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Introduction

The most common application of the theory of Feynman-Kac formulae (see e.g. Del [START_REF] Del Moral | Feynman-Kac Formulae[END_REF]) is nonlinear filtering of a hidden Markov chain (Λ n ), based on observed process (Y n ). In such settings, the potential function at time n typically depends only on the current state Λ n . The uniform stability of the corresponding particle approximations can be obtained under appropriate conditions, see Section 7.4.3 of the aforementioned book and references therein. For a good overview of the theoretical and methodological aspects of particle approximation algorithms, also known as particle filtering algorithms, see also [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], [START_REF] Künsch | State space and hidden Markov models[END_REF], and [START_REF] Cappé | Inference in Hidden Markov Models[END_REF].

They are however several applications of practical interest where the potential function depends on the complete state trajectory Λ 0:n = (Λ 0 , . . . , Λ n ). The corresponding particle filtering algorithms still have a fixed computational cost per iteration, because the potential can be computed using recursive formulae. An important example is the class of conditional linear Gaussian dynamic models, where the conditioning is on some unobserved Markov chain Λ n . The corresponding particle algorithm is known as the mixture Kalman filter [START_REF] Chen | Mixture Kalman filters[END_REF], see also Example 7 in [START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian filtering[END_REF]Andrieu and[START_REF] Andrieu | Particle filtering for partially observed Gaussian state space models[END_REF], for a related algorithm): the potential function at time n is then a Gaussian density, the parameters of which are computed recursively using the an inhomogeneous Markov chain, with initial probability distribution ζ, and transition kernel Q n . The observed process Y n admits Ψ n (y n |y 1:n-1 ; λ 0:n ) as a conditional probability density (with respect to an appropriate dominating measure) given Λ 0:n = λ 0:n and Y 1:n-1 = y 1:n-1 , where the short-hand v 0:n for any symbol v stands for the vector (v 0 , . . . , v n ). As explained in the Introduction, this quantity depends on the entire path λ 0:n , rather than the last state λ n . Following common practice, we drop dependencies on the y n 's in the notations, as the observed sequence y 0:n may be considered as fixed, and use the short-hand Ψ n (λ 0:n ) = Ψ n (y n |y 0:n-1 ; λ 0:n ). The model admits a Feynman-Kac representation which we describe fully in (2.1). We consider the following assumptions.

Hypothesis 1. For all n ≥ 1, the kernel Q n is mixing, i.e. there exists ε n ∈ (0, 1) such that

ε n ξ(A) ≤ Q n (λ n-1 , A) ≤ 1 ε n ξ(A)
for some ξ ∈ M + (E), and for any Borel set A ⊂ E, any λ n-1 ∈ E.

Hypothesis 2. For p large enough, and all n ≥ p, there exists a 'truncated' potential function Ψp n (λ n-p+1:n ) that depends on the last p states only, and that approximates Ψ n in the sense that

|Ψ n (λ 0:n ) -Ψp n (λ n-p+1:n )| ≤ φ n τ p Ψ n (λ 0:n ) ∧ Ψp n (λ n-p+1:n )
for some constants φ n and τ , φ n > 0, 0 < τ < 1, and all λ 0:n ∈ E n+1 . For convenience, we abuse notations and set Ψp n = Ψ n for p > n.

Hypothesis 3. There exists constants

a n , b n , n ≥ 0, a n ≥ 1, b n ≥ 1, such that 1 a n ≤ Ψ n (λ 0:n ) ≤ b n , 1 a n ≤ Ψp n (λ (n-p+1) + :n ) ≤ b n
for all λ 0:n ∈ E n+1 , using the short-hand k + = k ∨ 0 for any integer k.

The constants a n and φ n depend implicitly on the realisation y 1:n of the observed process. Hypotheses 1 and 3 are standard in the filtering literature; see e.g. Del [START_REF] Del Moral | Feynman-Kac Formulae[END_REF]. Hypothesis 2 formalises the fact that potential functions are computed using iterative formulae, and therefore should forget past states at an exponential rate. One may take Ψp n (λ n-p+1:n ) = Ψ n (z, . . . , z, λ n-p+1:n ) for instance, where z is an arbitrary element of E. We shall work out, in several models of interest, practical conditions under which Hypothesis 2 is fulfilled in Section 8.

We introduce the following notations for the forward kernels, for n ≥ 1:

γ n (λ 0:n-1 , dλ ′ 0:n ) = δ λ0:n-1 (dλ ′ 0:n-1 )Q n (λ n-1 , dλ ′ n )Ψ n (λ ′ 0:n )
where δ λ0:n-1 is the Dirac measure centred at λ 0:n-1 . The above kernels implicitly defines operators on measures and on test functions, i.e.,

γ n µ(f ) = γ n µ, f = µ(dλ 0:n-1 )γ n (λ 0:n-1 , dλ ′ 0:n )f (λ ′ 0:n ), for any µ ∈ M + (E n+1 ), any test function f : E n+1 → [0, 1], where M + (E k )
denotes the set of nonnegative measures w.r.t. E k , and P(E k ) the set of probability measures w.r.t. E k . We associate to γ n a "normalised" operator R n , such that, for any µ ∈ M + (E n ), R n µ is defined as:

R n µ(f ) = γ n µ(f ) γ n µ(1)
for any f : E n+1 → R + . Both the γ n 's and the R n 's may be iterated using the following short-hands, for 1 ≤ k ≤ n:

γ k:n µ = γ n . . . γ k µ, R k:n µ = R n . . . R k µ.
We have the following Feynman-Kac representation:

E(f (Λ 0:n )|Y 1:n = y 1:n ) = R 1:n ζ(f ) , (2.1)
∀n, ∀f : E n+1 → R + , where, as mentioned above, ζ the law of Λ 0 . Finally, we denote the total variation norm on nonnegative measures by • T V , the supremum norm on bounded functions by • ∞ , and the Hilbert metric by h(µ, µ ′ ) for any pair µ, µ ′ ∈ M + (E k ), k ≥ 1; see e.g. [START_REF] Atar | Exponential stability for nonlinear filtering[END_REF] or Le Gland and [START_REF] Le Gland | Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters[END_REF], Definition 3.3. We recall that the Hilbert metric is scale invariant, and is related to the total variation norm in the following way, see e.g. Lemma 3.4 in Le Gland and [START_REF] Le Gland | Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters[END_REF]:

µ -µ ′ T V ≤ 2 log 3 h(µ, µ ′ ) (2.2) h(Kµ, Kµ ′ ) ≤ 1 ε 2 µ -µ ′ T V (2.3)
provided K is a ε-mixing kernel. We can also derive the following properties from the definition of h (∀k

∈ N * , ∀µ, µ ′ ∈ M(E k )): ∀kernel Q, h(Qµ, Qµ ′ ) ≤ h(µ, µ ′ ) , (2.4) ∀nonnegative function ψ, h(ψµ, ψµ ′ ) ≤ h(µ, µ ′ ) (2.5)
with an equality in the latter equation if ψ is positive.

Local error induced by truncation

Until further notice, p is a fixed integer such that p ≥ 2 and such that Hypothesis 2 holds. Since our proofs involve a comparison between the true filter and a 'truncated' filter, we introduce the projection operator H p n which, for n ≥ p, associates to any measure µ(dλ 0:n ) ∈ M + (E n+1 ) its marginal w.r.t. its last p components, i.e. :

H p n (µ)(f ) = µ(dλ 0:n )f (λ n-p+1:n )
for any f : E p → R; for p > n, let H p n (µ) = µ. We also define the following 'truncated' forward kernels, for n ≥ p:

γp n (λ n-p:n-1 , dλ ′ n-p+1:n ) = δ λn-p+1:n-1 (dλ ′ n-p+1:n-1 )Q n (λ n-1 , dλ ′ n ) Ψp n (λ ′ n-p+1:n )
and the associated normalised operators, for µ ∈ M + (E p ), f :

E p → R + : Rp n µ(f ) = γp n µ(f ) γp n µ(1)
and set γp n = γ n , Rp n = R n for n < p. From now on, we will refer to the filter associated to these 'truncated' operators as the truncated filter.

We now evaluate the local error induced by the truncation.

Lemma 1. For all 1 ≤ k < n, and for all µ ∈ M + (E k ), 

Rp k+1:n H p k R k µ -Rp k:n H p k-1 µ T V ≤ 2φ k τ p . Proof. Let f : E p∧(n+1) → [0, 1]. One has Rp k+1:n H p k R k µ(f ) = γp k+1:n H p k γ k µ(f ) γp k+1:n H p k γ k µ(1) Rp k:n H p k-1 µ(f ) = γp k:n H p k-1 µ(f ) γp k:n H p k-1 µ(1) where γp k+1:n H p k γ k µ(f ) = E n+1 µ(dλ 0:k-1 )Q k (λ k-1 , dλ k )Ψ k (λ 0:k )f (λ (n-p+1) + :n ) × n i=k+1 Q i (λ i-1 , dλ i ) Ψp i (λ (i-p+1) + :i ) and γp k:n H p k-1 µ(f ) = E n+1 µ(dλ 0:k-1 )Q k (λ k-1 , dλ k ) Ψp k (λ k-p+1:k )f (λ (n-p+1) + :n ) × n i=k+1 Q i (λ i-1 , dλ i ) Ψp i (λ (i-p+1) + :i ) hence γk+1:n H p k γ k µ(f ) -γk:n H p k-1 µ(f ) ≤ E n+1 µ(dλ 0:k-1 )Q k (λ k-1 , dλ k ) Ψ k (λ 0:k ) -Ψp k (λ (k-p+1) + :k ) ×f (λ (k-p+1) + :k ) n i=k+1 Q i (λ i-1 , dλ j ) Ψp i (λ (i-p+1) + :i ) ≤ φ k τ p E n+1 µ(dλ 0:k-1 )Q k (λ k-1 , dλ k )(Ψ k (λ 0:k ) ∧ Ψp k (λ (k-p+1) + :k )) ×f (λ (k-p+1) + :k ) n i=k+1 Q i (λ i-1 , dλ i ) Ψp i (λ (i-p+1) + :i ) ≤ φ k τ p γk+1:n H p k γ k µ(f ) ∧ γk:n H p k-1 γ k-1 µ(f )
f : f ∞ =1 E Rp k µ -Rk µ, f ≤ δ k
for some δ k ≥ 0, then, for all i ≥ 1 and µ ∈ P(E k∧p ),

sup f : f ∞=1 E Rp k:k+i µ -Rp k+1:k+i Rk µ, f ≤ 2(a k+1 . . . a k+i )(b k+1 . . . b k+i )δ k
where the expectation is with respect to the distribution of Rk .

Proof. Using the same ideas as above, one has, for f :

E (k+1-p+1)∧p → [0, 1], Rp k:k+i µ -Rp k+1:k+i Rk µ, f = γp k+1:k+i Rp k µ(f ) γp k+1:k+i Rp k µ(1) - γp k+1:k+i Rk µ(f ) γp k+1:k+i Rk µ(1)
.

In order to use inequality (3.6), compute

E( γp k+1:k+i Rp k µ(f ) -γp k+1:k+i Rk µ(f ) ) = E ( Rp k µ -Rk µ)(dλ (k-p+1) + :k ) k+i l=k+1 Q l (λ l-1 , dλ l ) Ψp l (λ (l-p+1) + :l )f (λ (k+i-p+1) + :k+i ) ≤ E b k+1 . . . b k+i ( Rp k µ -Rk µ)( f ) ≤ b k+1 . . . b k+i δ k where f is defined as f (λ (k-p+1) + :k ) = k+i l=k+1 Q l (λ l-1 , dλ l )f (λ (k+i-p+1) + :k+i ) ≤ 1.
and conclude by noting that γp k+1:k+i

Rp k µ(1) = ( Rp k µ)(dλ (k-p+1) + :k ) k+i l=k+1 Q l (λ l-1 , dλ l ) Ψp l (λ (l-p+1) + :l ) ≥ 1 a k+1 . . . a k+i since Rp k µ is a probability measure.

Mixing and contraction properties of the truncated filter

The truncated filter may be interpreted as a standard filter based on Markov chain Λp n = Λ (n-p+1) + :n . This insight allows us to establish the contraction properties of the truncated filter.

Lemma 3. One has:

h( Rp k+1:k+p µ, Rp k+1:k+p µ ′ ) ≤ 1 ε2 k+1,p µ -µ ′ T V and h( Rp k+1:k+p µ, Rp k+1:k+p µ ′ ) ≤ ρk+1,p h(µ, µ ′ ) where ε2 k,p = ε 2 k (a k . . . a k+p-2 )(b k . . . b k+p-2 ) , ρk,p = 1 -ε2 k,p 1 + ε2 k,p
, for all k ≥ 0, and all µ ,µ ′ ∈ P(E (k+1)∧p ).

Note εk,n must be interpreted as a mixing coefficient, and ρk,p as a Birkhoff contraction coefficient.

Proof. Using Hypothesis 3, one has:

Q k+p γk+1:k+p-1 µ = µ(dλ (k-p+1) + :k ) k+p i=k+1 Q i (λ i-1 , dλ i ) k+p-1 i=k+1 Ψp i (λ (i-p+1) + :i ) ≤ b k+1 . . . b k+p-1 µ(dλ (k-p+1) + :k ) k+p i=k+1 Q i (λ i-1 , dλ i ) ≤ b k+1 . . . b k+p-1 ε k+1 ξp (dλ k+1:k+p )
where ξp stands for the following reference measure:

ξp (dλ k+1:k+p ) = ξ(dλ k+1 ) k+p i=k+2 Q i (λ i-1 , dλ i ).
One shows similarly that

Q k+p γk+1:k+p-1 µ ≥ ε k+1 a k+1 . . . a k+p-1 ξp (dλ k+1:k+p ).
Hence kernel Q k+p γk+1:k+p-1 µ is mixing, with mixing coefficient εk+1,p . Following Lemma 3.4 in Le Gland and [START_REF] Le Gland | Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters[END_REF],

h( Rp k+1:k+p µ, Rp k+1:k+p µ ′ ) = h(Q k+p γk+1:k+p-1 µ, Q k+p γk+1:k+p-1 µ ′ ) ≤ 1 ε2 k+1,p µ -µ ′ T V
using the scale invariance property of the Hilbert metric. Similarly, according to Lemma 3.9 in the same paper:

h( Rp k+1:k+p µ, Rp k+1:p µ ′ ) = h(Q k+p γk+1:k+p-1 µ, Q k+p γk+1:k+p-1 µ ′ ) ≤ 1 -ε2 k+1,p 1 + ε2 k+1,p h(µ, µ ′ ).

Propagation of truncation error

We establish first the two following lemmas.

Lemma 4. Let Rn : E n∧p → P(E (n+1)∧p ) be a sequence of (possibly random) probability kernels such that for all n ≥ 1 and µ ∈ P(E n∧p ), sup

f : f ∞=1 E Rp n µ -Rn µ, f ≤ δ n ,
where the expectation is w.r.t. the randomness of Rn , then, for all n ≥ 1 and all ζ ∈ P(E), one has

sup f : f ∞=1 E Rp 1:n ζ -R1:n ζ, f ≤ 8 log(3) n i=1   δ i ε2 i+1 ε2 i+p+1 ⌊ n-i p ⌋-1 j=2 ρi+jp+1,p  
where R1:n ζ = Rn . . . R1 ζ, and with the convention that empty products equal one.

Proof. The following difference can be decomposed into a telescopic sum:

Rp 1:n ζ -R1:n ζ = n i=1 Rp i+1:n Rp i R1:i-1 ζ -Rp i+1:n Ri R1:i-1 ζ .
We fix the integers i, n, and consider some arbitrary test function f . For i ≥ n -2p, one may apply Lemma 2:

sup f : f ∞ =1 E Rp i+1:n Rp i R1:i-1 ζ -Rp i+1:n Ri R1:i-1 ζ, f ≤ 2(a i+1 . . . a n )(b i+1 . . . b n )δ i ≤ 8 log(3) δ i ε2 i+1,p ε2 i+p+1,p since ε n ≤ 1, a n ≥ 1 and b n ≥ 1 for all n.
For i < n -2p, let k = ⌊(ni)/p⌋, then, using Lemma 3, Equations (2.2) to (2.5) one has 7) p. 160 of Le Gland and [START_REF] Le Gland | Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters[END_REF], one gets

Rp i+1:n Rp i R1:i-1 ζ -Rp i+1:n Ri R1:i-1 ζ, f ≤ Rp i+1:n Rp i R1:i-1 ζ -Rp i+1:n Ri R1:i-1 ζ T V ≤ 2 log(3) h Rp i+1:i+kp Rp i R1:i-1 ζ, Rp i+1:i+kp Ri R1:i-1 ζ ≤ 2 log(3)ε 2 i+p+1,p × k-1 j=2 ρi+jp+1,p × Rp i+1:i+p ν -Rp i+1:i+p ν ′ T V where ν = Rp i R1:i-1 ζ, ν ′ = Ri R1:i-1 ζ. Applying (
Rp i+1:i+p ν -Rp i+1:i+p ν ′ T V ≤ 2 γp i+1:i+p ν -γp i+1:i+p ν ′ T V γp i+1:i+p ν(1)
.

where, using the same calculations as in Lemma 3,

γp i+1:i+p ν(1) ≥ ε i+1 a i+1 . . . a i+p and E γp i+1:i+p ν -γp i+1:i+p ν ′ T V = E x ′ ∈E p x∈E p (ν -ν ′ )(dx)γ p i+1:i+p (x, dx ′ ) ≤ sup x∈E p x ′ ∈E p γp i+1:i+p (x, dx ′ ) sup φ: φ ∞ =1 E(| ν -ν ′ , φ |) ≤ b i+1 . . . b i+p ε i+1 sup φ: φ ∞ =1 E(| ν -ν ′ , φ |)
which ends the proof.

Lemma 5. For all n ≥ 1 and all ζ ∈ P(E), one has

Rp 1:n ζ -H p n R 1:n ζ T V ≤ 4τ p log 3    n i=1 φ i ε2 i+1,p ⌊(n-i)/p⌋-1 j=1 ρi+jp+1,p   
with the convention that empty sums equal zero, and empty products equal one.

Proof. One has:

Rp 1:n ζ -H p n R 1:n ζ = n i=1 Rp i+1:n Rp i H p i-1 R 1:i-1 ζ -Rp i+1:n H p i R 1:i ζ For i ≤ n -p, let k = ⌊(n -i)/p⌋, then according to Lemma 3: Rp i+1:n Rp i H p i-1 R 1:i-1 ζ -Rp i+1:n Rp i+1 H p i R 1:i ζ T V ≤ 2 log 3 h Rp i+1:i+kp Rp i H p i-1 R 1:i ζ, Rp i+1:i+kp H p i R 1:i ζ ≤ 2 log(3)ε 2 i+1,p k-1 j=1 ρi+jp+1,p Rp i H p i-1 R 1:i-1 ζ -H p i R 1:i ζ T V
and ones concludes using Lemma 1. For i > np, one can apply Lemma 1 directly.

Coupling of particle approximations

We now introduce two interactive particle systems: the first particle system approximates the true filter, and is equivalent to the type of particle algorithms studied in this paper, and the second particle system approximates the truncated filter, and corresponds to an artificial algorithm that would not be implemented in practice. We work out a way of coupling both particle systems in order to evaluate the distance between the two (in a sense that is made clear below). We define, for n ≥ 0,

Qn,p λ (n-p) + :n-1 , dλ ′ (n-p+1) + :n = δ λ (n-p+1) + :n-1 (dλ ′ (n-p+1) + :n-1 ) ×Q n (λ n-1 , dλ ′ n ), Qn (λ 0:n-1 , dλ ′ 0:n ) = δ λ0:n-1 (dλ ′ 0:n-1 ) × Q n (λ n-1 , dλ ′ n ) . We define ∀ν ∈ M + (E n+1 ), ∀ measurable f : E n+1 → R + , ∀ν ′ ∈ M + (E p ), ∀ measurable g : E (n+1)∧p → R + , Ψ n .ν(f ) = ν(Ψ n f ) ν(Ψ n ) , Ψp n .ν ′ (g) = ν ′ ( Ψp n g) ν ′ (Ψ p n )
.

For any measurable space (E ′ , Ω ′ ) and any measure µ ′ ∈ P(E ′ ), we can take Z 1 , Z 2 , . . . i.i.d. of law µ ′ and define the random empirical measure, for N ≥ 1,

S N (µ ′ ) = 1 N N i=1 δ Zi .
Notice that, as the Z 1 , Z 2 , . . . are only given in law, we only define S N (µ) in law. We define the random operators R N n , Rp,N n (∀n) by: ∀µ ∈ P(E n ), R N n µ is a random weighted empirical measure such that

R N n µ = Ψ n .S N ( Qn µ) .
Similarly, ∀µ ′ ∈ P(E p∧n ), Rp,N n µ ′ is a random weighted empirical measure such that Rp,N n µ ′ = Ψp n .S N ( Qn,p µ ′ ) . (6.7)

As pointed above, R N n µ and Rp,N n µ ′ are only defined in law. Since ζ denotes the probability density of the first state Λ 0 , the particle system with N particles approximating the true filter at time n is defined by

R N n R N n-1 . . . R N 1 ζ
, and the particle system with N particles approximating the truncated filter at time n is defined by Rp,N n Rp,N n-1 . . . Rp,N 1 ζ. Lemma 6. There exists a coupling such that, for all k ≥ 1 and µ ∈ P(E k ):

sup f : f ∞≤1 E Rp,N k H p k-1 µ -H p k R N k µ, f ≤ φ k τ p .
As H p k R N k µ and Rp,N k H p k µ are defined to be random variables with such and such law, the term "coupling" means that we can define a random variable

(H k R N k µ, Rp,N k H k µ)
with the desired marginals. Proof. To prove the above result, we produce a coupling between the two random measures Rp,N k H p k-1 µ and

H p k R N k µ. Let Ψn (λ 0:n ) = Ψp n (λ (n-p+1) + :n ),
so that, for µ ∈ P(E k ), and using (6.7), one has

Rp,N k H p k-1 µ = H p k ( Ψk .(S N ( Qk µ))
in the sense that both sides define the same distribution. Let χ 1 , . . . , χ N i.i.d. ∼ µ Qk , where χ i is a vector λ 0:k,i , for i = 1, . . . , N , and χi denotes its projection on the p last components, χi = λ (k-p+1) + :k,i , then

1 N j=1 Ψ k (χ j ) N i=1 Ψ k (χ i )δ χi has same law as H p k R N k µ and 1 N j=1 Ψk (χ j ) N i=1
Ψk (χ i )δ χi has same law as Rp,N k H p k-1 µ .

For any f such that f ∞ ≤ 1 (using a classical result on empirical measures):

| Rp,N k H p k-1 µ -H p k R N k µ, f | ≤ 1 2 N i=1 Ψ k (χ i ) N j=1 Ψ k (χ j ) - Ψk (χ i ) N j=1 Ψk (χ j ) ≤ 1 2 N i=1   Ψ k (χ i ) -Ψk (χ i ) N j=1 Ψ k (χ j ) + Ψk (χ i ) N j=1 ( Ψk (χ j ) -Ψ k (χ j )) N j=1 Ψ k (χ j ) N j=1 Ψk (χ j )   ≤ φ k τ p 2 N i=1   Ψ k (χ i ) N j=1 Ψ k (χ i ) + Ψk (χ i ) N j=1 Ψk (χ i ) ∧ Ψ(χ i ) N j=1 Ψ(χ j ) N j=1 Ψ(χ j )   ≤ φ k τ p
using Hypothesis 2, from which we deduce the result.

Main result

We are now able to derive estimates of the error

E p n,N (y 1:n ) = sup f : f ∞=1 E N H p n R 1:n ζ -H p n R N 1:n ζ, f |Y 0:n = y 0:n
induced by the particle approximation of the true filter, for the marginal filtering distribution of the p last states, provided p ≤ n. The expectation E N is with respect to the randomness of the N particles, and the functions f are E (n+1)∧p → R. Note that E p n,N (y 1:n ) is by construction an increasing function of p.

Theorem 7. For any ζ ∈ P(E), and any test function w.r.t. E (n+1)∧p ,

E p n,N (y 1:n ) ≤ 4 log 3 n i=1 δ i ε2 i+1,p ε2 i+p+1,p ⌊(n-i)/p⌋-1 j=2 ρi+jp+1 (7.8)
where

δ i = 3τ p φ i + 4a i b i √ N .
Proof. We first study the following local error, for

µ ∈ P(E n ), sup f : f ∞ =1 E N Rp n H p n-1 µ -H p n R N n µ, f Y 0:n = y 0:n
where the difference of operators can de decomposed into:

Rp n H p n-1 -H p n R N n = Rp n H p n-1 -Rp,N n H p n-1 + Rp,N n H p n-1 -H p n R N n .
To bound the first term, one may use (25) p. 162 of Le Gland and [START_REF] Le Gland | Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters[END_REF], for ν = H p n-1 µ and Hypothesis 3:

E N Rp n ν -Rp,N n H p n-1 ν, f ≤ 2a n b n √ N
and, for the second term, one may apply Lemma 6:

E N Rp,N n H p n-1 µ -H p n R N n µ, f ≤ φ n τ p so that sup f : f ∞ =1 E N Rp n µ -H p n R N n µ, f ≤ δ ′ n for δ ′ n = 2a n b n / √ N + φ n τ p .
This local error is propagated using Lemma 4:

E N Rp 1:n ζ -H p n R N 1:n ζ, f ≤ 8 log(3) n i=1   δ ′ i ε2 i+1 ε2 i+p+1 ⌊ n-i p ⌋-1 j=2 ρi+jp+1,p   .
To conclude, one may decompose the global error as follows:

H p n R 1:n ζ -H p n R N 1:n ζ = H p n R 1:n ζ -Rp 1:n ζ + Rp 1:n ζ -H p n R N 1:n ζ .
where the second term is bounded above, and the first term is directly bounded using Lemma 5.

Since p is an arbitrary parameter, one may minimise the error bound with respect to p. For instance, one has the following result for time-uniform estimates. As noted above, the error E p n,N (y 1:n ) is an increasing function of p, so the bound below applies a fortiori to E 1 n,N (y 1:n ), the particle error corresponding to the marginal filtering distribution of the last state Λ n .

Corollary 8. If there exists constants c, ε, φ > 0 such that, almost surely, a n b n ≤ c, ε n ≥ ε, and φ n ≤ φ, then, provided τ c 3 < 1, the particle error is bounded almost surely as follows:

E p n,N (y 1:n ) ≤ C {log(N ) + D} 1 √ N 1+3 log c/ log τ ,
for N large enough, where

C = 16 ε 6 c 2 -1 log τ 4c 3φ 3 log c/ log τ , D = 2 log(3φ/4cτ ), and 
p = log 4c 3φ √ N / log τ . (7.9)
Proof. Under these conditions, the RHS of (7.8) is smaller than or equal to:

E p n,N (y 1:n ) ≤ 4 log 3 c 2(p-2) ε 4 3φτ p + 4c √ N n i=1 1 -ε 2 c -(p-2) ⌊(n-i)/p⌋-2 (7.10) ≤ 4 log 3 c 2(p-2) ε 4 3φτ p + 4c √ N n-1 i=0 1 -ε 2 c -(p-2) i/p-1 ≤ 4 log 3 c 2(p-2) ε 4 3φτ p + 4c √ N 1 -ε 2 c -(p-2) -1 1 -1 -ε 2 c -(p-2) 1/p ≤ 4c 3(p-2) ε 6 3φτ p + 4c √ N p
for p large enough, since (1x) a ≤ 1ax for a ∈ (0, 1), x ∈ (0, 1), so, provided c 3 τ < 1, one may take p as in (7.9), which gives:

E p n,N (y 1:n ) ≤ 32 ε 6 c 2 4c 3φ 3 log c log τ log N + 2 log(3φ/4c) -2 log τ + 1 1 √ N 1+ 3 log c log τ
and conclude.

Obviously, this is a qualitative result, in that there are many practical models where such time-uniform, deterministic bounds are not available. For specific models, one may be able instead to use (7.8) in order to establish the asymptotic stability of the expected particle error, where the expectation is with respect to observed process (Y n ). We provide an example of this approach in Section 8.

Applications to practical models

In this section, we apply our general result to three practical models. We keep the same settings and notations, i.e. the observed process (Y n ) admits some probability distribution conditional on the path Λ 0:n = λ 0:n of a Markov chain (Λ n ), with initial distribution ζ and Markov transition Q n , which fulfil Hypothesis 1, see Section 2. We derive conditions on the model parameters that ensure asymptotic stability of the particle error; in particular, these conditions imply that Hypotheses 2 and 3 are verified.

We state the following trivial result for further reference. Let (f, g) a pair of probability densities (f, g) on E, then:

∀x ∈ E, | log {f (x)} -log {g(x)} | ≤ c ⇒ ∀x ∈ E, |f (x) -g(x)| ≤ (e c -1) {f (x) ∧ g(x)} (8.11)
for c ≥ 0.

GARCH Mixture model

We assume that the observed process is such that

Y n = σ n (Λ 0:n )Z n , n ≥ 1,
where the Z n 's are i.i.d. N (0, 1) random variables, and the variance function σ 2 n is defined recursively, for n ≥ 1:

σ 2 n (λ 0:n ) = α(λ n ) + β(λ n )Y 2 n + γ(λ n )σ 2 n-1 (λ 0:n-1 ) (8.12)
and σ 2 0 (λ 0 ) = α(λ 0 )/ {1γ(λ 0 )} , where α, β and γ are E → R + functions. Conditional on Λ 0:n , (Y n ) is a GARCH (generalised autoregressive conditional heteroskedasticity) process [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF]; see [START_REF] Chopin | Dynamic detection of change points in long time series[END_REF] for a finance application of such a GARCH mixture model.

The potential functions equal

Ψ n (λ 0:n ) = 1 2πσ 2 n (λ 0:n ) exp - y 2 n 2σ 2 n (λ 0:n ) ,
for λ 0:n ∈ E n+1 , and (Λ n ) is a Markov process, with Markov kernels Q n , which satisfy Hypothesis 1. The functions α, β and γ are assumed to be bounded as follows:

0 < α min ≤ α(λ) ≤ α max , 0 ≤ β min ≤ β(λ) ≤ β max < 1, 0 ≤ γ min ≤ γ(λ) ≤ γ max < 1.
We first consider the case where β(λ) = 0 for all λ ∈ E. As mentioned in the introduction, this simplified model can be interpreted as a standard hidden Markov model, with observed process (Y n ), and Markov chain (κ n ) = Λ n , σ 2 n (Λ 0:n ) . However, since σ 2 n (Λ 0:n ) is a deterministic function of σ 2 n-1 (Λ 0:n-1 ) and λ n , it does not have mixing or similar properties that are usually required to obtain estimates of the particle error. Instead, analysing this model as a Feynman-Kac flow with iterative, path-dependent potential functions make it possible to derive such estimates.

Lemma 9. For the simplified model described above (with β = 0), the expected particle error of the corresponding particle approximation is uniformly stable in time, i.e. there exists constants C, D, such that

E E p n,N (Y 1:n ) ≤ C {log(N ) + D} 1 √ N 1+3 log c/ log τ ,
where p is given by (7.9), provided ι < 2 and τ c 3 < 1, where τ = γ max , c = (2/ι -1) -1/2 , and

ι = α max (1 -γ min ) α min (1 -γ max ) .
Proof. From (8.12), one sees the process

σ 2 n is bounded, σ 2 min ≤ σ 2 n (λ 0:n ) ≤ σ 2 max
for all λ 0:n ∈ E n+1 , where

σ 2 min = α min 1 -γ min , σ 2 max = α max 1 -γ max .
so, for a given sequence observations y 1:n , Hypothesis 3 is verified with:

1 a n = 1 2πσ 2 max exp - y 2 n 2σ 2 min , b n = 1 2πσ 2 min exp - y 2 n 2σ 2 max ,
provided the truncated potential is taken as:

Ψp n (λ n-p+1:n ) = Ψ n (z, . . . , z, λ n-p+1:n )
where z is an arbitrary element of E. For Hypothesis 2, one has, for any

λ 0:n , λ ′ 0:n ∈ E (n+1) such that λ (n-p+1) + :n = λ ′ (n-p+1) + :n : |log Ψ n (λ 0:n ) -log Ψ n (λ ′ 0:n )| ≤ 1 2 log σ 2 n (λ 0:n ) -log σ 2 n (λ ′ 0:n ) + y 2 n 2 1 σ 2 n (λ 0:n ) - 1 σ 2 n (λ ′ 0:n ) ≤ σ 2 min + y 2 n 2σ 4 min σ 2 n (λ 0:n ) -σ 2 n (λ ′ 0:n )
where σ 2 n is contracting, in the sense that, for n ≥ p,

σ 2 n (λ 0:n ) -σ 2 n (λ ′ 0:n ) = p-1 i=0 γ(λ n-i ) σ 2 n-p (λ 0:n-p ) -σ 2 n-p (λ ′ 0:n-p ) ≤ 2γ p max σ 2 max .
Thus, using (8.11), and the fact that (e x -1)/x is an increasing function, Hypothesis 2 is verified with τ = γ max and

φ n = τ -q exp τ q σ 2 max σ 2 min + y 2 n σ 4 min -1 ,
for any q ≤ p. Finally, to compute the expectation with respect to process (Y n ) of the error bound (7.8), one may use repetitively the following results:

E exp aY 2 n |Y 1:n-1 ≤ 1 -2aσ 2 max -1/2
for a < 1/2σ 2 max , using standard calculations and the fact that Y n , conditional on Y 1:n-1 and Λ 0:n = λ 0:n is N 0, σ 2 n (λ 0:n ) . This implies in particular that:

E [a n b n |Y 1:n-1 ] ≤ 2 σ 2 min σ 2 max -1 -1/2 = c
where the constant c is well-defined since σ 2 max /σ 2 min < 2, then by Jensen inequality,

E 1 a n b n Y 1:n-1 ≥ c -1 ,
and similarly,

E [φ n |Y 1:n-1 ] ≤ τ -q exp τ q σ 2 max σ 2 min 1 -2τ q σ 4 max σ 4 min -1/2 -1 = φ
where φ is properly defined for q large enough. Using the above results recursively on the sum on the RHS of (7.8), one obtains the same expression as in (7.10) for the error bound than in Corollary 8 for time-uniform estimates (with the values of c, φ, τ as defined above), and concludes similarly.

If β is allowed to take positive values, stability results may be obtained under more restrictive conditions. In particular, one may impose that γ is a constant function.

Lemma 10. For the general mixture GARCH model defined above, the expected particle error is uniformly stable in time, i.e. there exist constants C, D, such that

E E p n,N (Y 1:n ) ≤ C {log(N ) + D} 1 √ N 1+3 log c/ log γ
provided γ is a constant function, γ(λ) = γ, τ c 3 < 1, ϑ < 2, where τ = γ, c = (2/ϑ -1) -1/2 , p is given by (7.9), and

ϑ = α max α min ∨ β max β min .
Proof. We follow the same lines as above, except that the bounds of the process σ 2 n (λ 0:n ) must be replaced by:

σ 2 min (n) = γ n 1 -γ α min + n-1 k=0 (α min + β min y 2 n-k )γ k , σ 2 max (n) = γ n 1 -γ α max + n-1 k=0 (α max + β max y 2 n-k )γ k ,
which, by construction, are such that

σ 2 max (n) σ 2 min (n) ≤ ϑ < 2.
Hence, one has again

E [a n b n |Y 1:n-1 ] ≤ 2 σ 2 min σ 2 max -1 -1/2 = c
and that, for λ 0:n , λ ′ 0:n such that λ n-p+1:n

= λ ′ n-p+1:n , |µ n (λ 0:n ) -µ n (λ ′ 0:n )| (8.19) ≤ M n-1   p i=1 hi a n-i i-1 j=1 (1 -a n-j ) -a ′ n-i i-1 j=1 (1 -a ′ n-j ) + 2 hp+1  
where a n-i , a ′ n-i are short-hands for a n-i (λ 0:n-i ), a n-i (λ ′ 0:n-i ). The sequence a n itself in contracting, since, from (8.15), one has, for i < p:

a n-i -a ′ n-i ≤ v σ 4 σ 2 n-i (λ 0:n-i ) -σ 2 n-i-1 (λ ′ 0:n-i ) ≤ vC σ σ 4 τ p-i σ so (8.19) and the fact that |xy -x ′ y ′ | ≤ |x -x ′ | + |y -y ′ | provided x, x ′ , y, y ′ ∈ [0, 1] leads to |µ n (λ 0:n ) -µ n (λ ′ 0:n )| ≤ M n-1 vC σ σ 4 p i=1 hi τ p-i σ + . . . + τ p-1 σ + 2 hp+1 ≤ M n-1 vC σ τ p-1 σ σ 4 p i=1 hi τ -i σ -1 τ -1 σ -1 + 2 hp+1 ≤ M n-1 C µ τ p
for τ = τ σ ∨ h, and a well chosen value of C µ .

We are now able to state the main result.

Lemma 13. For the model above, the particle error is bounded uniformly in time, i.e. there exist C, D, such that

E p n,N (y 1:n ) ≤ C {log(N ) + D} 1 √ N 1+3 log c/ log τ ,
almost surely, for p given by (7.9), provided the realizations y n are bounded, i.e. |y n | ≤ C y for all n ≥ 1, and that τ c 3 < 1, with τ = h ∨ τ σ and

c = σ σ exp C 2 y σ 2 1 + āh 1 -ãh 2 , τ σ = 1 1 + w/v + 2 w/v + w 2 /v 2 < 1.
Proof. This proposition is a direct application of Corrolary 8, so we need only to prove that Hypotheses 2 and 3 are fulfilled. For Hypothesis 2, one may take

1 a n = 1 √ 2πσ 2 exp - C 2 y σ 2 1 + āh 1 -ãh 2 , b n = 1 2πσ 2
so that a n b n ≤ c for c defined above. For Hypothesis 3, one has:

2 |log Ψ n (λ 0:n ) -log Ψ n (λ ′ 0:n )| ≤ log σ 2 n (λ 0:n ) -log σ 2 n (λ ′ 0:n ) + {y n -µ n (λ 0:n )} 2 σ 2 n (λ 0:n ) - {y n -µ n (λ ′ 0:n )} 2 σ 2 n (λ ′ 0:n )
Clearly, the reformulated model satisfies Hypothesis 1: the (Λ n ) are i.i.d., hence they form a Markov chain with mixing coefficient ε n = 1. If we assume that the Ψ n (λ 0:n ) are such that Hypotheses 2 and 3 hold as well, then we can apply directly Theorem 7. However, the path-dependent formulation of this model is artificial, and, in practice, we are interested in filtering the process X n , conditional on the Y n 's, rather than filtering the Λ n 's, again conditional on the Y n 's. More precisely, we wish to approximate the conditional expectation of

g(X n ) = g   p-1 k=0 ρ k λ n-k + n k=p ρ k λ n-k   ,
for some bounded function g, and, provided g is also Lipschitz, with constant K, and that the λ n 's lie in interval [-l, l], for some l ≥ 0, one has:

g   p-1 k=0 ρ k λ n-k + n k=p ρ k λ n-k   -g p-1 k=0 ρ k λ n-k ≤ Kl 1 -τ τ p ,
where τ = |ρ|. Therefore, we must consider an additional term in the particle error attached to the filtering of (X n ), which stems from the difference between the filtering distribution of X n and that of Λ n-p+1:n , for some integer p. Consider the following estimate of the particle error for functions of X n :

E X n,N (y 1:n ) = sup g: g ∞ =1,g∈Lip(K) E N R 1:n ζ -R N 1:n ζ, f g |Y 0:n = y 0:n
where Lip(K) denotes the set of Lipschitz functions with Lipschitz constant K, and f g is the function E n+1 → R such that

f g (λ 0:n ) = g n k=0 ρ k λ n-k ,
i.e., loosely speaking, f g (λ 0:n ) = g(x n ), where x n must be substituted by its expression as a function of λ 0:n .

Lemma 14. For the state-space model described above, one has, for any n ≥ p,

E X n,N (y 1:n ) ≤ E p n,N (y 1:n ) + Kl 1 -τ τ p .
Taking into account this additional error term, we can derive time-uniform estimates of the stability of the particle algorithm. For the sake of space, we focus on the following simple example: Y n ∈ {-1, 1}, Y n = 1 with probability 1/(1 + e Xn ), Y n = -1 otherwise. The potential function (for the model in its standard formulation) equals:

Ψ X n (x n ) = 1 1 + e ynxn .
We recall that the support of the (Λ n ) is [-l, l], and therefore X n ∈ [-l ′ , l ′ ] almost surely, with l ′ = l/(1-τ ). Thus, Hypothesis 3 holds for b n = 1/(1+e -l ′ ), The above model does not fulfil the usual conditions required in standard stability results, see e.g. Del Moral (2004, Section 7.4.3), because the Markov chain (X n ) is not mixing. Thus, it is remarkable that the time-uniform stability of this model is established using a Feynman-Kac formulation with path-dependent potentials.

Conclusion

To extend our results to a broader class of models, three directions may be worth investigating. First, it may be possible to bound directly the particle error, without resorting to a comparison with an artificial, truncated potential function. It seems difficult however to avoid some form of truncation, as the path process Λ 0:n itself does not benefit to any sort of mixing property, while fixed segments Λ n-p+1:n do. Second, one may try to loosen Hypothesis 1 (Markov kernel is mixing) and Hypothesis 3 (potential function is bounded), using for instance [START_REF] Oudjane | Stability and uniform particle approximation of nonlinear filters in case of non ergodic signals[END_REF]'s approach. Third, it seems possible to adapt our general result on the particle error bound to several models not considered in this paper, in particular standard models with potential functions depending on the last state only, by using and extending the approach developed in the previous Section.

  a n = 1 + e l ′ . For Hypothesis 2, standard calculations show that, for two vectors λ 0:n and λ ′ 0:n such that λ n-p+1:n = λ ′ n-p+1:n , one has|log Ψ n (λ 0:n )log Ψ n (λ ′ 0:n )| ≤ n k=p ρ k (λ n-kλ ′ n-k ) ≤ 2l ′ τ p provided τ = |ρ|.Hence, using (8.11) inequality, Hypothesis 2 holds, withφ n = e 2l ′ -1.For this specific model, we have the following result.Lemma 15. For the specific model described above, and provided cτ 3 < 1, where τ = |ρ|, c = e l ′ , one has:E X n,N (y 1:n ) ≤ C {log(N ) + D} 1 √ N 1+3 log c/ log τ + E √ Nwhere C and D were defined in Corollary 8, φ = e 2l ′ -1, and E = 4Kl ′ c/3φ.
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and the rest of the calculation is identical to those of previous Lemma, with τ = γ.

Mixture Kalman model

We focus on an univariate linear Gaussian model, i.e. conditional on Markov process (Λ n ), one has X 0 = 0 almost surely, and, for n ≥ 1,

where the V n 's and the W n 's are independent N (0, 1) variables, and h, v, w are real-valued functions. Using the recursions of the Kalman-Bucy Filter [START_REF] Kalman | New results in linear filtering and prediction theory[END_REF], one is able to marginalise out the process X n , and compute recursively the probability density of Y n , conditional on Λ 0:n = λ 0:n , in the following way:

where, the following quantities are defined recursively: for n ≥ 1,

and m 0 (λ 0 ) = c 0 (λ 0 ) = 0. We make the following assumptions:

1. Functions v and w are bounded as follows: for all λ ∈ E,

2. Function h is bounded as follows: for all λ ∈ E,

We first prove the following intermediate results.

Lemma 11. The sequence σ 2 n is bounded and uniformly contracting, i.e. for all p ≥ 1, for all λ 0:n , λ ′ 0:n , such that λ n-p+1:n = λ ′ n-p+1:n , one has

where σ 2 = v + w, σ2 = ( h2 + 1)v + w, C σ = h2 v/τ σ , and

Proof. From (8.17), one deduces that

In addition, (8.18) implies that

.

It is easy to show that, for a fixed λ, the derivative of Υ (c, λ) with respect to c is bounded from above by τ σ as defined above. Thus, Υ (c, λ) is a contracting function, and, by induction, for n ≥ p,

where τ σ and C σ were defined above.

Lemma 12. The sequence µ n is bounded and contracting in the sense that there exists C µ > 0 such that, for all p ≥ 1, for all n ≥ p, and λ 0:n , λ ′ 0:n , such that λ n-p+1:n = λ ′ n-p+1:n , one has

where

so one shows recursively, using (8.13) and (8.16), that:

where the first term is such that

according to Lemma 11, and the second term is such that

and one concludes using (8.11) and taking

Obviously, the boundness condition on the realizations y n is not entirely satisfactory, as the generating process of (Y n ) is such that Y n should leave any interval eventually. However, Y n is marginally a Gaussian variable with variance uniformly bounded in time (since h < 1), so this remains a reasonable approximation if C y is large enough. Generalizing the above result to more general conditions is left for future research.

Application to standard state-space models

Consider a 'standard' state-space model, based on a linear auto-regressive state process (X n ): . . . i.i.d. (8.20) for t ≥ 0, ρ ∈ (-1, 1) and X 0 = Λ 0 , and an observed process (Y n ), with conditional density, with respect to an appropriate dominating measure, and conditional on X n = x n , given by the potential function Ψ X n (x n ). In this section, we show how to apply our stability results to such a standard state-space model, where the potential function depends only on the current state X n . We rewrite the model as a state space model with hidden Markov chain (Λ n ), and observed process (Y n ) corresponding to potential function

where the argument x n in the right hand side has been substituted with the appropriate function of λ 0:n , as derived from (8.20).