Framework for the Monitoring of Functional Requirements Along the Product Life Cycle

Guillaume Mandil^{1,2} – Alain Desrochers¹ – Alain Rivière²

Département de Génie Mécanique
 Université de Sherbrooke
 2500 Boulevard de l'université
 Sherbrooke J1K 2R1 Québec (Canada)

LISMMA
 Supméca
 3 rue Fernand Hainaut
 F – 93 450 SAINT-OUEN (France)

Guillaume.Mandil@Usherbrooke.ca

Introduction

- Parts within mechanisms are generally specified for the assembly stage of their life cycle
- Useful values of Functional Requirements are usually defined under operating conditions (at higher temperature and strains...)
- These 2 occurrences will be referred to as product configurations in this work
- Challenge: How to study FR evolution during the product life cycle?
- This work investigates the definition of multiple configurations to integrate part deformation in the FR calculation process

Illustration of the problem

At Assembly

Low Temperature (≈20°C) No Centrifugal Force on the blades

In Operation

High temperature Important centrifugal force on the blades

How maintain the proper gap between the blades and the frame in these 2 physical states?

Proposed approaches for tolerancing study along life cycle:

[L.Pierre]: approach based on detailed design and Finite Elements simulations

Our approached for early design stages based on :

- Early design geometric features [Socoliuc]
- TTRS (SATT) for functional association between geometric features [Desrochers]
- Parametric design and metric tensor for computations [Serré]

Products requirements across the product life-cycle

- Use of a specific set of parameters (orientations and lengths of vectors) to define the mechanism in each relevant use case.
- Calculation of functional requirements using each use case set of parameters previously defined.
- The specifications for a given requirement under two different states have to be compatible. The environment is not a design variable in itself.
- Use of a compact model for avoiding redundancies in data.

Sources of functional requirement variations

- Uncertainties due to Tolerances stack-up: analysis of tolerance zones made thanks to existing techniques
- Changing environment (variation of mechanical load or temperature) : Elastic deformation of parts.

Functional requirements variations across the life-cycle

+au

- \bullet A^{+al}
- Elastic deformation

$$au - al \ll \overline{A}$$

$$\Delta(au - al) << \Delta \overline{A} << \overline{A}$$

• Variation of tolerance zone width is insignificant relatively to mean dimension variation.

Functional requirements variation across the life-cycle

Life-cycle stage Value of Functional Requirement Interference|possible motion Initial State (S1) Final State (S2) Mean value

1D Application Case:

1D Application Case: Hypothesis

- Assembly temperature 20°C
- Cylinder head made of aluminium:
 - Thermal expansion coefficient 2.38x10-5 K-1
 - Service temperature : 90°C
- Camshaft made of steel:
 - Thermal expansion coefficient 1.20x10-5 K-1
 - Service temperature : 80°C
- One dimensional thermal expansion

1D Application Case: Computations & Results

• Analysis: calculation of FR with initial dimensions

Vector	Service temperature	Norm at 20°C	Norm under service temperature
Vcs	80 °C	375 mm	375.270 mm
Vch	90 °C	375 mm	375.625 mm
Vcs –Vch		0 mm	0.355 mm

• Synthesis: minimisation of the misalignment in service.

Vector	Service temperature	Norm at 20°C	Norm under service temperature
Vcs	80 °C	375.355 mm	375.625 mm
Vch	90 °C	375 mm	375.625 mm
Vcs –Vch		0.355 mm	0 mm

Generalization to 3D application case:

Extension to 3D:
 Study 3 articulated bars disposed as a tetrahedron.

- Use of a vectors as geometrical model.
- Use of a metric tensor for the calculation of displacements, configuration under different loads.
- Use of thermal dilatation as load variation.
- Points A,B and C are supposed to be fixed.

Method for 3D calculation:

• Initial configuration

• Mathematical representation

Gi	OA	ОВ	OC	AB	AC	BC
OA						
ОВ						
OC		Kr	nov	vn		
AB						
AC						
BC						

• Final configuration

Mathematical representation

Gf	O'A'	0'В'	O'C'	A'B'	A'C'	в'с'
O'A'						
О'В'	C	alc	ulat	ed	witl	h
O'C'				_		•
A'B'		trie	eore	HIC	aı	
A'C'		forr	nula	atio	ns	
в'с'						

Method for 3D calculation:

Calculation of the Gif tensor:

- Vectorial association : Cholesky factorization
- Affine association : coincidence of 2 points
- Calculation of deviations

Conclusion

- Use of a parametrical representation based on vectors for the mechanism.
- Use of theoretical (or FEA) techniques for the calculation of part deformation.
- Original idea of representing the mechanism at each stage of its life cycle with a specific set of parameters.
- Possibility to model structures and mobile mechanisms.
- Method available at early design phases.

Framework for the Monitoring of Functional Requirements Along the Product Life Cycle

Guillaume Mandil^{1,2} – Alain Desrochers¹ – Alain Rivière²

Département de Génie Mécanique
 Université de Sherbrooke
 2500 Boulevard de l'université
 Sherbrooke J1K 2R1 Québec (Canada)

LISMMA
 Supméca
 3 rue Fernand Hainaut
 F – 93 450 SAINT-OUEN (France)

Guillaume.Mandil@Usherbrooke.ca

Method for 3D calculation 1/2

- Vectorization of the model is not detailed here. (obvious) Set of vectors : \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{BC}
- Calculation of the metric tensor of the initial configuration. $Gi = \left(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{BC}\right)^T \otimes \left(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}, \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{BC}\right)$
- Calculation of thermal expansion : $\Delta L = \alpha \cdot L_0 \cdot \Delta T$
- Deduction of the metric tensor of the final configuration $Gf = (\overrightarrow{O'A'}, \overrightarrow{O'B'}, \overrightarrow{O'C'}, \overrightarrow{A'B'}, \overrightarrow{A'C'}, \overrightarrow{B'C'})^T \otimes (\overrightarrow{O'A'}, \overrightarrow{O'B'}, \overrightarrow{O'C'}, \overrightarrow{A'B'}, \overrightarrow{A'C'}, \overrightarrow{B'C'})$

Method for 3D calculation 2/2

- Vectorial association between initial and final configuration :
 Use of a Cholesky factorisation.
 - Choice of 3 independent vectors : \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{OA} $Gib = \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{OA}\right)^T \otimes \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{OA}\right) = \left(Gic\right)^T \otimes \left(Gic\right)$ $Gfb = \left(\overrightarrow{A'B'}, \overrightarrow{A'C'}, \overrightarrow{O'A'}\right)^T \otimes \left(\overrightarrow{A'B'}, \overrightarrow{A'C'}, \overrightarrow{O'A'}\right) = \left(Gfc\right)^T \otimes \left(Gfc\right)$
 - Calculation of the relation between initial and final configuration: $Gifb = (\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{OA})^T \otimes (\overrightarrow{A'B'}, \overrightarrow{A'C'}, \overrightarrow{O'A'}) = (Gic)^T \otimes (Gfc)$
 - Deduction of :

 $Gif = \left(\overrightarrow{O'A'}, \ \overrightarrow{O'B'}, \ \overrightarrow{O'C'}, \ \overrightarrow{A'B'}, \ \overrightarrow{A'C'}, \ \overrightarrow{B'C'}\right)^T \otimes \left(\overrightarrow{OA}, \ \overrightarrow{OB}, \ \overrightarrow{OC}, \ \overrightarrow{AB}, \ \overrightarrow{AC}, \ \overrightarrow{BC}\right)$

• Affine association : Calculation of the deviation of points. A = A'

Here we have: $\overrightarrow{AA'} = \overrightarrow{BB'} = \overrightarrow{CC'} = \overrightarrow{0}$ $\overrightarrow{OO'} \neq \overrightarrow{0}$

Product Structure: Links and data exchange

Application Case: Parameterization

Design variables and constraints

Functional Requirements Individual Dimension

Loads: (Temperature, Efforts)

Design paradigm: 2 out of 3 of the above elements must be chosen for a design to be fully constrained.

Introduction

• Currently, the study of the functional requirement (FR) is done on an ideal model of the mechanism

Product Structure: Assembly representations

- Each designing task uses a specific assembly representation.
- This framework integrates models related to geometric modelling, tolerance analysis and stress analysis.

• In this work we propose to use vectors and loops of vectors as model for assemblies.

Loops of vectors

Curves, Surface, ...

Method for 3D calculation:

	OA	ОВ	OC	AB	AC	BC	O'A'	О'В'	O'C'	A'B'	A'C'	в'с'
OA												
OB												
OC												
AB												
AC												
BC												
O'A'												
0'В'												
o'c'												
A'B'												
A'C'												
в'с'												