
HAL Id: hal-00426507
https://hal.science/hal-00426507v1

Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated deployment of enterprise systems in
large-scale environments

Takoua Abdellatif, Didier Hoareau, Yves Mahéo

To cite this version:
Takoua Abdellatif, Didier Hoareau, Yves Mahéo. Automated deployment of enterprise systems in
large-scale environments. International Conference on Distributed Objects and Applications, Oct
2006, Montpellier, France. pp.30-31. �hal-00426507�

https://hal.science/hal-00426507v1
https://hal.archives-ouvertes.fr


Automated deployment of enterprise systems
in large-scale environments

Takoua Abdellatif1, Didier Hoareau2, and Yves Mahéo2

1 BULL SA, LSR-IMAG / INRIA,
Takoua.Abdellatif@inrialpes.fr
2 Valoria Lab – University of South Brittany

{Didier.Hoareau|Yves.Maheo}@univ-ubs.fr

Abstract. The deployment of multi-tiered applications in large-scale environ-
ments remains a difficult task: the architecture of these applications is complex
and the target environment is heterogeneous, open and dynamic. In this paper, we
show how the component-based approach simplifies the design, the deployment
and the reconfiguration of a J2EE system. We propose an architecture description
language that allows specifying constraints on the resources needed by the com-
ponents and on their location, and a deployment solution that handles failures.

Introduction J2EE application servers are complex service-oriented architectures. They
are generally deployed on clusters to improve their qualityof service. A J2EE cluster
is composed of replicated Web and EJB tiers for load balancing and fault tolerance. A
front-end load balancer dispatches the HTTP requests to thecontainers. In large-scale
environments, machines are highly distributed and heterogeneous in terms of software
and hardware configurations. Furthermore, these resourcescan be dynamic. Therefore
the resource allocation should be automated and the deployment process should auto-
matically take into account the dynamicity of the environment. We make the assump-
tion that the large-scale environment is structured in zones and that for each zone are
defined some known machines calledzone managers whose role is to maintain a list of
the machines in the zone and to orchestrate the deployment process.

Deployment system We adopt an architecture-based approach to manage the J2EE
system. We wrap system parts into explicitly bound components. The obtained system,
calledJonasALaCarte, is based on the Fractal component model.

In large-scale environments, we cannot know in advance the target machine for each
component of the system. So, in order to specify the deployment of a J2EE system, we
have added to the Fractal architecture descriptor (that defines the architecture of the
system in terms of component definitions and component bindings) adeployment de-
scriptor, that contains, for each component, the description of the resources that the
target platform must satisfy, and references to component instances. The deployment
descriptor lists all the constraints that a hosting machinehas to verify.Resource con-
straints allow hardware and software needs to be represented, andlocation constraints
make it possible to control the placement of a component whenmore than one host ap-
ply for its hosting. These constraints are solved thanks to our deployment process that
allows, additionally, the recovery from failures.



Deployment process For each zone in the environment, a zone manager maintains
the list of the machines in the zone that may host the J2EE system components. This
zone manager is given the architecture and deployment descriptors by an administrator.
It then multicasts them to the zone nodes. Each node checks the compatibility of its
local resources with the resources required for each component. If it satisfies all the
resource constraints associated with a component, it sendsto the manager its candida-
ture for the instantiation of this component. The manager receives several candidatures
and tries to compute a placement solution in function of the location constraints and
the candidatures. The manager updates the deployment descriptor with the new place-
ment information and broadcasts it to all the zone nodes. Each node that receives the
new deployment descriptor updates its own one and is thus informed of which compo-
nents it is authorized to instantiate and of the new locationof the other components.
The final step consists in downloading necessary packages from well defined package
repositories whose location is defined in the deployment descriptor.

The steps described above define apropagative deployment, that is, necessary com-
ponents for running J2EE applications can be instantiated and started without waiting
for the deployment of all the components. As soon as a resource become available or a
machine offering new resources enters the network, candidatures for the installation of
the “not yet installed” components will make the deploymentprogress.

Some preliminary experiments we have conducted on a prototype implementation
show that the performance of the resource observation and the constraint solving remain
acceptable even for a large number of non trivial resource constraints.

Automatic recovery from failures In the environment we target, resources can also
become unavailable, some parts of the J2EE system can be faulty and some machine
may fail. In this work, we consider silent failures. When a component does not respond
to a method call or a request within a timeout, the node detecting the failure sends to
the zone manager a message holding the identity of the component to redeploy. Then,
the zone manager updates the deployment descriptor by removing the location of the
component and broadcasts the new descriptor to all the machines connected in the zone.
This automates the redeployment of the faulty component since all the machines find
themselves back in the propagative deployment described above.

Specific actions are carried out in the case of the failure of replicated components
(eg EJB container and Web container services) or zone managers, exploiting group
communication and temporary storage of incoming requests.

Conclusion The work described in this paper proposes a solution for the deployment
of enterprise systems in large-scale environments. Our main contribution consists in
the following points. First, the deployment system is resource-aware and the constraint
resolution is performed in a reasonable time. Second, the deployment task is simplified
since the administrator role is reduced to writing a deployment descriptor. All the de-
ployment process and the recovery from failures are automated. Finally, we maintain
the performability of the system since we maintain the structure described in the archi-
tecture descriptor by replacing each time a faulty component by another. This allows
assuring the continuity of Internet services and maintaining their quality of service.


