N
N

N

HAL

open science

Architecture-Based Autonomic Deployment of J2EE
Systems in Grids
Didier Hoareau, Takoua Abdellatif, Yves Mahéo

» To cite this version:

Didier Hoareau, Takoua Abdellatif, Yves Mahéo. Architecture-Based Autonomic Deployment of J2EE
Systems in Grids. International Conference on Grid and Pervasive Computing, May 2007, Paris,

France. pp.362-373, 10.1007/978-3-540-72360-8 31 . hal-00426481

HAL Id: hal-00426481
https://hal.science/hal-00426481
Submitted on 27 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00426481
https://hal.archives-ouvertes.fr

Architecture-Based Autonomic Deployment
of J2EE Systems in Grids

Didier Hoareatl, Takoua Abdellati?, and Yves Mako'

! Valoria, University of South Brittany, France
{di di er. hoar eaulyves. maheo}@ini v- ubs. fr
2 ENISO, University of Sousse, Tunisia
t akoua_abdel | ati f @ahoo. fr

Abstract. The deployment of J2EE systems in Grid environments remains a dif-
ficult task: the architecture of these applications are complex and the targe
vironment is heterogeneous, open and dynamic. In this paper, welshe the
component-based approach simplifies the design, the deploymentearettn-
figuration of a J2EE system. We propose an extended architecturiptiesdan-
guage that allows specifying the deployment of enterprise systems irpes¢e
Grids, driven by resources and location constraints. With respect se -
straints we present a deployment process that instantiates propbgtité/ep-
plication, taking into account resources and hosts availability. Finally, esepit

an autonomic solution for recovery from failures.

1 Introduction

Grid environments have moved from the mere aggregation mpatational resources
dedicated to parallel and scientific applications to moneegal sharing of networked
resources. The kind of Grids we consider in this paper carebe as a set of hetero-
geneous machines interconnected by links of various cégsdvioreover a number of
factors impacting the dynamism of the system (machine esaalser disconnections,
system failures etc.) cannot be neglected. Such Grids beatinactive to multi-tier In-
ternet service providers who want to improve the qualityest/ge they offer. For this
reason, many recent research works aim at finding the beslsaadd techniques to ex-
ploit the Grids for better performance and high availapilé.g. [1, 2]). However, these
works concentrate more on finding models and proving théicgfeness and do not
propose efficient solutions automating the deployment haddcovery from failures of
enterprise middleware and applications. Such featuresaseimportant and are still
challenging in the context of interactive applicationsidad, unlike scientific parallel
applications whose parts can be independently deploye@eewlited, multi-tier mid-
dleware and applications are composed of interdependec¢piof software that have
to coexist at execution time. Furthermore, the failure & part of the enterprise system
may involve service discontinuity or performance degriathatRecovering the system
architecture, as initially defined at deployment time, isyvienportant to preserve the
agreed quality of service.

In this paper, we propose a solution for deploying entegpsigsstems in Grids and
automating the recovery from failure of parts of the systémachieve this goal, we

consider a J2EE system that we caligual cluster, similar to a classical J2EE cluster
in that EJB and Web containers are replicated for backup-faldrance considerations.
We believe that our solution is applicable to other modet$ @imer configurations of
multi-tier Internet applications on wide-area networksg & can be of interest to re-
searchers in this field to easily experiment their diffemaotdels on Grids and for ser-
vice providers to easily handle an important number of tsie®ur approach consists
in applying an architecture-based deployment [3] and iomating the management
of distributed systems. The idea is to abstract the manag&dm into an assembly
of explicitly bound components and to use these componentmis of configura-
tion, deployment and reconfiguration. We adopted this aggrdor J2EE systems in
a previous work—in classical cluster environments—nby reirggring an open source
application server [4]. The re-engineering work consistsansforming the server parts
into explicitly connected components. With the same corepobmodel, Fractal [5] in
our case, we also represent the underlying resources l&kaddes of the Grid. An
ADL (Architecture Description Language) permits the dgsten of the different parts
of the distributed system, their configuration and theiatiehs in terms of bindings
and encapsulation. Finally, a deployment engine allowsraating the deployment of
the J2EE system using its description on the cluster tarGetsipared to J2EE clusters,
Grids are highly distributed, heterogeneous and dynanaicttis reason, our deploy-
ment system needs to be extended to manage virtual clustans the Grid constraints.
In this paper, we demonstrate the extension of the Fractal #diescribe the compo-
nent resources, a resource allocation mechanism and #&sdioit an automatic recov-
ery from failures.

The layout of this paper is the following. In Section 2, weganet more in details
the context of our work and the main underlying assumptibmSection 3, we describe
our deployment process and its resource allocation sefWeedetail the current state
of our implementation and some first results in Section 4ti&e& discusses related
work. Finally, Section 6 concludes the paper and identifiésré work.

2 Context and main assumptions

2.1 J2EE system configuration and deployment

J2EE application servers are complex service-orientdutantures. In a previous work,
we demonstrated that solving the deployment of J2EE apifgitarequires that the in-
ternal software architecture of the J2EE server, in ternth@fservices that compose
it and their various interaction and containment depenigsnbe made explicit and
modifiable at run time [4]. Indeed, the configuration of thetsyn and its deployment
parameters have to be described using the elements of tteasysrchitecture. This
description can then be used as a basis to implement and agtdifferent deployment
and reconfiguration policies. This is what is generallyazhlarchitecture-based man-
agement [3]. For this purpose, we created JonasALaCarte, obtaigegengineering
the JONAS (Java Open Application Sefjespen source application server using the
Fractal component model [5].

3 http://jonas.objectweb.org

Thanks to a componentization of the server itself, wherdhallservices are en-
capsulated into Fractal components, the architectureso$éhver is explicit. Both the
hardware and the software entities are represented by cnfmo

2.2 Deploymentin a J2EE cluster

Building a J2EE cluster consists in replicating the Web adl &ers for load balancing
and fault tolerance. A front-end load balancer (generalyTa P server like Apache)
dispatches the HTTP requests to the containers. A group corication system allows
the consistency between stateful data hosted in the censstimbe maintained. In order
to deploy a clustered JonasALaCarte, the administratotdpsoduce an architecture
descriptor (written with an ADL) together with a deploymel@scriptor. The first one
defines the architecture of JonasALaCarte as a set of imeeobed components and the
second one exhibits the resource requirements of each ec@npdhe instantiation of
this description allows the application server componente configured and deployed
on the target machines in an automated manner. Unlike ircudOnAS clusters, the
unit of replication in JonasALaCarte is the service commbaad not the whole server.
This selective replication is important since the EJB ciortig and the Web containers
are generally execution bottlenecks and we need more aspiar these services than
for other ones (Registry service, Transaction service, etc

Figure 1 presents an example of an architecture for a J2Edechd application
server. Notice that we abstract the deployment and the agafign of an application
server cluster into the uniform handling of Fractal compugeBesides, a cluster con-
figuration is just a particular configuration of the applicatserver where components
are distributed and replicated (represented in greyedd)axe different JVMs. The
same management tools are used to manage a stand-aloneisergingle JVM and
to manage a cluster of servers.

Transaction
| Service
—>h Database
., | Transaction

Service

Middleware Service

Fig. 1. Component-based view of JonasALaCarte in a cluster environment

2.3 From J2EE clusters management t@irtual clusters management

We call avirtual cluster a J2EE system having the same configuration as a classical
cluster (a front-end load balancer, a set of replicatedaioets and a group commu-
nication system for stateful data replication) but deptbirea Grid. By defining the
number of replicas and the configuration of the servicesyittaal cluster can repre-
sent different deployment models in wide-area networkthikpaper, we consider that
our Grid system is composed of different zones; each zongpgra set of machines
geographically close. Moreover, for each zone, some pdaticnachines are well iden-
tified and are made public (on a Web site for example). Wezoakk managers these
machines because they contribute in the deployment process

Unlike a J2EE cluster, a Grid environment is highly disttézliand are heteroge-
neous in terms of software and hardware configurations. Resallocation is conse-
quently a complex task. Grid machines are more dynamicrditheause they belong to
end-users that frequently join and leave the Grid or bectheseare shared with other
dynamic applications. However, if a machine involved in éxecution of a multi-tier
application leaves the system, a service discontinuitypmrformance degradation may
be induced leading to disastrous economic consequencientrof these limitations,
we identify the following requirements:

— Resource allocation should be automated. Each componsrbhexplicitly de-
fine its required resources and the deployment system hagdmatically find the
appropriate target machine offering necessary resouotesath component.

— Each variation in the Grid machines involved in an applaatéxecution has to
be systematically detected and recovered. Indeed, in tod®aintain the agreed
quality of service, the configuration of the J2EE system bdsetpreserved. If the
unavailable component is not replicated, its recoverywallensuring the service
continuity. In some cases, the service continuity is ergstiranks to the replication
of the leaving component, like for containers. If the replis a simple backup, this
component needs to be replaced in order to preserve thetééedance degree of
the system and if the replica is involved in the load balagcinalso needs to be
replaced to preserve the same level of performance.

3 Virtual cluster deployment system

In order to deploy a J2EE server system in a network such ambeescribed in Sec-
tion 2.3, we cannot rely on a total knowledge of the diffeneratchines: this is hardly
feasible as the size of a zone is important and as they areobeteeous. Moreover,
some machines—that were disconnected when the deploymenauwsched—can en-
ter the network. Thus, traditional approaches, considtindefining a target machine
for each component of the application to be deployed, ardeagiible in our context.
We propose an extension to existing ADLs (xAd@n§5]) that allows the description of
the resource properties that must be satisfied by a machirm&ting a specific com-
ponent. In our approach, it is no more mandatory to give afigkpame or address

4 http://www-2.cs.cmu.edu/ acme/pub/xAcme

of a target machine: the placement of components is maifgmiiby constraints on
the resources the target host(s) should satisfy. Then, /thedescription of the archi-
tecture and the deployment specification to define a deployofea J2EE system in a
zone: installation and redeployment of the component ageriraan automatic way.

In the following we present the general deployment algarith two steps. First, we
describe the deployment process that allows the parts @fhkcation to be deployed
in a propagative way. Then, we present the mechanisms werhalemented to handle
failures of the machines and of the different parts of theéesys

3.1 Deployment specification

In order to specify the deployment of a J2EE system, we defumedescriptor files
written with FractalADL. Thearchitecture descriptor contains the architecture of the
system in terms of component definitions (their name, tHeintand server interfaces,
their implementation) and component interactions (thelibigs between components).
The other descriptor, namelpl oyment descriptor, contains, for each component, the
description of the resources that the target platform matsfy and references to com-
ponent instances (defined in the architecture descriptor).

In the deployment descriptordeployment context is defined for each component.
Such a context lists all the constraints that a hosting nmedias to verify. There are two
types of constraints that can be defined in a deployment xomEsource constraints
and location constraints. Resource constraints allowtrareland software needs to be
represented. Each of these constraints defines a doma@feakuresource type that the
target host(s) should satisfy. With location constraimse control on the placement
of a component can be defined when more than one host appligs fiosting.

Figure 2 shows the deployment descriptor associated wlJ2EE system repre-
sented in Figure 1 (Some repeated parts have been omitteid)d&scriptor contains
the resource constraints associated with every compoaentlines 10-17: EJB con-
tainerejbl has to be installed on a host that have at least 512 MB of frerang and
location constraints, that indicate the co-location of smmmponents (e.g. lines 45-47:
transaction service componeérgnsacl must reside on the same host as the configura-
tion manager since they share local resources in the cumghmentation). We can
also control the location of a component according to thediédth of the network:
lines 51-53 specify that the bandwidth between the macthiosng componenebl
and the others machines must be greater than 150 Mb/s).

For both performance scalability and high availabilitycledier can be replicated.
However, we should not require that all replicas be startedtieasame time. What is
usually desired is to activate as soon as possible the kttapplication when an EJB
container is deployed and a Transaction Service is availdlhle other replicas, mainly
used for performance, can be deployed later as soon as agcessources become
available. For this purpose, we have addedralinality attribute to the description of a
component’s interface. This attribute takes the form of apb® of values that specify
the minimum and the maximum number of bindings allowed tglothe interface.

1|<component name="apache">| 19|<component name="ejb2"> 34 |<component name="transac1">
2| <location-constraint> 20| ...</component> 35| <location-constraint> <target name="t1" />
3 <target varname="a" /> —noian 36| </location-constraint>
4| </location-constraint> ;; <c<o/210prg;§:te:?>me— ejb3"> ‘ 37|</component>

< t>
Slicomponen 23[<component name="web1"> 38‘<component name="transac2"> ...</component> ‘
6 |<component name="ejb1"> o4 4 traint> . - - "
7| <location-constraint> resource-constraint> 39| <component name="configurationManager" >
8 <target name="e1" /> 25 <memory free="512 40| <location-constraint> <target name="c" />
9| </location-constraint> 26 unit="MB") 41| </location-constraint>
10| <resource-constraint> 27 operator="min" /> 42|</component>

<, - int>
11 <cpu speed="1" gg <{gii%z;‘ii;ﬁ:§;ﬁ't:t 43| <!-- Global loc. constraints for JonasALaCarte -->

12 unit="GHz" D 44| <location-constraint>

13 operator="min" /> g(l) g /Eiggtliz;?:gztravivr:b/) 45 <operator name="equal">

14 <memory free="512" 32| </component> 46 <arg varnames="t1,c" />

15 unit="MB" p 47| <loperator>

16 operator="min" /> 33|<component name="web2"> 48| <operator name="alldiff">

17| </resource-constraint> 34|...</component> 49 <arg varnames="e1,e2,e3" />

18|</component> 35/<component name="database"/>| 2(1) <foperator>
<binding from="w1" to="*">

36[<component name="security"/> | 52 <bandwidth="150" unit="Mb/s" />

53| </binding>
54| _</location-constraint>

Fig. 2. Deployment descriptor of JonasALaCarte

3.2 Deployment process

As stated in section 2.3, dedicated machines—the zone managee defined for each
zone. A given zone manager has two roles: (1) Maintainingtaofithe machines in a
zone and (2) orchestrating the deployment process in the zon

We consider in this section a single manager per zone. Thessldf this manager
is maintained on an already known site. A machine joiningreezgets the zone manager
address and sends a presence notification message. The anaganadds the newly
connected machine in a list. The case of multiple zone masagecessary for fault-
tolerance, will be detailed in section 3.3.

The first step of the deployment process consists in sendm@DbL files of the
J2EE system to deploy to the zone manager (whose identitders obtained before-
hand by the administrator, from a given web site for examp@s)soon as the deploy-
ment descriptor is received by the manager, the deploynaskstare performed as
follows:

1. The manager multicasts the deployment and architecaserigtors to all the zone
nodes that are connected. The deployment descriptor osmtsource and location
constraints, and the identity of the manager.

2. Having received the deployment and architecture dascsipeach node checks the
compatibility of its local resources with the resourcesuiszg for each component.
If it satisfies all the resource constraints associated aitomponent, it sends to
the manager its candidature for the instantiation of thimmonent.

3. The manager receives several candidatures and triesroute a placement solu-
tion in function of the location constraints and the cantlidss. In the case there is
no location constraint associated with a component, thiecBirsdidate is chosen.

4. Once a solution has been found (or if a candidate has bessechn the previ-
ous step), the manager updates the deployment descrigtothei new placement
information and broadcasts it to all the zone nodes.

5. Each node that receives the new deployment descript@tepits own one and is
thus informed of which component it is authorized to instetand of the new
location of the other components.

6. The final step consists in downloading necessary packegasvell defined pack-
age repositories. The location of these repositories isee@fin the deployment
descriptor (not shown in the example for sake of clarity). the components that
are instantiated locally, their client interfaces (if anyst be bound to remote com-
ponents. When the remote component possesses a constraidielity, a request
is sent to the corresponding machine in order to know if aibo@ possible. If the
addition of a new binding is accepted at the server side amhwapositive answer
is received, the binding is achieved with the remote refeemld in the answer
message. Besides, the number of incoming and outgoingrgjrisiupdated.

The above steps definepropagative deployment, that is, necessary components
for running J2EE applications can be instantiated andestasithout waiting for the
deployment of all the components in the ADL descriptor. Agrsas a resource become
available or a machine offering new resources will entemigvork, candidatures for
the installation of the “not yet installed” components vii# sent to the zone manager,
making the deployment progress.

When a new deployment descriptor is received (step 5) tharngnestablishment
described at step 6 can also be made if the deployment desargmtains new infor-
mation on the location of some components that have to becbaith some already
(locally) deployed components.

Let’s consider an example of resource constraint. The cainslldiff in the deploy-
ment descriptor (lines 48—49) indicates that the tiE#&Container must reside on three
distinct hosts. In order to resolve this constraint, a maenust at least have the infor-
mation of three machines that can hosts each om&BGontainer. Thus, by collecting
candidatures (step 3), the zone manager may decide on tbenpdat of component
provided there exists a combination of candidatures tHaesdhe location constraints.

We can notice that in this deployment process: (1) the héstsen of a component
is made by the zone manager; (2) the instantiation of a coemide achieved by the
host selected by the zone manager; (3) the bindings neededdiyponent are initiated
by the machine hosting it; (4) the activation of a componeamtice made as soon as its
client interfaces are bound. Note that in our case, theatativ of the container com-
ponents (i.e. EJB and Web containers) involves the aabinvaif the J2EE application
running inside.

3.3 Automatic recovery from failures

In the environment we target, resources can also becomailatae (e.g. the amount
of free memory demanded may decrease and become not suffiseme parts of the
J2EE system can be faulty, some machine may fail etc. In #ypep a failure can be
due to a hardware crash of a machine, a disconnection fromettveork or a software
bottleneck. This last case constitutes a failure of a corapbn

Failure of acomponent The recovery of a component and thus its redeployment dsnsis
in sending to the zone manager a message holding the ideftihe component to
redeploy. This is done by the machine hosting the faulty comept (The failure, i.e.
the non-responsiveness of the component, is detectedgtmeoprobe associated with a
control interface of the component.). Then, the zone manap@ates the deployment
descriptor by removing the location of the component anddicasts the new descriptor
to all the machines connected in the zone, automating threpteginent of the faulty
component. Indeed, for all the machines, a component resnaitieployed (i.e. it has no
location), thus, they find themselves back in the propagatdéployment. The phases of
local evaluation of the resource constraints and the arceunant of candidatures will
go along.

When a component fails, it is important to consider its stditthe component is
replicated, like the EJB container and the Web containefices, the stateful data are
automatically sent to any replica added to the group. Thésiesd by the group com-
munication systems embedded within these components.rilegahe database, we
consider that a regular copy is done on a data-center aljptarobtain stateful data
when the database fails. This solution is frequently usebhtiernet applications de-
ployed in wide-area networks, like in the edge-computinglets.

When Apache fails, all the incoming requests are lost duriregreconfiguration
time. One solution consists in deploying a lightweight comgnt storing the incoming
requests in a list during the time the Apache component @vering.

Resource violation When a resource constraint associated with a component is no
longer verified on a specific host (for example the amount @ fmemory required
is not sufficient), the corresponding component must beplegied. This redeployment
is performed the same way, except that the state of the caampoan be saved properly.

Failure of a machine other than a zone manager In a zone, a machine hosting one or
several components may definitively crash. A crash is detdeby the zone manager
which maintains the list of the machine connected in the z@vigen the manager de-
tects a crash, as in the case of the failure of a componenpdites its deployment
descriptor by removing the location of the component(s) was running on the faulty
machine. Then, the deployment descriptor is broadcasthter shachines so that the
missing components can eventually be re-instantiated.

Failure of a zone manager The crash of the zone manager is critical as it is responsi-
ble for choosing a host for each component. In order to dethl thie failure of such a
manager, we define several managers within a zone. Everygaahnas the same role as
defined previously: it maintains the list of the machines #na connected in the zone; it
collects the candidatures for the instantiation of comptsiend it resolves the location
constraints depending on the received candidatures. Toetise fault-tolerance of the
zone manager, we consider a number of replicas. At a gives tiheader is in charge
of establishing the deployment process. The address obtie manager is mentioned
in the deployment descriptor sent to the machines of the.Z6aeh information re-
ceived by the leader is multicast to the backup managerg asgmoup communication
system offering the FIFO order and reliability. The failurfethe leader is detected by

the backup machines and a new leader is elected. The zongeradentity is updated
in the deployment descriptor and like any descriptor chatige piece of information
is sent to the machines of the zone that will then deal witmtne leader.

4 Implementation status and evaluation

4.1 Implementation status

The ADL presented in section 3.1 allows the specificatiomefilacement of the com-
ponents according to some conditions on resource and docatinstraints. We have
chosen FractalADL to support the definition of deploymerstadiptors in an XML for-
mat. The main aspect with resource and location constraietsheir manipulation at
run time in order to observe and detect changes in the emagat to react on these
changes and to find a placement solution at a given time aiogptd some machine
candidatures. We use Cre&na Java library for writing and solving constraint satis-
faction problems or optimization problems, to represetdrface cardinality, possible
bindings and resource and location constraints.

Specific probes are used in order to introspect the resonemxed by the compo-
nents. We use RAJE (Distributed Resource-Aware Java Environment) [7], amresit
ble Java-based middleware to model hardware resourcese§®ar, memory, hetwork
interface...) or software resources (process, socketathr.). For every resource con-
straint of the deployment descriptor, a resource RADE is created and a periodic
observation is launched. The value returned by a probe slfohost to check the con-
sistency of a resource constraint according to the localures state. If all the resource
constraints associated with a component are verified by aimadt applies for its in-
stantiation. When the value returned by a probe does notatapesource constraint,
our run-time support is notified in order to redeploy the comgnts that requires this
resource as described in section 3.3. The current impleatientof our system does not
support the computation of bandwidths between machinezbes on a predefined file
describing the properties of network links within a zone.

Component instantiation are made by a host when this hosbéais chosen by
the zone manager. When an updated deployment descriptaeised, the location of
the newly instantiated components is discovered, reguitirbinding requests. When
a binding is accepted, a stub component and a skeleton ca@npare dynamically
created thanks to the ASM libréhyand are deployed with FractalRMI. The server in-
terfaces of the stub component are of the same type as thef tmelocal client inter-
face that has to be bound. When the location ofb@Container is known, a new pair
stub/skeleton is created and deployed if the number of @ugdaindings allowed (i.e.
the interface cardinality) has not been reached.

4.2 Evaluation

A complete evaluation of the deployment and redeploymetitarkind of environment
we target implies to precisely control the dynamism of thedént resources and hosts.

5 http://kurt.scitec.kobe-u.ac.jp/ shuji/cream/
5 http://asm.objectweb.org

We have indeed to take into account the announcement of negtéandidatures—
which implies the availability of resources—in order to cartgpa placement solution.
However the feasibility and the performance of the deplaynpeocess and recovery

30

20

Time in ms

0 10 20 30 40 50 60 70 80 90 100

Number of components to instantiate

Fig. 3. Time required for a zone manager to decide on the placement of a seingionents in
function of the number of candidatures

mechanisms can be measured accurately when all the resanme@vailable. In this
case we can evaluate the time needed by a zone manager totecagpacement solu-
tion for the components of a virtual cluster.

Figure 3 shows the time for a zone manager to compute a plactesoleition when
the number of received candidatures is sufficient, in fumctif the number of compo-
nents to instantiate. We have considered a zone composethofisand of simulated
machines on which the number of components to instantiaiesrvéfom one to one
hundred. The experiment corresponds to the deploymeneddrtthitecture of Figure 1
according to the constraint “each component must residedistiact host” @lldiff con-
straint). Somewhat contrived, this constraint encommsassecomplexity of other con-
straints involved in our deployment specification (resewronstraints resolution has a
negligible impact on the computation time). The evaluatias been conducted on a
laptop (1,7 GHz Pentium Centrino). This experiment allowsdo verify that the time
to compute—with the Cream library—a placement solution (wakmronditions are
met) remains acceptable regarding communication costdegtwnachines. This com-
putation time is likely not to be the prevalent factor in nianbf Grids configurations.
We are currently conducting the evaluation of the deployneém virtual cluster and
the automatic management of failures on a Grid. The maircdliffaspect remains the
control of hosts and resources availability.

5 Related work

Our work is related to several different open-source andaeh domains. We sin-
gle out the following ones: component-based deploymentrid &wvironments, multi-
tier deployment in wide-area networks, resource allocdo distributed systems and
architecture-based systems.

We share with GridCCM [8], GridKit [9] and Proactive [10] tteame approach
consisting in abstracting the system to deploy on the godentassembly of compo-
nents. Proactive work is closer to ours since it consideastal component model to

represent hierarchical and parallel systems. Howeveryvotk covers both the resource
management issues and the automatization of recovery aibune's.

Exploiting the Grid resources to increase multi-tier apgiion performance and
fault-tolerance become recently the aim of many resear@imsd?2, 1, 11]. However,
focus is more on defining the best configuration and modeladease performance
rather than on the management aspects.

Many works deal with resource allocation in distributedteyss [12—15]. In our
work, we propose a simple solution for resource allocatimh\&e believe that, thanks
to our modular component-model, we can easily adopt diftgwelicies and algorithms
for an optimal resource usage. Furthermore, to our knovelgahgst of the works on the
Grids like PlanetLab and Globus, focus on parallel apgbeet that are composed of
independent tasks. Compared to the proposed solutiongjept an architecture-based
approach motivated by the complex architecture of the rtieltiinternet application
we address.

The architecture-based management approach [3] is maiplrienented in close
environment like in SmartFrog [16] system or Jade systerh [hthese two systems,
the deployment process considers that target machinegale sand homogeneous,
which is not the case in Grids. Furthermore, handling fasurelies on a centralized
management unit, which hardly applies to the highly distieéll Grid machines. In our
solution, the machines collaborate in finding appropriasources and for handling
failures.

6 Conclusion

This paper proposes a solution for the deployment of erigergystems in Grids and an
automatic recovery management in face of failures. Depéaytrin such environment is
quite challenging as the platforms we target are highlyrithsted, heterogeneous and
dynamic. We offer a resource-aware deployment feature Z&EJsystems, which is
essential in Grid heterogeneous environments. We also nkgnate that the constraint-
resolution is performed in a reasonable time. The role ofatministrator is reduced
to the writing of the deployment descriptor. All the deplagmb process and the recov-
ery from failures are automated. Furthermore, the admatist does not need to be
expert of the heterogeneous and complex J2EE systems. éjdfts of the system
are abstracted into Fractal components and the configariattberefore unified. In our
work, we aimed at maintaining the structure described irAh& descriptor by replac-
ing each time a faulty component by another. This allows gngtthe continuity of
Internet services and maintaining their quality of service

In this paper we adopted a special architecture of the J2Etersy the virtual clus-
ters. We believe that our solution and mechanisms are aiyido other architectures.
It is only necessary to write appropriate deployment dpsars and constraints. We
are currently investigating a more complete evaluationwfapproach on a Grid by
taking into account resources and hosts availability. lMdeee, some optimization can
be defined when dealing with the placement decision of rapllty considering the
symmetry of such components.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Rabinovich, M., Spatscheck, O.: Web Caching and Replication. Addi¢esley, Reading,

Massachusetts, USA (2002)

. Pierre, G., van Steen, M.: Globule: a Collaborative Content DgliMetwork. IEEE Com-

munications Magaziné4 (2006)

. Dashofy, E., van der Hoek, A., Taylor, R.: Towards ArchiteetBased Self-Healing Sys-

tems. In: Workshop on Self-Healing Systems, Charleston, South Carbol®A (2002)

. Abdellatif, T., Korn&, J., Stefani, J.B.. J2EE Packaging, Deployment and Recortfigura

Using a General Component Model. In: Int. Working Conference omfbnent Deploy-
ment, Grenoble, France (2005)

. Bruneton, E., Coupaye, T., Leclercq, M., &ua, V., Stefani, J.B.. An Open Component

Model and its Support in Java. In: Int. Symposium on Componenteb@sfware Engineer-
ing, Edinburgh, Scotland (2004)

. Dashofy, E., van der Hoek, A., Taylor, R.: An Infrastructurethe Rapid Development of

xml-based Architecture Description Languages. In: Int. Conferenc8oftware Engineer-
ing, Orlando, Florida, USA (2002)

. Mateo, Y., Guidec, F., Courtrai, L.: A Java Middleware Platform for Rese-Aware Dis-

tributed Applications. In: Int. Symposium on Parallel and Distributed CdamguLjubljana,
Slovenia (2003)

. Denis, A., Rrez, C., Priol, T., Ribes, A.: Padico: A Component-Based Softwiras-

tructure for Grid Computing. In: Int. Parallel and Distributed ProcesSiygposium, Nice,
France (2003)

. Cai, W.,, Coulson, G., Grace, P., Blair, G.A., Mathy, L., YeungKW The Gridkit Dis-

tributed Resource Management Framework. In: European Gride@amde, Amsterdam,
The Netherlands (2005)

Baude, F., Caromel, D., Morel, M.: From Distributed Objects to Hatriaal Grid Compo-
nents. In: Int. Symposium on Distributed Objects and Applications, Cathaiya(2003)
Sivasubamanian, S., Alonso, G., Pierre, G., van Steen, Mbe®BIB: Autonomic Data Repli-
cation for Web Applications. In: Int. World-Wide Web Conference, Chilzan (2005)
Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserveseehamism for resource man-
agement in cluster-based network servers. In: Conference osuveraent and Modeling of
Computer Systems, Santa Clara, California, USA (2000)

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, Ktishnakumar, S., Pazel,
D., Pershing, J., Rochwerger, B.: Oceano - SLA based managerha computing utility.
In: Int. Symposium on Integrated Network Management, Seattle, WasihingSA (2001)
Fu, Y., Chase, J., Chun, B., Schwab, S., Vahdat, A.: SHARParchitecture for secure
resource peering. In: Symposium on Operating Systems Principlé®nBanding, New
York, USA (2003)

Chase, J., Irwin, D., Grit, L., Moore, J., Sprenkle, S.: Dyitavfirtual Clusters in a Grid
Site Manager. In: Int. Symposium on High Performance Distributed @abimgp, Seattle,
Washington, USA (2003)

Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., MuPayloft, P.: SmartFrog: Config-
uration and Automatic Ignition of Distributed Applications. In: Plenary Warks of the HP
OpenView University Association, Geneva, Switzerland (2003)

Bouchenak, S., Boyer, F., Hagimont, D., Krakowiak, S., Mosde Palma, N., Qema, V.,
Stefani, J.B.: Architecture-Based Autonomous Repair Managemanipflication to J2EE
Clusters. In: Symposium on Reliable Distributed Systems, Orlando, FlasigA (2005)

