But it is useful that the CLT is satisfied.

As a matter of fact, there are many data which are appropriate to obtain the
sequences b1(n′) built in chapter 11 . But we want to be sure that the previous
hypotheses holds. That restricts the numbers of possible data.

10.2 Existence of satisfactory datas

10.2.1 Definition

At first, we had to know when a sequence yn can be regarded as a realization
of a sequence of really random variables : yn = Yn(ω) for all i=1,...,N .

First, any sequences of reals numbers can be regarded as a realization of a
sequence of random variable of a certain type (completely deterministic, IID,
etc) : this sequence of random variable is the model. But this model is correct
with a some probability.
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Then, to suppose ”yn = Yn(ω)” is a traditional scientific assumption if the yn
represents a physical phenomenon. One wants thus to show in an unquestionable
way that it is also the case when yn is resulting from certain electronic files

As a matter of fact a such sequence is simply a not-determinist sequence :
that is to say, a sequence such that it is impossible to predicte fully yn+p, when,
one knows y1, y2, ......, yn.

Now in order that the CLT holds, we impose that there is an asymptotic
independence. Of course, a such sequence is non-determinist. Indeed, in this
case, the sequence is not completely predictable.

10.2.2 Objections

But is what such sequences yn exist? It is a physical question. It is almost
a philosophical question. As a matter of fact, some people claimed that there
does not exist finite random sequences : e.g. cf [1] page 167.

It is due partly so that any sample of a sequence of random variables can be
regarded as fully determinist. Indeed the following proposition is obvious.

Proposition 10.2.1 Let xn, n=1,...,N, a sequence of real numbers. Then,
there exists a function g : {1, 2, ..., N} → R such that for all n ∈ N, xn = g(n).
Moreover, there exists p and a function g : R

p → R such that for all n ∈
{1, 2, ..., N − p}, xn+p = f(xn, xn+1, ..., xn−p+1).

Moreover, some philosophies claim that all is given. For example, meteorol-
ogy would be fully determined by all data of earth (all temperatures in all point
of earth, all the atmospheric pressures, etc).

In the same way, actions of the men would be fully determined by the con-
text in which they live and by the cells of their brains. Then, a book is fully
determined before his writing by theses events.

But, in this case, the quantum theory is rejected. For that, one can call
upon various reasons: 1) it is valid only for the infinitely small. 2) It is only
a theory 3) It implies inadmissible contradictions for some people (Schrodinger
cat).

But, all theses objections are false. In order to prove that, we use a coun-
terexample : one can exhib a finite unpredictable sequence.

10.2.3 A finite random sequence

Let P(x) = (x − x1)(x − x2)....(x − x2N ) where 0 ≤ x1 < x2 < .... < x2N < 1,
xj+1 − xj ≥ 1/4N for j=1,2,...,2N-1. Let z1, z2, ......, zN be a pseudo-random
sequence with values in [0,1] obtainded by a good pseudo-random generator.
Let yi = P (zi) for i=1,2,....,N.
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Then, it is no possible to predict yn+p , n ≤ n + p ≤ N if one knows only
y1, y2, ......, yn .

Indeed, even if one knew z1, z2, ......, zn+p, it would not possible because
any polynomial Q such that deg(Q) = 2N and yn = Q(zn) for n=1,2,...,p is
a correct prediction of P. Then, all y∗n+p = Q(zn+p) is a correct prediction of
yn+p.

Now there exists an infinite number of possible polynomials Q.
Then, it is no possible to predict yn+p even if one knew the sequence zn and

if one had an infinite computing power.
One can visualize that on the following example.

Example 10.2.1 The following sample is considered
z1
n = [−7.92,−2.70.2, 4.5, 8.99],
y1
n = Q(zn) = [−0.2,−2.6,−0.45,−0.2,−0.3] ∗ 107.

−10 −8 −6 −4 −2 0 2 4 6 8 10
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x 10
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Figure 10.1: Marginal distribution near to the uniform distribution

Study The two polynomials P1 and P2 whose graphs appear in the figure
10.1 are two correct estimates for P. It verifies both y1

n = P1(z1
n) et y1

n = P2(z1
n).

�

Now there is no reasons that the Y ′
ns have the same distribution, (yn =

Yn(ω)). But is is not important because the philosophical objections are that
the sequence is not independent.

Anyway, one can build a sequence y′n where the Y ′
ns have the uniform dis-

tribution : one uses y′n = F−1(yn) , where F is the distribution function of
P(X) when X has the uniform distribution: F−1(P (X)) has also the uniform
distribution.

There is another reason that it no possible to predict yn+p . In order to
estimate P, it would be necessary to compute all the polynomial correlation
coefficient of order smaller than 2N (cf [10]) .
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It would thus be necessary to calculate the empirical orthogonal polynomials
PNj of order J smaller than 2N associated with z1, z2, ......, zN . However PNj ≡ 0
if j > N : the empirical polynomials of a order larger than the sample size are
impossible to estimate.

Then, it is no possible to predict (even a little) yn+p , n ≤ 2N if one knows
y1, y2, ...., yn. That is to say, yn+p appears independent of the y′ns .

Moreover, it is not surprising that yn is unpredictable : indeed P depends on
more parameters than N. As matter of fact, many simple function using more
than N parameter zn can be appropriate to obtain unpredictable sequence. For
example if yi = Q(k1, k2, ..., kN , k

′
1, k

′
2, ...., k

′
n, zi) .

Indeed, in order to estimate the k′is and the k′i′s, one has to resolve the N
equations : yi = Q(k1, k2, ..., kN , k

′
1, k

′
2, ...., k

′
n, zi) for i=1,2,...,N, that is there

are more parameters than equations.
Then, all sequence y1, y2, ......, yn. which depend more parameters than N

may be an unpredictable sequence.

10.2.4 Consequence 1

Then, the sequence yn is random : a sequence whose it is impossible to predict
the future, it is obligatorily random. It is even an independent sequence.

Then, the philosophy which affirms that there does not exists finite random
sequences xn , n=1,...,n, does not corresponds to reality : a sequence which one
cannot predict is obligatorily random. To say the opposite is illogical.

10.2.5 Consequence 2

In order to obtain sequences which satisfy concretely some asymptotical inde-
pendence assumptions, we shall use sequences which depend on a number of
parameters much many larger than the size of sample.

it is always possible because the size of IID sequences which one can use
on computer is quite lower than the number of parameters potentially usable :
those are provided by the physical universe. This number is thus close to the
infinity.

Thus to have finite random sequences, we use data which depend a priori on
a very great number of parameters

10.3 Practical example

The sequence b1(n′) which we have built in section 11.2 has been obtained by
using text. in this case, the y′ns, n = 1, 2, ..., 107 represent letters or punctua-
tions which we write modulo κ = 32. Moreover we took these texts in various
languages. In certain cases we have removed the introduction. A text on two
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was rewritten in the opposite direction : ysn = y′sNs−n where Ns is the size of
obtained sequence : cf section 11.2.4.

Concretely, one has used the following texts (because they are large) in
various language : dictionary, Encyclopaedia, Bible, Theological sum, etc.

The dictionaries and the encyclopaedias are very good examples: the def-
initions which are consecutive in a dictionary generally represent independent
facts : for example ”decibel” is followed by ”decide” in some dictionaries. The
numbers which correspond to them are thus extracted from independent random
sequences.

There are other books having equivalent properties. Thus, the book of his-
tory form quasi-independent sequence : it is difficult to predict the associated
sequences of numbers because it is a question of predicting human behaviors.

In order to convert this files in number, one can use various programs. For
example, in MATLAB 2005, one can use the function :

fid=fopen(’Name of file’);
fread(fid);

For example, in Matlab 2005,
[ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz]
= [ 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

89 90 10 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
88 89 90 10 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
114 115 116 117 118 119 120 121 122]

In the same way, the key of the computer ”return” = 10.

10.3.1 Use of text

In the majority of the sequences obtained from texts, it is reasonable to ad-
mit asymptotic independence: one can admit this assumption because of the
following logical arguments.

1) The writing of a book depend of a very large number of parameters. To
write a book is an human phenomenon. One can think that, in order to predict
fully a book, it would at least be necessary to know the contents of cells of
the brain of its writer and a great number of the events which he lived in his
life. Normally, the number of parameters whose the content of the book depend
will be always larger than the sample size of the example. One thus finds the
argumentation introduced in section 10.2.3.

2) When they write a book many authors do not know what they will write
exactly one page later. Concretely they would not predicte exactly what words
he will use 100 words later. It will be even more difficult for letters. Then the
dependence is weaker between more distant lines. That is, there is asymptotical
independence.
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3) It is more difficult to predicte the letters used for the people who are not
the author of the book. For that, it would initially be necessary to know many
things, for example its style, which is difficult with only one book.

4) Let us take the example of a novel. If the first pages of a book are known,
it is sometimes possible to predict about what is written some pages after. But,
a novel is left with the imagination of an author and sometimes these ones like
to surprise. In fact if the beginning of a novel is known, there is a very great
number of possible alternatives for the continuation of the history. Even for
each alternative, there is a very great number of possible texts.

5) Not only, it quasi-impossible to predict about a text. But it is even more
difficult to envisage the letters used.

6) To predict logically what is written in a book, it should initially be known
that it is written in a certain language. It is not sure that one can arrive at
this conclusion. Thus, one is unable to even currently decipher some languages.
One could have deciphered the Egyptian hieroglyphs if the Rosetta Stone had
not been written in several languages.

In addition, it has to be known that this text is written with an alphabet
of 26 letters for example. If the same book is written in Chinese, one has an
alphabet much more important. If this book were written in a rational written
form, but not yet invented by men, it would be still other matter. Then, it is
not at all certain that, even with means of infinite calculations, it is possible to
know that the sequences of numbers obtained has a meaning as a text of English
language, this more especially, as to build b1(n′), we mix various texts and use
also texts written with backward.

Then, in most of texts it is very clear that it is many more difficult to predict
what words will used 200 words later than 100 words later. That is, there is
asymptotical independence.

On the other hand, some texts have particular characteristics.
Let us take a dictionary or an encyclopaedia: in this case, there has no logic

in this text, besides the first letters of the definite words (this characteristic
disappears when the words are turned in numbers)

All these facts mean that logic implies that the files obtained starting from
texts are asymptotically independent. One thus obtains a result concerning the
first step of our method of construction of the random bits b1(n′). That is log-
ically surer than if one uses sequences supposed random provided by machines
always prone to possible dysfunctions: if certain electronic files are used, there
are certain assumptions because of logical reasoning.

10.3.2 Other data

One can use other datas in order to obtain the sequences of random numbers.
Some give results less sure than text but easily usable.
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One can also use software etablished on computer. Anyway, it is necessary
to study by logical reasonning each type of files : programs, musics , etc..

For example, study mathematical texts
Of course, there is a certain logic in these texts.
But in order to predict what is written it would be necessary to know which

theorems, among the multitude of possible theorems, the author discovered.
That seems impossible especially if one takes care to remove the introduction.

Moreover it should be known which is the manner of writing of the author,
if there are errors, which are true results and the best way of proving them. It
also should be known if there are no errors and even if this mathematical text
is not based on an error. These are informations that one cannot know a priori
when one studies a file as a source of numbers.

Now study softwares. Then, much of subprogram can be used. Often, they
can be regarded as independent from each other.

One cannot detail all that here more especially as the important thing is
that in conclusion, the XORLT holds. However probably that arrives in much
case since it does not require asymptotic independence : cf section 5.2.1.

Moreover, the number obtainded in chapter 11 satisfies all these tests of
randomness.

10.3.3 Several files

One can use several files, for example, a dictionary and a software. Those are
often completely independent from each other. The sequences of numbers which
they provide are thus also independent.

It is the technique which we used to build the sequence b1(n′) in section 11.2.

10.3.4 Conclusion

For this type of files, one can assume that yn is a realization of a sequence of
random variable Yn : yn = Yn(ω) where ω ∈ Ω and Yn ∈ {0, 1/κ, 2/κ, ....., κ/κ}
where κ = 32 . Moreover, there is asymptotical independence, and the CLT
holds : often there is Qd-dependence.

10.4 Numerical Study

We study numerically various types of electronic files. If they are text’s files,
we study the data used in section 11.2 to build the sequences of random bits
b1(n′).
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10.4.1 Independence of the D(j)’s

First, we study numerically the asymptotic independence of the D(j) = DS(j)
defined in section 11.1.2 with S=10. In this section, for conveniences of nota-
tions, we pose also Dj = D(j).

Numerically these data behave as if there were Qd-dependence, that is there
exists Qd such that (....Dj−2Dj−1, Dj) and (Dj+Qd, Dj+Qd+1, Dj+Qd+2....) are
independent : cf [21], page 369.

10.4.2 Texts

Test of the linear correlation coefficients

One will test the coefficient of linear correlation of {Dj} and {Dj+p0}, i.e. the
correlation of the samples of size J , dj and dj+p0 , j=1,2,...,J .

Let ρJ(dj , dj+p0) be the empirical linear correlation coefficient associated to
a sample (dj , dj+p0).

One takes an interest in the table of
√
JρJ(dj , dj+p0) for p0 varying between

1 and 200. According to the following lemma, if the sample is independent,
these values must have asymptotically the N(0,1) distribution.

Lemma 10.4.1 Let Xn be an IID sequence of random variables with E{X1} =
0. Let σ2(X) be the variance of X1. Let t ∈ N

∗.

Then 1√
n−t

∑n−t
s=1

XsXs+t

σ2(X) has asymptotically the N(0,1) distribution.

Proof Let Zs = XsXs+t. First E{Zs} = E{Xs}E{Xs+t} = 0.
Moreover Zs is (t+1)-dependent. Let σ2(Z) = E{(Z1+....+Zn−t)2} . Then,∑n−t
s=1

Zs

σ(Z) has asymptotically the N(0,1) distribution.

Now, σ2(Z) =
∑n−t
s=1 E{Z2

s} +
∑
s 6=s′ E{ZsZs′} =

∑n−t
s=1 E{Z2

s}
=
∑n−t
s=1 E{X2

sX
2
s+t} = (n− t)E{X2

1}2 = (n− t)σ2(X)2. �

For the texts, one has the following table meaning the ”p0” and Corp0 =√
NρN (dj , dj+p0).

p0 1 2 3 4 5 6 7 8 9
Corp0 -9.71 -4.78 -0.29 -4.44 1.73 -0.50 -1.81 -0.46 -0.23
p0 10 11 12 13 14 15 16 17 18
Corp0 1.03 -1.01 0.87 -0.27 -0.56. -0.21 1.45 0.29 -0.63
p0 19 20 21 22 23 24 25 26 27
Corp0 -0.93 -1.62 1.19 0.27 -0.61 -0.66 -1.02 -0.12 0.70

These results show that independence between Dj and Dj+20 is a plausible
assumption. They are confirmed by the following curve representing the em-
pirical linear correlation coefficients for the texts. In this case, the correlation
tends very quickly to 0 : cf figure 10.2.
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Figure 10.2: Correlation Coefficients :Text

Distance L2

One will consider as measures of dependence between two random variables X
and Y the distance L2 to independence : for a partition {Is} of [0, 1] in N
intervals with the same length, one sets

DL2(X,Y, n)

=

n∑

t=1

n∑

s=1

P (X ∈ Is)P (Y ∈ It)
[
P{(X,Y ) ∈ Is ⊗ It} − P (X ∈ Is)P (Y ∈ It)

]2
.

One transforms the values of the two variables X and Y in [0,1] by translation
and homothecy. Then, for the distance DL2(Dj , Dj+p0 , 10), there is the graph
of figure 10.3.
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Figure 10.3: Distance L2 : Texts

10.4.3 Mathematical text

One is interested now in the texts of mathematical papers or reports : one ob-
tains also independence between Dj and Dj+20 .

First, one studies the linear correlation coefficient. We use the samples
(Dj , Dj+5p0) , j=1,....,10000, with p0 = 1, 2, ..., 60 : One obtains the graph of
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figure 10.4.
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Figure 10.4: Correlation Coefficient : Mathematical text

With regard to distance DL2, one notices that only the first term is too
large: for a partition (7,7), one obtains the following table representing different
1012DL2(Cj , Cj+p0 , 7) , j=1,....,10000.

0.2472 0.0013 0.0025 0.0024 0.0032 0.0008

10.4.4 Programs

One tests various sequences obtained thanks to some Matlab programs. One
uses the chi-squared Test of independence : cf proposition A.1.1.

One use the statistics
√

2χ2
I −

√
2.d− 1 . It is known that it has roughly the

distribution N(0,1) if there is independence : cf proposition A.1.2 .
Various values of these statistics are in the following table for the samples

(dj , dj+5p0), n=1 2,.....,10000, p0 = 1, 2, ....

13.5736 8.0426 7.0507 5.4497 6.0559 4.9351 7.7882 0.4296
3.0867 2.1431 2.5712 3.9886 1.4108 1.6074 2.6225 0.1329
2.2573 1.6054 0.2588 0.9548 -0.1447 0.4380 1.4387 1.9938
-0.4956 1.3421 0.8168 0.2529 0.8284 -0.3554 0.5218 0.1666
0.1172 0.3091 -0.0522 -0.5690 -0.3577 1.6076 1.7870 1.0123

On this table, there is independence when 5p0 ≥ 18.

The correlation coefficients are in figure 10.5 for the samples (Dj , Dj+5p0)
j=1 2,.....,10000.

We study distance DL2(X,Y,7), between Dj and Dj+5p0 , j=1 2,.....,10000.
The graph of 1012DL2(X,Y, 7) is in figure 10.6 .

311



0 5 10 15 20 25 30 35 40
−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 10.5: Correlation coefficients : Matlab programs
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Figure 10.6: L2 Distance : Matlab Programs

Remark 10.4.2 One carried out much more tests than those used here. All
give the same result : there is Qd-dependence.

10.4.5 Multidimensional Tests

One has just carried out the tests of independence between Dj and Dj+p0 .
But in order that there id Qd-dependence, one needs independence between
(DjDj+1, ......, Dj+p0) and (Dj+n1+p0 , Dj+n1+p0+1, ......Dj+n1+p0+p1) with n1 ≥
Qd.

In order to test this independence, simplest is to test independence between

Uj = a0(Dj)
b0 + a1(Dj+1)b1 + .......+ a′p(Dj+p0)bp

and

U ′
j+n1+p0 = a′0(Dj+n1+p0)b

′

0 + a′1(Dj+n1+p0+1)b
′

1 + .......+ ap′(Dj+n1+p0+p1)b
′

p′

for all the possibles sequences as, a
′
s, bs and b′s.

Of course, there is a very great number of possible tests. We thus have
carries out very many tests for various valeures of p0, p1, as, a

′
s, bs, and b′s.
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We tested the linear correlation coefficients by the chi-squared independence
test and the L2 distance. The results have the same order that for the indepen-
dence of Xn and Xn+j : there is Qd-dependence. Now, we give some results of
these tests.

Linear correlation coefficient tests

The following table represents the values Corp0 =
√
JρJ(Uj , U

′
j+n1+p0

) for
j=1,2,... Each line represents successively, mathematical texts, texts, programs.
The values chosen are the following ones: n1 = 1 + i, as = a′s = 1 , bs = b′s = 1
for p0 = p1 = 5, when i increases

15.03 12.56 5.54 -6.91 -2.52 2.46 -1.71 +0.52 -0.33
-12.23 10.35 -8.65 -7.06 -4.55 3.01 2.84 1.11 -0.98
11.66 10.08 -6.54 -5.77 -3.09 2.21 1.01 -0.87 1.12

In the case of independence, the asymptotic distribution is the N(0,1) dis-
tribution.

Lemma 10.4.3 Let Xn be an IID sequence of random variables with E{X1} =
0. Let Ys = Xs +Xs+1 + ...+Xs+p . Let q > p. Then,

Y1Y1+p+q + Y2Y2+p+q + .....YnYn+p+q√
nE{X2

1}
√

(p+ 1)2 + 2
∑p
t=1 t

2

has asymptotically the N(0,1) distribution.

Proof First, Zs = YsYs+p+q is Qd-dependent.
Moreover, E{Zs} = E{Ys}E{Ys+p+q} = 0.
On the other hand

E{Z2
s}

= E{(Xs +Xs+1 + ...+Xs+p)
2(Xs+p+q +Xs+p+q+1 + ...+Xs+p+q+p)

2}
= E{(Xs +Xs+1 + ...+Xs+p)

2}2 = E{Y 2
s }2 = (p+ 1)2E{X2

s}2 .

Moreover

E{ZsZs+t}
= E{(Xs + ...+Xs+p)(Xs+p+q + ...+Xs+2p+q).......................

...................(Xs+t + ...+Xs+t+p)(Xs+t+p+q + ...+Xs+t+2p+q)} .
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Therefore, E{ZsZs+t} = 0 si p < t .

If t ≤ p ,
E{ZsZs+t}

= E{(Xs + ...+Xs+p)(Xs+t + ...+Xs+t+p)......................................

.....................(Xs+p+q + ...+Xs+2p+q)(Xs+t+p+q + ...+Xs+t+2p+q)}

= E{(Xs + ...+Xs+p)(Xs+t + ...+Xs+t+p)}..............................

............................E{(Xs+p+q + ...+Xs+2p+q)(Xs+t+p+q + ...+Xs+t+2p+q)}

= E{(Xs+t + ...+Xs+p)
2}E{(Xs+t+p+q + ...+Xs+2p+q)

2}
= (p− t+ 1)2E{X2

s+1}2.

Therefore,

E{(Z1 + Z2 + ...+ Zn)2} =

n∑

s=1

E{Z2
s} +

n∑

s=1

∑

s′ 6=s
E{ZsZs′}

=

n∑

s=1

E{Z2
s} +

n−p∑

s=p+1

∑

s 6=s′
E{ZsZs′} +O(1)

=

n∑

s=1

E{Z2
s} + 2

n−p∑

s=p+1

∑

s<s′

E{ZsZs′} +O(1)

=

n∑

s=1

E{Z2
s} + 2

n−p∑

s=p+1

p∑

t=1

E{ZsZs+t} +O(1)

= nE{X2
1}2(p+ 1)2 + 2

n−p∑

s=p+1

E{X2
1}2

p∑

t=1

(p− t+ 1)2 +O(1)

= nE{X2
1}2(p+ 1)2 + 2

n−p∑

s=p+1

E{X2
1}2

p∑

t=1

t2 +O(1)

= nE{X2
1}2(p+ 1)2 + 2(n− 2p)E{X2

1}2

p∑

t=1

t2 +O(1)
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= nE{X2
1}2
[
(p+ 1)2 + 2

p∑

t=1

t2 +O(1)/n
]
.

Then, Zn+....+Zn√
nE{X2

1}
√

(p+1)2+2
Pp

t=1 t
2+O(1)/n

has asymptotically the N(0,1) dis-

tribution .

Then, Zn+....+Zn√
nE{X2

1}
√

(p+1)2+2
Pp

t=1 t
2

has asymptotically the N(0,1) distribu-

tion. �

Chi-squared independence test

One carries out the chi-squared independence test with a partition in (10,10)
intervals: i.e one uses the statistics

√
2χ2

I −
√

2.92 − 1 where χ2
I = χ2

X,Y −χ2
X −

χ2
Y . We know that, under the hypothesis of independence,

√
2χ2

I −
√

2.92 − 1
has about the N(0,1) distribution : cf propositions A.1.1 and A.1.2 .

One carries out the test between Un and U ′
n+n1+p0 with the following pa-

rameters : p1 = 25 n1 = 1+ j, as = a′s = 0 except a5s = a′5s = 1 for s=1,2,3,4,5,
b5 = b′5 = 2 , b10 = b′10 = 4 , b15 = b′15 = 1, b20 = b′20 = 3, b25 = b′25 = 4, when j
increases.

For the text’s files, we obtain

15.03 12.56 5.54 -6.91 -2.52 2.46 -1.71 +0.52 -0.33

For the files of mathematical texts, we obtain

-12.23 10.35 -8.65 -7.06 -4.55 3.01 2.84 1.11 -0.98

For the Matlab programs, we obtain

11.66 10.08 -6.54 -5.77 -3.09 2.21 1.01 -0.87 1.12

All these results - as all those which we obtained in other tests - thus con-
clude that there is Qd-dependence.
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10.4.6 Study of the dependence between different files

When files of the different type are used - for example, a text file and a software
- these files are independent in the usual meaning of the English language. It is
the case also for files of comparable nature but of different sources, for example,
two different books.

It is logical to think that they are also independent in the statistical meaning.
All the tests which we have carry out confirm this result.

Indeed, one obtains results as those which we have just described, for exam-
ple in section 10.4.5 for the three types of used tests.

For example, let us carry out the chi-squared test of independence which
uses

√
2χ2

I −
√

2.92 − 1 where χ2
I = χ2

X,Y − χ2
X − χ2

Y and which are associated
with a partition in (10,10) squares.

The following table gives the results for independence between two texts of
mathematical reports relating, one to the CLT, the other on cryptography.

Let Xn and Yn be the random variables associated with the CLT and the
cryptography, respectively. Then, one tests independence between the variables

2X3
n − 4.5X2

n+1 − 0.5X2
n+2 − 2X3

n+3 + 7Xn+4 − 3.2X4
n+5 −X2

n+6 + 8X5
n+7

and

2Y 3
n+h − 4.5Y 2

n+1+h − 0.5Y 2
n+2+h − 2Y 3

n+3+h + 7Yn+4+h − 3.2Y 4
n+5+h − Y 2

n+6+h + 8Y 5
n+7+h

for different h.

Then, the following results have been obtained for h=0,10,20......

-1.12 0.80 -0.45 -2.01 1.23 0.78 -1.37 0.61 0.98

Problems for some files

It is necessary to pay attention during the conversion of the files in numbers.
Indeed, for some systems, it can have certain problems there.

Thus if one uses files text AppleWork, there is much more zeros than the
text lets appear normally. Thus for a file of Y ∈ {0, 1, ..., 31}, of size 10623940,
there were 2466752 zeros, which is of course too much. In this case, one can
find that there is even dependence between files of different books.

It is thus necessary to study correctly the behavior of the files translated in
number before using them in the construction of the random numbers.
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10.4.7 Uniformity

In the previous sections, we saw that there is asymptotic independence. To apply
the theorem 4, it remains to prove HS , Hms(4) and that E{(Su)2}−E{(S′

u)2} →
0 .

In fact, there is a result much more strong : one can conclude to the unifor-
mity of distributions.

Indeed, for the sequences Dn, it seems already reasonable to admit that
there is an approximation of the stationarity which check HS . It is confirmed
by all the tests.

But in fact, it is even truer for sequences e2(j) considering one adds mod-
ulo m1 a sequence of pseudo-random numbers rand0(j) whose uniformity was

abundantly tested : e2S(j) = e1S(j) + rand0(j) : cf section 11.1.2. Let us recall
that it is not the uniformity of the pseudo-random numbers which generally
pose problem, but the number of independence to be checked : cf section 2.1.5.

Reasonably, it is thus logical to think that one has the uniformity of the
distributions. Besides, it is what all the tests which one could carry out confirm
absolutely. In fact what one tests, it is again the uniformity of the used ran-
dom pseudo-generators. It is not surprising that one concludes to the uniformity.

There remains a condition so that theorem holds 4 holds : E{ξ2u} → 0 . So
that happens, it is enough to choose suitably sequence κ(n) so that κ(n) → ∞.
Thus all the assumptions so that the theorem 4 holds are checked.
.

10.4.8 Conclusion : CLT

The previous numerical results have all the same conclusion: there are Qd-
dependence in all the texts, mathematical texts and softwares which we tested.

Let us notice also that we developed in this section numerical, logical and
philosophical arguments. These arguments are perfectly reasonable.

One can reasonably conclude from all these facts that there is asymptotic
independence. With regard to theorem 4, all the assumptions are checked. We
deduce that one is in the case of the CLT.

But, the fact which interests us, it is that the curve of the probabilities have
the shape of bell. The fact that one can apply the CLT and numerical studies
carried out in the chapter 5.1 (in particular in section 5.3.3 ) show that this
result is probably checked for all the files that we studied here.

10.4.9 XORLT

Since one can apply the CLT, one can thus also apply the XORLT which is
weaker (cf proposition 5.2.3). But, one does not know yet all the assumptions
under which it is satisfied. To have a more definite idea, it is necessary to study
the Hn’s used in the section 11.1.2.
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Indeed, if there is Qd-dependence on the Dn, there is independence between
.....Hn−2, Hn−1, Hn and .....Hn+Qd, Hn+Qd+1, Hn+Qd+2, ...... : cf also proposi-
tion 5.2.4 .

As a matter of fact, the Hn behave even as being independent. That is
confirmed by the following numerical studies.

Independence between the Hn’s : numerical results

One carried out many tests on the independence of the Hn’s. In particular, one
studied the dependences between

∑P
s=0 as(Hn+s)

bs and
∑Q
t=0 a

′
s(Hn+p0+t+j)

b′s .
The as ,a′s , bs, b

′
s have been chosen randomly : a = ⌊10 ∗ rand(1, P )⌋ ,

b = ⌊10 ∗ rand(1, Q)⌋ , where rand is a Matlab pseudo-random generator.
For example, we have used the chi-squared independence test with P=Q and

various sequences as ,a′s , bs, b
′
s. Then the following results have been obtained

for the statistics
√
χ2
I −

√
2d− 1 (cf proposition A.1.2) :

P=1 -0.7019 2.9104 0.952
P=2 -2.4783 2.010 1.0245
P=3 -0.9502 0.854 -1.254
P=10 -0.2449 0.548 -1.987

Many of other tests were carried out: one can conclude to the independence
of the Hn’s.

One also has tested the uniformity. For the same reasons that for the CLT,
one concludes that uniformity holds.

Conclusion : XORLT

All the previous results confirm it to us: with our data, one can apply the CLT
and the XORLT. With all the arguments which we developed one can to con-
clude that reasonably, there are all the chances that one can regard the Hn as
Qd-dependent. In fact, they are even probably independent.
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Chapter 11

Building of a random
sequence

11.1 General method

11.1.1 Choice of data

Notations of data

It is supposed that one has a sequence of data a(j) translated in number: a(j) ,
j = 1, 2, ...., N3, a(j) ∈ {0, 1, ...,Ka− 1}. One will transform it into a sequence
of random bits b0(n′).

One supposes that Ka is small enough : for example, Ka ≤ 1000. If it is not
the case, one can break up the a(j)’s in order to have Ka small enough.

It is supposed that a(j) can be regarded as a sample of a sequence of random
variables A(j) defined over a probability space (Ω,∆, P ) : a(j) = A(j)(ω) where
ω ∈ Ω.

We write with CAPITAL letters the sequences of random variables defined
over (Ω,∆, P ) and with small letters the realization of these sequences (cf Nota-
tions 1.2.1). For example, c(j) = a(j)−κ⌊a(j)/κ⌋ and C(j) = A(j)−κ⌊A(j)/κ⌋
: cf below.

Study of data

It is supposed that there is some asymptotic independence : cf sections 11.1.1
and 11.2.9. If these conditions are not satisfied, it is maybe still possible to
apply the method described here. But that depends on the properties of the
XORLT.

One checks this asymptotic independence by logical and numerical studies.
For example, one studied data according to the method of the chapter 10. In
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particular, it is necessary that, for all Borel set Bo,

∣∣∣E
{(

1Bo[A(j)] − Lj
)(

1Bo[A(j + d)] − Lj+d
)}∣∣∣ ≤ φ(d) ,

where
∑
d φ(d) <∞ with Lj = E

{
1Bo[A(j)]

}
.

Of course, because the sequence a(j) is finite, one has always such a result.
But, which one wants, it is to be able to consider that there is well convergence
of
∑
d φ(d). One will be able to admit this convergence if one finds for example,

φ(d) < C0/d
1+t, where t > 0 and where C0 ∈ R+ is a suitably chosen constant.

One can also check asymptotic independence with the sequences transformed
of a(j), for example c(j), d(j) or e2(j) : cf definitions below.

11.1.2 Description of the method

Shortening of the a(j)’s

Let κ ∈ N
∗. We set c(j) = a(j) − κ⌊a(j)/κ⌋.

Comment 1 c(j) = a(j) mod κ .
Comment 2 One chooses κ in order to obtain a sequence c(j) such as, for all
t ∈ {0, 1, ., κ − 1}, P ′

e{C(j) = t} > 0 where P ′
e is the empirical probability

associated with c(1), c(2), ...., c(N3) .

Choice of the parameters

a) We choose α ∈ R+ such that α ≤ 0.02.
Comment We choose α (and therefore ǫ : cf section 11.1.4) according to the
quality of the desired approximation: in fact, one chooses α according to β1,p

and β2,p : cf section 11.1.4.

b) One choose first S=10.

c) One chooses now q0 and r0 ∈ N
∗ . For that, we use the following nota-

tion.

Notations 11.1.1 Let fin be the Fibonacci sequence {fin} (cf definition 1.3.2).
For all x ≥ 2, we set mF (x) = fin0−1 where fin0−1 ≤ x < fin0

.

One chooses q0 and r0 ∈ N
∗ such that :

a) q0/r0 is maximum
b) mS = mF ([mF (κr0)]3/4) is sufficiently large but not too (cf section 8.5.1

and remark 11.1.7 )
c) They satisfy the conditions

mS/2
q0 ≥ 1001 ,
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√
q02q0/2Γ−1(aS2 ) ≤ 2α

√
S√

N3

√
r0mS ,

where aS2 = Γ
(

Γ−1(4−q0)
√
⌊mS/2q0⌋/(mS/2q0) + 2q0/mS

)
and where Γ is de-

fined in notation 1.3.6 .

d) One checks that the following assumption holds.

Hypothesis 11.1.1 The following approximation holds : aS2 ≈ 1/4q0 . In par-
ticular, 0.9/4q0 ≤ 4−q0 ≤ aS2 ≤ 1.1/4q0 .

That amounts supposing that the event |ǫIk
| ≤ a2

√
NIel

mS
has a probability about

1.1/4q0 to be carried out whereas one has at the most a sample of 2q0 possible
intervals Ik = [k/2q0 , (k + 1)/2q0 [ : cf section 7.2; cf also section 11.1.3 and
lemma 11.1.4 .

To make uniform the marginal distribution

a) We set dS(j) =
∑r0
r=1 c(r0(j − 1) + r)κr−1 for j = 1, 2, ...., ⌊N3/r0⌋.

Comment Then, dS(j) ∈ {0, 1, ..., κr0 − 1} : dS(j) is a number basis κ written
with r0 digits and obtained by joining the c(j) . For example, the writting of

dS(1) is dS(1) = c(r0)c(r0 − 1).......c(2)c(1).

b) We set e1S(j) =
⌊
dS(j)[m1

S/κ
r0 ]
⌋

for j = 1, 2, ..., ⌊N3/r0⌋ where m1
S =

mF (κr0).
Comment The dS(j) ∈ {0, 1, ..., κr0 − 1} are transformed in integers e1S(j) ∈
{0, 1, ....,m1

S − 1} .

c) We set e2S(j) = e1S(j) + rand0(j) mod m1
S for j = 1, ..., ⌊N3/r0⌋ where

rand0(j) is a pseudo-random generator with values in F ∗(m1
S) and period m1

S

or k4.m
1
S , k4 ∈ N

∗.
Comment : We want that, for all k ∈ F ∗(m1

S) , it is logical to admit
P{e2S(j) = k} > 0. We want that all k ∈ F ∗(m1

S) have a reasonable probability
to be realized.

d) For j = 1, 2, ..., ⌊N3/r0⌋, we set e3S(j) = mST
mS
1 (e2S(j)/m1

S) where TmS
1

is the Fibonacci function modulo m1
S : cf definition 1.3.5.

Comment 1 We remark that e3S(j) ∈ F ∗(mS).
Comment 2 One makes independent the e2S(j)’s and one makes uniform the
marginal distributions of the e2S(j)’s.

Remark 11.1.1 In some cases, one can remove the transformation TmS
1 de-

fined in the step d) for the last numbers. For example, one can set e3S(j) =
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⌊
e2S(j)mS/m

1
S

⌋
for the last j ∈ {nd, nd + 1, ..., ⌊N3/r0⌋}, where nd is about

(S− 1)⌊N3/[Sr0]⌋. This is carried out with the aim described in remark 11.1.2.
To avoid losing data, one can make differently: at first, one chooses r′0 < r0.

One applies the step a) (dS(j) =
∑r′0
r=1 c(r

′
0(j − 1) + r)κr−1) to the nd′ last c(j)

where nd′ is selected so that the nd′ last numbers obtained thus (that one notes
d′S(J)) corresponds to a last line f(S, n) ∈ F ∗(mS) defined in the following
subsubsection : cf remark 11.1.2 .

In this case one can replace m1
S by mS for the constructions defined in the

steps b) and c).

Use of the limit theorems

a) We denote by e4S(t), t = 1, 2, ..........., N2 , N2 = NS ≤ ⌊N3/r0⌋ , a subse-
quence of e3S(j) obtained by suppressing some sequences e3S(ρu), e3S(ρu + su1),
......,e3S(ρu + sun).
Comment One removes possibly some e3s(j) in order to ensure independence
between the lines defined below. If one does not have independent files, this
step is not necessary forcing : N3 = NS should just be imposed.

b) We set fS(i, n) = e4S(n+N(i− 1)) for i=1,...,S , n = 1,...,N.
Comment One transforms the matrix line {e4S(j)} into a SxN matrix.

c) We set gS(n) =
∑S
i=1 fS(i, n) for n = 1,...,N.

Comment One uses the summation of the central limit by summoning the
columns.

d) We set hS(n) = gS(n) mod mS for n = 1,...,N.
Comment This corresponds to use the XORLT.

Remark 11.1.2 If one applies the changes of construction defined in remark
11.1.1, one chooses the parameters defined in this remark so that the last line
f(S,n) is made of numbers not having been transformed by TmS

1 described with
the step d) of the previous section.

One uses the changes of construction defined in remark 11.1.1 so that the
probabilities associated with these sums can be regarded as selected really ran-
domly. In this case, one can apply the proposition 5.5.1 . One thus avoids for
example the difficulties defined in subsubsection ”Problem in some case”, section
5.5.8.

That is not necessary in all the cases : for example if we use the sequences
c(j) resulting from files enough different as in section 11.2.
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Checking of S

a) One checks by numerical calculations that the curve of the

h 7→ P{HS(n) = h | HS(n+ j2) = h2, ...,HS(n+ jp) = hp}

is enough close to that of the uniformity: it is necessary that the condition of
the section 7.2 is satisfied. In general, it is well the case if S= 10.

If it is not the case, one remakes several times the previous operations with
various S > 10.

One chooses S according to the obtained results by checking that, for the
chosen S, the curve of

g 7→ P{GS(n) = g | GS(n+ j2) = g2, ..., GS(n+ jp) = gp}

is sufficiently smooth and especially that the curve of the

h 7→ P{HS(n) = h | HS(n+ j2) = h2, ...,HS(n+ jp) = hp}

is sufficiently near to that of the uniform distribution.

b) One chooses smallest S ≥ 10 which is appropriate. It is noted S0.

c) We set h(n) = hS0
(n) for n = 1,...,N.

Use of the Fibonacci Congruence

For n = 1,...,N, we set k(n) = ah(n) modulo m
where m = mS0

and where a is the largest element of the Fibonacci sequence
fin such as a = fin3

< m = fin3+1.
Comment : k(n) = T (h(n)) where T is the Fibonacci congruence with param-
eters (a,m).

Getting the random sequences

a) We set r(n) = k(n)/m for n=1,...,N.

b) Let r(n) = 0, bn1 , b
n
2 ..... , bns ∈ {0, 1} , the binary writting of r(n).

c) We set x(n) = 0, bn1 , b
n
2 .....b

n
q0 where q0 was defined previously in 11.1.2.

Comment In fact, in the previous steps, one applied the Fibonacci function
Tq0 : x(n) = Tq0

(
h(n)/m

)
(cf definition 1.3.5).

d) We set b′q0n−r+1 = bnr for n=1,...,N and r = 1, ..., q0.
Comment One obtains the b′n by taking the bnt ’s successively : b′1 = b1q0 ,
b′2 = b1q0−1 ,....., b′q0 = b11, b′q0+1 = b2q0 , b′q0+2 = b2q0−1,......, b′2q0 = b21 ,
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b′2q0+1 = b3q0 ,........

e) The sequence {b′n} is noted b0(n′), n′ = 1, 2, ..., Nq0.

11.1.3 Explanation of the conditions about q0 and r0

Assumptions

Because the various steps of this construction, one can accept the model of the
section 7.2 :

P{
∑

i

F (i, n) = k |
∑

i

F (i, n+ js) = hs, s = 2, 3...} =
1

m

[
1 + uk

]

(cf also section 11.3.1). By property 7.2.2, we admit the following assumption.

Hypothesis 11.1.2 For all k/2q0 , for all finite injective sequence js, we as-
sume that

P
{
X(n) = k/2q0

∣∣ H(n+ j2) = h2, ....,H(n+ jp) = hp
}

= 1/2q0 +Ob(1)ǫIk
,

where | ǫIk
| ≤ ǫ = Γ−1(4−q0 )

√
NIel

m .

Some lemmas

First, the following lemma is needed.

Lemma 11.1.3 For all k/2q0 , k ∈ N, for all finite injective sequence js ,

P
{
X(n) = k/2q0

∣∣X(n+ j2) = x2, X(n+ j3) = x3, ....
}

= 1/2q0 +Ob(1)ǫIk
.

Proof Define Js by {H(n+ js) ∈ Js} =
{
X(n+ js) = xs

}
. By proposition

4.2.3,
P
{
X(n) = k/2q0

∣∣X(n+ j2) = x2, X(n+ j3) = x3, ....
}

=
P
{{
X(n) = k/2q0

}
∩
{
X(n+ j2) = x2

}
∩
{
X(n+ j3) = x3

}
∩ ....

}

P
{{
X(n+ j2) = x2

}
∩
{
X(n+ j3) = x3

}
∩ ....

}

=
P
{{
X(n) = k/2q0

}
∩
{
H(n+ j2) ∈ J2

}
∩
{
H(n+ j3) ∈ J3

}
∩ ....

}

P
{{
H(n+ j2) ∈ J2

}
∩
{
H(n+ j3) ∈ J3

}
∩ ....

}
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=
∑

h2,h3,...

P
{{
X(n) = k/2q0

}
∩
{
H(n+ j2) = h2

}
∩
{
H(n+ j3) = h3

}
∩ ....

}

∑
h2,h3,...

P
{{
H(n+ j2) = h2

}
∩
{
H(n+ j3 = h3

}
∩ ....

}

=
X

h2,h3,...

ηh2,h3,...

P



n

X(n) = k/2q0
o

∩
n

H(n + j2) = h2

o

∩
n

H(n + j3) = h3

o

∩ ....

ff

P



n

H(n + j2) = h2

o

∩
n

H(n + j3 = h3

o

∩ ....

ff

where

ηh2,h3,... =
P
{{
H(n+ j2) = h2

}
∩
{
H(n+ j3 = h3

}
∩ ....

}

∑
h2,h3,...

P
{{
H(n+ j2) = h2

}
∩
{
H(n+ j3 = h3

}
∩ ....

} .

Then,
∑
h2,h3,...

ηh2,h3,... = 1.

Therefore,

P
{
X(n) = k/2q0

∣∣X(n+ j2) = x2, X(n+ j3) = x3, ....
}

=
X

h2,h3,...

ηh2,h3,...

P



n

X(n) = k/2q0
o

∩
n

H(n + j2) = h2

o

∩
n

H(n + j3) = h3

o

∩ ....

ff

P



n

H(n + j2) = h2

o

∩
n

H(n + j3 = h3

o

∩ ....

ff

=
∑

h2,h3,...

ηh2,h3,...P
{
X(n) = k/2q0

∣∣∣H(n+ j2) = h2, H(n+ j3) = h3, .....
}

=
∑

h2,h3,...

ηh2,h3,...

[
1/2q0 +Ob(1)ǫIk

]

= 1/2q0 +Ob(1)ǫIk
,

because
∑
h2,h3,...

ηh2,h3,... = 1 and 0 ≤ ηh2,h3,.... �

One needs the following proposition.

Lemma 11.1.4 We set aS0
2 = a2. We suppose that hypothesis 11.1.2 holds.

We suppose m/2q0 ≥ 1001.
Then, for all Borel set Bo ⊂ {0, 1/2q0 , 2/2q0 , ....., (2q0 − 1)/2q0}, |ǫBo| ≤

2q0/2Γ−1(a2)
2
√
m

.
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Proof We know that a2 = Γ
(

Γ−1(4q0)
√
⌊m/2q0⌋/(m/2q0) + 2q0/m

)
.

Then, Γ−1(a2) = Γ−1(4q0)
√
⌊m/2q0⌋/(m/2q0) + 2q0/m.

Then, Γ−1(a2) =
Γ−1(4q0 )

√
⌊m/2q0⌋+1√

m/2q0
.

Then, Γ−1(a2)
√
m/2q0 = Γ−1(4q0)

√
⌊m/2q0⌋ + 1.

Then,
Γ−1(a2)

√
m/2q0

m =
Γ−1(4q0 )

√
⌊m/2q0⌋+1

m .

Suppose that L(Bo) ≤ 1/2.
There exists K ≤ 2q0/2 such that Bo = ∪Ks=1Ik where

Ik = [k/2q0 , (k + 1)/2q0 [ .

Then, by using hypothesis 11.1.2 and lemma 11.1.3
P{X(n) ∈ Bo | X(n+ j2) = x2, ...., X(n+ jp) = xp}
=
∑K
k=1 P{X(n) ∈ Ik | X(n+ j2) = x2, ...., X(n+ jp) = xp}

=
∑K
k=1[L(Ik) +Ob(1)ǫIk

]

= L(Bo) +Ob(1)
∑K
k=1

Γ−1(4−q0 )
√
NIel

m

= L(Bo) +Ob(1)
∑K
k=1

Γ−1(4−q0 )
√

⌊m/2q0⌋+1

m

= L(Bo) +Ob(1)
∑K
k=1

Γ−1(a2)
√
m/2q0

m

= L(Bo) +Ob(1)2q0−1 Γ−1(a2)√
m∗2q0

= L(Bo) +Ob(1) 2q0/2Γ−1(a2)
2
√
m

.

If L(Bo) ≥ 1/2, we use Bo’ his complement set in {0, 1/2q0 , ......, (2q0 − 1)/2q0}
which satisfies the predicted equality. �

Remark 11.1.5 One could maybe to have a finer increase by considering the
traditional problem of the samples.

Study For example, for a sample x(n) ∈ {0/284, 1/284, ....., (284−1)/284} of size
N = 1.000.000, let us take the Borel set Bo1 = ∪Nn=1[xn − 1/285, xn + 1/285[.
Then, L(Bo1) = N/284 = 7.7292/1015. Though Pe(Bo1) = 1.

It is the matter of the traditional problem of the test a posterori when the
sample is known.

Because of the problems of this type, one can wonder whether there would
not a way to lower the increase by taking k ≤ N instead of k ≤ 2q0−1 = 283.
(Bo = ∪kIk ). Indeed is it useful, for a sample of size N, to be interested with
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intervals length smaller than 1/N, since, in this case, one can always obtain
values of Pe(Bo) completely different from L(Bo)?

If one can suppose k ≤ N , one will improve the size of the final sample. It
is the assumption that we had made page 14 of [16].

It is a study which remains to be made. �

The following proposition is needed.

Lemma 11.1.6 We suppose N3 = Nr0S. We suppose that the hypothesis

11.1.2 holds. We assume also that
√
q02q0/2Γ−1(a2) ≤ 2α

√
S√

N3

√
r0m . Then,

|ǫBo| ≤ α√
q0N

Proof We have
√
q02q0/2Γ−1(a2) ≤ 2α

√
S
√
r0

√
m√

N3
.

Then,
√
q02q0/2Γ−1(a2) ≤ 2α

√
m√
N

.

Then, 2q0/2Γ−1(a2)
2
√
m

≤ α√
q0N

.

Then, by using lemma 11.1.4 , |ǫBo| ≤ α√
q0N

. �

These increases are imposed because, in our calculations, (cf section11.1.4),
one realizes that it is necessary to impose |ǫBo| ≤ α√

qN
.

Remark 11.1.7 One chooses q0 and r0 such that q0/r0 is maximum and check-

ing the condition
√
q02q0/2Γ−1(a2) ≤ 2α

√
S
√
r0

√
m√

N3
where m is not too large.

Study Indeed, q0N ≈ q0N3/(r0S) is the size of the obtained sample of bits
b0(n′). It is necessary thus that it is largest possible to have the best possible
output.

It is thus necessary to choose q0 and r0 such as q0/r0 is maximum and

checking the condition
√
q02q0/2Γ−1(a2) ≤ 2α

√
S
√
r0

√
m√

N3
.

However that often forces to choose m very large. Indeed, the previous con-

dition about amounts choosing
√
q02q0/2Γ−1(a2) ≤ 2α

√
S√

N3

√
r0 κ3r0/4 considering

that m is the largest element of the Fibonacci sequence such as m ≤ κ3r0/4.

For example, if κ = 32, that returns to impose about
√
q0Γ

−1(4q0 )√
r0

√
2q0−15r0/4 ≤

2α
√
S√

N3
.

In order that q0/r0 is maximum, it is roughly necessary that q0 ≈ 15r0/4 .
This result is obtained when q0 and r0 are big.

But, if one chooses m very large (e.g. about 101000), that can complicate
calculations modulo m much.

It is finally simpler to take m large, but, not very large : cf example of
section 11.2. �
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Results about the sequences of bits

Lemma 11.1.8 The previous assumptions are kept. Then, for all sequences of
bits bin, for all finite injective sequence js,

P
{
B0(n′) = bi1

∣∣B0(n′ +j2) = bi2, B
0(n′ +j3) = bi3, ....

}
= 1/2+Ob(1)

α√
q0N

.

Proof We define the Js by {X(n + js) ∈ Js} =
{
B0(n′ + js) = bis

}
. By

proposition 4.2.3,

P
{
B0(n′) = bi1

∣∣B0(n′ + j2) = bi2, B
0(n′ + j3) = bi3, ....

}

= P
{
X(n) ∈ J1

∣∣∣X(n+ j2) ∈ J2, X(n+ j3) ∈ J3, .....
}

= 1/2 +Ob(1)ǫBo .�

11.1.4 Explanation 2 : ǫ = α/
√

q0N

In this section, we have obtained sequences of bits b0(n′) such that

P
{
B0(n′) = bi1

∣∣B0(n′ + j2) = bi2, B
0(n′ + j3) = bi3, ....

}
= 1/2 +Ob(1)ǫ .

By using the method described here, one will impose ǫ = α/
√
q0N where

Nq0 is the size of sample {b0(n′)}.

Now apply the theorem 9 and the result of the section 11.2.10 .
Then, by equation 9.3, β1,p ≤ 2pα

A(p)1/22p/2 .

Indeed, β1,p ≤
√
Nq0ǫp√

A(p)L(Bo)
≈

√
Nq0.2pǫ

A(p)1/22p/2 .

Then, in order to use theorem 9, it is necessary that β1,p is small, e.g.
β1,p ≤ 0.1. For this reason it is necessary that ǫ = α/

√
q0N .

Then, β1,p is enough small.

Now, use again the notations of theorem 9 . Then,

P
{√

N
∣∣Pe − (1/2)p

∣∣ ≥ σBx
}
≤ Γ

(
θ(x)x

)
,

where θ(x) =
1−β1,p/x
1+γ1,p

≤ 1 and where

Pe = (1/N)
∑

n

1bi1 [B0(n′)]1bi2 [B0(n′ + j2)]....1bip [B0(n′ + jp)]
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with bir ∈ {0, 1} for r=1,2,...,p.
On the other hand, by the section 11.2.10, γ1,p is small when p is not too

big.
Then, β1,p is enough small in order that θ is close to 1, i.e. if ǫ = α/

√
q0N ,

one will not be able to distinguish Pe in case IID from Pe when the assump-
tions of this section are checked : the empirical estimate of the probability that
(B0(n′), B0(n′ +j2), ...., B0(n′ +jp)) = (bi1, ...., bip) is about also close to (1/2)p

that it would be it in case IID.

One obtains the same type of results for theorem 10.
It is not thus finally possible to distinguish the sequence b0(n′) from an IID

sample.

Remark 11.1.9 The worst approximation takes place for the sample of maxi-
mum size : q0N . More this size is small, more the estimate is close to that of
the IID distribution.

11.1.5 Some other explanations

Practical conditions

When one uses a sequence of datas translated in numbers written base κ with
size N3, one obtains a sample of N’ bits where N ′ = N3q0/[Sr0]. That means
that the size of the obtained sample h(n) is smaller than that of the original
sample d(j) (e.g. 15 times smaller, if S=10). One thus chooses the parameters
in order that N3/N

′ is largest possible in order to not to lose too many data :
cf also Remark 11.1.7.

Use of other congruences than the Fibonacci congruence

One could choose other congruences than the Fibonacci congruence, for example
sup(hi) = 3 with the notation 6.1.2. However the Fibonacci congruence is that
which gives the best theoretical results.

Use of limit theorems

Because generally, several files are used to constitute the data, one can use dif-
ferent files for each line: The lines are thus often independent : that facilitates
the use of the CLT or the XORLT.

Problem about the sums

In the section 5.5.8, one saw that, with regard to the sums of random variables,
to use the proposition 5.5.1 gives absurd results in some cases, whose the case
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with continuous density. In order to avoid this problem, one can use the tech-
niques described with the remarks 11.1.1 and 11.1.2.

11.2 Example : building of an IID sequence

In this section we study an example : we obtain a sequence of random bits
b1(n′) which can be obtained by asking it to rene.blacher@imag.fr (Laboratory
LJK, University Joseph Fourier of Grenoble, France). More precisions on this
subject will found in [18]. The data result from texts, mathematical texts and
file of programming : cf section 10.3.

11.2.1 Choice of random datas

Then, we use the sequence a(j) defined in section 10.3.

Notations 11.2.1 We note by a(j), j = 1, ..., N3, the sequence of data which
we used to build the sequence b1(n′) where N3 = 298.159.056 ≥ 28 ∗ 107, and
1 ≤ a(j) ≤ 256. Then, a(j) can be regarded as the realization of a sequence of
random variables A(j) defined on a probability space (Ω,∆, P )

Then, we transform these sequences of letters in numbers by using the ap-
propriate function defined on the computer : a(j) ∈ {1, ..., 256} (cf section 10.3).

Now, there are only 26 letters. But it is necessary to add, the capital letters,
the ”:” , ”;” , etc. There will be many of these 256 numbers which will not
appear not or little. Also, we will write these numbers in base 32 so that each
number can have a probability reasonable to appear.

Notations 11.2.2 We set c(j) = a(j) modulo 32 for j = 1, 2, ...., N3 .

Therefore, c(j) ∈ {0, 1, ..., 31}.

11.2.2 Study of data

It is noted that it will be increasingly difficult to predict the C(j) = c knowing
the past : C(j−j′2) = c2, ...., C(j−j′p) = cp, 1 < j′2 < .... < j′p when j′2 increases,
i.e. P{C(j) = c | C(j−j′2) = c2, ...., C(j−j′p) = cp} → P{C(j) = c} as j′2 → ∞.

In fact, one understands that one can consider that one has a stronger as-
sumption : one can suppose that the following hypothesis holds (cf sections 10.4
10.3.1).

Hypothesis 11.2.1 The sequence C(j) is Qd-dependent with Qd=22.
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In order to prove this result, we have estimated for various d, various p, p’,
various injective sequences j1s , j2s such that j11 = j21 = 0, various Borel sets
Bo = Bo1 ⊗ .....⊗Bop, Bo

′ = Bo′1 ⊗ .....⊗Bo′p′ ,

E
{

1Bo[C(n)]1Bo′ [C(n+ d)]
}
− E

{
1Bo[C(n)]

}
E
{

1Bo′ [C(n+ d)]
}
,

where

1Bo[C(n)] = 1Bo1 [C(n)]1Bo2 [C(n+ j12)]......1Bop
[C(n+ j1p)] ,

1Bo′ [C(n+ d)] = 1Bo′1 [C(n+ d)]1Bo′2 [C(n+ d+ j22)]......1Bo′
p′

[C(n+ d+ j2p′)] ,

and where Mins,t
(
|(n+ j1s ) − (n+ d+ j2t )|

)
≥ Qd = 22.

We have always obtained

E
{

1Bo[C(n)]1Bo′ [C(n+ d)]
}
− E

{
1Bo[C(n)]

}
E
{

1Bo′ [C(n+ d)]
}
≈ 0 . (11.1)

We made these estimates for many Borel sets except for those which are too
small (in this case this estimate is impossible).

Now for Mins,t
(
|(n+ j1s ) − (n+ d+ j2t )|

)
≥ 22, by logical reasons, we know

that

∣∣E
{

1Bo[C(n)]1Bo′ [C(n+d)]
}
−E
{

1Bo[C(n)]
}
E
{

1Bo′ [C(n+d)]
}∣∣→ 0 as d→ ∞ .

For example, if the C(j)’s derive from text, it is more difficult to predict, C(j+t)
when t increases.

In conclusion, one can admit that equation 11.1 holds always forMins,t
(
|(n+

j1s ) − (n + d + j2t )|
)
≥ 22. It is enough to prove that b1(n′) is IID : cf section

11.2.10.

11.2.3 Writing in number with r0 digits

a) We set α = 0.02.

b) We choose S=10.

c) We choose q0 = 57 and r0 = 28 , m1 = mF (3228),
3220 < m = 1454489111232772683678306641953 < mF (3221) = mF (323∗28/4).
Let a = 898923707008479989274290850145 < 3220 ≤ m. Then m and a are

the parameters of a Fibonacci congruence.
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Then,
m/2q0 ≥ 1001,

√
q02q0/2Γ−1(a2) ≤ 2α

√
S√

N3

√
r0m ,

where a2 = Γ
(

Γ−1(4−q0)
√
⌊m/2q0⌋/(m/2q0) + 2q0/m

)
≈ 4.8148/1035 .

Remark 11.2.1 We remark that a2 = 4.814824860950729/1035. Then, we re-
mark also that a2 ≈ 4−q0 = 4.814824860968090/1035.

To make uniform the marginals distribution

We make uniform the marginal distribution by using the method defined in
section 11.1.2.

Now, ⌊N3/28⌋ = ⌊298.159.056/28⌋ = ⌊10.648.537.7142857⌋ = 10.648.537.

Notations 11.2.3 We set d(j) =
∑28
r=1 3228−rc(28(j − 1) + r) for j =

1, 2, 3, ....10.648.537.

Then d(j) can be regarded as extracted of a 2-dependent sequence.

Notations 11.2.4 For j = 1, 2, ...., 10.648.537, we set e1(j) = ⌊d(j)[m1/3228]⌋.

Notations 11.2.5 For j = 1, 2, ...., 10.648.537, we set e2(j) = e1(j) + rand0(j)
where rand0(j) is a pseudo-random generator with values in F ∗(m1) and with
period m1.

Notations 11.2.6 For j = 1, 2, ...., 10.648.537, we set e3(j) = m.Tm1 (e2(j)/m1).

11.2.4 Transformation in table

In order to use the limit theorems, one writes the e3(j)’s in the form of a table
with 10 lines.

a) We denote by e4(t), t = 1, 2, ...., 10.000.000 a subsequence of e3(j) ob-
tained by suppressing some sequences {e3(ρu), e3(ρu + 1)......, e3(ρu + n4)}.
Comment We have suppressed some e3(j) in order that there is independence
between the lines defined below.

Thus, the union of several files gave us the beginning of the sequence e3(j)
: j = 1,2,....,1.052.007. We have keep only the 1.000.000 first in order to form
the first line f(1,n) below. By this way the second line f(2,n) will be formed of
e3(j) coming from other files and will be thus independent of the first one.
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Notations 11.2.7 Let f(i, n) = e4(n + N(i − 1)) for i=1,...,10 , n= 1,...,N
where N = 1.000.000.

In section 11.2.2, it was understood that

P
{
F (i, n) = f

∣∣ F (i, n− j′2) = f2, ...., F (i, n− j′p) = fp
}
→ P{F (i, n) = f}

as j′2 → ∞ when j′1 = 0 < j′2 < .... < j′p. In order to have the same result for

P{F (i, n) = f |F (i, n+ j′2) = f2, ...., F (i, n+ j′p) = fp} → P{F (i, n) = f},

we invert the even lines.

Notations 11.2.8 If ”i” is even, we set f1(i, n) = f(i,N−n+1) for i=1,...,10,
n = 1,...,N. If i is odd, we set f1(i, n) = f(i, n) for i=1,...,10, n = 1,...,N.

Therefore, logically, when one will summon the lines f1(i, n), it is reasonable
to think that it will be difficult to predict

∑
i f1(i, n) knowing elements which

are past or future. One will thus have, for any injective sequence js such that
j1 = 0,

P



P

i F (i, n) = g
˛

˛

˛

P

i F (i, n + j2) = g2, ...,
P

i F (i, n + jp) = gp

ff

≈ P

i P{F (i, n) = g},

if mins(|js|) is large enough.

11.2.5 Use of limit theorems

Then, we can use the CLT and the XORLT.

Notations 11.2.9 Let g(n) =
∑10
i=1 f1(i, n) for n = 1,...,1.000.000.

Notations 11.2.10 Let h(n) = g(n) modulo m, for n=1,.....,1.000.000.

11.2.6 Use of the Fibonacci Congruence

Notations 11.2.11 We set k(n) = T
(
h(n))

)
for all n= 1,2,....,N.

Notations 11.2.12 For all n = 1,2,....,N, we set r(n) = k(n)/m.

11.2.7 Building of a random sequence x(n)

Notations 11.2.13 Let r(n) = 0, bn1 b
n
2 .... , the binary writting of r(n). We set

x(n) = 0, bn1 b
n
2 ....b

n
q0 (q0 = 57).

Notations 11.2.14 We set b′q0n−r+1 = bnr for n=1,...,N and r = 1, ..., q0.

Notations 11.2.15 We denote the sequence b′n by b1(n′), n′ = 1, 2, ...., Nq0.
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11.2.8 Some remarks

Study of data

We checked in the chapter 10 the validity of our assumptions on the numerical
data of this example. We point out that we found that all the necessary as-
sumptions about the various steps of this construction were checked, and by far!

Problem about sums

In the section 5.5.8, one saw that to take the proposition 5.5.1 gives absurd
results for the sums of random variables in some cases. It is not the case for
the f(i,n) used in this section. Therefore, one has does not have to use the
techniques described with the remarks 11.1.1 and 11.1.2.

The data d(j) are obtained starting from sufficiently different electronic files:
texts in various languages, mathematical texts, files of programming. The dis-
tribution of the theoretical probability of these data must be regarded as chosen
randomly.

It is also true because we have applied the application Tm1 : e3(j) =
mTm1 (e2(j)/m1). According to the section 8.4, that makes uniform and also
independent the probabilities. The variations with the uniformity in the case of
p dimensions are thus very small. But it remains random considering there is
always no connection between texts and the sets At described in section 8.4.

That is also true for the conditional probabilities considering that

P{Xn|x2, ...., xp} =
P
{
{Xn+j1 = x1} ∩ {Xn+j2 = x2} ∩ ....... ∩ {Xn+jp = xp}

}

P
{
{Xn+j2 = x2} ∩ ........ ∩ {Xn+jp = xp}

} .

Now, it is precisely what we want to be able to do : to apply our results to
the conditional probabilities (cf hypothesis 11.1.2). The proposition 5.5.2 can
thus be applied to results of this section 11.2.

Choice of S

Normally, one would have to make previous calculations for several S in order
to improve the results. We did it in study numerical. In fact, in practice, as for
much of other files which are on computers, one finds that one can be satisfied
with S=10.

11.2.9 Properties of B1(n′)

We will study the empirical aspect by using theorems 9 and 10 .
For that let us notice that, according to the previous results, the following

assumption will be satisfied.
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Hypothesis 11.2.2 : For all b=0 or 1

P
{
B1(n′) = b

∣∣ B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
= 1/2 +

Ob(1)α√
Nq0

,

where α/(Nq0)1/2 ≈ 2.649/106 .

Remark that Nq0 is the size of sample of the b1(n′).

Use of 2-dependence in empirical theorems

We understood in the study of the data which one can consider that sequence
C(j) is Qd-dependent with Qd=22. In particular, with the notations of sections
9.2 and 9.3, hypotheses 9.2.1 and 9.3.1, one deduces from equation 11.1 that,
for all Borel set, for Mins,t

(
|(n+ j1s ) − (n+ d+ j2t )|

)
≥ 22,

E
{(

1Bo[C(n)] − L′
n

)(
1Bo[C(n+ d)] − L′

n+d

)}
= 0 ,

E

{[
1Bo1(Cn)−L(Bo1)

][
1Bo1(Cn+d)−L(Bo1)

]
1J(Cn+j)1J(Cn+d+j)

}
= D′

nD
′
n+d ,

where L′
n = E

{
1Bo[C(n)]

}
, D′

n = E

{[
1Bo1(Cn) − L(Bo1)

]
1J(Cn+j)

}
.

That means that the hypotheses 9.2.1 and 9.3.1 hold for the sequence C(j).

Now, D(j) is QdD dependent with QdD = 2 . It is also the case for the
sequences F(i,n). That means that, with the notations of sections 9.2 and 9.3,
hypotheses 9.2.1 and 9.3.1, for all Borel set Bo, for all Mins,t

(
|(n+ j1s ) − (n+

d+ j2t )|
)
≥ QdX = QdD = 2,

E
{(

1Bo[X(n)] − Ln
)(

1Bo[X(n+ d)] − Ln+d

)}
= 0 ,

E

{[
1Bo1(Xn) − L(Bo1)

][
1Bo1(Xn+d) − L(Bo1)

]
1J(Xn+j)1J(Xn+d+j)

}

= DnDn+d .

Now, the sequence b1(n′) is QdB-dependent with QdB = 57. Therefore,
with the notations of the hypotheses 9.2.1 and 9.3.1, kB = 0 and KB = 0 for
q = QdB = 57.

As a matter of fact we will understand in sections 11.2.10 and 11.2.11 that
one has results much more stronger. But this QdB-dependence enables us to
obtain a sure increase to the probabilities of the samples.
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11.2.10 Use of theorem 9

Use of 2-dependence in theorem 9

First, apply the theorem 9 with the 2-dependence.
We study a sample b1(ψ(n)) , n = 1, 2, ...., N1, where N1 ≤ N and where

ψ : {1, 2, ...., N1} → {1, 2, ...., N} is an injective function.
We choose p ≤ 40 : we choose a such p because there is little interest to

study the case where 2p ≥ q0N = 57.000.000, i.e. p ≥ 26. But in order to be
completely sure that all our results are correct, we study this theorem untill
p=40 : (cf Remark 11.2.2).

Of course, the simplest technique for using the theorem 9, is to choose
q = QdB = 58.

First, compute β1,p and γ1,p .

By the results of section 9.5.1, we know β1,p ≤
√
N1ǫp√

A(p)L(Bo)
.

Then, one can admit

β1,p ≤
√
N12pǫ√
A(p)2p

=
√
N12pα√

q0NA(p)2p
=

√
N1√
Nq0

2pα
A(p)1/22p/2 .

Then, for N1 = Nq0,

β1,p ≤ 0.04000000000000 if p=1
β1,p ≤ 0.08000000000000 if p=2
β1,p ≤ 0.12000000000000 if p=3
β1,p ≤ 0.09237604307034 if p=4
β1,p ≤ 0.06030226891555 if p=5
β1,p ≤ 0.01309541208943 if p=10
β1,p ≤ 0.00332528643438 if p=15
β1,p ≤ 0.00078139197225 if p=20
β1,p ≤ 0.00001726334915 if p=25
β1,p ≤ 0.00003662110860 if p=30
β1,p ≤ 0.00000152587891 if p=40

Moreover,

γ1,p ≈
(p2 − p+ 1)α

2A(p)
√
q0N

[
2p+ (1 + 4QdB)

4p

2p
+ (1 + 2QdB)

4p2ǫ

2p

]
.

Then,
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γ1,p ≤ 0.00121856976850 if p=1
γ1,p ≤ 0.00734320738757 if p=2
γ1,p ≤ 0.02592374729248 if p=3
γ1,p ≤ 0.02176471569129 if p=4
γ1,p ≤ 0.01239039814018 if p=5
γ1,p ≤ 0.00382913360640 if p=10
γ1,p ≤ 0.00855657503967 if p=15
γ1,p ≤ 0.02022398420111 if p=20
γ1,p ≤ 0.03980480582574 if p=25
γ1,p ≤ 0.06922022014741 if p=30
γ1,p ≤ 0.16540760122551 if p=40

As matter of fact, in some cases, γ1,p is too large. Then, we can use the
approximation of γ′1,p of lemma 9.7.3. In this case,

γ′1,p ≈
Ob(1)ζ ′(p)α

2A(p)
√
q0N

+
(p2 − p+ 1)α

2A(p)
√
q0N

[
(1 + 4QdB)

4p

2p
+ (1 + 2QdB)

4p2ǫ

2p

]
,

where ζ ′(p) = 2p+ 2
∑p−1
r=1

2(p+r)
2r .

Then,

γ′1,p ≤ 0.00121856976850 if p=1

γ′1,p ≤ 0.00021067452526182 if p=2

γ′1,p ≤ 0.00733261112871 if p=3

γ′1,p ≤ 0.02122430648961 if p=4

γ′1,p ≤ 0.01171705405466 if p=5

γ′1,p ≤ 0.00128197696378 if p=10

γ′1,p ≤ 0.000248582465482 if p=15

γ′1,p ≤ 0.000178421399711 if p=20

γ′1,p ≤ 0.00020982313313 if p=25

γ′1,p ≤ 0.00024904181006 if p=30

γ′1,p ≤ 0.0003284840939180 if p=40

Then, by theorem 9, for a sample of size N1 ≤ Nq,

P
{√

N1

∣∣PBe − (1/2)p
∣∣ ≥ σBx

}
≤ Γ[θ(x)x] ,

where PBe = (1/N1)
∑
n 1bi1(Bn)1bi2(Bn+j2)....1bip(Bn+jp) .

Then, θ is close to 1 with θ(x) =
1−β1,p/x
1+γ1,p

≤ 1. One can also choose

θ(x) =
1−β1,p/x
1+γ′

1,p
≤ 1.
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Finally, the following table is obtained.

x=1 x=1.5 x=2 x=2.5 x= 3
p=1 θ(x) ≥ 0.9588 0.9732 0.9788 0.9830 0.9854
p=3 θ(x) ≥ 0.9114 0.9391 0.9512 0.9580 0.9596
p=5 θ(x) ≥ 0.9291 0.94888 0.9587 0.9647 0.9686
p=10 θ(x) ≥ 0.9857 0.9900 0.9922 0.9935 0.9944
p=15 θ(x) ≥ 0.9964 0.9975 0.9981 0.9984 0.9986
p=20 θ(x) ≥ 0.9990 0.9993 0.9994 0.9995 0.9995
p=25 θ(x) ≥ 0.9996 0.9997 0.9997 0.9997 0.9997
p=30 θ(x) ≥ 0.9997 0.9997 0.9997 0.9997 0.9997
p=40 θ(x) ≥ 0.9996 0.9996 0.9996 0.9996 0.9996

In particular, 0.9291 ≤ θ ≤ 1 if x ≥ 1.

Then, one obtains the following increases for P
{√

N1

∣∣PBe − (1/2)p
∣∣ ≥ σBx

}

:

x=1 x=1.5 x=2 x=2.5 x= 3
Under IID hypothesis p=1 0.317 0.133 0.045 0.012 0.0027
Under hypothesis 11.2.2 p=1 0.337 0.144 0.050 0.013 0.0031

p=3 0.321 0.136 0.046 0.012 0.0040
p=5 0.352 0.154 0.05 0.015 0.0036
p=10 0.324 0.137 0.047 0.013 0.0028
p=15 0.319 0.134 0.046 0.012 0.0027
p=20 0.317 0.133 0.045 0.012 0.0027
p=25 0.317 0.133 0.045 0.012 0.0027
p=30 0.317 0.133 0.045 0.012 0.0027
p=40 0.317 0.133 0.045 0.012 0.0027

One obtains similar results for samples of size N1 ≤ Nq.

Then, it is difficult to differentiate the sequence b1(n′) from an IID sample.
Indeed, if our data were not IID, that would imply that

√
Nq0

∣∣PBe − (1/2)p
∣∣

would be large. That can certainly occur for some (bi1, bi2, ......., bip) but, as the
previous increases show it, with a probability which is not too different from
that of IID case.

Finally, by using PBe , it is not possible to differentiate the sequence b1(n′)
from an IID sequence.

Moreover, the worst approximation occurs for the sample of maximum size:
N1 = q0N . The smaller this size is, the more our results approaches those of
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IID case : β1,p ≤
√
N1√
Nq0

2pα
A(p)1/22p/2 .

One can thus say that, with regard to the behavior of the PBe , that it is not
possible to differentiate b1(n′) from an IID sequence.

Use of independence in theorem 9

In the previous results, one has increased γ1,p by using the 2-dependence. In
fact, this 2-dependence is the dependence existing for the sequence D(j). For
the sequence B1(n′), the results are much better because we did everything in
our building so that it is identical to a sequence IID.

One could thus have finer increases. For that, it is necessary to calculate
σ2

1 = σ2
B [1 + 2γ1

p ], i.e. it is necessary to calculate γ1
p which is defined by this

previous equality. We have estimated σ2
1 and have compared it with the exact

value of σ2
B for p=1,2,3,4,5.

We thus obtained the following increases of |σ2
1 − σ2

B | for different p and
different bi1 ⊗ ......⊗ bip.

p 1 2 3 4 5
|σ2

1 − σ2
B | ≤ 2 ∗ 10−4 1 ∗ 10−6 3 ∗ 10−7 7 ∗ 10−9 2 ∗ 10−9

That means γ1
p ≈ 0. One thus obtains finer increases of

P
{√

N1

∣∣PBe − (1/2)p
∣∣ ≥ σBx

}
.

Indeed, one obtains the following majorations for

P
{√

N1

∣∣PBe − (1/2)p
∣∣ ≥ σBx

}
:

x=1 x=1.5 x=2 x=2.5 x= 3
Under IID hypothesis p=1 0.317 0.133 0.045 0.012 0.0027
Under hypothesis 11.2.2 p=1 0.317 0.133 0.045 0.012 0.0028

p=3 0.317 0.133 0.045 0.012 0.0028
p=5 0.317 0.133 0.045 0.012 0.0028
p=10 0.317 0.133 0.045 0.012 0.0027

One concludes that the sequence b1(n′) cannot be differentiated from an IID
sequence.
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11.2.11 Use of theorem 10

Use of the 2-dependence in theorem 10

It is pointed out that P
{√

N1

∣∣∣P
B
e

pB
e

− L(I)
∣∣∣ > σcp x

}
≤ Γ

(
θ′(x)x

)
, where

θ′(x) =
1−β2,p/x
1+γ2,p

, where PBe = (1/N1)
∑
n 1bi1(Bn+j1)1bi2(Bn+j2)....1bip(Bn+jp)

and where pBe = (1/N1)
∑
n 1bi2(Bn+j2)....1bip(Bn+jp).

By the results of section 9.5.2, the values β2,p (lemma 9.5.5) and γ2,p are
produced by the formulas

β2,p ≈
√
N1√
Nq0

16α

2p
=

√
N1√
Nq0

0.32

2p

and
γ2,p = ǫ

(
2ξp + 2[1 + ǫξp]

√
θp + ǫθp

)]
,

where (cf lemma 9.5.7 and 9.5.8 )

ξp ≈
1

2

[
(p− 1)[11p+ 16] +

16(2QdB + 1)(p2 − p+ 1)

2p

]

θp ≈
8σB(J)2

L(J)
+ 16(p2 − 3p+ 3)(p− 1)ǫ

[
1 +

2

2p−1
+

8QdB
2p−1

]
.

Moreover, one can assume that σB(J)2 ≤ 4L(J) (cf Hypothesis 9.7.1).
Lastly, we have always ǫ = 2.649/106.

Then, for N1 = Nq0, the table of β2,p, p=1,2,... is

0.16 0.008 0.004 0.002 0.001 0.0005.

The table of γ2,p, p=1,2,...40, is

0.00016 0.0003 0.00048 0.0006 0.0009 0.0011 0.0014 0.0018
0.00222 0.0027 0.00325 0.0038 0.00450 0.0052 0.0059 0.0068
0.00763 0.0085 0.00951 0.0105 0.01159 0.0127 0.0139 0.0151
0.016376 0.0177 0.01908 0.0205 0.02198 0.0235 0.02510 0.0267
0.02842 0.0301 0.03194 0.0338 0.03568 0.0376 0.0396 0.0417

Thus finally, the decreases of θ′(x) are obtained
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x=1 x=1.5 x=2 x=2.5 x= 3
p=1 θ(x) ≥ 0.8399 0.8932 0.9199 0.9359 0.9465
p=3 θ(x) ≥ 0.9595 0.9729 0.9795 0.9835 0.9862
p=5 θ(x) ≥ 0.9891 0.9925 0.9941 0.9951 0.9958
p=10 θ(x) ≥ 0.9970 0.9971 0.9971 0.9972 0.9972
p=15 θ(x) ≥ 0.9941 0.9941 0.9941 0.9941 0.9941
p=20 θ(x) ≥ 0.9896 0.9896 0.9896 0.9896 0.9896
p=27 θ(x) ≥ 0.9813 0.9813 0.9813 0.9813 0.9813
p=28 θ(x) ≥ 0.9799 0.9799 0.9799 0.9799 0.9799
p=30 θ(x) ≥ 0.9770 0.9770 0.9770 0.9770 0.9770
p=40 θ(x) ≥ 0.9600 0.9600 0.9600 0.9600 0.9600

For example

P

{
√
N1

∣∣∣∣∣
PBe
pBe

− (1/2)

∣∣∣∣∣ > σcp x

}

x=1 x=1.5 x=2 x=2.5 x= 3
Under IID assumption p=1 0.317 0.133 0.045 0.012 0.0027
Under assumption 11.2.2 p=1 0.401 0.180 0.065 0.019 0.0045

p=3 0.337 0.144 0.050 0.014 0.0031
p=5 0.323 0.137 0.047 0.013 0.0028
p=10 0.319 0.135 0.046 0.013 0.0028
p=15 0.320 0.136 0.047 0.013 0.0029
p=20 0.322 0.138 0.048 0.013 0.0030
p=27 0.326 0.141 0.045 0.014 0.0032
p=28 0.327 0.142 0.050 0.014 0.0033
p=30 0.329 0.143 0.051 0.015 0.0034
p=40 0.337 0.150 0.055 0.016 0.0040

Remark 11.2.2 One cannot increase suitably P
{√

N1

∣∣PB
e

pB
e

− (1/2)
∣∣ > σcp x

}

for any p. But it is not important.

Study If p increases, θp and ξp - and therefore γ2,p - increase. Then θ′(x)
converges to 0.

The theorem 10 cannot thus be used if p is too large under the assumption
of the 2-dependence. In fact, that does not have importance.

Indeed, one will be face to similar problems in case IID : let Ne = PeN1

be the number of points
(
b1(n′), b1(n′ + j2), ...., b1(n′ + jp)

)
which belongs to

Bo = bi1 ⊗ bi2 ⊗ .....⊗ bip.
Under the assumption IID, P{Ne ≥ 1} is almost equal to 0 if L(Bo) is very

small. For example for a sample of size 100 and a Borel set Bo of measure L(Bo)
=1/10000, there is approximately a probability equal to 1/100 that Ne ≥ 1.
Therefore, probably PBe − (1/2)p = −(1/2)p. For example, if x=1, that means
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that, if p is large, P
{√

N1

∣∣Pe − (1/2)p
∣∣ > σB

}
≈ 0 whereas for a sample of

sufficient size, P
{√

N1

∣∣Pe − (1/2)p
∣∣ > σB

}
≈ 0.3173 .

Moreover,
PB

e

pB
e

− (1/2) = 0
0 − (1/2) it is not computable.

There are the same results for our data which are not IID. But they are
Qd-dependent. That is enough. If p is large, Ne = 0 in the majority of the
cases : P

{√
N1

∣∣Pe − (1/2)p
∣∣ > σB

}
≈ 0 .

Thus for a fixed (bi1, ...., bip) it is always possible that there is a ” n’ ” such
that 1bi1(b1(n′))11

bi2
(b1(n′ + j2)).....1bip(b1(n′ + jp)) = 1. But, it is what occurs

in the case IID
Of course, it is the same thing for Ne = peN1.
Then, it doesn’t make sense to study the behavior of PBe /p

B
e when p > 40.

That means that our results include all the cases which had to be studied. �

Use of independence in theorem 10

As for γ1,p, one increases γ2,p by estimate. One calculates σ2
2 = σ2

cp[1 + γ2
p ].

We thus obtained the following increases of |σ2
2 − σ2

cp| for various p and var-
ious bi1 ⊗ ......⊗ bip.

p 1 2 3 4 5
|σ2

2 − σ2
cp| ≤ 1.1 ∗ 10−4 1.2 ∗ 10−4 1 ∗ 10−4 0.9 ∗ 10−4 1 ∗ 10−4

For example

P

{
√
N1

∣∣∣∣∣
PBe
pBe

− (1/2)

∣∣∣∣∣ > σcp x

}
=

x=1 x=1.5 x=2 x=2.5 x= 3
Under IID hypothesis p=1 0.317 0.134 0.045 0.012 0.0027
Under hypothesis 11.2.2 p=1 0.317 0.134 0.046 0.012 0.0040

p=3 0.317 0.134 0.046 0.012 0.0027
p=5 0.317 0.134 0.046 0.013 0.0028
p=10 0.317 0.134 0.045 0.012 0.0027

One obtains the same conclusions that previously. The results are not
changed so much. But, one does not have to worry for the case where p is
large.

11.2.12 Conclusion

The inequalities above show that it could be that b1(n′) does not check certain
tests of an IID sequence, but that will occur with hardly more probabilities that
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for a sample of a really IID sequence. It is thus not possible to differentiate the
sequence b1(n′) from an IID sample by using these tests.

Thus by an empirical opinion, it is not possible to differentiate the sequence
b1(n′) from an IID sample by using PBe and PBe /p

B
e . Now, we understood in

section 2.1 that these are these conditions that one admits for the definition of
the randomness

Let us notice that these results remain true for any subsequence
b1(t(n′)) that we could choose : it is a very strong result

The sequence b1(n′) satisfy all the conditions which we have indicates in
section 2.1. Then, one can already consider that b1(n′) is an IID sample.

Morever by an not-empirical opinion, we know that

P
{
B1(n′) = b

∣∣B1(n′ + j2) = b2, ...., B
1(n′ + jp) = bp

}
= 1/2 +Ob(1)ǫ .

It is an additional property. However it is very important. If there is only
this only property, that proves already that one can admit that b1(n′) is an IID
sample if ǫ is small enough.

For these two reasons, one concludes that B1(n′) can be regarded as a sam-
ple of an IID sequence of random variables.

11.2.13 Results about x(n)

One obtains the same type of equations with X(n) as with the B1(n′), i.e. x(n)
could be regarded as sample of IID variables X(n) : for all Borel set Bo,

P
{
X(n) ∈ Bo

∣∣X(n+j2) = x2, ...., X(n+jp) = xp
}

= L(Bo)+Ob(1)2.649/106 .

Now study the theorem 9 :

P
{√

N1

∣∣PXe − P (Bo1)....P (Bop)
∣∣ ≥ σBx

}
≤ Γ(θ(x).x) ,

where
PXe = (1/N1)

∑

n

1Bo1(X(n+ j1))....1Bop(X(n+ jp)) .

Then, one has to study the p such that 2p ≤ N = 1.000.000, i.e. p ≤ 20. In
fact one chooses to study p ≤ 30.

Then, for N1 = N ,
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β1,p ≤ 0.0044 if p=1
β1,p ≤ 0.0131 if p=3
β1,p ≤ 0.0065 if p=5
β1,p ≤ 0.0014 if p=10
β1,p ≤ 0.000014 if p=20
β1,p ≤ 0.000004 if p=30

Moreover,

γ′1,p ≤ 0.000560 if p=1

γ′1,p ≤ 0.00357 if p=3

γ′1,p ≤ 0.0007 if p=5

γ′1,p ≤ 0.00004 if p=10

γ′1,p ≤ 0.00000029 if p=20

Thus finally, one obtains the following decreases of θ(x) :

x=1 x=1.5 x=2 x=2.5 x= 3
p=1 θ(x) ≥ 0.9595 0.9728 0.9795 0.9834 0.9861
p=3 θ(x) ≥ 0.8769 0.9167 0.9367 0.9486 0.9566
p=5 θ(x) ≥ 0.9390 0.9591 0.9692 0.9752 0.9792
p=10 θ(x) ≥ 0.9869 0.9912 0.9934 0.9947 0.9956
p=20 θ(x) ≥ 0.9992 0.9995 0.9996 0.9997 0.9997

For example

P
{√

N1

∣∣PXe − L(Bo)
∣∣ ≥ σBx

}
=

x=1 x=1.5 x=2 x=2.5 x= 3
Under IID hypothesis p=1 0.317 0.134 0.045 0.012 0.0027
Under hypothesis 11.2.2 p=1 0.337 0.144 0.050 0.014 0.0031

p=3 0.381 0.170 0.061 0.018 0.0041
p=5 0.348 0.150 0.053 0.015 0.0033
p=10 0.324 0.137 0.047 0.013 0.0028
p=20 0.318 0.134 0.046 0.012 0.0027

One obtains similar results with the second empirical theorem.

These results shows that x(n) behave like an IID sample. It is an additional
proof that one can regards b1(n) as an IID sample.
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11.2.14 Tests

We are going to verify the previous conclusions by making tests of randomness.
We use the classical Diehard tests cf [2], [1]. We tested the sequences b1(n′) or
x(n).

Results are in accordance with what we waited: for sequences b1(n′) and
x(n) the hypothesis ”randomness” can be accepted by all the Diehard tests.

We denote by N1 the size of used samples. We denote by α5 the selected
percentage points with probability 0,95.

In the following results, we test several samples of size N1. We take the
maximum of the statistics associated in these tests. It is not thus surprising
that they are sometimes larger than α5. As a matter of fact, We notice that
these maximums are close to α5 and that this result is even almost too good

Equidistribution Test We use the chi-squared tests. First, we test b1(n′) :
of course the associated partition is

{
{0}, {1}

}
.

We use sample with size N1. Let χ2
N1

be the associated chi squared statistics.
We take the maximum of χ2

N1
. The number of samples increase if N1 decrease

(not linearly) . Thus it is normal that maximums have tendency to increase.
The following table is that of the maxima of χ2

N1
obtained for each N1. More-

over α5 is the selected percentage points with probability 0,95 of chi squared
statistics with one degree of freedom.

N1 57 ∗ 106 57 ∗ 105 57 ∗ 104 57 ∗ 103 5700 570 100
Max(χ2

N1
) 0.321 0.789 1.874 3.456 1.987 1.54 4.012

α5 3.84 3.84 3.84 3.84 3.84 3.84 3.84

Now we test the sequence x(n). We use partitions inD(N1)+1 equal intervals
: D(N1) is a function of N1.

The following table is that of the maxima of χ2
N1

obtained for each N1

(then, D(N1) is constant). Moreover α5 is the selected percentage points with
probability 0,95 of chi squared statistics.

N1 5700 570 100
Max(χ2

N1
) 40.851 18.21 17.32

α5 43.77 16.92 16.92

if N1 is larger, we use NG =
√

2χd2 −
√

2d− 1)
D→ X∗

G where X∗
G ∼ N(0, 1)

: cf proposition A.1.2. Moreover α5 is the selected percentage points with
probability 0,95 of G.

N1 57 ∗ 106 57 ∗ 105 57 ∗ 104 57 ∗ 103

Max(|NG|) 0.754 1.506 2.033 2.114
αN 1.960 1.960 1.960 1.960
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Serial Test We test the sequence b1(n′). We use the chi squared test with
the partitions of {0, 1}p : there are 2p partitions. Here we denote by χ2

N1
the

chi-squared statistics with 2p − 1 degrees of freedom.
The following table is that of the maxima of χ2

N1
obtained for each p. Then,

for all p, we use several values of N1.

p 2 3 4 5
max(χ2

N1
) 3.431 8.801 19.823 38.456

α5 7.815 14.07 25.00 36.41

If p is larger, we use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .

p 10 15 20
max(|NG|) 1.952 1.874 2.074
αN 1.960 1.960 1.960

Now, we test the sequence x(n). We use partitions in D(N1) + 1 equal
hypercubes where D(N1) is function of N1. Because D(N1) is big, we use

NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of χ2

N1
obtained for each p.

p 2 3 4 5 10 15 20
max(|NG|) 2.221 1.947 2.004 2.121 1.745 2.2144 2.002
αN 1.960 1.960 1.960 1.960 1.960 1.960 1.960

Gap Test One test the sequence x(n). We keep the notations of [1] page
62. We choose [α, β[= [0, 1/2[. Then, one uses the chi squared statistics with t
degrees of freedom (with the notations de [1]) : we denote them by χ2

N1
.

One chooses t = 5, 6, 7, 8, 9, 10. We use samples with various sizes N1. We
are interested in the maximum of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each t.

t 5 6 7 8 9 10
Max(χ2

N1
) 12.45 15.04 19.02 20.31 20.99 19.11

α5 11.07 12.59 14.07 15.51 16.92 18.31

For this test, we took many different samples. It is not surprising that max-
imum are close to α5.
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Poker Test One tests the sequence x(n). We keep the notations of [1] page 63.
Then, one uses also chi squared statistics : we denote them by χ2

N1
. Then, χ2

N1
.

is used for testing the number of k-tuples. We choose k = 5, 6, 7, 8, 9, 10, 11, 12.
We lump a few categories of low probability together.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each k.

k 5 6 7 8 9 10 11 12
Max(χ2

N1
) 7.89 10.84 13.25 12.15 13.45 20.75 13.64 16.82

α5 7.81 9.49 11.07 12.59 12.59 14.07 15.51 16.92

Coupon collector’s Test One tests the sequence x(n). We keep the notations
of [1] page 64. We choose d=3,4,5,6,7,8 (with the notations of [1] ). Then, one
uses also chi squared statistics : we denote them by χ2

N1
. We use various t (with

the notations of [1] ). We choose t as a function of d. We lump a few categories
of low probability together.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each d.

d 3 4 5 6 7 8
max(χ2

N1
) 11.02 13.59 18.08 16.73 20.08 22.84

α5 11.07 12.59 14.07 15.51 16.92 18.31

Permutation Test One tests the sequence x(n). We keep the notations of
[1] page 65. We choose t=3,4,5,6,7 (with the notations of [1] ). Then, one uses
also chi squared statistics with t!-1 degrees of freedom i.e. 5, 23, 119, 719, 5039
degrees of freedom. We denote them by χ2

N1
.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for t=3,4.

t 3 4
Max(χ2

N1
) 12.67 40.8

αN 11.07 35.17

If t is bigger, we use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of |NG| obtained for each t.

t 5 6 7
max(|NG|) 2.191 2.432 1.891
αN 1.960 1.960 1.960
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Run Test One tests the sequence x(n). We keep the notations of [1] page 66.
We uses the chi squared statistics with 6 degrees of freedom. We denote it again
by χ2

N1
.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each N1.

N1 57 ∗ 106 57 ∗ 105 57 ∗ 104 57 ∗ 103 57 ∗ 102

max(χ2
N1

) 5.710 8.848 10.640 12.312 12.584

αN 12.59 12.59 12.59 12.59 12.59

Maximum-of-t Test One tests the sequence x(n). We keep the notations of
[1] page 70. We test the distribution function of maximum Vn. Then, one uses
V tN : it is enough to apply equidistribution test with partitions of size D+ 1.
Then, one has chi squared statistics with D degrees of freedom.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
when the degree of freedom depends on N1 : D(N1) .

We use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of |NG| obtained for each N1.

N1 57 ∗ 106 57 ∗ 105 57 ∗ 104 57 ∗ 103 57 ∗ 102

Max(|NG|) 0.431 1.554 2.025 1.905 2.102
αN 1.960 1.960 1.960 1.960 1.960

Collision Test One tests the sequence b1(n′) . We keep the notations of [1]
page 70. We do the test with samples which have a size of 214 in 220 urns as in
[1] . Then, one can use the tables of probabilities of [1] page 70.

Let co(t) be the numbers of collision of t-th test. Then, we have the following
inequalities for t=1,2,...,1000

109 ≤ co(t) ≤ 141 .

We recall that P{co(t) ≤ 108} = 0.043 and P{co(t) ≥ 145} = 0.946 : cf [1]
page 70.

Birthday spacings Test One tests the sequence x(n). We keep the notations
of [1] page 71. We use the test exacly as in [1]. Then, we use the chi squared
statistics with 3 degrees of freedom. We denote it by χ2

3.
The following table is that of χ2

3.

χ2
3 3.66 4.02 1.94 5.67 3.32 6.77 7.01 2.78 4.25 6.11
α5 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81
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As a matter of fact, we made this test more than hundred times. For these
other tests, similar results have been obtained.

Serial Correlation Test One tests the sequence x(n). We keep the notations
of [1] page 72. One chooses N1 ≥ 100. Let C be the serial correlation coefficient.
Then, α5 ≈ 2 when one tests |√N1C|.

The following table is that of the maxima of |√N1C|obtained for each N1.
.

N1 57 ∗ 106 57 ∗ 105 57 ∗ 104 57 ∗ 103 57 ∗ 102

max|√N1C| 0.31 1.11 1.51 1.86 1.55
α5 2 2 2 2 2

Higher order correlation coefficient Test One tests the sequence x(n).
We keep the notations of [10] page 72. In this test, we test not only the linear
correlation coefficient : we test also the polynomial correlation coefficients.

For this test one can use samples (x(2n), x(2n+ 1)). But - as for the serial
correlation coefficient - results are similar if one uses samples (x(n), x(n+ 1)).

Therefore one uses the statistics ||SN1
||2 defined in theorem 6-11 of [10] :

||SN1
||2 has asymptotically a chi squared distribution with h2 degrees of freedom

(here h=k with the notations of [10]). One chooses h according to N1.

Because h2 is big, we use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of |NG| obtained for each N1.

|N1| 57 ∗ 106 57 ∗ 105 57 ∗ 104 57 ∗ 103 57 ∗ 102

Max(|NG|) 0.541 1.121 1.584 1.659 1.832
αN 1.960 1.960 1.960 1.960 1.960

Conclusion Every test made conclude that the x(n) and b1(n′) are IID se-
quence. It is only confirming our previous study. It brings a supplementary
proof to the correctness of our reasoning.

11.3 Certainty of the randomness of {b1(n′)}
Now, one wants to show that there is no doubt about the randomness of the
sequence b1(n′) : all was proven.

11.3.1 Detail of the method

Our method is based on different steps.
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1) We use data aj which can be regarded like the realization aj = Aj(ω) of
a random sequence Aj having a certain asymptotic independence.

2) We transform them into a sequence e2(j) having marginal laws rather
well distributed thanks to the addition of a pseudo-random generator.

3) Thanks to the Fibonacci function we transform the e2(j) into a sequence
e3(j) almost independent and with marginal distributions extremely near to the
uniform distribution.

The advantage, it is that almost all the logical models E3(j) of the sequence
e3(j) are almost independent and have marginal distribution extremely near to
the uniform distribution.

4) Then, one uses the XORLT. One makes the sums modulo m of the S=10
lines of the matrix of the f(i,n) : h(n) =

∑
i f(i, n).

By the sections 5.7 and 8.5.2, the advantage of using the XORLT, it is that
the conditional probabilities satisfy

P
{∑

i

F (i, n) ∈ I
∣∣∣ F (i, n+ js) = fi,s, s = 2, 3, ..

}
≈ P

{∑

i

F (i, n) ∈ I
}
.

It is even truer for

P
{∑

i

F (i, n) ∈ I
∣∣∣
∑

i

F (i, n+ js) = hi,s, s = 2, 3, ...
}
.

However, the law of each F(i,n) is extremely close to the uniform distribution.
Therefore, the conditional distribution of

∑
i F (i, n) given

∑
i F (i, n+ js) =

hi,s, s = 2, 3, ... is also extremely close to the uniform distribution.
One can thus accept the model of

P{
∑

i

F (i, n) = y |
∑

i

F (i, n+ js) = hi,s, s = 2, 3...} =
1

m

[
1 + uy

]
,

where uk is a sample of an IID sequence Uk.

5) One uses once again the function of Fibonacci Tq. That allows us to con-
clude that P{X(n) ∈ Bo |X(n+j2) = x2, ...., X(n+jp) = xp} = L(Bo)+Ob(1)ǫ
for any Borel set Bo.

6) Then, one transforms the sequence X(n) into a sequence of bits B1(n′)
satisfying P{B1(n′) = b | B1(n′+j2) = bi2, ...., B

1(n′+jp) = bip} = 1/2+Ob(1)ǫ
for any bits b.

7) The condition imposed on the parameters, m and q0 imply that ǫ = α√
q0N

,

where q0N is the size of the sequence B1(n′). This equality means that one will
not be able to differentiate the sequence B1(n′) from an IID sequence of bits.
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11.3.2 Details of the certainty

The results on the various steps which we have just pointed out are logically
certain. Indeed,

1) One is logically sure that the sequence A(j) has some asymptotic indepen-
dence. In particular, if one takes a dictionary or an encyclopaedia, the various
definite words represent Qd-dependent events.

2) One showed by reasoning that the sequence e2(j) has marginal distribu-
tions enough well distributed : e2(j) = e1(j) + rand0(j) where rand0 is inde-
pendent with respect to the behavior of e1(j).

The reasoning could even be useful in order to show that E2(j) has not only
uniform marginal distributions, but is even IID. It is besides the reasoning of
Marsaglia in the construction of its CD-ROM : cf chapter 3.

3) Thanks to the functions of Fibonacci we transform the e2(j) into a se-
quence e3(j) having marginal distributions extremely near to the uniform dis-
tribution for all the logical models E3(j). Moreover, these E3(j) are almost
independent.

This result is proved mathematically. As a matter of fact the sequence e3(j)
is maybe already an IID sequence : cf section 12.2.

4) Then the XORLT shows that

P{
∑

i

F (i, n) ∈ I | F (i, n+ js) = fi,s, s = 2, 3, ..} ≈ L(I).

5) One can thus accept the model

P{
∑

i

F (i, n) = y |
∑

i

F (i, n+ js) = hi,s, s = 2, 3...} =
1

m

[
1 + uy

]
,

where uk is a sample of an IID sequence of random variables Uk with mean 0.

Now according to the CLT, one knows that the curve of the probabilities of
the sums has well the shape of a bell of the type

P
{∑

i

F (i, n) = y
∣∣ ∑

i

F (i, n+ js) = gs, s = 2, 3...
}

=
Se−

S(y−0.5)2

2σ2

m
√

2πσ2

[
1 + vy

]
,

where mσ2
V = O(1) (σ2

V is the variance of Vy).
Therefore, it will be the same for σ2

U . The supposed condition σ2
U ≤ 1 is

thus too weak. One is thus sure that it will be satisfied.

6) The results on the Fibonacci function show that

P{B1(n′) = b | B1(n′ + j2) = bi2, ...., B
1(n′ + jp) = bip} = 1/2 +Ob(1)ǫ ,

351



where ǫ = α√
q0N

.

7) Our study, as well as the traditional results on the samples, thus shows
that one will not be able to differentiate the sequence B1(n′) from a sequence
of IID random bits.

8) As a matter of fact, we took precautions so much that ǫ is probably much
smaller than α√

q0N
.

There is thus no uncertainty on the randomness of b1(n′). All was proved.

Remark 11.3.1 So that the sequence b1(n′) is not representative of an IID se-
quence, there are only two solutions
1) The computer has a defect. But in this case, any calculation also risks to be
false.
2) By an extraordinary chance, it is the same case where a really IID sequence
does not satisfy the necessary tests. But that can occur only with the same prob-
ability, i.e. negligible.

11.3.3 Presentation of the result

In the beginning, one has a sequence of data a(j). But the sequence e3(j) can
also be regarded as a sequence of data. One can thus expound the result in the
following way.

One considers the sequence of data e3(j) .
One can thus say that, for all the logical models E3(j), associated to the

sequence of data e3(j), the sequence b1(n′) transformed of e3(j) according to the
transformations described above, cannot be differentiated from an IID sequence.

It is always possible that a test of randomness is not checked. But that
will happen only with a probability which has the same order as that of an IID
sequence.

We thus have turns the difficulty of a mathematical definition of an IID se-
quence because our result is true for all the models E3(j), and thus for all the
models B1(n) which are deduced from it.
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Chapter 12

Other methods of building
of IID sequences

12.1 Second method

In this section one uses the rate of convergence of the XORTL (cf 5.5). One does
not apply it to a sequence of numbers of the same type that f(i,n), n=1,...,N, but
to random numbers of size N, i.e. very large, for example with a sequence of bits
of size 100.000.000 regarded as a number with values in {0, 1, ...., 2100.000.000−1}.

This technique makes it possible to avoid using conditional probabilities.

12.1.1 Method of construction of the sequence

One keeps a part of the steps of the method used in the chapter 11.
1) One supposes that one has a sequence of data which one writes in the

forms of bits aj ∈ {0, 1, ...., κ− 1}, j=1,.....,N. One supposes that one can write
aj = Aj(ω). It is supposed made up of several independent files.

2) One rewrites it in the form of a table cij , j = 1, ..., Ji, i=1,2,..,S. The Ji’s
are chosen in order that the lines are made up with independent files.

3) For each line i, one chooses a congruence of Fibonnacci Ti(x) = aix
modulo mi so that N/mi is very small. We assume also that there exists γi ∈ N

such that mi = mF (κγi).
One groups the data togheter by set of γi elements :

di(j) = ciJi−(s−1)γi
, ciJi−(s−1)γi−1....c

i
Ji−(s−1)γi−(γi−1) , s = 1, 2, ...., J ′

i ou J ′
i =

⌊Ji/γi⌋.

4) For all j = 1, 2, ...., J ′
i , one transforms each di(j) by Fibonacci functions

Tqi where qi ≤ 3γi/4.
4-a) One defines e1i (j) ∈ {0, 1, ...,mi − 1} : e1i (j) = ⌊di(j)mi/2

γi⌋.
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4-b) One sets e2i (j) = e1i (j) + randi(j) modulo mi, where randi(j) is a
pseudo-random generator of period mi with values in F ∗(mi).

4-c) One defines e3i (j) ∈ {0, 1, ..., 2qi − 1} by : e3i (j) = 2qiTqi
(e2i (j)/mi).

5) One rewrites the e3i (j) in the form of a sequence of bits.

5-a) For j = 1, ..., J ′
i , let e3i (j) = bii1(j)bii2(j)....biiqi

(j) be the writing of the
e3i (j) base 2.

5-b) One defines the sequence of bits bti(n), n = 1, 2, ...., qiJ
′
i , by setting

bti(qis− u+ 1) = biiu(s) for s = 1, ..., J ′
i , and u = 1, ..., qi .

6) One modifies the lines bti(n
′), n′ = 1, 2, ...., qiJ

′
i , thanks to transforma-

tions having a behavior close to that of the permutations. In this aim, one
uses other sequences of datas c1i (n

′) ∈ {1, 2, ...., qiJ
′
i}, n′ = 1, 2, ..., qiJ

′
i , where

i = 1, 2, ...., 3S. Because we use transformations similar to permutations we set
c1i (n

′) = Permi(n
′) in order that the notations are clearer.

6-a) One groups them togheter by package of three successive sequences
Permt

i(n
′) for t=1,2,3, i=1,2,...,S, n′ = 1, 2, ....., qiJ

′
i .

6-b) For each line i, for n′ = 1, 2, ...., qiJ
′
i , one sets, ri0(n′) = bti(n

′) and, for
each t=1,2,3, rit(n

′) = bti(Perm
i
t(n

′)) for n′ = 1, 2, ....., qiJ
′
i .

6-c) For each line i, we set ri(n
′) = ri0(n′) + ri1(n′) + ri2(n′) + ri3(n′) modulo

2 for n = 1, 2, ....., qiJ
′
i .

Remark 12.1.1 Less large sequences c1i (s) can also be used in order to define
these transformations. For example, one can suppose i=1,2,...,S : then, we
choose three lines i1, i2, i3 which we associate at each line i in the step 6-a).

7) One definite gi as the number with J bits whose writing bases 2 is gi =

ri(1)ri(2)....ri(J) , ou J = mini(qiJ
′
i).

The numbers gi are thus number of very large size.

8) We set h =
∑S
i=1 gi . For calculation one uses the method described in

section 12.1.2.

9) We set k = h, mod M2 + 1 where M2 = 2J − 1 : 0 ≤ k ≤M2.

10) Let k = b1, b2, ...., the writing of k base 2. Then, one regards the se-
quence b1, b2, ...., bJ .

It is the sequence of bits bs which will check the properties that we want for
our IID sequence.
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12.1.2 Calculation algorithms

As we make calculations on extremely large numbers, one cannot directly use the
various mathematical programming systems: e.g. if gi ∈ {0, 1, ....., 101.000.000}.

We thus clarify now the method of calculating h =
∑S
i=1 gi when S=15.

It is known that gi represents a number with J digits in base 2 : gi =

ri(1)ri(2)....ri(J). Therefore, gi =
∑J
j=1 ri(j)2

J−j where ri(j) ∈ {0, 1} .

Then, gi =
∑J−1
n=0 ri(J − n)2n. Therefore h =

∑
n≥0

∑
i ri(J − n)2n =

∑
n≥0 z

1
n2n where z1

n =
∑15
i=1 ri(J − n). Therefore, z1

n ≤ 15.

We set z1
n = 0 if n < 0. Two algorithms A1 and A2 thus will transform

a sequence z1
n corresponding to h =

∑
n∈Z

z1
n2n , z1

n ≤ 15 into a sequence zkn
corresponding to h =

∑
n∈Z

zkn2n where zkn ∈ {0, 1}.

Algorithm A1

Algorithm A1 is composed of several successive steps.

Transformation of z1
n into z2

n For any n, one writes z1
n in base 2. Because,

z1
n ≤ 15 , for all n ∈ Z, z1

n = ρ4
1,n23 + ρ3

1,n22 + ρ2
1,n2 + ρ1

1,n ou ρj1,n ∈ {0, 1} for
j=1,2,3,4.

Therefore,

h =
∑

n∈Z

z1
n2n =

∑

n∈Z

(ρ4
1,n23 + ρ3

1,n22 + ρ2
1,n2 + ρ1

1,n)2n

=
∑

n∈Z

ρ4
1,n2n+3 +

∑

n∈Z

ρ3
1,n2n+2 +

∑

n∈Z

ρ2
1,n2n+1 +

∑

n∈Z

ρ1
1,n2n

=
∑

n∈Z

z2
n2n,

where z2
n = ρ1

1,n + ρ2
1,n−1 + ρ3

1,n−2 + ρ4
1,n−3. Therefore, z2

n ≤ 4.

Transformation of z2
n into z3

n Because z2
n ≤ 4, we set, for n ∈ Z, z2

n =
ρ3
2,n22 + ρ2

2,n2 + ρ1
2,n.

Therefore,

h =
∑

n∈Z

z2
n2n =

∑

n∈Z

(ρ3
2,n22 + ρ2

2,n2 + ρ1
2,n)2n
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=
∑

n∈Z

ρ3
2,n2n+2 +

∑

n∈Z

ρ2
2,n2n+1 +

∑

n∈Z

ρ1
2,n2n =

∑

n∈Z

z3
n2n,

where z3
n = ρ1

2,n + ρ2
2,n−1 + ρ3

2,n−2 . Therefore, z3
n ≤ 3 .

Transformation of z3
n into z4

n Because z3
n ≤ 3, we set, for n ∈ Z, z3

n =
ρ2
3,n2 + ρ1

3,n with ρ2
3,n ≤ 1.

Then,

h =
∑

n∈Z

z3
n2n =

∑

n∈Z

(ρ2
3,n2 + ρ1

3,n)2n =
∑

n∈Z

ρ2
3,n2n+1 +

∑

n∈Z

ρ1
3,n2n

=
∑

n∈Z

z4
n2n,

where z4
n = ρ1

3,n + ρ2
3,n−1 .

Because z4
n ≤ 2, we set for n ∈ Z, z4

n = ρ2
4,n2 + ρ1

4,n with ρ2
4,n ≤ 1.

The first algorithm is finished in this way. Indeed, by continuing the same
method, the following step transforms z4

n into a sequence z5
n which checks the

same conditions : z5
n ≤ 2.

Algorithm A2

Then, A2 algorithm transforms a sequence zsn into a sequence zs+1
n which checks

the same conditions.

Then, one supposes zsn ≤ 2.

Now, if h =
∑
n∈Z

zsn2n, with zsn = ρ2
s,n2 + ρ1

s,n , ρ2
s,n ≤ 1, zsn ∈ {0, 1, 2} ,

zsn = 0 if n < 0, then

h =
∑

n∈Z

zsn2n =
∑

n∈Z

(ρ2
s,n2 + ρ1

s,n)2n =
∑

n∈Z

ρ2
s,n2n+1 +

∑

n∈Z

ρ1
s,n2n

=
∑

n∈Z

zs+1
n 2n,

where zs+1
n = ρ2

s,n−1 + ρ1
s,n

Therefore, zs+1
n = ρ2

s+1,n2 + ρ1
s+1,n with ρ2

s+1,n ≤ 1 , zs+1
n ∈ {0, 1, 2} ,

zs+1
n = 0 if n < 0.

Therefore one did not change conditions on zsn when one transforms ”s” into
”s+1” by A2 algorithm
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Finally, A2 algorithm transforms any sequence zsn ∈ {0, 1, 2}, zsn = ρ2
s,n2 +

ρ1
s,n , ρ2

s,n ≤ 1, into a sequence {zs+1
n } = A2({zsn}) ∈ {0, 1, 2} , zs+1

n =
ρ2
s,n−1 + ρ1

s,n .

However, the number of 2 tends to decrease. One then will repeat a certain
number of times the A2 algorithm in order to make disappear the 2 from the
sequence zsn.

Indeed, in order that zs+1
n = 2, it is necessary and sufficient that ρ1

s,n =
ρ2
s,n−1 = 1.

Finally, after each step which transforms zsn into zs+1
n the new sequence zs+1

n

has less from 2 (or the same number) that the sequence zsn. One can understand
that on the following examples.

Example 1 We suppose z = 0 1 1 1 2 0 1

Then,

z = 0 1 1 1 2 0 1

A2(z)
= 0 1 1 1 0 0 1
+ 0 0 0 1 0 0 0

= 0 1 1 2 0 0 1

A22(z)
= 0 1 1 0 0 0 1
+ 0 0 1 0 0 0 0

= 0 1 2 0 0 0 1

A23(z)
= 0 1 0 0 0 0 1
+ 0 1 0 0 0 0 0

= 0 2 0 0 0 0 1

A24(z)
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= 0 1 0 0 0 0 1
+ 1 0 0 0 0 0 0

= 1 1 0 0 0 0 1

Example 2 We suppose z= 0 1 1 0 2 0 1

Then,

z=0 1 1 0 2 0 1

A2(z)
= 0 1 1 0 0 0 1
+ 0 0 0 1 0 0 0

= 0 1 1 1 0 0 1

Exemple 3 We suppose z= 0 1 1 2 2 0 1

Then,

z=0 1 1 2 2 0 1

A2(z)
= 0 1 1 0 0 0 1
+ 0 0 1 1 0 0 0

= 0 1 2 1 0 0 1

A22(z)
= 0 1 0 1 0 0 1
+ 0 1 0 0 0 0 0

= 0 2 0 1 0 0 1

A34(z)
= 0 0 0 1 0 0 1
+ 1 0 0 0 0 0 0
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= 1 0 0 1 0 0 1

As a matter of fact, the existence of a ”2” after the step ”s” is still checked
in the step ”s+1” if this ”2” is preceded by a ”1”.

If it is preceded by a ”0” or by a ”2” it is removed.
Therefore, if there is still ”2” in the step ”s” that means that there was

several ”1” which are consecutive in step 0 (followed by a ”2”).
Because the probability that n ”1” are consecutive decreases if n increases,

there will be normally no ”2” in sequence zs0n after s0 steps.

Method of calculating of bi

The calculation of b1, ...., bq, is very simple. Let h = hJ+rhJ+r−1.......h2h1

(where r ≥ 0) the binary writing of h . The bits bs are the bits hs ex-
cept the r first bits hJ+r, hJ+r−1, .., hJ+1 which one removes : b1, b2, ...., bJ =
hJhJ−1.....h1.

12.1.3 Properties

One uses the properties on the rate of convergence of the XORLT. For example,
one reminds the following proposition (cf section 5.5.1).

Proposition 12.1.1 One uses the set of the probabilities on the (x1, ..., xS) ∈
{0, 1, ...., 2J − 1}S defined as in section 5.5, hypothesis 5.5.1 : Px1,....,xS

=
P ′

x1,....,xS
P

P ′
x1,....,xS

provided with the uniform probability on the P ′
x1,.,xS

.

One supposes that with these notations, and our previous notations (section
12.1.1, step 7), Xi = Gi.

Then, for all y ∈ {0, 1, ...., 2J − 1}, with a probability equal to 1 − 2Γ(b),

P{K = y} ≈ (1/2J)
[
1 +

bOb(1)√
3
√

2J(S−1)

]
.

Proof Under our assumptions, the N of the assumptions 5.5.1 is equal to the
2J defined in section 12.1.1 : N = 2J .

Moreover EP ′ = 1/2 and σ2
P ′ = 1/12.

Finally, x1 + ...+ xS = g1 + ...+ gS = k. �

One can thus obtain probabilities very close to the uniform distribution with
a probability very close to 1. Indeed,

P{K = y} =
∑

x1+...+xS=y

px1,...,xS
,
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P{K = y} = P
{
{B1 = b1} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}

}
.

Then, if b0 is large, with a probability infinitely close to 1,

P
{
{B1 = b1} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}

}
= (1/2J)

[
1 +

b0Ob(1)√
3
√

2J(S−1)

]
.

12.1.4 Study of datas

Then, we have a sample of S lines di(1), ..., di(J
′
i) where

di(j) = ciJi−(s−1)γi
, ciJi−(s−1)γi−1....c

i
Ji−(s−1)γi−(γi−1) ,

which is transformed in

gi = ri(1)ri(2)....ri(J).

Concentration of the Gi’s

The problem most difficult to solve logically, it is that the Gi’s should not have
a probability which is cancelled in many points : cf section 5.5.10.

First, to have an idea of the effects of the transformations of the data, we
suppose that we did not make a transformation on the di and that we summon

them directly, i.e. gi = ri(1)ri(2)....ri(J) , J=10.000.000, means a sum of text.
Then, it is important that these lines does not come from the same type of

files, for example from English books. Indeed, if a line comes from an English
text, that is not of consequence about the CLT: this text is only a sample of
size 1 chosen randomly.

But if all the lines are obtained from English texts, that will involve logi-
cally that the probability associated to each line is very particular. Thus any
line which does not correspond to an English text will have a null probability
theoretically and there will be many of such sequences. Thus, the measure asso-
ciated to the English texts is a priori concentrated in a small number of points

on the set of the possible points ri(1)ri(2)....ri(J). There is 210.000.000 possible
points, but there are much less possible English texts than one can write with
10.000.000 of bits.

Therefore, there are many points γs which have a null or negligible proba-
bility: P{Gi = γs} = 0.
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Now, it was shown that the curve of the probabilities obtained by the CLT
has the shape of bell, except in certain cases where the measure is concentrated
nearly a small number of points.

In the case which interests us here, one can regard as example, the case

where, for any i, ri(1)ri(2)....ri(J) = ri(1)ri(2)....ri(P )0.0....0.0 where P=1.000.000

and J=2.000.000. It is understood indeed that h = h1h2.....hP 0.0.....0. There-
fore, in fact bP+1bP+2.....bq = 0, 0, ...., 0.

If one directly applies the method above without modifying the di(j), one
would not be sure to have a curve of the probabilities in the shape of bell. The
quality of the result would be thus dubious.

Of course, gi = ri(1)ri(2)....ri(P )0.0....0.0 is an extreme case. But it pro-
vides an example and shows that it is necessary to avoid being in a case of this
kind.

Because of that, we made uniform the di(J) and then we employed trans-
formations of a type similar to the permutations.

Remark 12.1.2 One cannot directly add pseudo-random generators as in the
chapter 11. In the chapter 11, one used the numbers with 10 or 20 digits. Each
provided number could be regarded as random because one can easily take a germ
with 20 digits. Here, it would be necessary to use a generator with values in the
numbers which have a order of 210.000.000 if J = 10.000.000 for example. In no
case, it could not to be random.

12.1.5 Study of sums of text

First, let us consider a sequence resulting from texts or mathematical texts or

programs. Let us suppose that for any line ℓi = ℓi1, ..., ℓ
i
J , J = 400.000 where ℓ

means a letter of the Latin alphabet : ℓ ∈ {0, 1, .., 25}.
If one uses all the possible sequences of letters ℓi , there is 26400.000 possible

combinations.

Of course, there are much less texts possible in English. How much is there
of them? It is rather difficult to evaluate correctly.

In the tests and the numerical results which we calculated, we obtained a
Qd-dependence with Qd=22 : cf section 10.4. To avoid any error, let us increase
Qd: let us consider that there is Qd-dependence with Qd=40.

Study of a particular case

To illustrate the ideas, let us group the letters by group of 40. There is
400.000/40= 10.000 of it. Let us take 1 group out of 2. There remain about
5000 of them.
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Because of the 40-dependence, there would be thus more than (40terms)5000

possible combinations.
Let us suppose that there are 20.000 words in the English language (it is an

average: one can admit that there are 500.000 words).
But how much there are sequences of 40 terms in the English language?
To try to estimate it, let us suppose that one has words of 10 letters and

that each word is independent. Then, there would be for each group of 4 words
of 10 letters, (10000)4 possible combinations.

But, one is not in this case. In fact, it seems that there would be at least
(20000)3 possible combinations for each group of 40 terms. But it is extremely
difficult to be sure for it without making a long study.

Altogether, there would be thus ((20000)3)5000 ≈ 2656538 possible combina-
tions.

That is much smaller than 26400000, the number of all the possible combi-
nations with 26 letters. There will be thus many ls checking Proba{ℓ1 = ls} = 0.

But these points of probability equal to 0 can disappear if several lines are
summoned.

Thus let us suppose that we summon 15 lines by group of 40 terms.
Let ℓi1(j) be the obtained lines with 5000 groups of 40 terms.

Let h1(j) =
∑15
i=1 ℓ

i
1(j). One thus will group 15 groups of 40 independent

terms togheter.
Then for each h1(j) associated with a group of 40 terms, there will be

(40terms)15 = (200003)15 = 2000045 possible combinations.
Thus altogether, there will be ((20000)45)5000 ≈ (2645595)15 ≈ 26683925 pos-

sible combinations: that would be more than the total number of possible com-
binations : 26400.000.

On the other hand, there will be even more possible combinations with the

sum h1(j) =
∑15
i=1 ℓ

i
1(j).

It will be the same thing if one takes all the groups of 40 terms instead of
removing 1 of them out of 2.

That thus means that by summoning 15 lines, one can remove the risk that
Proba{h(j) = x} = 0.

Study of the assumptions of this particular case

Is what the assumptions which we have made are sufficiently close to reality?
The assumptions that we have made are approximate. For example: there

is really 22-dependence? It is what numerical results show. Here we suppose
that there are 40-dependence. But is this sufficient?
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On the other hand, one can improve this type of results if one adds files of the
different type: English texts, music, mathematical texts , computer programs.

The problem, it is that, in order to use this type of reasoning directly, it
would have to be shown that for each line, there are about no points of proba-
bility equal to 0. Here, it is shown that the sum of the lines has this property.

But is this true? For example if all last the bits of the lines are equal to 0,
that is not true.

General case

In fact, it is to avoid this kind of risk which we have initially transforms the
data by the techniques of standardization and by transformations having sim-
ilar properties to those of the permutations. But, all these results are to be
confirmed.

In fact, these reasonings show that it would be maybe possible to summon
the data directly. We improve the chances that it is possible by the various
transformations carried out.

12.1.6 Permutations and associated transformations

Permutations

To avoid having points of concentrations of the probability, the simplest method,
it is to make permutations on a certain number of sequence of cij . Indeed, the
permutations can transform into independent sequences about any sequence of
real numbers (including the pseudo-random sequences) : cf section 8.1.2.

It is quite clear that, if permutations are made, that changes immediately
the type of probability associated to each line di: for example, if one permutes

di ∈ {ci1ci2.....ciJ0......0} .
Therefore, if the various lines di were summoned, there is not thus a priori

reasons of considering that they are a sample of a random variable concentrated
nearly a small number of points.

Choice of permutations

Like permutation, one can use for example the various Matlab permutations.
But, it poses a problem: they are not permutations taken randomly. In fact,

one is in the case envisaged by Knuth ( [1] : cf also definition 2.1.5 ) and which
it is necessary to avoid. One would need permutations taken randomly to be
sure that one can considers the probabilities as not concentrated nearly a small
number of points.

For that, one can use nondeterministic sequences of data to define the per-
mutations.
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For example let us suppose that one wants to permute a sequence x(j) of
size N and that one has data d(j) ∈ {0, 1, ...,m− 1}, m > N . One would like to
be able to define the permutation P (j) = ⌊N ∗ d(j)/(m − 1)⌋ . Unfortunately,
there is no reason that P is injective.

One can try to remove the j, j’ such that P(j)=P(j’), j 6= j′. But if N is
large, that can be long.

It is easier to use these functions differently

Transformation having some characteristics of permutations

To define these transformations, nondeterministic sequences of data are used.
In our construction defined in section 12.1.1, one used other sequences of datas
c1i (s) ∈ {0, 1}.

First, we must define the numbers of which we have need to define these
functions close to the permutations: we build them starting from the c1i (s). We
define these numbers in section 12.1.1, 6-a, 6-b, 6-c, 6-d. We obtain random
sequences (not IID) P ti (n) for t=1,2,3, i=1,2,...,S, n = 1, 2, ....., qiJ

′
i

Then, one applies these transformations on each line i: we set rit(j) =
bti(P

i
t (j)).

Lastly, they are summoned modulo 2qi : ri(j) = ri0(j) + ri1(j) + ri2(j) + ri3(j).
It is easy to note that this technique allows a mixture of the lines (and data)

which is as random as it would be the choice of a permutation taken randomly.
That is thus appropriate perfectly so that we can suppose that the probabilities
of each line cannot be regarded as concentrated nearly a small number of points.

12.1.7 Question about sums

In section 5.5.8, one understood that to use proposition 5.5.1 involves in some
cases absurd results for the sums of random variables. In the section 11.1.5,
one understood that that does not pose a problem for the example studied in
section 11.2. Is also the case for the sum of gi used in section 12.1.1?

As a matter of fact, in the construction defined in section 12.1.1 there is
obviously no problem.

Indeed, by using the method described in section 12.1.1, one makes directly
an operation corresponding to a permutation. That thus amounts well taking
probabilities randomly.

One can thus consider really that the probabilities that one uses in the sum
behave as being taken randomly.

12.1.8 Example

By using, the technique defined in section 12.1.1, we have created a real sequence
b2(n′) which can be obtained by asking it to rene.blacher@imag.fr (Laboratory
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LJK, University Joseph Fourier of Grenoble, France). More precisions on this
subject will found in [18]

Detail of the construction

The following steps are carried out.
1) One has a sequence of digits in base 32 obtained as in the chapter 11.

aj ∈ {0, 1, ..., 31}, j=1,..., 34785384 : one thus has a sequence of 173926920 bits.
The data of the various lines were extracted from various texts in various

languages: the Bible, dictionary, mathematical program, mathematical texts,
encyclopaedia.

2) One rewrites it in the form of a table cij , j = 1, ..., Ji, i=1,2,..,5 with
J1 = 7.222.542 J2 = 6.980.250 J3 = 6.987.224 J4 = 6.774.012 , J5 = 6.821.356.

Each line consists of independent file

3) One chooses the congruence of Fibonnacci T (x) ≡ ax modulo m =
mF (3228) (it is the same one which in the chapter11).

One groups the data togeteher by unit of γ = 28 elements : di(j) =

ciJi−(s−1)γ ....c
i
Ji−(s−1)γ−(γ−1), j = 1, 2, ..., J ′

i where J ′
i = ⌊Ji/γ⌋ ≥ ⌊6.774.012/28⌋

= 241.929. We set J ′ = mini(J
′
i) = 241.929.

Then, we use only the matrix di(j), j=1,2,...,J’, i=1,2,3,4,5.

4) For all j = 1, 2, ., J ′, one transforms each di(j) by the function of Fibon-
nacci.

4-a) One defines e1i (j) ∈ {0, 1, ...,m− 1} : e1i (j) = ⌊di(j)m/2γ⌋.
4-b) One sets e2i (j) = e1i (j) + randi(j) modulo m, where randi(j) is a

pseudo-random generator MATLAB of period m with values in F ∗(m).
4-c) One defines e3i (j) ∈ {0, ..., 2q−1}, j=1,2,...,J’, by : e3i (j) = 2qTq(e

2
i (j)/m)

where q=105 (q = 21 ∗ 5, 21 = 3γ/4) .

5) One rewrites the e3i (j) in the form of a sequence of bits.

5-a) For n = 1, ..., J ′ , let e3i (n) = bii1(n)bii2(n)....biiq(n) be the writing of the
e3i (j) base 2.

6-b) One defines the sequence of bits bti(n
′), n′ = 1, 2, ...., J , J=qJ’=25402545,

by setting bti(qs− u+ 1) = biiu(s) for s = 1, ..., J ′, and u = 1, ..., q .

6) One modifies the lines bti(n
′), n′ = 1, 2, ...., J , thanks to transforma-

tions having a behavior close to that of the permutations. In this aim, one
uses other sequences of datas c1(n′) ∈ {1, 2, ...., J}, n′ = 1, 2, ..., J where i =
1, 2, ...., 3S. Because we use transformations similar to permutations we set
c1(n′) = Permi(n

′) in order that the notations are clearer.
6-a) One groups them togheter by package of three successive sequences

Permt
i(n

′) for t=1,2,3, i=1,2,...,S, n′ = 1, 2, ....., J .
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6-b) For each line i, for n′ = 1, 2, ...., J , one sets, ri0(n′) = bti(n
′) and, for

each t=1,2,3, rit(n
′) = bti(Perm

i
t(n

′)) for n′ = 1, 2, ....., J .

6-c) For each line i, we set ri(n
′) = ri0(n′) + ri1(n′) + ri2(n′) + ri3(n′) modulo

2 for n = 1, 2, ....., J .

7) For i=1,2,3,4,5, one defines gi like being the number with 25402545 bits

whose writing bases 2 of it is gi = ri(1)ri(2)....ri(J) .

8) We set k =
∑5
i=1 gi modulo 2J . Let k = b2(1)b2(2)....b2(J) the writing

bases 2 of k . The sequence b2(n) is a sequence of random bits.

Programming

In some computation’s systems, it can be long to execute the program of the
transformations similar to permutations, Permi(n) ∈ {1, 2, ...., J} when J is
large (step 6). For example, if J = 25402545, the used memory is large. In
Matlab 2008, the execution can be long.

In order to use not too memory, one can proceed step by step : one uses the
Permi(n

′) by packages : for example Permi(n
′), n’= 508050(s-1)+1 : 508050*s.

Now we show how processing with the first line.

1) We have a sequence of bits bt(n′) = bt1(n′), n’= 1,....,J, where J =
25402545.

2) We write it in a form of a sequence Bt(v) ∈ {0, 1, ...., 250 − 1}, v =

1, 2, ..., 508051 where Bt(v) = bi50(v)....bi2(v)bi1(v) and 508051 = ⌊J/50⌋ + 1 :
if u-1=50v+s is the Euclidean division of u-1 by 50, bt(u) = bis+1(v + 1).

3) We denote by res(n′) ∈ {0, 1}, n’=1,2,...,J, the sequence which we want to
obtain : at the end of computation res(n′) = bt(Perm(n′)) for n’= 1,....,J. We
write it in a form of a sequence Res(v) ∈ {0, 1, ...., 250 −1}, v = 1, 2, ..., 508051 :

Res(v) = bit50(v)....bit2(v)bit1(v) and res(u) = bits+1(v+1), where u-1 =50v+s
is the Euclidean division of u-1 by 50.

We execute the following steps :

A) At step ”1”, we set res = zeros(1,J) and Res=zeros(1,508051).

B) At step ”s” :
for n= 508050(s-1)+1 : 508050*s,

1) Let Perm(n) − 1 = 50j0 + r0 be the Euclidean division of Perm(n) − 1
by 50.

2) We set b = bir0+1(j0 + 1). Then b = bt(Perm(n)).

Indeed, for j0 = 0, 1, ...., 508050, we use Bt(j0 + 1) = bi50(j0 + 1).....bi1(j0 + 1).
We extract from it b = bir0+1(j0 + 1) which is thus equal to bt(Perm(n)).

3) Let n− 1 = 50j2 + r2 be the Euclidean division of n-1 by 50.
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4) We set bitr2+1(j2 + 1) = b .

That means that one regards Res(j2 + 1) = bit50(j2 + 1).........bit1(j2 + 1). By
replacing the old bitr2+1(j2 + 1) = 0 by b, one obtains thus a new Res(j2 + 1) =

bit50(j2 + 1).........bit2(j2 + 1)bit1(j2 + 1).

Then, we obtain at the end of step ”s” a transformed sequence res(n’) repre-
senting the sequence bt(Perm(n′)) obtained for n’= 1,2,...,508050.s. After, we
will execute the following step.

In order to make computations at the step ”s”, one needs memory for
1) Perm(n) ∈ {1, 2, ...., J} , n = 508050(s− 1) + 1 : 508050.s,
2)Bt(v) ∈ {0, 1, ...., 250 − 1}, v = 1, 2, ...., 508051,
3) Res(n′) ∈ {0, 1, ...., 250 − 1}, n′ = 1, 2, ...., 508051.
Then, we do not need too memory if we use Matlab 2008.

Remark 12.1.3 It is also possible to write the sequence Perm(n), n=1,....,J,
in a form PErm(v) ∈ {0, 1, ...., 250−1}, v=1,..., 508051 as for bt(n’) and Bt(v).

Remark 12.1.4 Here, we write the method to execute computations. We do
not write the program. For example, in order to compute the step 4), the most
simple way is to use Res(j2 + 1) = Res(j2 + 1) + b.2r2 .

An other method

Now the previous way of programming is a little long. Then, one can use a fast
way : one can apply the transformations similar to permutations to e3i (j). With
this aim, one changes the method defined above in ”Detail of the construction”.

We replace steps 5) 6) 7) by the following way.

5) One modifies the lines e3i (j) ∈ {0, 1, ....., 2q − 1}, j = 1, 2, ...., J ′, thanks
to transformations having a behavior close to that of the permutations. In this
aim, one uses other sequences of datas Permi(n

′) ∈ {1, 2, ...., J ′}, n = 1, 2, ..., J ′

where i = 1, 2, ...., 3S.
5-a) One groups them togheter by package of three successive sequences

Permt
i(n) for t=1,2,3, i=1,2,...,S, n = 1, 2, ....., J ′.

5-b) For each line i, for n = 1, 2, ...., J ′, one sets, ri0(n) = e3i (n) and, for each
t=1,2,3, rit(n) = e3i (Perm

i
t(n)) for n = 1, 2, ....., J ′.

5-c) For each line i, we set ri(n) = ri0(n) + ri1(n) + ri2(n) + ri3(n) modulo 2q

for n = 1, 2, ....., J ′.

6) One rewrites the ri(n) in the form of a sequence of bits.
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6-a) For n = 1, ..., J ′ , let ri(n) = bii1(n)bii2(n)....biiq(n) be the writing of the
ri(n) base 2.

6-b) One defines the sequence of bits bti(n
′), n′ = 1, 2, ...., J , J=qJ’=25402545,

by setting bti(qs− u+ 1) = biiu(s) for s = 1, ..., J ′, and u = 1, ..., q .

7) For i=1,2,3,4,5, one defines gi like being the number with 25402545 bits

whose writing bases 2 of it is gi = bti(1)bti(2)....bti(J) .

Now, it will be necessary to know if this way is sufficient in order to have
random bits b2(n) whose the randomness is sure.

12.1.9 Properties

First, let us notice the following remark.

Remark 12.1.5 One can admit that the sequences di(j) and e3i (j) are 2-depend-
ent : cf section 10.4. The di(2j + 1) thus form an independent sequence. As
each e3i (j) has a distribution close to the uniform distribution (cf chapter 8),
that means that, at least, the sequence di(2j + 1) is IID.

On the other hand, by using proposition 12.1.1 one finds that in the set of
probabilities provided with the uniform distribution, with a probability infinitely
close to 1,

P
{
{B1 = b1} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}

}
= (1/2J)

[
1 +

Ob(1)

250.000.000

]
.

It is a very strong approximation.

Now,

P
{
{B2 = b2} ∩ ... ∩ {B2J = b2J}

}

= P
{
{B1 = 0} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}

}

+P
{
{B1 = 1} ∩ {B2 = b2} ∩ ... ∩ {B2J = b2J}

}

= (1/2J−1)
[
1 +

Ob(1)

250.000.000

]
.
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More generally

P
{
{Bn = b1} ∩ {Bn+j2 = b2} ∩ ... ∩ {Bn+jp = bp}

}
= (1/2p)

[
1 +

Ob(1)

250.000.000

]
.

Therefore,

P
{
Bn = b1

∣∣∣Bn+j2 = b2, ...., Bn+jp = bp

}

=
P
{
{Bn = b1} ∩ {Bn+j2 = b2} ∩ ... ∩ {Bn+jp = bp}

}

P
{
{Bn+j2 = b2} ∩ ... ∩ {Bn+jp = bp}

}

=
(1/2p)

[
1 + Ob(1)

250.000.000

]

(1/2p−1)
[
1 + Ob(1)

250.000.000

]

≈ (1/2)
[
1 +

2Ob(1)

250.000.000

]
= (1/2) +

Ob(1)

250.000.000
.

Therefore,

P
{
Bn = b1

∣∣∣Bn+j2 = b2, ...., Bn+jp = bp

}
= (1/2J) +Ob(1)ǫ ,

where ǫ = Ob(1)
250.000.000 .

Now, we apply the theorem 9 with the Qd-dependence where Qd ≤ 22 ∗ 5 =
110 considering that aj ∈ {0, 1, ..., 31} and that 32 = 25 : cf section 11.2.9.

By the results of section 9.5.1, and by lemma 9.2.5,

β1,p ≤
√
N12pǫ√
A(p)2p

where N1 ≤ 25402545 , ǫ ≤ 1
225.000.000 , A(p) ≥ (1/8). Then,

β1,p ≤
√

8∗25402545
250.000.000

2p
2p/2 = 4∗14255.538

250.000.000 ≤ 217

250.000.000 ≤ 1
249.999.983 .

Moreover, γ1,p ≈ (p2−p+1)ǫ
2A(p)

[
2p+ (1 + 4Qd) 4p

2p + (1 + 2Qd) 4p2ǫ
2p

]
.

Now 2J3 ≈ 3.278398058033158 ∗ 1022.
Then, 2J3 < 276 ≈ 7.555786372591432 ∗ 1022.

Then, γ1,p ≤ J3ǫ < 275

250.000.000 = 1
249.999.925 .

Finally,

γ1,p ≤
1

249.999.925
.
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Therefore, with the same notations as in section 11.2.10,

P
{√

N1

∣∣PBe − (1/2)p
∣∣ ≥ σBx

}
≤ Γ

[(1 − β1,p/x

1 + γ1,p

)
x
]
≤

≤ Γ
[(1 − 1

249.998.983

1 + 1
249.999.925

)
x
]
≤ Γ

[(
1 − 1

249.998.982

)
x
]
,

for x ≥ 1
21000 .

With the notations of section 11.2.11, the same results are obtained for

P
{√

N1

∣∣∣P
B
e

pB
e

− (1/2)
∣∣∣ > σcp x

}
.

It is quite clear that with such an approximation, nothing could differentiate
such a sequence from an IID sequence if one has sample with size 26.000.000.

The question which is asked is: <<How can one obtain such a fine approxima-
tion?>>. The answer is that this is because the property of the XORLT and its
speed of convergence. We understood that this asks a question in section 5.5.8,
et 12.1.7.

It is necessary however not to forget that these results are true with a prob-
ability infinitely close to 1 in the set of the probabilities provided with the
uniform distribution (as defined in proposition 12.1.1). Then, it asks the ques-
tion to know if this measure on the set of the probabilities is quite selected. To
arrive at absoluetely sure conclusions , that will require a still long study which
we will make later on.

12.1.10 Tests

We are going to verify the previous conclusions by making tests of randomness.
We use the classical Diehard tests cf [2], [1]. We tested the sequences {b2(n′)}
defined in the step 8 of section 12.1.8 and ξn = 0, bn1 .....b

n
50. .

Results are in accordance with what we waited: for sequences b2(n) and ξn
the hypothesis ”randomness” can be accepted by all the Diehard tests.

We denote by N1 the size of used samples. We denote by α5 the selected
percentage points with probability 0,95.

Equidistribution Test We use the chi-squared tests. First, we test b2(n)
with the partition

{
{0}, {1}

}
.
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We use sample with size N1. We use the chi squared statistics χ2
N1

. We
take the maximum of χ2

N1
. The number of samples increases if N1 decreases

(not linearly) . Thus it is normal that maximums have tendency to increase.
The following table is that of the maxima of χ2

N1
obtained for each N1. More-

over α5 is the selected percentage points with probability 0,95 of chi squared
statitics with one degree of freedom.

N1 25402545 2540200 254020 25402 2500 250 100
Max(χ2

N1
) 0.875 2.974 2.091 3.115 3.028 3.985 3.770

α5 3.84 3.84 3.84 3.84 3.84 3.84 3.84

Now we test the sequence ξ(n). We use partitions in D(N1)+1 egal intervals
: D(N1) is a function of N1.

The following table is that of the maxima of χ2
N1

obtained for each N1

(then, D(N1) is constant). Moreover α5 is the selected percentage points with
probability 0,95 of chi squared statistics.

N1 2500 250 100
Max(χ2

N1
) 41.828 15.01 15.25

α5 43.77 16.92 16.92

if N1 is bigger, we use NG =
√

2χd2 −
√

2d− 1
D→ X∗

G where X∗
G ∼ N(0, 1)

: cf proposition A.1.2. Moreover α5 is the selected percentage points with
probability 0,95 of G.

N1 25402545 2540200 254020 25402
Max(|NG|) 1.627 1.489 1.778 1.990
αN 1.960 1.960 1.960 1.960

Serial Test We test the sequence b2(n) . We use the chi squared test with
the 2p partitions of {0, 1}p. Here we denote by χ2

N1
the chi-squared statistics

with 2p − 1 degree of freedom.
The following table is that of the maxima of χ2

N1
obtained for each p. Then,

for all p, we use several values of N1.

p 2 3 4 5
max(χ2

N1
) 5.287 9.984 25.765 36.704

α5 7.815 14.07 25.00 36.41

If p is bigger, we use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .

p 10 15 20
max(|NG|) 1.847 1.789 1.954
αN 1.960 1.960 1.960
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Now, we test the sequence ξ(n) . We use partitions in D(N1) + 1 equal
hypercubes where D(N1) is function of N1. Because D(N1) is big, we use

NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of χ2

N1
obtained for each p.

p 2 3 4 5 10 15 20
max(|NG|) 1.874 1.801 1.647 2.210 1.521 2.010 1.984
αN 1.960 1.960 1.960 1.960 1.960 1.960 1.960

Gap Test One tests the sequence ξ(n). We keep the notations of [1] page
62. We choose [α, β[= [0, 1/2[. Then, one uses the chi squared statistics with t
degrees of freedom (with the notations de [1]) : we denote them by χ2

N1
.

One chooses t = 5, 6, 7, 8, 9, 10. We use samples with various sizes N1. We
are interested in the maximum of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each t.

t 5 6 7 8 9 10
Max(χ2

N1
) 10.21 13.27 14.02 17.84 17.73 20.02

α5 11.07 12.59 14.07 15.51 16.92 18.31

For this test, we took many different samples. It is not surprising that max-
imum are close to percentages in 95 percent or in 99 percent.

Poker Test One tests the sequence ξ(n). We keep the notations of [1] page 63.
Then, one uses also chi squared statistics : we denote them by χ2

N1
. Then, χ2

N1
.

is used for testing the number of k-tuples. We choose k = 5, 6, 7, 8, 9, 10, 11, 12.
We lump a few categories of low probability together.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each k.

k 5 6 7 8 9 10 11 12
Max(χ2

N1
) 7.24 7.3 13.25 13.80 14.54 14.04 12.22 18.00

α5 7.81 9.49 11.07 12.59 12.59 14.07 15.51 16.92

Coupon collector’s Test One tests the sequence ξ(n). We keep the notations
of [1] page 64. We choose d=3,4,5,6,7,8 (with the notations of [1] ). Then, one
uses also chi squared statistics : we denote them by χ2

N1
. We use various t (with

the notations of [1] ). We choose t as a function of d. We lump a few categories
of low probability together.
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We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each d.

d 3 4 5 6 7 8
max(χ2

N1
) 12.74 12.27 14.88 19.90 19.72 20.92

α5 11.07 12.59 14.07 15.51 16.92 18.31

Permutation Test One tests the sequence ξ(n). We keep the notations of [1]
page 65. We choose t=3,4,5,6,7 (with the notations of [1] ). Then, one uses chi
squared statistics with t!-1 degrees of freedom i.e. 5, 23, 119, 719, 5039 degrees
of freedom. We denote them by χ2

N1
.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each t=3,4.

t 3 4
Max(χ2

N1
) 14.22 33.17

αN 11.07 35.17

If t is bigger, we use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) . The following table
is that of the maxima of |NG| obtained for each t.

t 5 6 7
max(|NG|) 1.777 2.029 2.223
αN 1.960 1.960 1.960

Run Test One tests the sequence ξ(n). We keep the notations of [1] page 66.
We uses the chi squared statistics with 6 degrees of freedom. We denote it again
by χ2

N1
.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
.

The following table is that of the maxima of χ2
N1

obtained for each N1.

N1 25402545 2540200 254020 25402 2500
max(χ2

N1
) 2.254 10.087 11.774 11.454 13.821

αN 12.59 12.59 12.59 12.59 12.59
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Maximum-of-t Test One tests the sequence ξ(n). We keep the notations of
[1] page 70. We test the distribution function of maximum Vn. Then, one uses
V tN : it is enough to apply equidistribution test with partitions of size D+ 1.
Then, one has chi squared statistics with D degrees of freedom.

We use samples with various sizes N1. We are interested in the maximum
of these various χ2

N1
when the degree of freedom depends on N1 : D(N1) .

We use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of |NG| obtained for each N1.

N1 25402545 2540200 254020 25402 2500
Max(|NG|) 1.115 1.602 1.754 1.994 1.813
αN 1.960 1.960 1.960 1.960 1.960

Collision Test One tests the sequence b2(n) . We keep the notations of [1]
page 70. We do the test with samples which have a size of 214 in 220 urns as in
[1] . Then, one can use the tables of probabilities of [1] page 70.

Let co(t) be the numbers of collision of t-th test. Then, we have the following
inequalities for t=1,2,...,1000

110 ≤ co(t) ≤ 137 .

We remind that P{co(t) ≤ 108} = 0.043 and P{co(t) ≥ 145} = 0.946.

Birthday spacings Test One tests the sequence ξ(n). We keep the notations
of [1] page 71. We use the test exacly as in [1]. Then, we uses the chi squared
statistics with 3 degrees of freedom. We denote it by χ2

3.
The following table is that of χ2

3.

χ2
3 5.31 6.77 5.87 1.07 7.11 3.01 2.25 4.21
α5 7.81 7.81 7.81 7.81 7.81 7.81 7.81 7.81

As a matter of fact , we made this test more than hundred times. For these
other tests, similar results have been obtained.

Serial Correlation Test One tests the sequence ξ(n). We keep the notations
of [1] page 72. One chooses N1 ≥ 100. Let C be the serial correlation coefficient.
Then, α5 ≈ 2 when one tests |√N1C|.

The following table is that of the maxima of |√N1C|obtained for each N1.

N1 25402545 2540200 254020 25402 2500

max|√N1C| 1.27 1.13 1.62 1.94 1.77
α5 2 2 2 2 2
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Higher order correlation coefficient Test One tests the sequence ξ(n).
We keep the notations of [10] page 72. In this test, we test not only the linear
correlation coefficient. We test also the polynomial correlation coefficients.

For this test one can use samples (ξ(2n), ξ(2n + 1)). But - as for the serial
correlation coefficient - results are similar if one uses samples (ξ(n), ξ(n+ 1)).

Therefore one uses the statistics ||SN1 ||2 defined in theorem 6-11 of [10] :
||SN1 ||2 has asymptotically a chi squared distribution with h2 degrees of freedom
(i.e. h=k with the notations of [10]). One chooses h according to N1.

Because h2 is big, we use NG =
√

2χd2 −
√

2d− 1 ∼ N(0, 1) .
The following table is that of the maxima of |NG| obtained for each N1.

|N1| 25402545 2540200 254020 25402 2500
Max(|NG|) 0.541 1.121 1.584 1.659 1.832
αN 1.960 1.960 1.960 1.960 1.960

Conclusion All the tests conclude that ξ(n) and b2(n) form IID sequences.
It is only confirming our previous study. It brings a supplementary proof to the
correctness of our reasoning.

12.1.11 The methods of sections 11.1 and 12.1

Comparisons of the two methods

The method defined in this section 12.1.1 has theoretical results much better
than those defined in the chapter 11.

But, such a quality of the approximation seems useless since one reasons on
samples. In our method defined in chapter 11, we obtained an approximation
theoretically less fine and yet, we saw that one can regard it as sufficient.

The improvement made in this section by the method defined in the chapter
11 seems not to mean much. For example, there exists always a probability

close to 0.045 such as |Pe−(1/2p)|
σB

√
qN

≥ 2.

The approximation provided by the method defined in this section 12.1.1
can thus be only one additional guarantee which one can take when one builds
a sequence of random bits bn. It could however to be useful if one wanted to
build functions of the bn with certain mathematical properties

However considering the quality of the theoretical results, why then not
employ only the method defined in this section 12.1.1?

To answer to this question, it should initially be recalled that it there many
other possible methods that those defined in this article to transform sequences
of data into IID sequences : cf section 12.2.

After, we studied much more the method defined in the chapter 11 than that
defined in this section 12.1.1. Following this study, we do not understand any
possible fault for the method defined in the chapter 11.

375



With regard to the second method, the rate of convergence of the XORLT
should be the subject of a systematic study for better specifying the result.
Indeed, we studied it only in the case of sequence p′x1,...,xS

which are IID and
chosen randomly: cf section 5.5. Therefore, this study about the XORLT would
deserve to be developed and the results to be better specified.

Joint use of the two methods

A means of reducing the uncertainty of the model would be also to employ as
sequence a(j) - defined in construction in section 12.1.1 - sequences of bits b0(n′)
created by the method of Fibonacci in the chapter 11.

One could thus be ensured that the lines are taken randomly and do not
have probabilities concentrated nearly a small number of points. Moreover, one
could apply the reasoning of the section 12.1.5 for each line.

12.1.12 Use of an additional congruence

One could want to use the method described hereinbefore in section 12.1.1, and
after to finish by the use of theorem 1 as one does it in section 11.1. In fact
it would be useless. One however will describe this method because it makes
possible to better understand the utility of congruences in the construction of
the sequences of random bits.

Theoretical method of construction of the sequence bn

One keeps the same general method that in section 12.1.1 until step 9, the def-
inition of k with S=15. One suppresses the step 6. One thus starts again the
definition of construction from this step by supposing J=2J’, J ′ ∈ N

∗.

9) We set k = h mod M2 + 1 where M2 = 22J′ − 1 is very big.

10) We set ℓ = T ∗(k) where T ∗ is the function defined in proposition 4.1.1
with m = M2.

11) Let q2 ∈ N
∗ . Let Q = J ′ − q2. Then, one considers the sequence

b1, b2, ...., bQ where ℓ = b1b2...., is the writing of ℓ base 2.

Under these hypotheses, it is the sequence of bits bs which will check the
properties that we want for our IID sequence : one thus selected q2 according
to these conditions : cf proposition 12.1.3 below.
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By acting thus, one wants to apply the same method as in the chapter 11
but one avoides the introduction of the conditional probabilities which require
strong assumptions.

On the other hand, it is obvious that as soon as J’ is big, one cannot use
congruences of Fibonnacci, their calculation being too much long. One thus
replaces by congruences easy to calculate : the binary congruences.

Method of calculation of the bi

First, et us remind that to apply binary congruences, it is enough to invert the
J’ first bits with the J’ last ones: cf section 4.1.2. Therefore, to obtain the bi,
the following operations are made.

1) If h = h2J′+r.....h2J′+1h2J′h2J′−1.....h1 , k = h2J′h2J′−1.....h1

2) Then one calculates ℓ = T ∗(k) modulo M2 = 22J′ − 1.

For that, we set, k = k2J′k2J′−1.....k1, the writing of k base 2. Then, by

section 4.1.2, T ∗(k) = kJ′kJ′−1.....k1k2J′k2J′−1.....kJ′+1.

Let us notice that the chance that k = 22J′ − 1 = 1.1.1......1 is negligible.
One excludes this case which it would not be possible to consider as represen-
tative of a IID sequence.

3) In order to apply the property 12.1.2, one limits oneself to the Q first bits
: b1, b2, ...., bQ = kJ′kJ′−1.....kJ′−(J′−q2)+1.

Properties of the sequence Bi

One will understand now that there is no improvement by using binary congru-
ences. To simplify, it is supposed that the following assumption is satisfied.

Hypothesis 12.1.1 One supposes that the following inequality holds

∣∣∣P{K = k} − P{K = k′}
∣∣∣ ≤ KK |k − k′|/42J′

,

where KK ≤ 1.

Let us notice that KK = K0 the coefficient of Lipischitz of the theorem 1
increasing the slope of the density. Indeed, that is a consequence of lemma 5.6.3.

Now, one wants to apply the theorem 1.

Lemma 12.1.6 We keep the notations of proposition 4.1.1 with d=2. Let I
be an interval of F (M2). Then P{T ∗(K)/M2 ∈ I} = L(I) + Ob(1)ǫI where
ǫI ≤ 1/dJ

′−4.
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Proof By proposition 4.1.1 with d=2, p=J’,
P
{
T ∗(K)/M2 ∈ I

}
= L(I) + e(KK , d, p), where

e(K, d, p) = 2(3K + 4)/dp +O(K/M2) and

O(K/M2) = 2(K+1)
M2

(
2 + dp+1

dp(dp−1)

)
+ 3(K+1)

dp(dp−1)

(
1 + 1/dp

)
.

Therefore, ǫI = 2(3KK + 4)/dJ
′

+ O(KK/M2) < 16/dJ
′

= 1/dJ
′−4 because

d=2. �

Proposition 12.1.2 For all injective sequence ns, s=1,2,...,p, p ≤ Q, 1 ≤
ns ≤ Q, the following equality hold

P
{
{Bn1

= b1} ∩ {Bn2
= b2} ∩ ... ∩ {Bnp

= bp}
}

=
1

2p
[
1 +Ob(1)23−q2].

Proof Let T ∗(K) = b1, b2, ....., b2J′ . Then

T ∗(K)/M2 =
T ∗(K)

22J′ − 1
=
T ∗(K)

22J′
+ T ∗(K)

[ 1

22J′ − 1
− 1

22J′

]

=
T ∗(K)

22J′
+ T ∗(K)

[22J′ − (22J′ − 1)

(22J′ − 1)22J′

]

=
T ∗(K)

22J′
+

T ∗(K)

22J′ − 1

1

22J′
=
T ∗(K)

22J′
+

e

22J′
,

where 0 ≤ e < 1.

Then,
T ∗(K)

22J′
= 0, b1, b2, ....., b2J′ .

Moreover,
e

22J′
= 0, 000....0b′2J′+1b

′
2J′+2...... ,

where b′s ∈ {0, 1}.

Then
T ∗(K)/M2 = 0b1b2, .....b2J′b′2J′+1b

′
2J′+2..... .

Then, by lemma 12.1.6,

P
{
{B1 = b1} ∩ {B2 = b2} ∩ ... ∩ {BQ = bQ}

}
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= P
{
T ∗(K)/M2 ∈ [0, b1, ...., bQ, 0, ...., 0, 0, b1, ...., bQ, 0..., 0 + 2−Q

}

=
1

2Q
+Ob(1)2−(J′−4) .

Therefore, by lemma 4.3.2,

P
{
{Bn1

= b1} ∩ {Bn2
= b2} ∩ ... ∩ {Bnp

= bp}
}

=
1

2p
+Ob(1)2Q−p2−(J′−4)

=
1

2p
+Ob(1)2−q2+4−p =

1

2p
[
1 +Ob(1)23−q2] . �

Proposition 12.1.3 If q2 ≥ 14, For all injective sequence js, s=1,2,...,p, the
following equality holds

P
{
{Bn+j1 = b1

∣∣∣ Bn+j2 = b2, ........, Bn+jp = bp}
}

=
1

2

[
1 + 2.1Ob(1)23−q2] .

Proof We have

P{Bn+j1 = b1

∣∣∣ Bn+j2 = b2, ........, Bn+jp = bp}

=
P
{
{Bn+j1 = b1} ∩ {Bn+j2 = b2} ∩ ... ∩ {Bn+jp = bp}

}

P
{
Bn+j2 = b2} ∩ ... ∩ {Bn+jp = bp}

}

=
(1/2p)

[
1 +Ob(1)23−q2

]

(1/2p−1)
[
1 +Ob(1)23−q2

]

=
1

2

[
1 + 2.1Ob(1)23−q2] . �

This approximation is much less good than that of section 5.5.1 :

P{K = y} = (1/N)
[
1 +Ob(1)

C1

22J′(S−1)/2

]
.

That means that

P
{
{Bn1 = b1} ∩ {Bn2 = b2} ∩ ... ∩ {Bnp = bp}

}
=

1

2p

[
1 +Ob(1)

C1

22J′(S−1)/2

]
.

Therefore, in this case, the use of binary congruence does not improve any-
thing. This fact is confirmed by the use of virtual sequences.
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Use of sequences of virtual numbers

Let us suppose that instead of having lines gi length 2J’ bits, one has lines of
4J’ bits. One applies the technique defined in the section 12.1.12. It is then
clear that the algorithms will be use primarily on the last 2J’ (bits) of gi.

Now, one can define this sequence of 4J’ bits, by taking the sequence of 2J’
bits gi and by joining on the left a virtual sequence of 2J’ bits g′i.

Finally, one applies the algorithm A1 and A2 to all the sequence gi and not
only with his right half. The properties remain the same ones. The advantage,
it is that one obtains a sequence of size (about) twice larger.

Therefore, in this case, the use of the theorem 1 with binary congruence
nothing brings. It is normal considering it is limited to permute the J’ first bits
with the J’ last ones.

Utility of the transformations with congruence

One wants to understand why there’s not advantage in using here congruences
and why it is useful with congruences of Fibonacci in the chapter 11.

At first, that would not be the same thing if one employed results on H which
is close to the normal distribution whereas K is close to the uniform distribution.

On the other hand, the conguence of Fibonacci mixes the bits. It is not
the case for binary congruences which permutes the J’ first bits with the J’ last
ones.

In fact, the events T−1
q (k/dq) provided by the Fibonacci sequence in section

11.1.2 are independent of the data which we use, for example text. It is clear
that it is not the case of binary congruences: it transforms a text into text with
two parts: it is always text. It is the origin of the problem.

12.2 Other methods of construction of an IID
sequence

It there certainly several methods other than the ones introduced into this report
to transform sequences of data into IID sequences. In this report, we studied
two methods. But these methods are maybe too strong and one could have IID
sequences by a simpler way.

12.2.1 Methode of Marsaglia

In this construction, one stops at the construction of the e2S(j) in section 11.1.2:

e2S(j) = e1S(j) + rand0(j) where e1S(j) are the sum of two sequences of data.
One studied the randomness of this type of sequences in chapter 3. By

choosing the different parameters well, one can have good reasons so that the
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obtained sequence have properties close to the randomness.

12.2.2 Method of transformations Tq

In this case, one stops at the following step of the construction defined in section
11.1.2: e3S(j) = mST

mS
1 (e2S(j)/m1

S).
It is known that the use of Tq implies that the e3S(j)’s are made uniform :

cf chapter 8. Normally, it implies also their independence : cf section 8.4.

It is confirmed by a simple reasoning: let us try to know what means to
apply the function Tq to a nondeterministic sequence. If a sequence Xn is non-
determinist, for any conditional distribution, one knows that the probability
of Xn given Xn−1 = x1, Xn−2 = x2, Xn−3 = x3, ... is not concentrated in one
point. Let us suppose that a sequence is sufficiently not determinist, i.e. that
Xn given Xn−1 = x1, Xn−2 = x2, Xn−3 = x3, ... have a distribution distributed
sufficiently well in an interval. Then if one applies Tq with this distribution,
considering the properties of the functions of Fibonacci, one will make uniform
the distribution : i.e. P

{
Xn ∈ Bo

∣∣Xn−1 = x1, Xn−2 = x2, Xn−3 = x3, ...
}
≈

L(Bo), for all Borel set , and for all n. That implies that there is independence.
Therefore, the use of the function Tq does not make only uniform, but also

seems to make independent. That is particularly understandable in the case
where (Xn, Xn+1, ...., Xn+p) is close to a vector with a continuous density. Thus,
the e3(j) are maybe IID.

It is all the more possible as, in the previous step (technique of Marsaglia),
one wondered already if there were not randomness. But certainties are wanted.
To have them, one would thus need a more thorough study of the functions of
Fibonacci.

Counterexample.

However, there is a simple theoretical counterexample.

Example 12.2.1 Let (Y, Y ′) ∈ {0, 1, ...,m − 1}2 be a random vector having a
density f with respect to µm ⊗ µm : f(x, x) = mβ and f(x, y) = α if x 6= y
where β > α.

Study First, m∗mβ/m2 + α(m2 −m)/m2 = 1, i.e. β + α(1 − 1/m) = 1 i.e.
α = 1−β

(1−1/m) . For example, if β = 1/2, α = 1
2(1−1/m) .

Let ∆ = {(n, n)|n = 0, 1, ..,m−1} be the diagonal of {0, 1, ..,m−1}2. Let ∆′ ={
(k/dq, k/dq)

∣∣k = 0, 1, ..., dq−1
}

be the diagonal of {0/dq, 1/dq, ..., (dq−1)/dq}2.
Then, P{(Tq(Y ), Tq(Y

′)) ∈ ∆′} ≥ P{(Y, Y ′) ∈ ∆} = β.
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There will be a breakdown of independence as soon as β is larger than
α : in this case, the absolute value of the linear coefficient of correlation
|ρ(Tq(X), Tq(Y ))| will be much larger than 0.

As a matter of fact this results is true for |ρ
(
γ[Tq(X)], γ[Tq(Y )]

)
| for all

function γ. In particular, it is true if γ = Pn the orthonormal polynomial of
degree n, i.e. it is true for the polynomial correlation coefficient of order (n,n)
|ρn,n

(
Tq(X), Tq(Y )

)
| = |ρ

(
Pn[Tq(X)], Pn[Tq(Y )]

)
| (cf [10]). These coefficients

|ρn,n
(
Tq(X), Tq(Y )

)
| show an important breakdown of independence. �

This example could be apply for text yn if m is rather small. It is possi-
ble that, for example, words of 10 letters (or word groups) are repeat several
times. But one is in the case of marginal probability concentrated nearly a
small number of points : we can eliminate this case by choosing m large and
my′n = myn + gn where yn means the sequence of data and gn means a pseudo-
random generator : cf section 8.2.2.

Another reasons so that there is not independence

Still let us regard the my′n = myn + gn.
Contrary to the unidimensional case, the (gn, gn+1, ...., gn+p), n=1,2,.....,m,

generated by the pseudo-random generators gn does not generate all the set
{0/m, 1/m, ...., (m − 1)/m}p, but a subset of the type of a subspace with one
dimension.

In the same way, all the points of {0/m, 1/m, ...., (m − 1)/m}p cannot be
image of a (yn, yn+1, ...., yn+p) , n = 1, 2, ..., n0. Indeed, they means texts with
p elements.

One will be thus, theoretically at least, in the case where probability associ-
ated with the (gn, gn+1, ...., gn+p) is concentrated in a small number of points.
There will be thus the possible disadvantages described in section 8.2.2: one
will not be able to apply the same reasoning that those used to obtain the
uniformity.

Reminders

It is infinitely more difficult to prove than there is independence than to prove
than there is uniformity. For a sequence of size 106, there is a quasi infinite
number of possible dependence whereas there is only one uniformity : cf section
2.1.5.

However, it should be remined that certain data seem of a type simpler: it be-
haved as Qd-dependent sequences (cf section 10.4), sometimes even 2-dependent
( cf section 11.2.9).
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Conclusion

It is thus possible that there is independence in some cases there. But, that
would require to be confirmed by a more thorough study.

12.2.3 Other congruences than Fibonacci congruences

One has used the Fibonacci congruences in the chapter 11 and in section 12.1
because they have the best properties. But, one could use other congruences
having very close properties and satisfying for example sup(hi) = 3 or 4 (cf
notations 6.1.2).

12.2.4 Use of random permutation

In the method of the section 12.1, one understood how to use random trans-
formations of type of permutations. Then, one could thus want to stop with

ri(j) = ri0(j) + ri1(j) + ri2(j) + ri3(j) modulo 2.
Indeed, the use of permutations involves the randomness. But one has not

exactly permutations. As, it would have to be proven that one can stop with
this step.

On the other hand, the use of all the method defined in section 12.1 allows
to obtain mathematical properties such as that defined in proposition 12.1.1
which can be useful for some research. It can thus be useful in some cases to
use all the method defined in section 12.1.
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Chapter 13

Study of models

In this chapter we study the sequence of random variables DS(j), E1
S(j) and

E2
S(j) associated to sequences of reals dS(j), e1S(j), e2S(j) used in section 11.1.2

or 12.1.1. More generally, we study the sequence of random variables Xn =
Tq(Yn), n=1,2,...,N, where Tq is the Fibonacci function.

13.1 Continuous densities

In this section we study the case where Yn ∈ F (m) have a continuous density
with respect to µm with a Lipschitz corfficient K0 which is not too large.

13.1.1 General case

Let us suppose that one has a sample resulting from texts, yn, n = 1, 2, ...., n0,
yn ∈ F (m) where n0 << m. We suppose yn 6= yn′ if n 6= n′. Generally, that
occurs always if m is great enough with respect to n0. One can always obtain
this assumption for normal texts. In order to be sure that this assumption holds,
one can compute Min(|yn − yn′ |).

One can suppose that Min(|yn − yn′ |) is not too small with respect to the
size of sample.

This assumption involves that, for all subsequence yt(n) and for all p,

(yt(n), yt(n+1), ...., yt(n+p−1)) 6= (yt(n′), yt(n′+1), ...., yt(n′+p−1))

if n 6= n′.

Then, one can assume that Yn ∈ [0, 1] and that one is boiled down to case
Y ∈ F (m) according to the traditional method.

Then, one can regard yn as the realization of a sequence of random variables
Yn : yn = Yn(ω) such that Yn has a a differentiable density. One can also
assume that this density have a Lipschitz coefficient K0 which is not too large.
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Now, if Y ∈ F (m), there exist always a such density with respect to µm ⊗
....⊗µm. In this case the only problem is to estimate K0 in order to check that
K0 is not too large

It is a logical assumption: there is nothing which shows that it cannot be
checked. Admittedly, it is not a sufficient reason. But, it is felt well that if one
produces a sample of such a model, one will can obtain very likely the sample
yn : one wants to mean that for a such model, there exists a reasonable chance
to obtain the fixed sample yn (of course all that requires to be specified).

As a matter of fact it is an assumption which most researchers admit: that is
especially clear when they estimate the densities (which they suppose to exist).

Therefore, when one has a sample yn, n=1,...,N where N << m, it is reason-
able to admit that it is the realization of a sequence Yn such as the associated
Lipschitz coefficient is not too large

Now, if one uses texts yn, the model is not exactly known: it is only known
that there exists a fixed model Yn with a differentiable density such that K0 is
not too large, there exists a reasonable chance to obtain the fixed sample yn :
yn = Yn(ω)

It is a rather intuitive conjecture. But it is thus admited implicitly by most
mathematicians.

We have studied numerous examples which corroborate this hypothesis. But
it would be too long to detail. As a matter of fact all this needs to be explicated.

For example, one can use a process of estimation. But there is a problem.
Indeed, let us clarify at first what we shall want as model: let N be the size of

the sample. We want that (Y1, ...., YN ) have a density with a Lipschitz coefficient
which is not too big . The problem is that this density is theoretically impossible
to estimate with samples yn of size N. Indeed, in theory, it is necessary that there
is more than N ”yn” to use a process of estimation of the density of (Y1, ...., YN )
(cf section 10.2.3).

If one wants to use a process of estimation, we could only estimate the
marginal distributions and, for example, a few higher order correlation coeffi-
cients. But we do not want an estimation but a right model. Then, one can,
also estimate more coefficients in order to have an idea of the model. After, we
vary by a continuous way the obtained model. By this way, we can have an
idea about model (Y1, ...., YN ). One estimates thus the Lipschitz coefficient K0.
By using this method, we understand that it is not too big (maybe except if a
higher order correlation coefficient is big). That means that our model is right.

It is also possible to estimate (Y1, ...., YN ) where N << N ′ with sample of
size N’ in order to have an idea of K0. One can use other texts in order to
increase the size of the sample. All these methods corroborate that K0 is not
too large. As a matter of fact, it is not surprising because it is the assumption
which is used often in estimation (except if one uses higher order correlation
coefficients).
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It is understood that this problem is complicated. The fact remains that
this assumption is intuitively logical and that it is very often admited.

Let us notice that there is another difficulty to solve : when one wants to
study the couples (yt(2n), yt(2n+1)) associated with yt(n), there is a problem. One
can often for example choose the permutation t such as it exists n1 and n2 such
that |yt(2n1) − yt(2n2)| and |yt(2n2+1) − yt(2n2+1)| are both minimum elements in
the set of the |yn − yn′ |. Therefore, the distance

∣∣∣∣(yt(2n1), yt(2n2+1)), (yt(2n2), yt(2n2+1))
∣∣∣∣

is too small.
It will be similar in 3,4,5 dimensions etc. One will thus obtain Lipschitz

coefficients which are a little too large.
But it is not an important problem because, for samples, there will be always

a priori empirical higher order correlation coefficients larger than others ones.
That thus boils down to the traditional problem to choose tests associated with
a sample when this one is known.

In any case, this problem would require to be studied in detail and risk to
imply a long study if one wants to solve it completely.

13.1.2 Case of text

We have just understood that, if N << m, one can admit that (X1, ...., XN )
has a density with a Lipschitz coefficient K0 not too large. Then, this model is
logical.

Now, by an other way one can admit that it is not logical. Indeed, the set
of texts is s much smaller than F (m). Then there exists many points ps such
that P{Yn = ps} = 0.

It is a contradiction. The two assumptions are logical but contradictory.

Then, what is the good model?
In the theory of the models, the important thing, it is what one wants: here,

it is that one can manage to have numbers which are unpredictable . The model
with K0 not too large seems right for this sample. Then, the conclusion are also
right.

Now, because one knows that one uses texts, one can choose some ways in
order to improve the result. Thus, we add a pseudo random generator g′n :
yn + g′n (cf section 8.2.2, page 200 ).

If one use many texts, one knows that one will have some points ps such
that P{Yn = ps} = 0 and other points p′s such that P{Yn = p′s} > 1/m. But is
is in the future (with respect to N). We do not need to use this property.

Anyway nothing proves that one will continue to choose English texts like
sources of numbers. Thus certain conclusions can be erroneous.
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For choosing the model well, it is necessary to take account of that which
one needs. Admittedly one could choose the ideal model only concentrated on
all the possible English texts. A priori it would be logical. But one understands
well that an infinity of model can be associated with a sample. The model with
differentiable density is as logical as the English texts.

Finally, all that one can say, it is that there is an infinity of possible models
which are well reasonable. The fact of knowing that they are texts can bring to
us some additional conclusions like asymptotic independence or like the addition
of a pseudo random genrator g′n : yn + g′n.

13.1.3 Case of conditional probabilities

Now, in the case where densities are continuous, the conditional densities are
also continuous.

That means that the conditional probabilities P{Yn|yn+j2 = y2, ..., Yn+jp =
yp} has a continuous density fy2,...,yp

with a coefficient Lipschitz K0 which is
not too great.

Let T
−1

(I) = {a1, a2, ....., ac′−c} where I = [c/m, c′/m[ is an interval. Then,
by classical integration techniques,

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp}

=
c′−c∑

j=1

P{Yn = aj |Yn+j2 = y2, ..., Yn+jp = yp}

=

c′−c∑

j=1

(1/m)fy2,...,yp
(aj) ≈ L(I)

It is exactly the technique which we developed for properties 7.1.22 and
7.1.18. We recall that we obtained the following equalities :

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

c2√
c′ − c

]

or

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)Kcp
0

c′ − c

]
.

Of course, Kcp
0 is the Lipschitz coefficient associated with conditional densi-

ties. To be sure our results for a fixed model, it is necessary to estimate it.
In order to increase the slope of conditional probabilities, one can increase

the slopes of
f1(y0, y2, y3, ....)

f2(y2, y3, ...., yp)
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where f2(y2, y3, ...., yp) is the density of (Yn+j2 , Yn+j3 , ....., Yn+Jp) and where
f1(y0, y2, y3, ....) is the density of (Yn+j1 , Yn+j2 , Yn+j3 , ....., Yn+Jp) with j1 = 0
(it is the density with respect to the uniform measure).

In order to obtain Kcp
0 , it is thus necessary at first to increase the slope of

f1(y0, y2, y3, ....) for the variable y0. That can be done by ordering the points
y0
n of the sample. After, one takes those of minimal distances, which gives us an

idea of the value of Kcp
0 . It is also necessary to underestimate f2(y2, y3, ...., yp).

That can be done by estimate.
A simpler mean is to estimate the density of dependence fdep(y1; y2, y3, ...., yp)

by using higher order correlation coefficients considering than one has fy2,...,yp
(y1)

= fdep(y1; y2, y3, ...., yp)f2(y2, y3, ...., yp) : cf proposition A.3.2.

One can also estimate the P{Yn ∈ I | Yn+j2 = y2, ..., Yn+jp = yp}. In this
case one chooses js = s − 1. Indeed, in the case of text, the dependence is
maximum for js = s− 1.

Finally, one can estimate Kcp
0 . We deduce from this estimation an increase

which will have to be certain. That will enable us to have the following property
(for the model where K0 is not too large) :

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)Kcp
0

c′ − c

]
.

13.2 Another group of models

The model that we have just studied is that where the coefficient of Liptchitz
K0 is not too large. We know that, under this assumption, one has always by
properties 7.1.18 or 7.1.22 :

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} = L(I)
[
1 +

O(1)K0

c′ − c

]
.

However, in order to prove these results, we use K0. But it is enough to
read the proofs of these properties 7.1.18 or 7.1.22 in order to understand that
it would be possible to use the coefficients of Lipschitz Kr associated with each
interval [r/N(I), (r + 1)/N(I)[ to obtain the same result. In this case, there
would be weaker hypotheses: it would be enough that

∑
rK

r is not too large.
It is felt well intuitively that this kind of conditions is satisfied by our models.
Admittedly, it is easier to understand for the classical densities of (Y1, ....., YN ).

But what interests us, are the conditional probabilities. Then to understand
that the property ”

∑
rK

r not too large” is checked for the conditional den-
sities, simplest way is to remember that the conditional density fy2,,yp

(y1) is
equal to the product of the marginal densities f2(y2, y3, ., yp) and of the density
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of dependence (cf proposition A.3.2 ) :

fy2,...,yp
(y1) = fdep(y1; y2, y3, ...., yp)f2(y2, y3, ...., yp) .

Therefore, this kind of conditions on
∑
rK

r seems checked by our models.
As these assumptions are more general, that makes our end result even

surer. Our results are thus true for all the models checking this new assumption
”
∑
rK

r not too large”. And in these models, there is of them inevitably one
(and even an infinity) which is models correct for the sample yn.

But in our opinion, it is likely useless to study these new models, the model
supposing only ”K0 not too large” is sufficient as soon as N << m is chosen.

13.3 General case

The use of the previous models is interesting because it shows that yn behaves
indeed like a sample of one of these possible models Yn. We thus do not make
any error while putting to us under these assumptions. Our calculations are
thus right. That implies that the bits b0(n′) obtained by our construction (cf
section 11.1 and 12.1.1) behave indeed like IID sequences.

But it is probable that there do not need even to suppose to be under the
assumptions of one of these models: it is probable that, for any logical model,
one will still obtain

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} ≈ L(I) .

It is almost the results of sections 8.2 and 8.4 .

13.3.1 A very strong result

Indeed, we understood that if one provides the set of possible probabilities with
the measure defined in section 8.2, our results are checked for almost all the
possible probabilities.

There is thus a slight restriction: some models are not appropriate. This
restriction is normal: one knows very well that in the set of ALL the models
(thus without no a priori) there will be an infinity of them which will not be
appropriate.

However, it is already extraordinary that the result is true for almost all the
possible models.

In order to understand it, let us take for example a sample really IID yn,
i.e. obtained starting from a sequence of random variables Y 0

n when we do not
know that Y 0

n is IID.
One wants to associate with yn a model Yn. Under assumption IID, all the

possible models without a priori (except one: Y 0
n ) are bad: a priori there are a

correct model and a noncountable infinity of bad one.
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Now, if one knows nothing a priori about yn, there will be an infinity of
good models and an infinity of bad ones. One can think that, in a certain way
(for example if it is supposed that the probabilities are written with a limited
number of decimals), there will be much more bad models than goods.

If one uses the results of sections 8.2 and 8.4, it is the opposite: in the set
of all the possible models, almost all will be good. It is a very strong result.

However, a priori there remain bad models associated with our sample: we
want to mean thus that they will be such as

P{Tq(Yn) ∈ I} 6= L(I)

or
P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} 6= L(I) .

13.3.2 A result checked by all the logical models

As a matter of fact, one can remove these bad models. Indeed, one can admit
that P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp} ≈ L(I) will be checked for all
the logical possible models.

Indeed, for the moment, one has used no assumption on the yn. However,
there is no connection between the T−1(Ik) = {a1, a2, ...., ac′−c} and text (in
any case, it is an assumption extremely extremely reasonable. Moreover we also
checked it by numerical computations).

Therefore, if a model was bad, that would mean that there is a logical
connection between the T−1

q (Ik) and text. A priori, it seems that can occur
only with one similar probability (even smaller or infinitely smaller or even
null) to that which a really IID sample has to check the tests that it has to
check.

One can thus a priori exclude a such model.

Thus our result holds with all the possible logical models, those where there
is no connection between text and the T−1

q (I).
Of course, nothing proves completely that this assumption is true. But if it

was wrong, it would be with a negligible probability due to the text and thus
due to the sample : one would find the fact that a sample can always be bad
for a fixed model.

In all way, a priori it seems that it has there no connection between the
T−1
q (Ik) and text. That means that, empirically there is no connection between

the yn and the T−1
q (Ik).

Let us suppose now that they are false: let us suppose that the French texts,
for a strange reason of structure, have a connection with the T−1

q (I). In this
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case, it is enough to add modulos 2 another sequence obtained starting from
other data of another type (texts in another language, another type of data).

Indeed, if one adds two unspecified sequences modulos 2, it is enough that
only one is IID so that the sum is IID : cf section 2.6.7, page 44.

However, it appears incredible which the program data processing, for exam-
ple, have also a connection with the T−1(I) if it is also the case for the French
texts, so much is large the differences in structure between these programs and
the French texts.

Of course, one can always consider that there is a negligible probability in
order that that carried out for both. But it is so negligible that one can admit
that it is impossible.

In any case, it is not here the matter of statistical study, but about a rea-
sonable and logical connection. It is very probable that this connection does
not exist. Therefore, one can use the functions of Fibonacci and find

P{Tq(Yn) ∈ I} ≈ L(I) .

That means that, very probably, our result is true for all the possible
logical models.

It is a very strong result.

13.3.3 What logical models?

Then, it is obtained that P
{
Y1 ∈ T̂−1(I)

}
≈ (c′−c)

m

[
1 + Ob(1).b√

3N(I)

]
for all the

logical models because there is no logical connection between text and T−1
q (I).

Then the question is put: which value to choose for b?
If the previous result is not true, that means that b is too small. In order

to be sure that for the logical models one has an equation of this type, one can
increase b. For example, one could choose

P
{
Y1 ∈ T̂−1(I)

}
=

(c′ − c)

m

[
1 +

Ob(1)√
3N(I)1/4

]
.

As a matter of fact, the question is: How to know of which is order must be
b in order to admit that the previous equations are logically true?

In order to know that, it is necessary to go back to the themself texts them:
i.e. it is necessary to study the associated empirical probabilities.

We thus estimated b for various texts and for various T−1
q (I).

If p=1, all the numerical studies that we have made show that, for intervals I
of the same length, the sets T−1

q (I) contains about the same number of possible
texts. More precisely, one has carries out the chi squared tests of uniformity
with D = dq − 1 degrees of liberty for various texts. At first, it was supposed
that one has a partition of F(m) in dq subsets T−1

q (I). Because D is large, we

use NG =
√

2χD2 −
√

2D − 1
D→ X∗

G where X∗
G ∼ N(0, 1) : cf proposition A.1.2.
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Moreover we denote by α5 the selected percentage points with probability 0,95
of G. Then, we have obtained the following results.

D 1000 2500 1000 3500 200 400 1000 5000 10000
|NG| 0.640 0.854 0.302 1.154 1.241 0.541 0.921 1.084 1.321
αN 1.960 1.960 1.960 1.960 1.960 1.960 1.960 1.960 1.960

One has made the chi squared tests of uniformity with D′ > 30 degrees of
freedom without supposing that one has a partition : various subsets T−1

q (I)’s

were used where T̂−1(I) is smaller. The following results were obtained.

|NG| 0.721 0.801 1.254 0.345 0.905 0.677 1.784 1.112 0.549
αN 1.960 1.960 1.960 1.960 1.960 1.960 1.960 1.960 1.960

Many of other tests were made. Finally, it is found that one can admit - and
by far - in all the cases

P
{
Y1 ∈ T̂−1(I)

}
=

(c′ − c)

m

[
1 +

Ob(1).20√
3N(I)

]
. (13.1)

This increase (b=20) is not astonishing. Indeed, according to proposition
8.4.1, it occurs with a probability larger than 1 − Γ1(b). However, if b=20,
Γ1(b) ≈ 1.12/1088. Then, a priori, in order to find a case where that is not true,
it would be necessary to use a such large number of texts that it is impossible
to realize.

In any case it is even not sure that one can find cases where this equality
is not checked empirically. Indeed, one does not use texts representing samples
which have a fixed law. What one uses, it is, on the one hand sequences which
have the logic of the English language, and on the other hand sets which have
simple mathematical properties. Anyway, we never have encounter such a case.

Thus, if one writes the sets T̂−1(I) with letters one understands that those
are unions of the elements of the type

[whgkudf ly cuqhjg]
[aamxgusdggbxckmp]
[x;cbkutcc ze xycyc x]
[qtdxucdzlcxy yx vyxy]
[uezuxcuazvxaoaqzq]
[ ,hqdsgcize cqy bxq]
[a picykhgkkl hfqfqqq]
[ory of Relativity in 190]
[xwtex pez! i yi qy yqhfg]
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................................

It is thus possible logically that it has no text not checking the equation 13.1.

In two dimensions, one will have the same type of results. But, in this case,
it is better to use the results of [18]. In particular,

P
{{
Y1 ∈ T̂−1(I1)

}
∩
{
Y2 ∈ T̂−1(I2)

}}
≈
∏
s(c

′
s − cs)

m2

[
1 +

Ob(1)2.20√
3.Inf{N(Is)}

]
.

As a matter of fact, if T̂−1(I1) 6= T̂−1(I2), sets T̂−1(I1) and T̂−1(I2) behave
like randomly selected compared to the text.

If T̂−1(I1) = T̂−1(I2), sets T̂−1(I1) behave also like randomly selected com-
pared to the text. It will be due to chance if two texts which can be consecutive
belong to this same set (one chooses two texts which are consecutive because it
is there that there is the strongest dependence). Now, it will be impossible that

two identical texts belongs to the set T̂−1(I1) ⊗ T̂−1(I2). But this case is also
excluded if I1 6= I2.

If p > 2, we have obtained results equivalent for p ≤ log(n0)
log(10)

1:

P
{{
Y1 ∈ T̂−1(I1)

}
∩.....∩

{
Yp ∈ T̂−1(Ip)

}}
≈
∏
s(c

′
s − cs)

mp

[
1+

Ob(1).20.p/
√

3√
Inf{N(Is)}

]
.

Let us notice that a priori it is possible that the {a1, a2, ....} have a connec-
tion with the empirical probability , i.e. if p=1,

P
{
Y1 ∈ T̂−1(I)

}
6= (c′ − c)

m

[
1 +

Ob(1).20√
3N(I)

]
.

But that is likely to occur with a negligible probability as it is the case when
one tests if an IID sample is well IID.

Thus, a priori it is always possible that the sequence xn is not IID, but it
would be with a negligible probability.

13.3.4 Conditional probabilities

The fact that there is no connection between text and the sets T−1
q (k/dq) =

{a1, ...., ac′−c} applies to the conditional probabilities. Indeed, there is always
no logical connection between text and the sets T−1

q (I) = {a1, ...., ac′−c} in the
conditional probabilities:

P{Xn ∈ I | Yn+j2 = y2, ..., Yn+jp = yp}
1We recall that n0 is the size of sample : if one use p ≥ log(n0)/log(10), the results do not

mean anything any more and are increasingly random
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=
P
{ {

Yn ∈ T−1
q (I)

}
∩ {Yn+j2 = y2} ∩ .... ∩ {Yn+jp = yp}

}

P
{

∩ {Yn+j2 = y2} ∩ .... ∩ {Yn+jp = yp}
} .

Therefore, the conditional probabilities behave well as sums on sets taken ran-
domly, i.e.

P{Tq(Yn) ∈ I | Yn+j2 = y2, ..., Yn+jp = yp}

=
∑

s

P{Yn = aS | Yn+j2 = y2, ..., Yn+jp = yp} ≈ L(I) .

13.4 Consequences 1

By applying our results to the techniques of section 11.1, for all the reasonable
models D(j), or E1(j) or E2(j) or H(n), one understand that, by properties
7.1.22 or 7.1.18,

P
{
Tq0(H(n)/m) ∈ I

∣∣ H(n+ j2) = h2, ...,H(n+ jp) = hp
}

= L(I)
[
1+

c2√
N(I)

]

or

P
{
Tq0(H(n)/m) ∈ I

∣∣H(n+j2) = h2, ...,H(n+jp) = hp
}

= L(I)
[
1+

O(1)K0

N(I)

]
.

This result is true for the all models D(j) (or H(n) ) where K0 is not too
large, or for all the models D(j) where

∑
rK

r is not too large, or for all the
logical models D(j) associated to the sample d(j).

Thus one is sure that according to our assumptions, for the sequence of bits
B0(n′),

P
{
B0
n = b

∣∣ B0
n+j2 = b2, ..., B

0
n+jp = bp

}
=

1

2

[
1 + ǫ

]
,

where ǫ is small enough with respect to Nq0 the size of sample.
Now, one knows that when ǫ is small enough with respect to Nq0, it is not

possible to distinguish b0(n′) from a sample IID. It is particularly obvious for
ǫ = 1

250.000.000 as in section 12.1.9.
In this way, one has well proved that the sequence b1(n′) behaves like a

sample of an IID sequence of random variable.

Remark 13.4.1 If ǫ = 1
250.000.000 , it likely possible to obtain an ultimate se-

quence which is completely IID (and not only which has the same behavior that
a sequence IID), i.e. a sequence checking

P
{
B0
n = b

∣∣ B0
n+j2 = b2, ..., B

0
n+jp = bp

}
=

1

2
.
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It is likely enough to use functions (X ′
1, ...., X

′
N ) = f(X1, ...., XN ) ∈ [0, 1]N and

to vary slowly f and continuously in order to obtain that X ′
1, ., X

′
N is IID.

Then it is very probable that b1(n′) will be also a reasonable sample of the
new model, i.e. of the IID model.

It is only one remark. This method seems complicated to prove and useless
since one has already proved that b1(n′) behaves like an IID sequence.

13.5 True for all models

One thus has proves that b1(n′) behaves like a sample of an IID sequence of
random variables :
1) for the all models D(j) where K0 is not too large
2) for all models D(j) where

∑
rK

r is not too large
3) for all the logical models D(j) associated to the sample d(j).

Our result is thus well proved and it is proved for all the models that one
can associate reasonably with the sequence d(j).

By this way, we obtain thus also a solution to the problem of the definition
of a random sequence : thanks to the use of the Fibonacci functions, our results
hold for all the reasonable models possible: that resolves the problem of defini-
tion.

13.6 Consequences 2

With the previous results and other chapter of this report, on can prove that,
for all p ≤ Log(N)/Log(2), for all injective sequence js, for all logical models
Bn,

P

{
√
N
∣∣Pe −

1

2p
∣∣ ≥ σBx

}
= K1

([
1 − η

]
x
)
,

P

{
√
N

∣∣∣∣∣
Pe
pe

− (1/2)

∣∣∣∣∣ > σcp x

}
= K2

([
1 − η′

]
x
)
,

where η and η′ are small enough and σ2
B and σ2

cp are the variances associated
to Pe and Pe/pe when Pe = (1/n1)

∑n1

n=1 1b(Btn)1b2(Btn+j2
)......1bp

(Btn+jp
) and

pe = (1/n1)
∑n1

n=1 1b2(Btn+j2
)......1bp

(Btn+jp
) where t is a permutation and n1 ≤

N .
These results correspond well to definitions 2.1.7 and 2.1.8 for all logical

model Bn. That means well that one cannot differentiate Bn from an IID se-
quence.

395



For example, in section 12.1.9. One has η = O(ǫ) and η′ = O(ǫ) where
ǫ = 1

250.000.000 .
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Appendix A

Summary of some
mathematical properties

In this chapter, we remind some mathematical properties used in this report.

A.1 Chi squared independence test

When the marginal distributions are known, the chi-squared independence test
is obtained by using the following property : cf [17].

Proposition A.1.1 Let (X,Y ) ∈ R
2 be a random vector. Let Is s=1,..,d, be

a partition of R. Let χ2
X,Y , χ2

X , χ2
Y the chi-squared statistics of, respectively,

(X,Y) , X, Y, associated with the partitions Is ⊗ It, Is and It, s,t=1,2,...,d.
Then, if X and Y are independent, χ2

X,Y −χ2
X −χ2

Y has asymptotically a chi
squared distribution with (d-1)(d-1) degrees of freedom.

This test is more powerfull than that associated with χ2
X,Y : cf [17] .

On the other hand, if the degrees of freedom are large, one can approximate
the chi-squared statistics thanks to the normal distribution : cf [1] page 44.

Proposition A.1.2 Let χd2 d=1,2,..., be a sequence of random variables which
have the chi-squared statistics with d degrees of freedom.

Then,
√

2χd2 −
√

2d− 1
D→ X∗

G as d→ ∞, where X∗
G ∼ N(0, 1) .

A.2 Stochastic ”O” and ”o”

Notations A.2.1 A sequence of random variable Xn is bounded in probability,
if, for every ǫ > 0, there exists Mǫ and Nǫ such that P{|Xn| ≤Mǫ} ≥ 1 − ǫ for
all n ≥ Nǫ . Then, one writes Xn = OP (1) . Moreover, we write Xn = oP (1)
for sequence of random variable Xn if Xn converges in probability to 0 : ( cf
[42], page 8 )
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A.3 Higher order correlation coefficients

First, we remind the definition of these coefficients : cf [10] and [9].

Definition A.3.1 Let X ∈ R
p and Y ∈ R

q be two random vectors defined on
a probability space (Ω,A, P ). Let µX and µY , be the laws of X and Y, respec-
tively. Let {Ai}, i=0,1,2,.. and {Bj}, j=0,1,2,.. be two families of orthonormal
functions associated. One assumes that A0 ≡ B0 ≡ 1. Then, one defines ρi,j,
the correlation coefficient of order (i,j) by ρi,j = E{Ai(X)Bj(Y )} for i=1,2,..,
j=1,2,...

Now the following propositions hold.

Proposition A.3.1 Let FX,Y ,FX ,FY be the distribution function of (X,Y), X
and Y, respectively. Assume that {Ai}, i=0,1,2,.. and {Bj}, j=0,1,2,.. are two
bases of L2(Rp, µX) and L2(Rq, µY ), respectively. Then, for all (x,y),

FX,Y (x, y)

= FX(x)FY (y) +
∑

i≥1,j≥1

ρi,j

(∫ x

u=−∞
Ai(u).µX(du)

)(∫ y

v=−∞
Bj(v).µY (dv)

)
.

Proposition A.3.2 Assume that (X,Y) has a probability density function f
with respect to µX ⊗ µY . Then, f is the dependence density.

Let fx be the function defined by fx(y) = f(x, y). Let µxY be the conditional
distribution of Y given X = x. Then, fx is µX-almost surely the probability
density function of µxY with respect to µY .

Proposition A.3.3 Assume that p=q=1 and that Ai = Pi and Bi = Qi,
i=0,1,2,.. are the families of orthonormal polynomials associated with µX and
µY , respectively. Then, ρi,j is the polynomial correlation coefficient of order
(i,j) and ρ1,1 = ρ, the classical linear correlation coefficient.

Then, ρ is the first coefficient of a sequence which measures dependences more
and more fine : ρ1,1 measures linear dependence, ρ1,2, ρ2,1, ρ2,2 measure quadratic
dependences, etc.

Proposition A.3.4 Assume that {Pi}, i=0,1,2,.. and {Qj}, j=0,1,2,.. are
two bases of L2(R, µX) and L2(R, µY ), respectively. Then, in L2(R2, µX ⊗µY ),

f(x, y) = 1 +

∞∑

i=1

∞∑

j=1

ρi,jPi(x)Qj(y) ,

with ρ1,1 = ρ.

One can generalize these results by the following way.
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Definition A.3.2 Let (X1, ..., Xp) ∈ R
p be a random vector defined on a prob-

ability space (Ω,A, P ). Let {P si }, i=0,1,2, be the families of orthonormal poly-
nomials associated to µXs

the distribution of Xs. Then, one defines ρi1,....,ip , the
polynomial correlation coefficient of order (i1, ...., ip) of (X1, ..., Xp) by ρi1,....,ip =
E{P 1

i1
(X1)....P pip(Xp)} .

Remark A.3.1 One can estimate ρi1,....,ip by using the empirical orthonormal
polynomials associated with the empirical measure.
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