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ABSTRACT

The unpolarized infrared emissivity of oil films on sea sur-
faces is derived under the geometric optics approximation.
The multiple reflections at each of interface are ignored, but
the multiple reflections between the upper and lower inter-
faces of the oil film are taken into account. The oil film is
assumed to be thin, so that the two interfaces can be con-
sidered as parallel and identical. Thus, under the geometric
optics approximation, the oil film can locally be seen as a
Fabry-Ṕerot interferometer. Thus, the emissivity of the con-
taminated sea can easily be obtained from the emissivity of
the air/oil interface only. Emissivity comparisons between
clean and contaminated seas are then presented to study the
oil film detectability.

Index Terms— Sea surface, Water pollution, Infrared de-
tectors, Optical propagation, Geometrical optics.

1. INTRODUCTION

Remote sensing, by either radar or optical imagery, can be
used to detect and monitor possible oil slicks on sea surfaces
[1, 2]. For optical applications, in order to act quickly when
marine oil pollutions occur, it is then essential to disposeof
a means that can predict the emissivity, which quantifies the
intrinsic radiation of the surface. Then, by calculating the
contrast between a sea covered by an oil film (called con-
taminated sea) and a clean sea, it is possible to study the de-
tectability of marine pollutions.

For optical or infrared (IR) applications, at moderate an-
gles, since the electromagnetic wavelengthλ is much smaller
than the sea surface mean curvature radiusRc, the tangent
plane approximation (usually called Kirchhoff approxima-
tion, KA) can be applied. Moreover, the electromagnetic
wavelengthλ being also much smaller than the surface root
mean square (RMS) heightσh for both clean and contami-
nated seas, the geometric optics approximation (GOA) can
be applied. Indeed, at optical or IR frequencies, the capillary
waves of sea surfaces also have a large mean curvature radius
and a large RMS height comparatively to the wavelengthλ.

From an analytical approach based on previous work
[3], the unpolarized emissivity of a thin oil film over a 2D
anisotropic rough sea surface (i.e., for a general 3D problem)

is derived under the GOA. Attention is focused here on the
case of homogeneous insoluble oil films, which restricts the
validity domain of the study to low to moderate wind speeds
at 10 meters above the sea surfaceu10 less than8 − 10 m/s
[4, 5]. The multiple reflections at each interface are ignored
(i.e., for both the upper air/oil interface and the lower oil/sea
interface for the contaminated case). By contrast, the multiple
reflections between the upper and the lower interfaces of the
oil film are taken into account by assuming a locally flat and
planar thin oil film. In other words, the two surfaces of the oil
film are assumed to be strictly identical and parallel, so that
the film can be locally seen as a Fabry-Pérot interferometer.
This implies that the whole oil film problem can be treated
from the single air/oil surface problem, by substituting the
Fresnel reflection coefficient of air/oil single interface for the
equivalent Fresnel reflection coefficient of the air/oil/sea film.
The calculations are led for IR wavelengths, inside the two
windows regions3− 5 µm and8− 13 µm at the wavelengths
3.4 µm and10 µm, for which the refractive indexes of the sea
water (taken from the refractive index of pure water by Hale
and Querry [6] with the salinity adjustment from Friedman
[7]) and the oil [8, 9] are given in Table 1. Since under the
GOA, the emissivity depends on the slope PDF (Probability
Density Function), the RMS slope along the wind direction
of a contaminated sea surface must be calculated. In this
paper, one model of surface slope damping due to oil films is
studied: the Lombardini et al. damping model [10], is a rather
simple model which is independent of the oil film thickness.

In what follows, in section 2, the hydrodynamic modeling
of the surfaces of clean and contaminated seas is described.
In section 3, the emissivity contrast between a clean sea and
a contaminated sea is calculated, and the oil film detectability
is studied.

2. HYDRODYNAMIC MODELING OF THE
SURFACES OF CLEAN AND CONTAMINATED SEAS

The hydrodynamic modeling of the surfaces of clean and con-
taminated seas is based on the Elfouhaily et al. model [11]
for the case of a clean sea. By comparison, for the case of a
contaminated sea, a damping effect occurs, which has a max-
imum located in the gravity-capillarity region of the surface
wave spectrum, around the surface wave frequencyνs = 10
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Fig. 1. Isotropic part of the surface slope spectrum of clean
and contaminated seas (using the Lombardini et al. damping
model) versus the surface wavenumberks. The wind speed is
u10 = 7 m/s.

Hz. This damping effect is expressed by an attenuation coef-
ficient y [10], which is usually called the Marangoni viscous
damping coefficient. For more details, one can refer to [4].

To describe this damping effect, we refer to two distinct
hydrodynamic models of the literature. The first one, namely
the Lombardini et al. damping model [10], is rather sim-
ple, as it depends on only2 hydrodynamic parameters, but
in return is independent of the film thicknessH. The sec-
ond one, namely the Jenkins and Jacobs damping model [12],
is more sophisticated, as it depends on9 hydrodynamic pa-
rameters and depends on the film thicknessH, but is valid
only for thin films. Here, we concentrate on the first model,
and represent in Fig. 1 the surface slope spectrum of clean
and contaminated seas for a wind speed at10 meters above
the sea surfaceu10 = 7 m/s, with different values of the two
parametersωD andE0 of the Lombardini et al. model (ωD

being the oil characteristic pulsation, andE0 the oil elastic-
ity modulus). These two parameters are chosen to match ex-
perimental results of both the surrface wind wave spectrum
damping [13, 14] and the RMS slope [15]. As expected, one
can observe in Fig. 1 that the oil film strongly damps the high
frequencies corresponding to the capillary waves. Compara-
tively to higher values ofE0, which typically correspond to
organic films, the damping in the high frequencies is in gen-
eral weaker for oil films than for organic films. Moreover, the
damping is stronger forωD = 1 rad/s,E0 = 4 mN/m than
for ωD = 10 rad/s,E0 = 2 mN/m, which is stronger than for
ωD = 16 rad/s,E0 = 1 mN/m.

Then, this hydrodynamic modeling is applied in section
3 to the infrared emissivity of clean and contaminated seas,
in order to study the detectability of oil films. To do so, it

must be noted that both the upper (air-oil) and lower (oil-sea)
interfaces of the oil film obey the same hydrodynamic mod-
eling, with identical parameters. Moreover, as dealing with
thin oil films, it is assumed that the two interfaces of the oil
film are strictly identical and parallel (see Fig. 5 of [4]). In
what follows, the surface slope spectrum is used to calculate
the surface RMS slopes, in the up-wind directionσsx and in
the cross-wind directionσsy, for both clean and contaminated
seas. Indeed,σsx andσsy are parameters of the slope proba-
bility density function which appears in the expression of the
infrared emissivity under the GOA [3].

3. INFRARED EMISSIVITY OF CLEAN AND
CONTAMINATED SEAS

Under the GOA, which is based on the KA, the two inter-
faces of the oil film can be considered as locally flat and paral-
lel. Consequently, for moderate emission angles and for thin
films, the oil film can be considered as locally flat, and ap-
pears as a local Ṕerot-Fabry interferometer. Then, the multi-
ple reflections between the upper and the lower interfaces of
the oil film can be modeled in a simple way. Indeed, start-
ing from the single (air/oil) interface case, under the GOA,
the Fresnel reflection coefficient of a single interface can be
substituted for the equivalent Fresnel reflection coefficient of
the air/oil/sea film, calculated by considering an infinite num-
ber of reflections inside the film. Its expression is given by
equation (9) of [4].

In this paper, from an analytical approach based on the
work of Bourlier [3], the unpolarized emissivity from a thin
oil film over a two-dimensional anisotropic sea surface is de-
rived by using the GOA.

Then, the infrared emissivities of clean and contaminated
seas can be computed. Fig. 2 represents the unpolarized
infrared emissivities of clean and contaminated seas with re-
spect to the emission angleθ, for a wavelengthλ = 3.4 µm,
a wind speedu10 = 7 m/s, and a wind directionφ = 0.
The contaminated sea is a heavy oil film of thicknesses
H = {0; 10; 50; 100} µm, described by the Lombardini
et al. damping model with parametersωD = 11 rad/s and
E0 = 1 mN/m. The caseH = 0 is plotted to highlight the
influence of the surface wave damping due to the presence
of oil. The result of the contaminated sea for zero thickness
H = 0 is very close to the one of the clean sea. Indeed,
differences appear only for relatively high emission angles θ,
owing to the damping of the capillarity waves in the surface
wave slope spectrum due to the presence of oil. Then, for
these typical wind speeds, the damping due to the presence of
oil has an effect on the unpolarized emissivity only for high
emission anglesθ. Similarly, the results with various thick-
nesses do not highlight significant differences with the clean
sea case, except for highθ. In fact, the various thicknesses
represented here highlight a small and seemingly constant
(negative) difference with zero thicknessH = 0. Thus, the
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Fig. 2. Unpolarized emissivities of clean and contaminated
seas versus the emission angleθ, for λ = 3.4 µm, u10 = 7

m/s, andφ = 0. The contaminated sea is a heavy oil film
of thicknessesH = {0; 10; 50; 100} µm, described by the
Lombardini et al. damping model with parametersωD = 11

rad/s andE0 = 1 mN/m.

oil film detection is possible here only for high emission
anglesθ. Moreover, the differences between the various
thicknesses being negligible, the oil film thickness estimation
is impossible at this wavelength.

Fig. 3 presents the same simulations as in Fig. 2, but
for a wavelengthλ = 10 µm. For zero thicknessH = 0, the
same observations can be done: differences with the clean sea
case are observable only for highθ. This highlights the influ-
ence of the capillary wave surface damping onto the emissiv-
ity. Indeed, it is well-known that the capillary waves play an
increasing role as the observation angleθ increases. Contrary
to Fig. 2 whereλ = 3.4 µm, here forλ = 10 µm the results
with various thicknesses highlight differences with the case
H = 0 and, most important, with the clean sea case. The dif-
ferences being significant, this makes the oil film detectable.
Moreover, depending on the emission angleθ, it can be seen
that the results with various thicknesses highlight significant
differences between theses thicknesses, and a general differ-
ent behavior with respect toθ. Then, from the knowledge of
the emissivity of an oil film for a few values ofθ, this makes
it possible to estimate the oil film thickness.

Fig. 4 represents the unpolarized infrared emissivities of
a contaminated sea for two wavelengthsλ = 3.4 µm and for
either a heavy or a light oil film of thicknessH = 50 µm, the
other parameters being the same as previously. For the lower
wavelengthλ = 3.4 µm, the differences between a heavy and
a light oil is not significant, making the oil characterization
impossible. By contrast, forλ = 10 µm, differences between
the two oil types appear for either low or high observation an-
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Fig. 3. Same simulations as in Fig. 2, but for a wavelength
λ = 10 µm
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Fig. 4. Unpolarized emissivities of a contaminated sea versus
the emission angleθ, for λ = {3.4, 10} µm,u10 = 7 m/s, and
φ = 0. The contaminated sea is either a heavy or a light oil
film of thicknessH = 50 µm, described by the Lombardini
et al. damping model with parametersωD = 11 rad/s and
E0 = 1 mN/m.
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Table 1. Refractive indexes of the sea water (taken from the
refractive index of pure water by Hale and Querry [6] with the
salinity adjustment from Friedman [7]), and the oil [8, 9] for
λ = {3.4; 10} µm, respectively.

Sea water Heavy petroleum Light petroleum
1.426 + j0.019 1.41 + j0.160 1.45 + j0.080

1.227 + j0.050 1.52 + j0.002 1.53 + j0.001

glesθ. Thus, this highlights the possibility of characterizing
different oil types at this typical wavelength, which can be
useful to determine the origin of an oil pollution.

4. CONCLUSION AND FUTURE WORK

In conclusion, the emissivity of clean and contaminated seas
was computed by using the classical geometric optics approx-
imation for one interface. The extension to the contaminated
sea was done by using the Lombardini et al. damping model
with parameters chosen to get good agreement with experi-
mental results [13, 14, 15], and by considering an oil film with
two identical and parallel interfaces. Numerical results are
then presented in the middle of the infrared window regions,
at λ = 3.4 µm and atλ = 10 µm. Thus, at the lower wave-
lengthλ = 3.4 µm, the oil film detection is possible mainly
for high observation anglesθ, and the oil film characterization
and thickness estimation are impossible. By contrast, at the
higher wavelengthλ = 10 µm, the oil film is much easier and
it is possible in general at any observation angleθ. Moreover,
the oil film characterization is possible for either low or high
θ, and the thickness estimation is hoped-for if measurements
are made at several observation anglesθ.
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