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On the Moments of the Aggregate Discounted Claims with

Dependence Introduced by a FGM Copula

Mathieu Bargès∗‡ Hélène Cossette‡ Stéphane Loisel∗ Étienne Marceau‡

October 22, 2009

Abstract

In this paper, we investigate the computation of the moments of the compound Poisson
sums with discounted claims when introducing dependence between the interclaim time and the
subsequent claim size. The dependence structure between the two random variables is defined by
a Farlie-Gumbel-Morgenstern copula. Assuming that the claim distribution has finite moments,
we give expressions for the first and the second moments and then we obtain a general formula
for any mth order moment. The results are illustrated with applications to premium calculation,
moment matching methods, as well as inflation stress scenarios in Solvency II.

Keywords : Compound Poisson process, Discounted aggregate claims, Moments, FGM copula,
Constant interest rate.

1 Introduction

We consider a continuous-time compound renewal risk model for an insurance portfolio and we
define the compound process of the discounted claimsXi, i = 1, 2, ... occurring at time Ti, i = 1, 2, ...
by Z = {Z (t) , t ≥ 0} with

Z (t) =

{ ∑N(t)
i=1 e−δTiXi, N (t) > 0

0, N (t) = 0,

where N = {N (t) , t ≥ 0} is an homogeneous Poisson counting process and δ the constant net
interest rate. In actuarial risk theory, it is assumed that the claim amounts Xi, i = 1, 2, ... are
independent and identically distributed (i.i.d.) random variables (r.v.’s) and the interclaim times
W1 = T1 and Wj = Tj − Tj−1, j = 2, 3, ... are also i.i.d. r.v.’s. The r.v.’s X ′

i and Wi, i = 1, 2, ... are
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classically supposed independent. This last assumption also implies thatXi, i = 1, 2, ... are indepen-
dent from N . This risk process has been used in ruin theory by many authors such as Taylor (1979),
Waters (1983), Delbaen and Haezendonck (1987), Willmot (1989), Sundt and Teugels (1995) and
more recently Kalashnikov and Konstantinides (2000), Yang and Zhang (2001) and Tang (2005).
They mainly focused on the ruin probability and related ruin measures.

Only a few recent works deal with the distribution of the aggregate discounted claims Z(t).
Léveillé and Garrido (2001a) provide the first two moments of this process. These first two moments
were also obtained in Jang (2004) using martingale theory. This result has since been generalized
by relaxing some of the classical assumptions presented above. Léveillé and Garrido (2001b) and
Léveillé et al. (2009) derived recursive formulas for all the moments of the aggregate discounted
claims considering a compound renewal process where N is not necessarily a Poisson process.
In Jang (2007), the Laplace transform of the distribution of a jump diffusion process and its
integrated process is derived and used to obtain the moments of the compound Poisson process
Z(t). Kim and Kim (2007) and Ren (2008) studied the discounted aggregate claims in a Markovian
environment which modulates the distributions of the interclaim times and claim sizes for the
former and the distribution of the interclaim times for the latter. They both provided the Laplace
transform of the distribution of the discounted aggregate claims and then gave expressions for its
first two moments.

The aggregation of discounted random variables is also used in many other fields of application.
For example, it can be used in warranty cost modeling, see Duchesne and Marri (2009), or in
reliability in civil engineering, see van Noortwijk and Frangopol (2004) or Porter et al. (2004).

In this paper, we want to introduce some dependence between the interclaim times and the sub-
sequent claim amounts. In risk theory, this dependence has already been explored. For example,
Albrecher and Boxma (2004) supposed that if a claim amount exceeds a certain threshold, then
the parameters of the distribution of the next interclaim time is modified. In Albrecher and Teugels
(2006) the dependence is introduced with the use of an arbitrary copula. Conversely to Albrecher and Boxma
(2004), Boudreault et al. (2006) assumed that if an interclaim time is greater than a certain thresh-
old then the parameters of the distribution of the next claim amount is modified. In a similar
dependence model, but with more freedom in the choice of the copula between each interclaim time
and the subsequent claim amount, Asimit and Badescu (2009) consider a constant force of interest
and heavy-tailed claim amounts. Dependence concepts used in Boudreault et al. (2006) were then
extended in Biard et al. (2009) where they suppose that the distribution of a claim amount has
its parameters modified when several preceding interclaim times are all greater or all lower than a
certain threshold. All these papers were interested in finding exact expressions or approximations
for some ruin measures such as the ruin probability or the Gerber-Shiu function.

In our study, this assumption of independence between the claim amount Xj and the inter-
claim time Wj is relaxed to allow {(Xj ,Wj) , j ∈ N+} to form a sequence of i.i.d. random vectors
distributed as the canonical random vector (X,W ) in which the components may be dependent.
We follow the idea of Albrecher and Teugels (2006) supposing that dependence is introduced by a
copula between an interclaim time and its subsequent claim amount. More specifically, we use the
Farlie-Gumbel-Morgenstern (FGM) copula which is defined by

CFGM
θ (u, v) = uv + θuv (1− u) (1− v) , (1)
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for (u, v) ∈ [0, 1]× [0, 1] and where the dependence parameter θ takes value in [−1, 1]. While there
are a large number of copula families, we choose the FGM copula because it offers the advantage
of being mathematically tractable as it is illustrated in Cossette et al. (2009). Even if the FGM
copula introduces only light dependence, it admits positive as well as negative dependence between
a set of random variables and includes the independence copula when θ = 0. It is also known that
the FGM copula is a Taylor approximation of order one of the Frank copula (see Nelsen (2006),
page 133), Ali-Milkhail-Haq copula and Plackett copula (see Nelsen (2006), page 100).

The paper is structured as follows. In the second section, we present the model of the continuous
time compound Poisson risk process that we use and give some notation. The first moment, the
second moment and then a generalization to the mth moment are derived in Section 2. Applications
to premium calculation, moment matching methods and Solvency II are given in the third section.
In particular, we show how our method may be used to determine Solvency Capital Requirements
and to perform part of Own Risk and Solvency Assessment (ORSA) analysis in Solvency II for
some cat risks and inflation risk.

2 The model

As explained in the introduction, we consider the continuous-time compound Poisson process Z =
{Z (t) , t ≥ 0} of the discounted claims X1, ..., XN(t) occurring at times T1, ..., TN(t) with

Z (t) =

{ ∑N(t)
i=1 e−δTiXi, N (t) > 0

0, N (t) = 0,

where E[Xk
i ] < ∞ for i = 1, 2, ...

We introduce a specific structure of dependence based on the Farlie-Gumbel-Morgenstern copula
between the ith claim amount and the ith interclaim time such that, using (1), the joint cumulative
distribution function (c.d.f.) for the canonical random vector (X,W ) is

FX,W (x, t) = C (FX (x) , FW (t))

= FX (x)FW (t) + θFX (x)FW (t) (1− FX (x)) (1− FW (t)) ,

for (t, x) ∈ R+ × R+ and where FX and FW are the marginals of respectively X and W . This
dependence relation implies that X1, X2, X3, ... are no more independent of N . Recalling the
density of the FGM copula

cFGM
θ (u, v) = 1 + θ (1− 2u) (1− 2v) ,

for (u, v) ∈ [0, 1]× [0, 1], the joint probability density function (p.d.f.) of (X,W ) is

fX,W (x, t) = cFGM
θ (FX (x) , FW (t)) fX (x) fW (t)

= fX (x) fW (t) + θfX (x) fW (t) (1− 2FX (x)) (1− 2FW (t)) ,

where fX and fW are the p.d.f.’s of respectively X and W .

3



The mth moment of Z (t) is denoted by µ
(m)
Z (t) = E

[
Z(m) (t)

]
and its Laplace transform by

µ̃
(m)
Z (r) with m ∈ R+. We see in the next section how to derive explicit formulas for these moments.

3 Moments of the aggregate discounted claims

3.1 First moment

To derive the expression for the first moment µZ (t) of Z(t), we condition on the arrival of the first
claim

µZ (t) = E [Z (t)]

= E
[
E
[
e−δsX1 + e−δsZ(t− s)|W1 = s

]]
=

∫ t

0
fW (s) e−δsE [X|W = s] ds+

∫ t

0
fW (s) e−δsµZ (t− s) ds,

where

E [X|W = s] =

∫ ∞

0
xfX|W=s (x) dx

=

∫ ∞

0
x {(1 + θ (1− 2FX (x)) (1− 2FW (s)))} fX (x) dx

= E [X] + θ

∫ ∞

0
x (2− 2FX (x)) (1− 2FW (s)) fX (x) dx

−θ

∫ ∞

0
x (1− 2FW (s)) fX (x) dx

= E [X] (1− θ (1− 2FW (s)))

+θ (1− 2FW (s))

∫ ∞

0
(1− FX (x))2 dx. (2)

Letting

E
[
X ′] = ∫ ∞

0
(1− FX (x))2 dx <

∫ ∞

0
(1− FX (x)) dx = E [X] ,

(2) becomes

E [X] +
(
E
[
X ′]− E [X]

)
θ (1− 2FW (s)) . (3)

From (3), we can derive the following remarks. If θ > 0 (θ < 0) and s < F−1
W (0.5) (s >

F−1
W (0.5), respectively), then E [X|W = s] < E [X]. Conversely, if θ > 0 (θ < 0) and s > F−1

W (0.5)
(s < F−1

W (0.5), respectively), then E [X|W = s] > E [X] .

We consider the case where the canonical r.v. W has an exponential distribution with mean 1
β
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and

fW (t) = βe−βt, (4)

FW (t) = 1− e−βt, (5)

f̃W (s) = E
[
e−sW

]
=

β

β + s
.

For simplification purposes, we use the expressions

h (s; γ) = γe−γs

ĥ (r; γ) =
γ

γ + r

to derive the moments of Z(t).

We obtain the following expression for µZ (t)

µZ (t) =

∫ t

0
fW (s) e−δsE [X] ds+ θ

(
E
[
X ′]− E [X]

) ∫ t

0
fW (s) e−δs (1− 2FW (s)) ds

+

∫ t

0
fW (s) e−δsµZ (t− s) ds

=

∫ t

0
βe−βse−δsE [X] ds+ θ

(
E
[
X ′]− E [X]

) ∫ t

0
βe−βse−δs

(
2e−βs − 1

)
ds

+

∫ t

0
βe−βse−δsµZ (t− s) ds

=

∫ t

0

β

β + δ
h (s;β + δ)E [X] ds

+θ
(
E
[
X ′]− E [X]

) ∫ t

0

2β

2β + δ
h (s; 2β + δ) ds

−θ
(
E
[
X ′]− E [X]

) ∫ t

0

β

β + δ
h (s;β + δ) ds

+

∫ t

0

β

β + δ
h (s;β + δ)µZ (t− s) ds. (6)

We take the Laplace transform on both sides of (6) and after some rearrangements, we obtain

µ̃Z (r) =

ĥ(r;β+δ)
r

β
β+δE [X] + θ (E [X ′]− E [X])

(
2β

2β+δ
ĥ(r;β+δ)

r − β
β+δ

ĥ(r;β+δ)
r

)
1− β

β+δ ĥ (r;β + δ)
(7)

which is equivalent to

µ̃Z (r) =

1
r

β+δ
β+δ+r

β
β+δE [X] + θ (E [X ′]− E [X])

(
2β

2β+δ
1
r

2β+δ
2β+δ+r −

β
β+δ

1
r

β+δ
β+δ+r

)
1− β

β+δ
β+δ

β+δ+r

. (8)
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Rearranging (8), we deduce

µ̃Z (r) =
βE[X]

r(δ + r)
+ θ

β (E[X ′]− E[X])

r(2β + δ + r)
. (9)

Inverting (9), we obtain

µZ (t) = βE[X]
1− e−δt

δ
+ θβ

(
E[X ′]− E[X]

) 1− e−(2β+δ)t

2β + δ
. (10)

Notice that when the r.v.’s X and W are independent which corresponds to θ = 0, the expected
value of the compound process of the discounted claims, noted Zind(t), becomes

µZind
(t) = βE[X]

1− e−δt

δ
.

3.2 Second moment

As for the first moment of the discounted total claim amount, we condition on the arrival of the
first claim to obtain the second moment of Z(t)

µ
(2)
Z (t) = E

[
E
[
(e−δsX1 + e−δsZ(t− s))2|W1 = s

]]
=

∫ t

0
fW (s) e−2δsE

[
X2|W = s

]
ds+ 2

∫ t

0
fW (s) e−2δsE [X|W = s]µZ (t− s) ds

+

∫ t

0
fW (s) e−2δsµ

(2)
Z (t− s) ds.

Similarly as in (2), we have

E
[
X2|W = s

]
= E

[
X2
]
(1− θ (1− 2FW (s)))

+θ (1− 2FW (s))

∫ ∞

0
2x (1− FX (x))2 dx

= E
[
X2
]
+

(
E

[(
X

′
)2]

− E
[
X2
])

θ (1− 2FW (s)) ,

where

E
[(
X ′)2] = ∫ ∞

0
2x (1− FX (x))2 dx <

∫ ∞

0
2x (1− FX (x)) dx = E

[
X2
]
.
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We find the following expression for µ
(2)
Z (t)

µ
(2)
Z (t) =

∫ t

0
fW (s) e−2δsE

[
X2
]
ds+ θ

(
E
[(
X ′)2]− E

[
X2
]) ∫ t

0
fW (s) e−2δs (1− 2FW (s)) ds

+2

∫ t

0
fW (s) e−2δsE [X]µZ (t− s) dsds

+2θ
(
E
[(
X ′)]− E [X]

) ∫ t

0
fW (s) e−2δs (1− 2FW (s))µZ (t− s) ds+

∫ t

0
fW (s) e−2δsµ

(2)
Z (t− s) ds

=

∫ t

0

β

β + 2δ
h (s;β + 2δ)E

[
X2
]
ds

+θ
(
E
[(
X ′)2]− E

[
X2
]) ∫ t

0

(
2β

2β + 2δ
h (s; 2β + 2δ)− β

β + 2δ
h (s;β + 2δ)

)
ds

+2

∫ t

0

β

β + 2δ
h (s;β + 2δ)E [X]µZ (t− s) ds

+2θ
(
E
[(
X ′)]− E [X]

) ∫ t

0

(
2β

2β + 2δ
h (s; 2β + 2δ)− β

β + 2δ
h (s;β + 2δ)

)
µZ (t− s) ds

+

∫ t

0

β

β + 2δ
h (s;β + 2δ)µ

(2)
Z (t− s) ds. (11)

We take the Laplace transform on both sides of (11) and after some rearrangements, we obtain

µ̃
(2)
Z (r) =

1

1− β
β+2δ ĥ(r;β + 2δ)

[
ĥ(r;β + 2δ)

r

β

β + 2δ
E[X2]

+θ
(
E[(X ′2]− E[X2]

)( 2β

2β + 2δ

ĥ(r; 2β + 2δ)

r
− β

β + 2δ

ĥ(r;β + 2δ)

r

)

+2E[X]
β

β + 2δ
ĥ(r;β + 2δ)µ̃Z(r)

+2θ
(
E
[
X ′]− E[X]

)( 2β

2β + 2δ
ĥ(r; 2β + 2δ)− β

β + 2δ
ĥ(r;β + 2δ)

)
µ̃Z(r)

]
,

which becomes

µ̃
(2)
Z (r) =

βE[X2]

r(2δ + r)
+ θ

β
(
E
[
(X ′2]− E[X2]

)
r(2β + 2δ + r)

+ 2
βE[X]

2δ + r
µ̃Z(r) + 2θ

β (E[X ′]− E[X])

2β + 2δ + r
µ̃Z(r)

=
βE[X2]

r(2δ + r)
+ θ

β
(
E
[
(X ′2]− E[X2]

)
r(2β + 2δ + r)

+ 2
βE[X]

2δ + r

(
βE[X]

r(δ + r)
+ θ

β (E[X ′]−E[X])

r(2β + δ + r)

)
+2θ

β (E[X ′]−E[X])

2β + 2δ + r

(
βE[X]

r(δ + r)
+ θ

β (E[X ′]− E[X])

r(2β + δ + r)

)
=

βE[X2]

r(2δ + r)
+ θ

β
(
E
[
(X ′2]− E[X2]

)
r(2β + 2δ + r)

+ 2
β2E[X]2

r(δ + r)(2δ + r)
+ 2θ

β2E[X] (E [X ′]− E[X])

r(2β + δ + r)(2δ + r)

+2θ
β2E[X] (E [X ′]− E[X])

r(δ + r)(2β + 2δ + r)
+ 2θ2

β2 (E [X ′]− E[X])2

r(2β + δ + r)(2β + 2δ + r)
. (12)
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This last Laplace transform is a combination of terms of the form

f̃(r) =
1

r(α1 + r)(α2 + r)...(αn + r)
,

with f a function defined for all non-negative real numbers. As described in the proof of Theorem
1.1 in Baeumer (2003), each of these terms can be expressed as a combination of partial fractions
such as

f̃(r) = γ0
1

r
+ γ1

1

α1 + r
+ γ2

1

α2 + r
+ ...+ γn

1

αn + r
, (13)

where γ0 =
1

α1...αn
and , for i = 1, ..., n,

γi = − 1

αi

n∏
j=1;j ̸=i

1

αj − αi
. (14)

Since the inverse Laplace transform of 1
αi+r is e−αit, it is easy to inverse f̃ and obtain

f(t) = γ0 + γ1e
−α1t + γ2e

−α2t + ...+ γne
−α2t. (15)

Using (15) in (12), it results that

µ(2)(t) = βE[X2]

(
1

2δ
− e−2δt

2δ

)
+ θβ

(
E
[
(X ′2]− E[X2]

)( 1

2β + 2δ
− e−(2β+2δ)t

2β + 2δ

)

+2β2E[X]2
(

1

2δ2
− e−δt

δ2
+

e−2δt

2δ2

)
+2θβ2E[X]

(
E[X ′]−E[X]

)( 1

2δ(2β + δ)
− e−(2β+δ)t

(2β + δ)(−2β + δ)
+

e−2δt

2δ(−2β + δ)

)

+2θβ2E[X]
(
E[X ′]−E[X]

)( 1

δ(2β + 2δ)
− e−δt

δ(2β + δ)
+

e−(2β+2δ)t

(2β + 2δ)(2β + δ)

)

+2θ2β2
(
E[X ′]− E[X]

)2( 1

(2β + δ)(2β + 2δ)
− e−(2β+δ)t

δ(2β + δ)
+

e−(2β+2δ)

δ(2β + 2δ)

)
. (16)
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3.3 mth moment

We now generalize the previous results to the mth moment of the discounted total claim amount.
Conditioning on the arrival of the first claim leads to

µ
(m)
Z (t) =

∫ t

0
fW (s) e−mδsE [Xm|W = s] ds+

m−1∑
j=1

(
m

j

)∫ t

0
fW (s) e−mδsE

[
Xj |W = s

]
µ
(m−j)
Z (t− s) ds

+

∫ t

0
fW (s) e−mδsµ

(m)
Z (t− s) ds.

For the Laplace transform of µ
(m)
Z (t), we find

µ̃
(m)
Z (r) =

1

1− β
β+mδ ĥ (r;β +mδ)

[
ĥ (r;β +mδ)

r

β

β +mδ
E [Xm]

+θ
(
E
[(
X ′)m]− E [Xm]

)( 2β

2β +mδ

ĥ (r; 2β +mδ)

r
− β

β +mδ

ĥ (r;β +mδ)

r

)

+

m−1∑
j=1

(
m

j

)
E
[
Xj
] β

β +mδ
ĥ (r;β +mδ) µ̃

(m−j)
Z (r) + θ

m−1∑
j=1

(
m

j

)(
E
[(
X ′)j]− E

[
Xj
])

×
(

2β

2β +mδ
ĥ (r; 2β +mδ)− β

β +mδ
ĥ (r;β +mδ)

)
µ̃
(m−j)
Z (r)

]
(17)

which can also be expressed as follows

µ̃
(m)
Z (r) =

(
m

m

)
βE[Xm]

r(mδ + r)
+

(
m

m

)
θ
β (E [(X ′m]− E[Xm])

r(2β +mδ + r)
+

m−1∑
j=1

(
m

j

)
βE[Xj ]

mδ + r
µ̃
(m−j)
Z (r)

+θ

m−1∑
j=1

(
m

j

)
β
(
E[(X ′j ]−E[Xj ]

)
2β +mδ + r

µ̃
(m−j)
Z (r).

Noting for i = 1, ...,m, j = 1, ...,m and k = 0, 1

ζ(i; j; k) =

(
i

j

)
θk

β
(
E[Xj ]

)1−k (
E[X ′j ]− E[Xj ]

)k
k × 2β + iδ + r

=
Λ(i; j; k)

k × 2β + iδ + r
, (18)

we can rewrite µ̃Z(r) and µ̃
(2)
Z (r) as

µ̃Z(r) =
1

r

[
ζ(1, 1, 0) + ζ(1, 1, 1)

]
,
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µ̃
(2)
Z (r) =

1

r

[
ζ(2, 2, 0) + ζ(2, 2, 1) + [ζ(2, 1, 0) + ζ(2, 1, 1)] [ζ(1, 1, 0) + ζ(1, 1, 1)]

]
=

1

r

[
ζ(2, 2, 0) + ζ(2, 2, 1) + ζ(2, 1, 0)ζ(1, 1, 0) + ζ(2, 1, 0)ζ(1, 1, 1) + ζ(2, 1, 1)ζ(1, 1, 0)

+ζ(2, 1, 1)ζ(1, 1, 1)

]
.

The term µ̃
(m)
Z (r) can also be expressed using (18)

µ̃
(m)
Z (r) =

1

r

m∑
n=1

∑
((i1,j1,k1),...,(in,jn,kn))∈Amn

ζ(in, jn, kn)× ...× ζ(i1, j1, k1), (19)

where Amn =

{
(i1, j1, k1), ..., (in, jn, kn); i1 = m, i1+...+in = m−1+n, i1 > ... > in, j1 = m+1−n,

j1 + ...+ jn = m, j1 ≥ ... ≥ jn, k. ∈ {0, 1}
}
.

To inverse (19), let I (ζ(i1; j1; k1); ...; ζ(in; jn; kn)) be the inverse Laplace transform of 1
r ζ(i1; j1; k1)×

...× ζ(in; jn; kn), for n = 1, ...,m. Using (13) and (15), we have

I (ζ(i1; j1; k1); ...; ζ(in; jn; kn)) = Λ(i1; j1; k1)×...×Λ(in; jn; kn)×
(
γ0 + γ1e

−α(i1;k1)t + ...+ γne
−α(in;kn)t

)
with, refering to (14), γ0 = 1

α(i1;k1)...α(in;kn)
and γu = − 1

α(iu;ku)

∏u
v=1;v ̸=u

1
α(iv ;kv)−α(iu;ku)

, u =
1, , ..., n.

It finally results that

µ(m)(t) =

m∑
n=1

∑
((i1,j1,k1),...,(in,jn,kn))∈Amn

I (ζ(i1; j1; k1); ...; ζ(in; jn; kn)) . (20)

4 Applications

As we have already discussed in the introduction, several scientific domains have recourse to dis-
counted aggregations. We present here some applications of our results in actuarial sciences where
the claim distributions are assumed to be positive and continuous.

4.1 Premium calculation

Now that we are able to compute the moments of Z(t), it is possible to compute the premium
related to the risk of an insurance portfolio represented by Z(t). We propose here to study several
premium calculation principles. The loaded premium Π(t) consists in the sum of the pure premium
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P (t), which is the expected value of the costs related to the portfolio, and a loading for the risk
L(t) as

Π(t) = P (t) + L(t)

= E[Z(t)] + L(t).

The loading for the risk differs according to the premium calculation principles.

Denote by κ ≥ 0 the safety loading. The expected value principle defines the loaded premium
as

Π(t) = E[Z(t)] + κE[Z(t)],

where L(t) = κE[Z(t)].

The variance principle gives

Π(t) = E[Z(t)] + κV ar(Z(t)),

where L(t) = κV ar(Z(t)).

And finally, we introduce the standard deviation principle which is determined by

Π(t) = E[Z(t)] + κ
√

V ar(Z(t)),

where L(t) = κ
√

V ar(Z(t)).

As we only need the first two moments for these exemples, we can use the equations (10) and
(16) to determine the loading for the risk and then the loaded premium (see e.g. Rolski et al.
(1999) for details on premium pinciples).

4.2 First three moments based approximation for the distribution of Z(t)

Here, we suggest to use a moment matching approximation for its distribution. As said in Tijms
(1994), the class of mixture of Erlang distributions is dense in the space of positive contiuous
distributions. So, we propose, as an illustration, to match the first three moments of Z(t) to a
mixture of two Erlang distributions of common order. This method comes from Johnson and Taaffe
(1989) where a moment matching method with the first k moments is feasible for a mixture of
Erlang distributions of order n is presented. The distribution function of a mixture of two Erlang
distributions with respective rate parameters λ1 and λ2 and common order n is given by

FY (y) = p1F1(y) + p2F2(y),

where F1 and F2 are two Erlang c.d.f.’s and p1 and p2 their respective weight in the mixture. The
p.d.f. Y is

fY (y) = p1f1(y) + p2f2(y),

11



where f1 and f2 are two Erlang p.d.f.’s. The n-th moment of the mixture of two Erlang distributions
is

E[Y n] = p1µ
(n)
1 + p2µ

(n)
2 ,

where µ
(n)
1 and µ

(n)
2 are the respective n-th moment of two Erlang distributions. Under some

conditions, Theorem 3 of Johnson and Taaffe (1989) gives the parameters of the mixture of two
Erlang distributions with the same order n as follows

λ−1
i =

(
−B + (−1)i

√
B2 − 4AC

)
/ (2A)

and

p1 = 1− p2 =
(µ1

n
− λ−1

2

)
/
(
λ−1
1 − λ−1

2

)
,

where A = n(n + 2)µ1y, B = −
(
nx+ n(n+2)

n+1 y2 + (n+ 2)µ2
1y
)
, C = µ1x, y = µ2 −

(
n+1
n

)
µ2
1 and

x = µ1µ3 −
(
n+2
n+1

)
µ2
2.

For the numerical illustration, suppose that X ∼ Exp(λ = 1/100), the interclaim time distri-
bution parameters β = 1, 5 and 10, the interest rate δ = 4%. We use three different values for the
copula parameter θ = −1, 0, 1 and fix the time t = 5. The m-th moment of X is

E[Xm] =
1

λm
m!.

As E[(X ′m] =
∫∞
0 mxm−1(1− FX(x))2dx, we have that

E[(X ′m] =
1

(2λ)m
m!.

The first three moments of Z(t) and the matched parameters for the mixture of Erlang distributions
are presented in Tables 1, 2 and 3.

θ µZ(5) µ
(2)
Z (5) µ

(3)
Z (5) n λ1 λ2 p1 p2

-1 477.682 3.346× 105 2.967× 108 3 0.0442 0.00563 0.119 0.881
0 453.173 2.878× 105 2.277× 108 4 0.0263 0.00747 0.215 0.785
1 428.664 2.434× 105 1.679× 108 4 0.0430 0.00867 0.088 0.911

Table 1: Moments of Z(5) and parameters of the mixture of Erlang distributions for β = 1.

For this last case, Figures 1, 2 and 3 in the appendix show the drawings of the simulated c.d.f.
of Z(5) versus the approximated c.d.f. of Z(5) with a mixture of Erlang distributions moment
matching. We see on our illustration that the fit of the approximations is satisfying.

In Tables 4, we compare the VaR obtained from Monte-Carlo simulations of Z(5) against the
VaR for the mixture of Erlang distributions approximation for a confidence level α = 99.5%. Once
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θ µZ(5) µ
(2)
Z (5) µ

(3)
Z (5) n λ1 λ2 p1 p2

-1 2290.766 5.766× 106 1.576× 1010 11 0.0146 0.00475 0.0159 0.984
0 2265.866 5.546× 106 1.455× 1010 13 0.135 0.00572 0.00337 0.997
1 2240.965 5.329× 106 1.338× 1010 17 0.0454 0.00757 0.00308 0.997

Table 2: Moments of Z(5) and parameters of the mixture of Erlang distributions for β = 5.

θ µZ(5) µ
(2)
Z (5) µ

(3)
Z (5) n λ1 λ2 p1 p2

-1 4556.681 2.180× 107 1.091× 1011 21 0.0118 0.00459 0.00557 0.994
0 4531.731 2.136× 107 1.045× 1011 26 0.0118 0.00572 0.00605 0.994
1 4506.781 2.093× 107 9.999× 1010 34 0.0157 0.00753 0.00326 0.998

Table 3: Moments of Z(5) and parameters of the mixture of Erlang distributions for β = 10.

again, the approximated VaR’s are satisfying.

θ MC β = 1 MM β = 1 MC β = 5 MM β = 5 MC β = 10 MM β = 10

-1 1606.311 1620.153 4451.252 4498.420 7486.069 7545.406
0 1434.566 1426.921 4168.524 4220.984 7121.053 7166.169
1 1244.871 1251.674 3859.026 3895.557 6718.142 6755.696

Table 4: VaR calculated from the Monte-Carlo simulations and the moment matching.

Remark 1 Let S(t) = Z(t) when the force of interest δ = 0. As, in general for δ ≥ 0, we
have E[φ(Z(t))] ≤ E[φ(S(t))] for every non-decreasing function φ, we have that Z(t) ≤sd S(t)
where ≤sd designate the stochastic dominance order. Furthermore, this implies that V aRα(Z(t)) ≤
V aRα(S(t)) for every α ∈ [0, 1].

4.3 Solvency II internal model

The European Solvency II project is going to lay down some new regulatory requirements that
every insurance company inside the European Union will have to fulfill. In addition, several other
countries outside the European Union (e.g. Canada, Columbia or Mexico) are likely to use similar
principles. The directive has been adopted in April 2009 and the implementation measures are
in progress in order to have the new system in force on October 31st, 2012. Determination of
Solvency Capital Requirement (SCR) is one of the main points of the quantitative pillar of this
reform: in addition to the best estimate (which is defined as the expected present value of all
potential future cash flows that would be incurred in meeting policyholders’ liabilities) of liabilities
and a risk margin, insurance companies and reinsurers will have to own an extra capital to cope
with unfavorable events. The computation of the Solvency II standard formula for SCR is based
on the 1-year 99.5%-Value-at-risk (VaR). Most often in the standard formula, it is assumed that
the heaviness of the tail of the distribution of random loss X is quite moderate, and so the SCR,
defined as the difference V aR99.5%(X)−E(X), is replaced by a proxy qσX , where σX denotes the
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standard error coefficient of X and q is a quantile factor which should be set at q = 3. Seldom,
if appropriate, factor q = 3 may be replaced by a larger value, close to 5 for example, to take
into account potential heavier tails. This is the case in particular in the current version of the
Counterparty Risk module (see Consultation Paper 51 of CEIOPS). Although quantile factors may
vary from one line of business to the other, it has become classical to compute the SCR in the
standard formula as a multiple of the standard error coefficient of the random loss, or with stress
scenarios. Even if internal models or partial internal models are being encouraged, companies will
anyway have to provide the SCR computations with the standard formula as complement. Some
of those partial internal models are based on a different time horizon, up to 5 or 10 years for some
reinsurers. Besides, all insurers have to provide an Own Risk and Solvency Assessment (ORSA)
which aims to study risks that may affect the long-term solvency of the company. Either for ORSA
or for SCR computations, it may be useful to determine the first two moments of the discounted
aggregate claim amount, both with constant interest rate and inflation, and in a stress scenario
where inflation increases. Inflation is very low currently, but there is a clear risk that it increases
quite a bit when the crisis ends. In an ORSA analysis, it would be interesting to study the impact of
inflation on Best Estimate (BE) and on the SCR: what would be the BE and the SCR in three years
from now if insurance risk exposure was the same as today, but inflation was much higher? This is
what we investigate in Tables 6 and 7. Solvency II standard formula often uses the independence
between claim amounts and the claim arrival process. In practice, for risks like earthquake risk or
flood and drought risks, the next claim amount is not independent from the time elapsed before the
previous claim, and this must be taken into account in partial internal models. The advantage of
our method is that it remains valid for negative values of δ (as long as they are not too negative),
which can be seen as the difference between the interest rate and the inflation rate. If inflation
becomes larger than the interest rate, then δ becomes negative, and our method still applies for
small enough values of |δ|. Some other approaches are possible as cat risk is sometimes addressed
directly by the means of extreme scenarios.

Here we compute the SCR in the standard formula approach and in the internal model approach
for a 5-year horizon for exponentially distributed inter-claim times and Exponential and Pareto
claim amount distributions. For the internal model approach, we use Equations (??) and (??)
from the previous example to compute the mth moment of Z(t) when the claim amounts are
exponentially distributed. If the claim amount r.v. X is Pareto with c.d.f.

FX(x) = 1−
(

γ

γ + x

)κ

, x > 0,

and mth moment

E[Xm] =
γmm!∏m

i=1(κ− i)
(21)

for γ > 0 and κ > m then E[(X ′m] becomes

E[(X ′m] =
γmm!∏m

i=1(2κ− i)
. (22)

Thus the mth moment of Z(t) can be explicitly expressed using (10) and (16) for the first and
second moments, or using (20) for greater moments. The SCR for the internal model is obtained
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from the first moment of Z(t) and a simulated VaR with Monte-Carlo method.

Let the FGM dependence parameter be −1, 0 or 1, and δ = 3%. The parameter for the inter-
claim time distribution is β = 2. Assume that the claim amount r.v. X ∼ Exp(λ = 1/10) for
the Exponential case and that X ∼ Pareto(κ = 2.5, γ = 15) for the Pareto case with the same
expected value 10 but with variances respectively equal to 100 and 500. As discussed above, we
set the quatile factor q for the standard formula approach at 3 for the Exponential case and at 5
for the Pareto case. The SCR’s for the standard formula and the internal model approaches are
presented in Table 5. Using the internal model approach, we also compute the SCR (and the Best
Estimate (BE)) with inflation crises (δ = 1.5%, 0.5% or −5%) in comparison to δ = 3% for the
Pareto case. The results are shown in Table 6.

Exponential case Pareto case

Copula parameter Standard formula (q = 3) Internal model Standard formula (q = 5) Internal model

θ = −1 140.508 151.075 385.760 314.362
θ = 0 124.703 132.149 359.987 295.574
θ = 1 107.091 111.254 332.933 276.368

Table 5: Comparison between the standard formula and the internal model approaches for the
SCR, 5-year time horizon.

Copula parameter δ = 3% δ = 1.5% δ = 0.5% δ = −5%

θ = −1
BE 95.963 99.455 101.881 116.775
SCR 314.362 325.107 331.891 383.146

θ = 0
BE 92.861 96.342 98.760 113.610
SCR 295.574 306.034 313.842 362.76O

θ = 1
BE 89.760 93.229 95.639 110.446
SCR 276.368 287.600 295.391 342.066

Table 6: Effect of inflation crisis for Pareto claim amounts, 5-year time horizon.

We also provide some results for the same values for δ when the time horizon is equal to 10
years and the copula parameter θ = 1 in Table 7.
Finally, we also provide in Table 8 a few results with θ = 1 and β = 0.5 to see the influence of

parameter β and to illustrate the case where large claims occur in average every m years, with
m > 1.
Regarding dependency between inter-claim times and claim amounts, both SCR and Best Estimate
are increasing with the dependence parameter θ. This is logical as positive dependence between
inter-claim times and claim amounts is a form of diversification effect. SCR are larger for Pareto
claim amounts than for Exponential claim amounts, as usual. Nevertheless, Table 5 shows that
the so-called internal model approach leads to higher values of SCR than the ones obtained by the
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δ = 3% δ = 1.5% δ = 0.5% δ = −5%

θ = 1
BE 169.686 182.609 191.961 256.324
SCR 356.386 383.095 402.398 543.695

Table 7: Effect of inflation crisis for Pareto claim amounts, 10-year time horizon.

δ = 3% δ = 1.5% δ = 0.5% δ = −5%

θ = 1
BE 40.163 43.352 45.661 61.583
SCR 182.448 197.233 207.688 284.735

Table 8: Effect of inflation crisis for Pareto claim amounts, 10-year time horizon, β = 0.5.

standard formula for Exponentially distributed claim amounts, while it is the opposite for Pareto
distributed claim amounts. Finally, the impact of inflation cannot be neglected: in Table 8, the
case where δ = −5% (which corresponds to scenarios where the inflation rate becomes 5% larger
than the interest rate) leads to more than a 50%-increase in Best Estimate and SCR, in the most
favorable case where θ = 1.
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APPENDIX

The first two moments of the distribution of Z(t) which are given by (10) and (16) respectively.
The third moment is

µ(3)(t) =
3∑

n=1

∑
((i1,j1,k1),...,(in,jn,kn))∈A3n

I (ζ(i1; j1; k1); ...; ζ(in; jn; kn)) ,

where A3n =

{
(i1, j1, k1), ..., (in, jn, kn); i1 = 3, i1+ ...+ in = 3−1+n, i1 > ... > in, j1 = 3+1−n,

j1 + ...+ jn = 3, j1 ≥ ... ≥ jn, k. ∈ {0, 1}
}
. It can be developed as
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