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Stability of Feynman-Kac formulae with
path-dependent potentials

N. Chopin? Pierre Del Moralfand S. Rubenthaler?

Abstract

Several particle algorithms admit a Feynman-Kac representation such
that the potential function may be expressed as a recursive function which
depends on the complete state trajectory. An important example is the
mixture Kalman filter, but other models and algorithms of practical inter-
est fall in this category. We study the asymptotic stability of such particle
algorithms as time goes to infinity. As a corollary, practical conditions for
the stability of the mixture Kalman filter, and a mixture GARCH filter,
are derived. Finally, we show that our results can also lead to weaker
conditions for the stability of standard particle algorithms, such that the
potential function depends on the last state only.

1 Introduction

The most common application of the theory of Feynman-Kac formulae (see
e.g. Del Moral, R004) is nonlinear filtering of a hidden Markov chain (A,),
based on observed process (Y;,). In such settings, the potential function at time
n typically depends only on the current state A,. The uniform stability of
the corresponding particle approximations can be obtained under appropriate
conditions, see Section 7.4.3 of the aforementioned book and references therein.
For a good overview of the theoretical and methodological aspects of particle
approximation algorithms, also known as particle filtering algorithms, see also
Doucet et al] (R001), [Kiinsch| (R001]), and [Cappé et al] (R005|).

They are however several applications of practical interest where the poten-
tial function depends on the complete state trajectory Ag., = (Ag, ..., A,). The
corresponding particle filtering algorithms still have a fixed computational cost
per iteration, because the potential can be computed using recursive formu-
lae. An important example is the class of conditional linear Gaussian dynamic
models, where the conditioning is on some unobserved Markov chain A,. The
corresponding particle algorithm is known as the mixture Kalman filter (Chen
%,, see also Example 7 in [Doucet et al], P000], and @
Doucet], P002, for a related algorithm): the potential function at time n is then
a Gaussian density, the parameters of which are computed recursively using the
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Kalman-Bucy filter (Kalman and Bucy, 1961]). Another example is the mixture
GARCH model considered in [Chopin| (R007).

It is worth noting that these models such that the potential functions are
path-dependent can often be reformulated as a standard hidden Markov model,
with a potential function depending on the last state only, by adding compo-
nents to the hidden Markov chain. For instance, the mixture Kalman filter may
be interpreted as a standard particle filtering algorithm, provided the hidden
Markov process is augmented with the associated Kalman filter parameters (fil-
tering expectation and error covariance matrix) that are computed iteratively
in the algorithm. However, this representation is unwieldy, and the augmented
Markov process does not fulfil the usual mixing conditions found in the litera-
ture on the stability of particle approximations. This is the main reason why our
study is based on path-dependent potential functions. Quite interestingly, we
shall see that the opposite perspective is more fruitful. Specifically, our stabil-
ity results obtained for path-dependent potential functions can also be applied
to standard state-space models, leading to stability results under conditions
different from those previously given in the literature.

In this paper, we study the asymptotic stability of particle algorithms based
on path-dependent potential functions. We work under the assumption that
the dependence of potential n on state n — p vanishes exponentially in p. This
assumption is met in practical settings because of the recursive nature of the
potential functions. Our proofs are based on the following construction: the true
filter is compared with an approximate filter associated to ‘truncated’ potentials,
that is potentials that depend only on A,_p11:, the vector of the last p states,
for some well-chosen integer p. Then, we compare the truncated filter with its
particle approximation, using the fact the ‘truncated’ filter corresponds to a
standard Feynman-Kac model with a Markov chain of fixed dimension. Finally,
we use a coupling construction to compare the particle approximations of the
true filter and the truncated filter. In this way, we obtain estimates of the
stability of the particle algorithm of interest. We apply our results to the two
aforementioned classes of models, and obtain practical conditions under which
the corresponding particle algorithms are stable uniformly in time.

The paper is organised as follows. Section E introduces the model and the
notations. Section [f evaluates the local error induced by the truncation. Section
@ studies the mixing properties of the truncated filter. Section E studies the
propagation of the truncation error. Section E develops a coupling argument for
the two particle systems. Section ﬂ states the main theorem of the paper, which
provides a bound for the particle error and derives time-uniform estimates for
the long-term propagation of the error in the particle approximation of the true
model. Section B applies these results to two particle algorithms of practical
interest, namely, the mixture Kalman filter, and the mixture GARCH filter,
and shows how these results can be adapted to standard state-space models,
such that the potential function depends only on the last state.

2 Model and notations

We consider a hidden Markov model, with latent (non-observed) state process
{A,,n > 0}, and observed process {Y,,n > 1}, taking values respectively in
a complete separable metric space E and in F = R? The state process is



an inhomogeneous Markov chain, with initial probability distribution (, and
transition kernel @,. The observed process Y,, admits W, (yn|y1.n—1; Ao:n) as
a conditional probability density (with respect to an appropriate dominating
measure) given Ao, = Ao.p and Y1.,—1 = y1.,—1, where the short-hand wv.,
for any symbol v stands for the vector (vg,...,v,). As explained in the In-
troduction, this quantity depends on the entire path Ag.,, rather than the last
state \,,. Following common practice, we drop dependencies on the y,’s in the
notations, as the observed sequence yg.,, may be considered as fixed, and use
the short-hand ¥,,(Ao.n) = ¥ (Yn|Yo:n—1; Ao ). The model admits a Feynman-
Kac representation which we describe fully in (R.1)). We consider the following
assumptions.

Hypothesis 1. For all n > 1, the kernel Q,, is mizing, i.e. there exists €, €
(0,1) such that

en(4) < Qulhu1, 4) < 2-E(4)

n

for some £ € M (E), and for any Borel set A C E, any M\,—1 € E.

Hypothesis 2. For p large enough, and all n > p, there exists a ‘truncated’
potential function WP (A,_pi1.n) that depends on the last p states only, and that
approximates W, in the sense that

|\Ijn()\0n) - \ili(Anprrl:n” S ¢n7-p {\IIH(AOTL) A \iji(Anprrl:n)}

for some constants ¢, and T, ¢, > 0, 0 < 7 < 1, and all A\o.n, € E™tl. For
convenience, we abuse notations and set V2 = W, for p > n.

Hypothesis 3. There exists constants a,, by, n >0, a, > 1, b, > 1, such that

1 1 ~
a_ < \I/n(/\o:n) < bnv a_ < \Ijﬁ()\(n—pﬁ-l)*:n) < bn

for all \g., € E™"L, using the short-hand k™ =k V 0 for any integer k.

The constants a, and ¢, depend implicitly on the realisation y;., of the
observed process. Hypotheses 1 and 3 are standard in the filtering literature; see
e.g. (B004). Hypothesis 2 formalises the fact that potential functions
are computed using iterative formulae, and therefore should forget past states
at an exponential rate. One may take \i!ﬁ()\n_pﬂ:n) =V, (2, .., %, A—ptim)
for instance, where z is an arbitrary element of E. We shall work out, in several
models of interest, practical conditions under which Hypothesis 2 is fulfilled in
Section .

We introduce the following notations for the forward kernels, for n > 1:

Fyn()\@n*l? dA/On) = 6)\0:n—1 (dAé:n—l)Qn()\n*h dA{n)‘Ijn()\/On)

where 0y,,,,_, is the Dirac measure centred at Ag.,—1. The above kernels implic-
itly defines operators on measures and on test functions, i.e.,

”yn,u(f) = <FYT7«IUJ5 f> = //L(d/\omfl)ﬂyn(/\omflvd/\é):n)f( E):n)v



for any u € M4 (E™1), any test function f : E"*! — [0,1], where M. (EF)
denotes the set of nonnegative measures w.r.t. E¥ and P(E¥) the set of prob-
ability measures w.r.t. E*.

We associate to v, a “normalised” operator R,, such that, for any u €
M (E™), R, is defined as:

_ mulf)
(1)

for any f: E"*! — R*. Both the +,,’s and the R,’s may be iterated using the
following short-hands, for 1 < k < n:

Ropu(f)

Vel = Yn -« Vit  Remp = Ry ... Rgp.

We have the following Feynman-Kac representation:

E(f(AOn>|Y1n = yl:n) - Rln((f) 5 (21)

Vn, Yf : E"t! — R*, where, as mentioned above, ¢ the law of Aq.
Finally, we denote the total variation norm on nonnegative measures by
[I-ll7v, the supremum norm on bounded functions by || - ||, and the Hilbert

metric by h(u, ') for any pair u,u’ € M, (E¥), k > 1; see e.g.

Zeitouni (JL997) or [Le Gland and Oudjand (R004)), Definition 3.3. We recall that

the Hilbert metric is scale invariant, and is related to the total variation norm
in the following way, see e.g. Lemma 3.4 in Le Gland and Oudjand (R004)):

2
—u < h ! 2.2
=y < Tog 3 (1, ") (2.2)
1
hKp, Kp') < ;HM—#/HTV (2.3)

provided K is a e-mixing kernel. We can also derive the following properties
from the definition of h (Vk € N*, Vu, i/ € M(EF)):

Vkernel Q, h(Qu, Qu') < h(p,p') (2.4)
Vnonnegative function v, h(tp, Yu’) < h(p, 1) (2.5)

with an equality in the latter equation if 1 is positive.

3 Local error induced by truncation

Until further notice, p is a fixed integer such that p > 2 and such that Hypothesis
2 holds. Since our proofs involve a comparison between the true filter and a
‘truncated’ filter, we introduce the projection operator HY which, for n > p,
associates to any measure j(dAo.,) € My (E™!) its marginal w.r.t. its last p
components, i.e. :

HE(u)(f) = / (@20 ) F Ot 100)

for any f : EP — R; for p > n, let HE(u) = p. We also define the following
‘truncated’ forward kernels, for n > p:

;ﬁz(/\n*p:n*la d)‘;zprrl:n)
= 6>\n—p+1:n—1 (d)‘;prJrl:nfl)Q"()‘n—l ) d)‘;z)\llﬁ()‘;,prrln)



and the associated normalised operators, for y € M (EP), f : EP — R™:

and set 72 = v,, Rﬁ = R,, for n < p. From now on, we will refer to the filter
associated to these ‘truncated’ operators as the truncated filter.
We now evaluate the local error induced by the truncation.

Lemma 1. For all 1 <k <n, and for all u € M (E"),
HRk+1 i R — Rz:nHi}fWHTV < 207",
Proof. Let f: EPAN("*1) — [0,1]. One has

:yﬁﬂn HPvep(f)
7k+1n HY (1)
anHlZc) 11(f)

:Ykn k 1#(1)

Rz-i-l:nHlka:u(f) =

Rangflu(f) =

where
ArprmHwen(f) = /E . 1(dAo:k—1) @k (Me—1, dAk) Wk (Aot ) f(A(n—pr1)+in)
X H |: i 1 1;d)\) (/\z p+1)t: ):|
i=k+1
and
:YZ;HH;fflu(f) = / N .u(d)‘():kfl)Qk(/\kfl’dAk)\ilz(/\k*erl:k)f()‘(nprrl)*:n)
En+1
X H |:Qz(>\1 1;d)\) (/\z p+1)t: ):|
i=k+1
hence

|ﬁ/k+1:nH]€’7ku(f) - %nH;f,lﬂ(f)‘

< / . H(d/\O:kfl)Qk()\kfhd/\k)’\Pk()‘O:k)_@i()‘(k—p+l)+:k)’
En 1

X f(Ah—pt1)+:k) H [Qi()\iflvd/\j)\i/f()\(i—p-i-l)*:i)}

i=k+1

< ¢k7p/ +1M(d)\o;k—l)Qk()\k—l,Cl)\k)(‘l’k()\cm)/\‘i’z()\(lc—er1)+;zc))
X f(ANh—pt1)+:k) H {Qi()‘i—lud)\i)\i]f()\(iprrl)*:i)}
i=k+1
< O {Frrn HEven(f) A Ve Hy 1 ve—1p(f) }

according to Hypothesis 2. And, since, for all a, b, ¢, d € RT such that a/b < 1
and ¢/d < 1,



a C

b d

a=cl , ld=1
- b b

(3.6)
one may conclude directly by taking a = Yp1:0 Hy Vipe(f), b = Yen Hi 1 vk—112(1),
C:’?£+1:nH£u(f)7 and d:ﬁlzc)nHlfflu(l) O

Lemma 2. For k > 1, if there exists a (possibly random) probability kernel
Ry, : ¥ — P(EWRTVAPY sych that, for all p € P(E*P),

sup E (‘@2# - Rku,ﬁD < O
Fillflle=1

for some & >0, then, for alli > 1 and u € P(E*P),

”51”1p E (‘<RZ;k+iﬂ — RZH:kHRka f>D < 2(ags1--- agti) Bkt - - bri)Ok
Fillflleo=1

where the expectation is with respect to the distribution of Ry.

Proof. Using the same ideas as above, one has, for f : E®+1—p+DAr [0 1],
'~71€+1:k+iézﬂ(f) . ’7]€+1;k+iRk,UJ(f)

<Rzk it = RZ :k szM7 f> =z = ~
* Lk 7]€+1;k+iRzU(1) 7/€+1:k+iRk:u(1)

In order to use inequality (B.6)), compute
E(| 3 vt BRCE) = T Ren(F))

= E ( /(Riu - Rkﬂ)(d)\(k—p+1)+;k)

ket
H Qu(Ni—1, dN)TT (A pr1y+) f A kimpt 1)+ ki) )
I=k+1
< E (bk+1 o gy (Riﬂ - Rk,u)( _)D
< byt brgily

where f is defined as

kti
FOvk-pirn) = [ T @O ) Oaurioprnynns) < 1.
I=k+1
and conclude by noting that
_ _ k41 ~
Vigrpsilton(l) = /(RZM)(d)‘(kprrl)*:k) IT Qu-r.dA) T (Aa—piay+a)
I=k+1
1
P —
Af+1 - - - Of+i
since RYu is a probability measure. O



4 Mixing and contraction properties of the trun-
cated filter
The truncated filter may be interpreted as a standard filter based on Markov

chain Nfl = A(—pt1)+:n- This insight allows us to establish the contraction
properties of the truncated filter.

Lemma 3. One has:

1
h(RzH;ker/‘v RZ+1;k+p/‘/) < e e —p' v

k+1,p
and
h(RP RP " < g ph(p, 1
( k+1:k4pHs {414 pH ) < Pr1ph(p, 1)
where -
52 = Ez ﬁk = 71 _ Ek’p
k.p (CLk S CLker,Q)(bk .. .bk+p,2)7 P 1+ 5%71)7

for allk >0, and all p ,u' € P(E(k+1)/\p)_

Note &}, must be interpreted as a mixing coefficient, and py , as a Birkhoff
contraction coefficient.

Proof. Using Hypothesis 3, one has:

QktpVh+1:kp—1H1

k+p Fp-1
= //L(d/\(kprrl)*:k) II @indn) ] |:\Ilf(/\(ifp+1)+:i)
k41 k41
k+p
< bk+l--'bk-l-p—l/ﬂ(d)‘(kf;ﬂrl)*:k) H Qi(Ni—1,dN\;)
=41
b e byt =~
< pr(d)\k+1:k+p)

€k+1

where ép stands for the following reference measure:

k+p
Ep(yrinip) = E@pn) [T Qiri-r,dN).
i=k+2
One shows similarly that
Ek+1 g

Qk-’rpﬁ/k-i-l:k-‘rp—lﬂ > fp(d)\kH:Hp).

k41 -+ - Ak4p—1

Hence kernel Qr4pYr+1:k+p—144 is mixing, with mixing coefficient £x1,p.
Following Lemma 3.4 in Le Gland and Oudjand (R004),

MRy aphts B o) = M Qb Vht 1:k4p—1 1 Qi p it 1:54p—11)

IN

1 i
> lp— Wllrv
€k+1,p



using the scale invariance property of the Hilbert metric. Similarly, according
to Lemma 3.9 in the same paper:

h(ézﬂzkﬂ#v Rzﬂ:pﬂl) = h(QrtpTrttiktp—1H QrtpThtihtp—14")

1-¢3
< (=) Al ).
<1 + E%HP)

5 Propagation of truncation error

We establish first the two following lemmas.

Lemma 4. Let R, : E™P — P(EM™tDAP) be a sequence of (possibly random,)
probability kernels such that for alln > 1 and p € P(E™P),

sup E{‘(Rﬁu—f_{nu,ﬁ‘} < n ,
Fillflloe=1

where the expectation is w.r.t. the randomness of R,, then, for alln > 1 and

all ¢ € P(E), one has

n L2541

sup E{’<R11):n<_Rl:n<uf>‘}§ ° > S I Givivtrw

Fillflloo=1 log(3) = \ €71167 11

j=2

where lec =R,... RlC, and with the convention that empty products equal
one.

Proof. The following difference can be decomposed into a telescopic sum:
Rzl)nc - Rlinc = Z (R;in-i-l:néféliiflc - R;in-i-l:nRiRlii*lC) .
i=1

We fix the integers ¢, n, and consider some arbitrary test function f. For
i > n — 2p, one may apply Lemma :

sup E{’<R;io+l:anRlii*1< — R,y RiRuia f>’}

Fillflle=1
S 2(ai+1 .. .an)(biﬂ .. bn)éz
8 0
<

=2 =2
10g(3) €41 &5 4 pr1,p

since €, < 1, a,, > 1 and b, > 1 for all n.
For i < n —2p, let k= |(n —i)/p|, then, using Lemma [, Equations (R.9)



to (R-5) one has

‘(RmeRle:i—lC —RP | RiRi; 1, f>‘

< ‘ Rf_i_l:anRl:iflC - Rf_i_l:nRiRl:iflCHTV
2 ~ _
< @h(&ﬂ e B R 1 G RE g B R 1 €)
< H Pi+jp+1,p X HRf-i-l:i-i-pV - Rf—‘,—l:i-‘,—pul

IOg( ) z+p+1p j=2 v

where v = RPRy.; 1, v/ = R;Ry1.;_1(. Applying (7) p. 160 of

Oudjand (R004)), one gets

< ||:Yf+1;i+p’/ - :Yf—‘,-l:i-i-py/”TV
(A :Yf-‘rl:i-‘rpy(]‘)

= ,
— Ri1qp?

PP
HRiJrlzierV

where, using the same calculations as in Lemma E7

.
~p 1+1
Virr:iap? (1) 2 PR

and
E [Hﬁﬂl:iﬂ:y - ﬁf+1:i+py/HTv}
= E {/ / (v— V/)(d:c)ﬁf_i_l:i_i_p(:z:, dx") }
2z'€Er |JzeEP
< sw [ ]| s B -
x€FEP Jx'cEP #:ll¢lloc=1
bix1...b;
P2 | sy (|-, )
i+l Pl pllo=1
which ends the proof. O

Lemma 5. For alln > 1 and all ¢ € P(FE), one has

L(n—i)/p] -1
RE,C— HERuC|| < i 5.
H nC — 1:nG _— 10g3 ; %+1p Jl;[l Pitjp+1lp

with the convention that empty sums equal zero, and empty products equal one.

Proof. One has:

Rzlj:nc - HgRl:nC = Z (Rerl nR Hz 1R 1€ — Rz+1 nHszlziC)

=1



For i <n —p,let k = |(n —i)/p|, then according to Lemma fj:

’TV

R H lR1 ZC Rz—i—l H—kaipRlﬁiC)

HRlJrl nR Hz 1R11 1C Rerl anJrleRllC

< 10g3h (Rz-i-l si+kp

R Hz 1R11 1< H Rlzc

and ones concludes using Lemma . For ¢ > n — p, one can apply Lemma EI
directly. [l

2
P R pi 1
10g(3) B N Jl_[l +jp+1,p

6 Coupling of particle approximations

We now introduce two interactive particle systems: the first particle system

approximates the true filter, and is equivalent to the type of particle algorithms

studied in this paper, and the second particle system approximates the truncated

filter, and corresponds to an artificial algorithm that would not be implemented

in practice. We work out a way of coupling both particle systems in order to

evaluate the distance between the two (in a sense that is made clear below).
We define, for n > 0,

anp (A(nfp)+¢"*1’ d>\2n—p+1)+:n) = 6)\(n,p+1)+,n,1 (d 2n—p+1)+:n—1)
XQn(Anfla dA;z)a

Qn(Aom«*l’ d)\/On) = 5>\0:n—1(dA/O:n—1) X Qn()\"*h dA{n,) .

We define Vv € M (E™"!), V measurable f : E"™1 — R V) € M (EP), V
measurable g : EtDAP  RE

v(¥nf) go oy V(PR

\I/n.V(f): V(\I/n) ) n'yl(g)_ V/(\IJZ)

For any measurable space (E’,)) and any measure p/ € P(E’), we can take

Z1,Za, ... 1i.d. of law p/ and define the random empirical measure, for N > 1,
| X
=5 20z
i=1
Notice that, as the Z1, Zs,... are only given in law, we only define SV (u) in

law. We define the random operators RN, RPN (¥n) by: Vi € P(E™), RN ju is
a random weighted empirical measure such that

RNp=9,.5Qunu) .

Similarly, V' € P(EP), RPNy is a random weighted empirical measure such
that R R -
RN = 005 (Qupit) - (6.7)

10



As pointed above, RY i and ]:Zf;N 1’ are only defined in law. Since ¢ denotes the
probability density of the first state Ay, the particle system with N particles
approximating the true filter at time n is defined by

RYR) ... R{C,
and the particle system with N particles approximating the truncated filter at
time n is defined by
RoN N RN
Lemma 6. There exists a coupling such that, for all k > 1 and p € P(E*):

sup_E([(RPNHEp— HURY 1, £)]) < our”.
Fillflle <1

As HYRY i and Rz’NH,fu are defined to be random variables with such and
such law, the term “coupling” means that we can define a random wvariable
(HLRY 1, Rz’NHku) with the desired marginals.

Proof. To prove the above result, we produce a coupling between the two ran-
dom measures Rz’NH,f_lu and HY R . Let
T (Aoen) = U2 (Anp)in)s
so that, for p € P(E*), and using (b.7), one has
RYNHY = HE(Ur(S™ (Qup)

in the sense that both sides define the same distribution. Let x1,...,xn 1i.d.
~ pQr, where x; is a vector Ao.x,;, fori =1,..., N, and x; denotes its projection
on the p last components, Xi = A(x—p41)+:k,i, then

N

1
. E . (x:)0y, has same law as HP RY
N Xi k*Vk
Ej:l Vi(x;) im

and
1 ZN: _
—————— Y Uy(xs)d5 has same law as RN HP 1
EJ VUR(xG) o
For any f such that ||f||cc < 1 (using a classical result on empirical measures):
|(REN HE_ 1M — H{Ry 1. f))|
1 Wi (xi W (xi
SQZ ki) ngx)
i=1 E] 1 Pr(x;) Z_j:l Ur(x;j)
_ EZN: Ui(xi) — Urlxs) ‘I’k(xz)z LTk () — ‘I’k( i)
2SN\ Shiwon) | S weo) SN o)}
o Bt al U (xi) N %(xﬁz U, (xi) A ‘I’(XZ)
= N
=2 S e o )
< ¢rt?
using Hypothesis 2, from which we deduce the result. [l

11



7 Main result

We are now able to derive estimates of the error

Eg,N(yl:n) = ; II?Hlp En (|<H£R1:n< - HgR{YnCv f>| Yo = yO:n)
: co=1
induced by the particle approximation of the true filter, for the marginal fil-
tering distribution of the p last states, provided p < n. The expectation Ey
is with respect to the randomness of the N particles, and the functions f are
E(+DAr _ R, Note that &, n(y1:) is by construction an increasing function
of p.

Theorem 7. For any ¢ € P(E), and any test function w.r.t. B+,

4 X 5_ [(n—4)/p]—1
55 (y1:n) < 5 Pitjp+1 (7.8)
N 10g3 Z+1p l+p+1p Jl;[2 Jp
where b
0; = 3Tp(]5i + @ii

Nk

Proof. We first study the following local error, for u € P(E™),

sup IEN H<R£H5_1N - HﬁRfyuu f>‘ ‘ Yb:n = yO:n:|
Fillfllo=1

where the difference of operators can de decomposed into:

Romp_, — HARY = (RoH_, - RpNHD_) + (ReNHL,

n—1

— HPRY ) .

To bound the first term, one may use (25) p. 162 of [Le Gland and Oudjang
(R004), for v = H? | i and Hypothesis 3:

B [y~ Ry )] < 2ol

and, for the second term, one may apply Lemma E:
Ex [[(FrN HE o~ HERY 1, £ )] < dur”

so that

f:niﬁz:lEN H <R5“ — HiRy p, f>H <4,

for 8, = 2a,b,/V'N + ¢, 7. This local error is propagated using Lemma [:
Ex | (R — HERYC1)|
LnfiJ 1

8 «— | &%
<
— 10g(3) ; H pZ+JP+17P

z+151+p+1 j=2

To conclude, one may decompose the global error as follows:
HERionC = HERY,C = (HERynC = BE,C) + (RY,.C — HIRY,C).

where the second term is bounded above, and the first term is directly bounded
using Lemma E [l

12



Since p is an arbitrary parameter, one may minimise the error bound with
respect to p. For instance, one has the following result for time-uniform esti-
mates. As noted above, the error 5£7N(y1;n) is an increasing function of p, so the
bound below applies a fortiori to 5,11) ~ (U1:n), the particle error corresponding to
the marginal filtering distribution of the last state A,,.

Corollary 8. If there exists constants c, €, ¢ > 0 such that, almost surely,
anbn < ¢, €, > €, and ¢, < @, then, provided Tc® < 1, the particle error is
bounded almost surely as follows:

)

1 ) 14+3logec/log T

£y (Y1) < C {log(N) + D} <\/—N

for N large enough, where

16 ] de 3logc/logT

and

p= {10g { 3¢4\jﬁ} /log T-‘ : (7.9)

Proof. Under these conditions, the RHS of ([.§) is smaller than or equal to:

4 2p=2) 4c n [(n—i)/p] -2
£ (i) < Ey (Y (1— 2 —<P—2>) 7.10
nonn) < log3 & ( oTP + N) ; e%c (J )
4 2r-2) 4e \ 2 i/p—1
< 3H7P (1 _ g2 *(10*2))
< o (¢T+ N); €2
. 4 cAr=2) (3¢ - 4c ) (1—e2c=P=2) 1
TP+ —
— log3 &t vVN/ 1- (1 — 5207(10*2))1/7"
4c3P=2) 4c
< 3¢7P + —=
< = (ch + m)z?

for p large enough, since (1 —2z)* <1 —ax for a € (0,1), z € (0,1), so, provided
31 < 1, one may take p as in (E), which gives:
) 32 /4c\ 57 [log N + 2log(3¢/4c) 1\ e
En N(yl:n) < — 3 +1 =
’ e8¢ \ 3¢ —2logT VN

and conclude.

O

Obviously, this is a qualitative result, in that there are many practical models
where such time-uniform, deterministic bounds are not available. For specific
models, one may be able instead to use (@) in order to establish the asymptotic
stability of the expected particle error, where the expectation is with respect to
observed process (Y;,). We provide an example of this approach in Section E

13



8 Applications to practical models

In this section, we apply our general result to three practical models. We keep
the same settings and notations, i.e. the observed process (Y;,) admits some
probability distribution conditional on the path Ag., = Ag., of a Markov chain
(A,,), with initial distribution ¢ and Markov transition @,,, which fulfil Hypoth-
esis 1, see Section E We derive conditions on the model parameters that ensure
asymptotic stability of the particle error; in particular, these conditions imply
that Hypotheses 2 and 3 are verified.

We state the following trivial result for further reference. Let (f,g) a pair
of probability densities (f,g) on E, then:

Vo € B, |log {f(2)} — log {g(2)} | < ¢
= Ve B, |f(2) - g@)| < (¢~ D) {f@) Aglx)}  (8.11)

for ¢ > 0.

8.1 GARCH Mixture model

We assume that the observed process is such that
Yn = O'n(AO:n)Zna n Z 17

where the Z,,’s are i.i.d. N(0,1) random variables, and the variance function
0721 is defined recursively, for n > 1:

0721(/\0:71) =a(A) + 5()‘n)yn2 + 7()‘71)0121—1()‘0:71—1) (8.12)

and 02(M\o) = a(Xo)/ {1 —~v(Xo)}, where o, 3 and v are E — R™ functions.
Conditional on Ag.,, (Y,,) is a GARCH (generalised autoregressive conditional
heteroskedasticity) process (Bollersley, [1986)); see [Chopin| (2007) for a finance
application of such a GARCH mixture model.

The potential functions equal

1 . { Yo }
< e ——n 5
\/ 271'0'721()\0;71) P 20'721(A0:n)

for A\o., € E"M1, and (A,,) is a Markov process, with Markov kernels @,,, which
satisfy Hypothesis 1.
The functions «, 8 and ~ are assumed to be bounded as follows:

\IJn()\O:n) =

0< Omin S 04()\) S Qmax, 0 S 6min S 6(/\) S 6max < 17

O S Ymin S FY()\) S Ymax < 1.

We first consider the case where S(A\) = 0 for all A € E. As mentioned
in the introduction, this simplified model can be interpreted as a standard
hidden Markov model, with observed process (Y,,), and Markov chain (k,) =
(An,02(Ao:n)). However, since 02 (Ag.,) is a deterministic function of 2 _; (Agin—1)
and \,, it does not have mixing or similar properties that are usually required
to obtain estimates of the particle error. Instead, analysing this model as a
Feynman-Kac flow with iterative, path-dependent potential functions make it
possible to derive such estimates.

14



Lemma 9. For the simplified model described above (with 3 =0), the expected
particle error of the corresponding particle approximation is uniformly stable in
time, i.e. there exists constants C, D, such that

)

1 ) 1+3logc/logT

E (€2 (i) < C o) + D} (-

where p is given by (@), provided © < 2 and T¢® < 1, where T = Ymax, € =
(2/1— 1)71/2, and
_ Omax (1 - Vmin)
Qmin (1 - '-Ymax) '

Proof. From (B.19), one sees the process o2 is bounded, 02, < 02(A\o:n) < 02,
for all Ag., € E™T1, where

2 Omin 2 _ Omax
o =37 _ . max 17
- '-Ymax

min 1— Yrmin
so, for a given sequence observations y1.,, Hypothesis 3 is verified with:
1 1 Yn } 1 { Yn }
— = ——=exp{——%— ¢, by=——=—=exps——F— 7,
n /2702 { 202, " 2mol. 202 .
provided the truncated potential is taken as:

qji()\nflﬂ’lin) = \I/n(Z, cees Ry A’n.7p+1:'n,)

where z is an arbitrary element of E. For Hypothesis 2, one has, for any
Xoins Moo € B such that Ay py1y+m = Xon—pi1)tem °

1
|10g \I/n()\on) - log \Ijn()\gn)l < 5 ‘lOg 0721()\02") - ].Og 0121 ()‘671)‘

+ﬁ 1 _ 1
2 0721()‘03n) 0721()\/0n)
2 2
Omin T Yn | 2 2
H;;]_;;nin - yon()‘om) - O'n()‘é)n)}
where o2 is contracting, in the sense that, for n > p,

‘0721(/\01n) - 0721( 677,)‘ = {H 'Y(/\nz)} ‘0'72171)()‘03“*1?) - 0.72171)( 6:n7p)|
1=0

2

max*

< 2900

Thus, using (B.11), and the fact that (e* — 1)/ is an increasing function, Hy-
pothesis 2 is verified with 7 = ypax and

962 (g2, 42
¢n J— T_q lexp{ max (41’1111] yn) _ 1 ,

min

for any ¢ < p. Finally, to compute the expectation with respect to process (Y;,)
of the error bound ([7.§), one may use repetitively the following results:

E [exp (a¥2) [Yim1] < (1—2a0%,,) ">

15



for a < 1/202,,, using standard calculations and the fact that Y,,, conditional

max?

on Yi.m—1 and Ao, = Agep iS N (O, 0721()\0:,1)). This implies in particular that:

0_2' —1/2
E [anbn|Y1:n,1] S <2% — 1) =cC

max

2

min

where the constant ¢ is well-defined since o2, /o
equality,

< 2, then by Jensen in-

1
E Yim1| > ¢t
[anbn } 1: 1] ZCc 5,

2 4 -1/2
exp {Tq —Zg’fm} (1 — 271 —ZT%X> - 1] =¢

where ¢ is properly defined for ¢ large enough. Using the above results recur-
sively on the sum on the RHS of (7.§), one obtains the same expression as in
(F-10)) for the error bound than in Corollary [ for time-uniform estimates (with
the values of ¢, ¢, 7 as defined above), and concludes similarly. O

and similarly,

E [¢n|}/1:n71] S qu

If 8 is allowed to take positive values, stability results may be obtained under
more restrictive conditions. In particular, one may impose that ~ is a constant
function.

Lemma 10. For the general mixture GARCH model defined above, the expected
particle error is uniformly stable in time, i.e. there exist constants C, D, such

that
1 > 14+3logc/ log~y

B (€1 (V)] < C log() + D)

provided v is a constant function, y(\) = v, 7¢® < 1, 9 < 2, where T = 7,
c=(2/9— 1)71/2, p is given by ([I.9), and

— (amax \/ 6max> .
Qmin ﬁmin
Proof. We follow the same lines as above, except that the bounds of the process
02 (Xo.n) must be replaced by:

n n—1

Ufnin (n) = 17_—704min + Z(amin + ﬁminyi_k)vk,
k=0

n—1

,y’n,

Ufnax(n) = 1— ,yamax + § (Omax + 6maxy721—k)7ka
k=0

which, by construction, are such that

T max (M)

—max2 -~ <99 < 2.
01211in(n) - =

Hence, one has again

0_2 —-1/2
E [anbn|Y1:n,1] S <2% — 1) =cC
max

16



and the rest of the calculation is identical to those of previous Lemma, with
T=7. [l

8.2 Mixture Kalman model

We focus on an univariate linear Gaussian model, i.e. conditional on Markov
process (A,,), one has Xy = 0 almost surely, and, for n > 1,

Xn - h(An)anl + V w(An)Wn;
Yn = Xn + v U(An)Vn,

where the V,,’s and the W,,’s are independent N(0, 1) variables, and h, v, w are
real-valued functions. Using the recursions of the Kalman-Bucy Filter (Kalmar]
hnd Bucy, [[961]), one is able to marginalise out the process X,,, and compute

recursively the probability density of Y,,, conditional on Ag., = Ag.n, in the
following way:

_ 1 {yn = 10 (Aoin) )
wn(A&n)-—-—7;;;§€i;;56XP {‘ 202 (No:n) ]

where, the following quantities are defined recursively: for n > 1,
= h()\n)mnfl(AO:nfl)

(Aoin) (8.13)
Aon) = () en—1(Nom—1) +v(Aa) + w(An) (8.14)
an(Mom) = {h(An)?en1(Aom—1) + w(Aa)} /o2 (Aoin) (8.15)
(Ao:n) (8.16)
(Aoin) (8.17)

S

= h()\n)mn—l()\O:n—l) + an()\O:n) {yn - Mn()\On)}
= h()\n)2cn71()\0:n71) + w(An) - an(AO:n)2U721(AO:n)

and mo()\o) = Co()\o) = 0.
We make the following assumptions:

S

1. Functions v and w are bounded as follows: for all A € FE,

0<v<ov(\) <7, 0 <w<w(A) <w.

2. Function h is bounded as follows: for all A € FE,

I\ <7 <1

We first prove the following intermediate results.

Lemma 11. The sequence o2 is bounded and uniformly contracting, i.e. for all
p =1, for all Mo, No.p,, such that Ay py1:n = N, i1.n, 0N has

Q2 < 0721()‘0:71) < & ‘0721()‘0:71) - 0121()‘6:71)‘ < Co1f

where 0? = v+ w, 5% = (h? + 1)v +w, C, = h%v/1,, and

1
Ty = < 1.
1+ w/v+ 2¢/w/v + w?/v?

17



Proof. From (), one deduces that

1 1 1
cn(Ao:n) ::v(An)'+ B )2en—1(Mom—1) + W) (8.18)

thus )

1 1\

(:+:) S Cn()\O:n) S’D

T W

and, from (B.14), that
v+w < op(Aom) < (R +1)0 4 @
In addition, (B.1§) implies that
log {cn()\o:n)} =7 (log {Cn—l()\O:n—l)} 3 )\n)

where

1 1
T(c,\)=—1 .
) =~ 1oe{ 55+ e
It is easy to show that, for a fixed A, the derivative of T (¢, \) with respect to ¢
is bounded from above by 7, as defined above. Thus, T (¢, \) is a contracting
function, and, by induction, for n > p,

}0121()‘0:71) - 0121()‘6:71)} |h()‘n)|2 }Cn—l()‘o:n—l) - Cn—l()‘gzn—l)’

S Bzﬁ llogcn—l()\O:n—l) - log cn—l()\é);nfl)}
< C,7E.
where 7, and C, were defined above. O

Lemma 12. The sequence pi,, is bounded and contracting in the sense that there
exists Cp, > 0 such that, for all p > 1, for all n > p, and Ao.n, Aj.,,, such that
An—ptin = )\;l,erlm, one has

ah
|.Un(/\0:n)| < 11— a}—LMnfla |,Un()‘0:n) - .Un( /O:n)| < CuMnflTpv
where
M, = max (lyil) , T=1,Vh, a= (1—

Proof. Note first that

IN

w
l—d=— <an(hom 1— -
a 6+M_a(o.) ( —

so one shows recursively, using (8.13) and (B.1€), that:

|/J'n()\0n)| < 1 *Mn—l
a

18



and that, for Ao.n, Aj., such that Ay_pi1.0 = A

n—p+1l:n>
l1tn (Ao:n) — pen( /0:77,)| (8.19)
P o i—1 i—1 B
< v | S e TT0 e e TT0 a2
i=1 j=1 j=1

where a,_;, al,_, are short-hands for a,—;(Ao:n—i), @Gn—i(Ay.p_;

;). The sequence
a, itself in contracting, since, from ()7 one has, for i < p:

v
’an_i — a;_i’ < F ’Ui_i()‘o:n—i) - 0721—i—1( B:n—i)‘
vCy .

so (B-19) and the fact that |zy — 2'y'| < |z — 2’| + |y — y/| provided z,2’,y,y’ €
[0, 1] leads to

|/‘n()\0-n)_ ( ¢ )|

P
< Z}_L- Tp g + 727 1) —|—2hp+1]
vC, Tt — .
< M, | Zhl( : >+2h”“]
< Mn—ICqu
for 7 = 75 V h, and a well chosen value of Ch. O

We are now able to state the main result.

Lemma 13. For the model above, the particle error is bounded uniformly in
time, i.e. there exist C, D, such that

1 14+3logec/log T
w)
almost surely, for p given by (@), provided the realizations y, are bounded, i.e.
lyn| < Cy for all n > 1, and that T¢® < 1, with 7 = hV 7, and

€2 () < € flog(N) + D}

CcC =

Q| Q

C2 ah \* 1
exp _12} 1+( a/~) ) To = <1
a 1—ah 14+ w/v+ 24/w/v + w?/v?
Proof. This proposition is a direct application of Corrolary E, so we need only
to prove that Hypotheses 2 and 3 are fulfilled. For Hypothesis 2, one may take
_ 1

1 1 C ah \’

tn Vamar L [_;{1+<1—dh> } N v

so that a,b, < c for ¢ defined above. For Hypothesis 3, one has:

2 log ¥n(Aoin) —log Wpn(A,))| < [log ol (Aoim) — log o (A, )|

{0 = o)} {0 = (M)}

0121(/\01n) 0121(/\6n)

<

(™)

+
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where the first term is such that

1
’10g 0121(/\01n) - log 0721( IOn)’ < F ’Ui(AO:n) - 0721( /071)‘
Cy
< =Z4P
= g2 To

according to Lemma [[1], and the second term is such that

{yn — Mn()\o:n)}2 _ {yn — Mn()‘é):n)}z
7 (Aon) 77 (Ao:n)

. 2 / 2
< “2(\ ) - : — —
{un = (o)} | .
0'721()\0”)0721()\6”) ‘Un()\O:n) Uﬂ()\O:n)|
QCHCQ ah 20200 _ 9
< Y11 _ P y 1 _ .
- ( 1_dh)T T (1—dh> e

and one concludes using (B.11]) and taking

c, C.C2 ah c20,
‘b:%:e"f’{@* #zy(lﬂa )* a

g —ah

Obviously, the boundness condition on the realizations y, is not entirely
satisfactory, as the generating process of (Y,) is such that Y;, should leave any
interval eventually. However, Y,, is marginally a Gaussian variable with variance
uniformly bounded in time (since h < 1), so this remains a reasonable approx-
imation if Cy is large enough. Generalizing the above result to more general
conditions is left for future research.

8.3 Application to standard state-space models

Consider a ‘standard’ state-space model, based on a linear auto-regressive state
process (X,,):
Xp=pXp_ 1+ A, Ai,...,A,, ... iid (820)

for t > 0, p € (—1,1) and Xo = Ay, and an observed process (Y;,), with
conditional density, with respect to an appropriate dominating measure, and
conditional on X,, = z,, given by the potential function ¥:X(x,,).

In this section, we show how to apply our stability results to such a standard
state-space model, where the potential function depends only on the current
state X,,. We rewrite the model as a state space model with hidden Markov
chain (A,,), and observed process (Y;,) corresponding to potential function

k=0

where the argument x,, in the right hand side has been substituted with the
appropriate function of Ag.,,, as derived from (B.2().
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Clearly, the reformulated model satisfies Hypothesis 1: the (A,) are ii.d.,
hence they form a Markov chain with mixing coefficient ¢,, = 1. If we assume
that the ¥,,(Ag.,) are such that Hypotheses 2 and 3 hold as well, then we can
apply directly Theorem ﬁ However, the path-dependent formulation of this
model is artificial, and, in practice, we are interested in filtering the process X,,,
conditional on the Y;,’s, rather than filtering the A,’s, again conditional on the
Y,’s. More precisely, we wish to approximate the conditional expectation of

p—1 n
g(Xn) =g Z pk)\n—k + Z pk)\n—k s
k=0 k=p

for some bounded function g, and, provided g is also Lipschitz, with constant
K, and that the \,’s lie in interval [—[,{], for some [ > 0, one has:

p—1 n p—1 Kl
k k k
Anf )\nf - Anf < p,
g E P E+ E P k g <§ P k) e
k=0 k=p k=0

where 7 = |p|. Therefore, we must consider an additional term in the par-
ticle error attached to the filtering of (X)), which stems from the difference
between the filtering distribution of X,, and that of A,,_p41.n, for some integer
p. Consider the following estimate of the particle error for functions of X,:

gﬁN(ylm) = sup En (| <R1:n< - R{VnCa fg>} |Y0:n = yO:n)
g:llgllec=1,9€ Lip(K)

where Lip(K) denotes the set of Lipschitz functions with Lipschitz constant K,
and f, is the function E"*! — R such that

fg(/\O:n) =9 (Z pk)\nk> )

k=0

i.e., loosely speaking, fy(XAo:n) = g(x), where x, must be substituted by its
expression as a function of Ag.y.

Lemma 14. For the state-space model described above, one has, for anyn > p,

p
P,
1—7

gz(,N(ylzn) S gﬁ,N(yl:n) +

Taking into account this additional error term, we can derive time-uniform
estimates of the stability of the particle algorithm. For the sake of space, we
focus on the following simple example: Y;, € {—1,1}, Y,, = 1 with probability
1/(1+e%"), Y, = —1 otherwise. The potential function (for the model in its
standard formulation) equals:

1

X (z,) = Toevn”

We recall that the support of the (A,) is [—1,1], and therefore X,, € [, ']
almost surely, with I’ = [/(1—7). Thus, Hypothesis 3 holds for b,, = 1/(1+e~"),
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an = 1+¢€'. For Hypothesis 2, standard calculations show that, for two vectors

Ao:n and Ag,, such that A, —pi1:0 = Aj,_,41.,, One has
llog U (Ao:n) — log ¥n(Xpp)| < Z pk()‘n—k — k)
k=p
< 7P

provided 7 = |p|. Hence, using () inequality, Hypothesis 2 holds, with
On = e’ — 1.
For this specific model, we have the following result.

Lemma 15. For the specific model described above, and provided ct® < 1, where
T =|p|, c=¢€", one has:

< 1 1+3logc/log T E
EX (Y1) < C {log(N) + D} [ — b=

where C' and D were defined in Corollary B, p=e2' —1, and E = 4K1'c/3¢.

The above model does not fulfil the usual conditions required in standard sta-
bility results, see e.g. (004, Section 7.4.3), because the Markov chain
(Xy) is not mixing. Thus, it is remarkable that the time-uniform stability of
this model is established using a Feynman-Kac formulation with path-dependent
potentials.

9 Conclusion

To extend our results to a broader class of models, three directions may be
worth investigating. First, it may be possible to bound directly the particle
error, without resorting to a comparison with an artificial, truncated potential
function. It seems difficult however to avoid some form of truncation, as the path
process Ag., itself does not benefit to any sort of mixing property, while fixed
segments A,_,41., do. Second, one may try to loosen Hypothesis 1 (Markov
kernel is mixing) and Hypothesis 3 (potential function is bounded), using for
instance Pudjane and Rubenthaler (200H)’s approach. Third, it seems possible
to adapt our general result on the particle error bound to several models not
considered in this paper, in particular standard models with potential functions
depending on the last state only, by using and extending the approach developed
in the previous Section.
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