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Stability of Feynman-Kac formulae with

path-dependent potentials

N. Chopin∗, Pierre Del Moral†and S. Rubenthaler‡

Abstract

Several particle algorithms admit a Feynman-Kac representation such

that the potential function may be expressed as a recursive function which

depends on the complete state trajectory. An important example is the

mixture Kalman filter, but other models and algorithms of practical inter-

est fall in this category. We study the asymptotic stability of such particle

algorithms as time goes to infinity. As a corollary, practical conditions for

the stability of the mixture Kalman filter, and a mixture GARCH filter,

are derived. Finally, we show that our results can also lead to weaker

conditions for the stability of standard particle algorithms, such that the

potential function depends on the last state only.

1 Introduction

The most common application of the theory of Feynman-Kac formulae (see
e.g. Del Moral, 2004) is nonlinear filtering of a hidden Markov chain (Λn),
based on observed process (Yn). In such settings, the potential function at time
n typically depends only on the current state Λn. The uniform stability of
the corresponding particle approximations can be obtained under appropriate
conditions, see Section 7.4.3 of the aforementioned book and references therein.
For a good overview of the theoretical and methodological aspects of particle
approximation algorithms, also known as particle filtering algorithms, see also
Doucet et al. (2001), Künsch (2001), and Cappé et al. (2005).

They are however several applications of practical interest where the poten-
tial function depends on the complete state trajectory Λ0:n = (Λ0, . . . ,Λn). The
corresponding particle filtering algorithms still have a fixed computational cost
per iteration, because the potential can be computed using recursive formu-
lae. An important example is the class of conditional linear Gaussian dynamic
models, where the conditioning is on some unobserved Markov chain Λn. The
corresponding particle algorithm is known as the mixture Kalman filter (Chen
and Liu, 2000, see also Example 7 in Doucet et al., 2000, and Andrieu and
Doucet, 2002, for a related algorithm): the potential function at time n is then
a Gaussian density, the parameters of which are computed recursively using the
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Kalman-Bucy filter (Kalman and Bucy, 1961). Another example is the mixture
GARCH model considered in Chopin (2007).

It is worth noting that these models such that the potential functions are
path-dependent can often be reformulated as a standard hidden Markov model,
with a potential function depending on the last state only, by adding compo-
nents to the hidden Markov chain. For instance, the mixture Kalman filter may
be interpreted as a standard particle filtering algorithm, provided the hidden
Markov process is augmented with the associated Kalman filter parameters (fil-
tering expectation and error covariance matrix) that are computed iteratively
in the algorithm. However, this representation is unwieldy, and the augmented
Markov process does not fulfil the usual mixing conditions found in the litera-
ture on the stability of particle approximations. This is the main reason why our
study is based on path-dependent potential functions. Quite interestingly, we
shall see that the opposite perspective is more fruitful. Specifically, our stabil-
ity results obtained for path-dependent potential functions can also be applied
to standard state-space models, leading to stability results under conditions
different from those previously given in the literature.

In this paper, we study the asymptotic stability of particle algorithms based
on path-dependent potential functions. We work under the assumption that
the dependence of potential n on state n− p vanishes exponentially in p. This
assumption is met in practical settings because of the recursive nature of the
potential functions. Our proofs are based on the following construction: the true
filter is compared with an approximate filter associated to ‘truncated’ potentials,
that is potentials that depend only on λn−p+1:n, the vector of the last p states,
for some well-chosen integer p. Then, we compare the truncated filter with its
particle approximation, using the fact the ‘truncated’ filter corresponds to a
standard Feynman-Kac model with a Markov chain of fixed dimension. Finally,
we use a coupling construction to compare the particle approximations of the
true filter and the truncated filter. In this way, we obtain estimates of the
stability of the particle algorithm of interest. We apply our results to the two
aforementioned classes of models, and obtain practical conditions under which
the corresponding particle algorithms are stable uniformly in time.

The paper is organised as follows. Section 2 introduces the model and the
notations. Section 3 evaluates the local error induced by the truncation. Section
4 studies the mixing properties of the truncated filter. Section 5 studies the
propagation of the truncation error. Section 6 develops a coupling argument for
the two particle systems. Section 7 states the main theorem of the paper, which
provides a bound for the particle error and derives time-uniform estimates for
the long-term propagation of the error in the particle approximation of the true
model. Section 8 applies these results to two particle algorithms of practical
interest, namely, the mixture Kalman filter, and the mixture GARCH filter,
and shows how these results can be adapted to standard state-space models,
such that the potential function depends only on the last state.

2 Model and notations

We consider a hidden Markov model, with latent (non-observed) state process
{Λn, n ≥ 0}, and observed process {Yn, n ≥ 1}, taking values respectively in
a complete separable metric space E and in F = R

d. The state process is

2



an inhomogeneous Markov chain, with initial probability distribution ζ, and
transition kernel Qn. The observed process Yn admits Ψn(yn|y1:n−1;λ0:n) as
a conditional probability density (with respect to an appropriate dominating
measure) given Λ0:n = λ0:n and Y1:n−1 = y1:n−1, where the short-hand v0:n
for any symbol v stands for the vector (v0, . . . , vn). As explained in the In-
troduction, this quantity depends on the entire path λ0:n, rather than the last
state λn. Following common practice, we drop dependencies on the yn’s in the
notations, as the observed sequence y0:n may be considered as fixed, and use
the short-hand Ψn(λ0:n) = Ψn(yn|y0:n−1;λ0:n). The model admits a Feynman-
Kac representation which we describe fully in (2.1). We consider the following
assumptions.

Hypothesis 1. For all n ≥ 1, the kernel Qn is mixing, i.e. there exists εn ∈
(0, 1) such that

εnξ(A) ≤ Qn(λn−1, A) ≤ 1

εn
ξ(A)

for some ξ ∈ M+(E), and for any Borel set A ⊂ E, any λn−1 ∈ E.

Hypothesis 2. For p large enough, and all n ≥ p, there exists a ‘truncated’
potential function Ψ̃p

n(λn−p+1:n) that depends on the last p states only, and that
approximates Ψn in the sense that

|Ψn(λ0:n) − Ψ̃p
n(λn−p+1:n)| ≤ φnτ

p
{

Ψn(λ0:n) ∧ Ψ̃p
n(λn−p+1:n)

}

for some constants φn and τ , φn > 0, 0 < τ < 1, and all λ0:n ∈ En+1. For
convenience, we abuse notations and set Ψ̃p

n = Ψn for p > n.

Hypothesis 3. There exists constants an, bn, n ≥ 0, an ≥ 1, bn ≥ 1, such that

1

an
≤ Ψn(λ0:n) ≤ bn,

1

an
≤ Ψ̃p

n(λ(n−p+1)+:n) ≤ bn

for all λ0:n ∈ En+1, using the short-hand k+ = k ∨ 0 for any integer k.

The constants an and φn depend implicitly on the realisation y1:n of the
observed process. Hypotheses 1 and 3 are standard in the filtering literature; see
e.g. Del Moral (2004). Hypothesis 2 formalises the fact that potential functions
are computed using iterative formulae, and therefore should forget past states
at an exponential rate. One may take Ψ̃p

n(λn−p+1:n) = Ψn(z, . . . , z, λn−p+1:n)
for instance, where z is an arbitrary element of E. We shall work out, in several
models of interest, practical conditions under which Hypothesis 2 is fulfilled in
Section 8.

We introduce the following notations for the forward kernels, for n ≥ 1:

γn(λ0:n−1, dλ
′
0:n) = δλ0:n−1(dλ

′
0:n−1)Qn(λn−1, dλ

′
n)Ψn(λ′0:n)

where δλ0:n−1 is the Dirac measure centred at λ0:n−1. The above kernels implic-
itly defines operators on measures and on test functions, i.e.,

γnµ(f) = 〈γnµ, f〉 =

∫

µ(dλ0:n−1)γn(λ0:n−1, dλ
′
0:n)f(λ′0:n),
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for any µ ∈ M+(En+1), any test function f : En+1 → [0, 1], where M+(Ek)
denotes the set of nonnegative measures w.r.t. Ek, and P(Ek) the set of prob-
ability measures w.r.t. Ek.

We associate to γn a “normalised” operator Rn, such that, for any µ ∈
M+(En), Rnµ is defined as:

Rnµ(f) =
γnµ(f)

γnµ(1)

for any f : En+1 → R
+. Both the γn’s and the Rn’s may be iterated using the

following short-hands, for 1 ≤ k ≤ n:

γk:nµ = γn . . . γkµ, Rk:nµ = Rn . . . Rkµ.

We have the following Feynman-Kac representation:

E(f(Λ0:n)|Y1:n = y1:n) = R1:nζ(f) , (2.1)

∀n, ∀f : En+1 → R
+, where, as mentioned above, ζ the law of Λ0.

Finally, we denote the total variation norm on nonnegative measures by
‖·‖TV , the supremum norm on bounded functions by ‖ · ‖∞, and the Hilbert
metric by h(µ, µ′) for any pair µ, µ′ ∈ M+(Ek), k ≥ 1; see e.g. Atar and
Zeitouni (1997) or Le Gland and Oudjane (2004), Definition 3.3. We recall that
the Hilbert metric is scale invariant, and is related to the total variation norm
in the following way, see e.g. Lemma 3.4 in Le Gland and Oudjane (2004):

‖µ− µ′‖TV ≤ 2

log 3
h(µ, µ′) (2.2)

h(Kµ,Kµ′) ≤ 1

ε2
‖µ− µ′‖TV (2.3)

provided K is a ε-mixing kernel. We can also derive the following properties
from the definition of h (∀k ∈ N

∗, ∀µ, µ′ ∈ M(Ek)):

∀kernel Q, h(Qµ,Qµ′) ≤ h(µ, µ′) , (2.4)

∀nonnegative function ψ, h(ψµ, ψµ′) ≤ h(µ, µ′) (2.5)

with an equality in the latter equation if ψ is positive.

3 Local error induced by truncation

Until further notice, p is a fixed integer such that p ≥ 2 and such that Hypothesis
2 holds. Since our proofs involve a comparison between the true filter and a
‘truncated’ filter, we introduce the projection operator Hp

n which, for n ≥ p,
associates to any measure µ(dλ0:n) ∈ M+(En+1) its marginal w.r.t. its last p
components, i.e. :

Hp
n(µ)(f) =

∫

µ(dλ0:n)f(λn−p+1:n)

for any f : Ep → R; for p > n, let Hp
n(µ) = µ. We also define the following

‘truncated’ forward kernels, for n ≥ p:

γ̃p
n(λn−p:n−1, dλ

′
n−p+1:n)

= δλn−p+1:n−1(dλ
′
n−p+1:n−1)Qn(λn−1, dλ

′
n)Ψ̃p

n(λ′n−p+1:n)
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and the associated normalised operators, for µ ∈ M+(Ep), f : Ep → R
+:

R̃p
nµ(f) =

γ̃p
nµ(f)

γ̃p
nµ(1)

and set γ̃p
n = γn, R̃p

n = Rn for n < p. From now on, we will refer to the filter
associated to these ‘truncated’ operators as the truncated filter.

We now evaluate the local error induced by the truncation.

Lemma 1. For all 1 ≤ k < n, and for all µ ∈ M+(Ek),
∥

∥

∥R̃
p
k+1:nH

p
kRkµ− R̃p

k:nH
p
k−1µ

∥

∥

∥

TV
≤ 2φkτ

p.

Proof. Let f : Ep∧(n+1) → [0, 1]. One has

R̃p
k+1:nH

p
kRkµ(f) =

γ̃p
k+1:nH

p
kγkµ(f)

γ̃p
k+1:nH

p
kγkµ(1)

R̃p
k:nH

p
k−1µ(f) =

γ̃p
k:nH

p
k−1µ(f)

γ̃p
k:nH

p
k−1µ(1)

where

γ̃p
k+1:nH

p
kγkµ(f) =

∫

En+1

µ(dλ0:k−1)Qk(λk−1, dλk)Ψk(λ0:k)f(λ(n−p+1)+:n)

×
n
∏

i=k+1

[

Qi(λi−1, dλi)Ψ̃
p
i (λ(i−p+1)+:i)

]

and

γ̃p
k:nH

p
k−1µ(f) =

∫

En+1

µ(dλ0:k−1)Qk(λk−1, dλk)Ψ̃p
k(λk−p+1:k)f(λ(n−p+1)+:n)

×
n
∏

i=k+1

[

Qi(λi−1, dλi)Ψ̃
p
i (λ(i−p+1)+:i)

]

hence
∣

∣γ̃k+1:nH
p
kγkµ(f) − γ̃k:nH

p
k−1µ(f)

∣

∣

≤
∫

En+1

µ(dλ0:k−1)Qk(λk−1, dλk)
∣

∣

∣Ψk(λ0:k) − Ψ̃p
k(λ(k−p+1)+ :k)

∣

∣

∣

×f(λ(k−p+1)+:k)

n
∏

i=k+1

[

Qi(λi−1, dλj)Ψ̃
p
i (λ(i−p+1)+:i)

]

≤ φkτ
p

∫

En+1

µ(dλ0:k−1)Qk(λk−1, dλk)(Ψk(λ0:k) ∧ Ψ̃p
k(λ(k−p+1)+:k))

×f(λ(k−p+1)+:k)

n
∏

i=k+1

[

Qi(λi−1, dλi)Ψ̃
p
i (λ(i−p+1)+:i)

]

≤ φkτ
p
{

γ̃k+1:nH
p
kγkµ(f) ∧ γ̃k:nH

p
k−1γk−1µ(f)

}

according to Hypothesis 2. And, since, for all a, b, c, d ∈ R
+ such that a/b ≤ 1

and c/d ≤ 1,
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∣

∣

∣

a

b
− c

d

∣

∣

∣
≤ |a− c|

b
+

|d− b|
b

(3.6)

one may conclude directly by taking a = γ̃k+1:nH
p
kγkµ(f), b = γ̃k:nH

p
k−1γk−1µ(1),

c = γ̃p
k+1:nH

p
kµ(f), and d = γ̃p

k:nH
p
k−1µ(1).

Lemma 2. For k ≥ 1, if there exists a (possibly random) probability kernel
R̄k : Ek∧p → P(E(k+1)∧p) such that, for all µ ∈ P(Ek∧p),

sup
f :‖f‖∞=1

E

(∣

∣

∣
〈R̃p

kµ− R̄kµ, f〉
∣

∣

∣

)

≤ δk

for some δk ≥ 0, then, for all i ≥ 1 and µ ∈ P(Ek∧p),

sup
f :‖f‖∞=1

E

(∣

∣

∣〈R̃p
k:k+iµ− R̃p

k+1:k+iR̄kµ, f〉
∣

∣

∣

)

≤ 2(ak+1 . . . ak+i)(bk+1 . . . bk+i)δk

where the expectation is with respect to the distribution of R̄k.

Proof. Using the same ideas as above, one has, for f : E(k+1−p+1)∧p → [0, 1],

〈R̃p
k:k+iµ− R̃p

k+1:k+iR̄kµ, f〉 =
γ̃p

k+1:k+iR̃
p
kµ(f)

γ̃p
k+1:k+iR̃

p
kµ(1)

−
γ̃p

k+1:k+iR̄kµ(f)

γ̃p
k+1:k+iR̄kµ(1)

.

In order to use inequality (3.6), compute

E(
∣

∣

∣γ̃
p
k+1:k+iR̃

p
kµ(f) − γ̃p

k+1:k+iR̄kµ(f)
∣

∣

∣)

= E

(∣

∣

∣

∣

∫

(R̃p
kµ− R̄kµ)(dλ(k−p+1)+ :k)

k+i
∏

l=k+1

Ql(λl−1, dλl)Ψ̃
p
l (λ(l−p+1)+:l)f(λ(k+i−p+1)+ :k+i)

∣

∣

∣

∣

∣

)

≤ E

(

bk+1 . . . bk+i

∣

∣

∣(R̃
p
kµ− R̄kµ)(f̄)

∣

∣

∣

)

≤ bk+1 . . . bk+iδk

where f̄ is defined as

f̄(λ(k−p+1)+ :k) =

∫ k+i
∏

l=k+1

Ql(λl−1, dλl)f(λ(k+i−p+1)+ :k+i) ≤ 1.

and conclude by noting that

γ̃p
k+1:k+iR̃

p
kµ(1) =

∫

(R̃p
kµ)(dλ(k−p+1)+ :k)

k+i
∏

l=k+1

Ql(λl−1, dλl)Ψ̃
p
l (λ(l−p+1)+:l)

≥ 1

ak+1 . . . ak+i

since R̃p
kµ is a probability measure.
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4 Mixing and contraction properties of the trun-

cated filter

The truncated filter may be interpreted as a standard filter based on Markov
chain Λ̃p

n = Λ(n−p+1)+:n. This insight allows us to establish the contraction
properties of the truncated filter.

Lemma 3. One has:

h(R̃p
k+1:k+pµ, R̃

p
k+1:k+pµ

′) ≤ 1

ε̃2k+1,p

‖µ− µ′‖TV

and
h(R̃p

k+1:k+pµ, R̃
p
k+1:k+pµ

′) ≤ ρ̃k+1,ph(µ, µ
′)

where

ε̃2k,p =
ε2k

(ak . . . ak+p−2)(bk . . . bk+p−2)
, ρ̃k,p =

1 − ε̃2k,p

1 + ε̃2k,p

,

for all k ≥ 0, and all µ ,µ′ ∈ P(E(k+1)∧p).

Note ε̃k,n must be interpreted as a mixing coefficient, and ρ̃k,p as a Birkhoff
contraction coefficient.

Proof. Using Hypothesis 3, one has:

Qk+pγ̃k+1:k+p−1µ

=

∫

µ(dλ(k−p+1)+ :k)

k+p
∏

i=k+1

Qi(λi−1, dλi)

k+p−1
∏

i=k+1

[

Ψ̃p
i (λ(i−p+1)+:i)

]

≤ bk+1 . . . bk+p−1

∫

µ(dλ(k−p+1)+:k)

k+p
∏

i=k+1

Qi(λi−1, dλi)

≤ bk+1 . . . bk+p−1

εk+1
ξ̃p(dλk+1:k+p)

where ξ̃p stands for the following reference measure:

ξ̃p(dλk+1:k+p) = ξ(dλk+1)

k+p
∏

i=k+2

Qi(λi−1, dλi).

One shows similarly that

Qk+pγ̃k+1:k+p−1µ ≥ εk+1

ak+1 . . . ak+p−1
ξ̃p(dλk+1:k+p).

Hence kernel Qk+pγ̃k+1:k+p−1µ is mixing, with mixing coefficient ε̃k+1,p.
Following Lemma 3.4 in Le Gland and Oudjane (2004),

h(R̃p
k+1:k+pµ, R̃

p
k+1:k+pµ

′) = h(Qk+pγ̃k+1:k+p−1µ,Qk+pγ̃k+1:k+p−1µ
′)

≤ 1

ε̃2k+1,p

‖µ− µ′‖TV
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using the scale invariance property of the Hilbert metric. Similarly, according
to Lemma 3.9 in the same paper:

h(R̃p
k+1:k+pµ, R̃

p
k+1:pµ

′) = h(Qk+pγ̃k+1:k+p−1µ,Qk+pγ̃k+1:k+p−1µ
′)

≤
(

1 − ε̃2k+1,p

1 + ε̃2k+1,p

)

h(µ, µ′).

5 Propagation of truncation error

We establish first the two following lemmas.

Lemma 4. Let R̄n : En∧p → P(E(n+1)∧p) be a sequence of (possibly random)
probability kernels such that for all n ≥ 1 and µ ∈ P(En∧p),

sup
f :‖f‖∞=1

E

{∣

∣

∣〈R̃p
nµ− R̄nµ, f〉

∣

∣

∣

}

≤ δn ,

where the expectation is w.r.t. the randomness of R̄n, then, for all n ≥ 1 and
all ζ ∈ P(E), one has

sup
f :‖f‖∞=1

E

{∣

∣

∣
〈R̃p

1:nζ − R̄1:nζ, f〉
∣

∣

∣

}

≤ 8

log(3)

n
∑

i=1





δi
ε̃2i+1ε̃

2
i+p+1

⌊n−i

p
⌋−1

∏

j=2

ρ̃i+jp+1,p





where R̄1:nζ = R̄n . . . R̄1ζ, and with the convention that empty products equal
one.

Proof. The following difference can be decomposed into a telescopic sum:

R̃p
1:nζ − R̄1:nζ =

n
∑

i=1

(

R̃p
i+1:nR̃

p
i R̄1:i−1ζ − R̃p

i+1:nR̄iR̄1:i−1ζ
)

.

We fix the integers i, n, and consider some arbitrary test function f . For
i ≥ n− 2p, one may apply Lemma 2:

sup
f :‖f‖∞=1

E

{∣

∣

∣〈R̃p
i+1:nR̃

p
i R̄1:i−1ζ − R̃p

i+1:nR̄iR̄1:i−1ζ, f〉
∣

∣

∣

}

≤ 2(ai+1 . . . an)(bi+1 . . . bn)δi

≤ 8

log(3)

δi
ε̃2i+1,pε̃

2
i+p+1,p

since εn ≤ 1, an ≥ 1 and bn ≥ 1 for all n.
For i < n − 2p, let k = ⌊(n − i)/p⌋, then, using Lemma 3, Equations (2.2)
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to (2.5) one has

∣

∣

∣〈R̃p
i+1:nR̃

p
i R̄1:i−1ζ − R̃p

i+1:nR̄iR̄1:i−1ζ, f〉
∣

∣

∣

≤
∥

∥

∥R̃
p
i+1:nR̃

p
i R̄1:i−1ζ − R̃p

i+1:nR̄iR̄1:i−1ζ
∥

∥

∥

TV

≤ 2

log(3)
h
(

R̃p
i+1:i+kpR̃

p
i R̄1:i−1ζ, R̃

p
i+1:i+kpR̄iR̄1:i−1ζ

)

≤ 2

log(3)ε̃2i+p+1,p

×
k−1
∏

j=2

ρ̃i+jp+1,p ×
∥

∥

∥R̃
p
i+1:i+pν − R̃p

i+1:i+pν
′
∥

∥

∥

TV

where ν = R̃p
i R̄1:i−1ζ, ν

′ = R̄iR̄1:i−1ζ. Applying (7) p. 160 of Le Gland and
Oudjane (2004), one gets

∥

∥

∥R̃
p
i+1:i+pν − R̃p

i+1:i+pν
′
∥

∥

∥

TV
≤ 2

‖γ̃p
i+1:i+pν − γ̃p

i+1:i+pν
′‖TV

γ̃p
i+1:i+pν(1)

.

where, using the same calculations as in Lemma 3,

γ̃p
i+1:i+pν(1) ≥ εi+1

ai+1 . . . ai+p

and

E

[

∥

∥γ̃p
i+1:i+pν − γ̃p

i+1:i+pν
′
∥

∥

TV

]

= E

[∫

x′∈Ep

∣

∣

∣

∣

∫

x∈Ep

(ν − ν′)(dx)γ̃p
i+1:i+p(x, dx′)

∣

∣

∣

∣

]

≤
[

sup
x∈Ep

∫

x′∈Ep

γ̃p
i+1:i+p(x, dx

′)

]

[

sup
φ:‖φ‖∞=1

E(|〈ν − ν′, φ〉|)
]

≤ bi+1 . . . bi+p

εi+1

[

sup
φ:‖φ‖∞=1

E(|〈ν − ν′, φ〉|)
]

which ends the proof.

Lemma 5. For all n ≥ 1 and all ζ ∈ P(E), one has

∥

∥

∥R̃
p
1:nζ −Hp

nR1:nζ
∥

∥

∥

TV
≤ 4τp

log 3







n
∑

i=1

φi

ε̃2i+1,p

⌊(n−i)/p⌋−1
∏

j=1

ρ̃i+jp+1,p







with the convention that empty sums equal zero, and empty products equal one.

Proof. One has:

R̃p
1:nζ −Hp

nR1:nζ =
n
∑

i=1

(

R̃p
i+1:nR̃

p
iH

p
i−1R1:i−1ζ − R̃p

i+1:nH
p
i R1:iζ

)

9



For i ≤ n− p, let k = ⌊(n− i)/p⌋, then according to Lemma 3:

∥

∥

∥R̃
p
i+1:nR̃

p
iH

p
i−1R1:i−1ζ − R̃p

i+1:nR̃
p
i+1H

p
i R1:iζ

∥

∥

∥

TV

≤ 2

log 3
h
(

R̃p
i+1:i+kpR̃

p
iH

p
i−1R1:iζ, R̃

p
i+1:i+kpH

p
i R1:iζ

)

≤ 2

log(3)ε̃2i+1,p

k−1
∏

j=1

ρ̃i+jp+1,p

∥

∥

∥R̃
p
iH

p
i−1R1:i−1ζ −Hp

i R1:iζ
∥

∥

∥

TV

and ones concludes using Lemma 1. For i > n − p, one can apply Lemma 1
directly.

6 Coupling of particle approximations

We now introduce two interactive particle systems: the first particle system
approximates the true filter, and is equivalent to the type of particle algorithms
studied in this paper, and the second particle system approximates the truncated
filter, and corresponds to an artificial algorithm that would not be implemented
in practice. We work out a way of coupling both particle systems in order to
evaluate the distance between the two (in a sense that is made clear below).

We define, for n ≥ 0,

Q̄n,p

(

λ(n−p)+:n−1, dλ
′
(n−p+1)+:n

)

= δλ(n−p+1)+:n−1
(dλ′(n−p+1)+:n−1)

×Qn(λn−1, dλ
′
n),

Q̄n(λ0:n−1, dλ
′
0:n) = δλ0:n−1(dλ

′
0:n−1) ×Qn(λn−1, dλ

′
n) .

We define ∀ν ∈ M+(En+1), ∀ measurable f : En+1 → R
+, ∀ν′ ∈ M+(Ep), ∀

measurable g : E(n+1)∧p → R
+,

Ψn.ν(f) =
ν(Ψnf)

ν(Ψn)
, Ψ̃p

n.ν
′(g) =

ν′(Ψ̃p
ng)

ν′(Ψp
n)

.

For any measurable space (E′,Ω′) and any measure µ′ ∈ P(E′), we can take
Z1, Z2, . . . i.i.d. of law µ′ and define the random empirical measure, for N ≥ 1,

SN (µ′) =
1

N

N
∑

i=1

δZi
.

Notice that, as the Z1, Z2, . . . are only given in law, we only define SN (µ) in
law. We define the random operators RN

n , R̃p,N
n (∀n) by: ∀µ ∈ P(En), RN

n µ is
a random weighted empirical measure such that

RN
n µ = Ψn.S

N(Q̄nµ) .

Similarly, ∀µ′ ∈ P(Ep∧n), R̃p,N
n µ′ is a random weighted empirical measure such

that
R̃p,N

n µ′ = Ψ̃p
n.S

N(Q̄n,pµ
′) . (6.7)

10



As pointed above, RN
n µ and R̃p,N

n µ′ are only defined in law. Since ζ denotes the
probability density of the first state Λ0, the particle system with N particles
approximating the true filter at time n is defined by

RN
n R

N
n−1 . . . R

N
1 ζ,

and the particle system with N particles approximating the truncated filter at
time n is defined by

R̃p,N
n R̃p,N

n−1 . . . R̃
p,N
1 ζ.

Lemma 6. There exists a coupling such that, for all k ≥ 1 and µ ∈ P(Ek):

sup
f :‖f‖∞≤1

E

(∣

∣

∣〈R̃p,N
k Hp

k−1µ−Hp
kR

N
k µ, f〉

∣

∣

∣

)

≤ φkτ
p.

As Hp
kR

N
k µ and R̃p,N

k Hp
kµ are defined to be random variables with such and

such law, the term “coupling” means that we can define a random variable
(HkR

N
k µ, R̃

p,N
k Hkµ) with the desired marginals.

Proof. To prove the above result, we produce a coupling between the two ran-
dom measures R̃p,N

k Hp
k−1µ and Hp

kR
N
k µ. Let

Ψ̄n(λ0:n) = Ψ̃p
n(λ(n−p+1)+:n),

so that, for µ ∈ P(Ek), and using (6.7), one has

R̃p,N
k Hp

k−1µ = Hp
k (Ψ̄k.(S

N (Q̄kµ))

in the sense that both sides define the same distribution. Let χ1, . . . , χN i.i.d.
∼ µQ̄k, where χi is a vector λ0:k,i, for i = 1, . . . , N , and χ̃i denotes its projection
on the p last components, χ̃i = λ(k−p+1)+:k,i, then

1
∑N

j=1 Ψk(χj)

N
∑

i=1

Ψk(χi)δχ̂i
has same law as Hp

kR
N
k µ

and

1
∑N

j=1 Ψ̄k(χj)

N
∑

i=1

Ψ̄k(χi)δχ̃i
has same law as R̃p,N

k Hp
k−1µ .

For any f such that ‖f‖∞ ≤ 1 (using a classical result on empirical measures):

|〈R̃p,N
k Hp

k−1µ−Hp
kR

N
k µ, f〉|

≤ 1

2

N
∑

i=1

∣

∣

∣

∣

∣

Ψk(χi)
∑N

j=1 Ψk(χj)
− Ψ̄k(χi)
∑N

j=1 Ψ̄k(χj)

∣

∣

∣

∣

∣

≤ 1

2

N
∑

i=1





∣

∣

∣

∣

∣

Ψk(χi) − Ψ̄k(χi)
∑N

j=1 Ψk(χj)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

Ψ̄k(χi)
∑N

j=1(Ψ̄k(χj) − Ψk(χj))
{

∑N
j=1 Ψk(χj)

}{

∑N
j=1 Ψ̄k(χj)

}

∣

∣

∣

∣

∣

∣





≤ φkτ
p

2

N
∑

i=1





Ψk(χi)
∑N

j=1 Ψk(χi)
+

Ψ̄k(χi)
∑N

j=1 Ψ̄k(χi) ∧ Ψ(χi)
{

∑N
j=1 Ψ(χj)

}{

∑N
j=1 Ψ̄(χj)

}





≤ φkτ
p

using Hypothesis 2, from which we deduce the result.
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7 Main result

We are now able to derive estimates of the error

Ep
n,N (y1:n) = sup

f :‖f‖∞=1

EN

(∣

∣〈Hp
nR1:nζ −Hp

nR
N
1:nζ, f〉

∣

∣ |Y0:n = y0:n
)

induced by the particle approximation of the true filter, for the marginal fil-
tering distribution of the p last states, provided p ≤ n. The expectation EN

is with respect to the randomness of the N particles, and the functions f are
E(n+1)∧p → R. Note that Ep

n,N (y1:n) is by construction an increasing function
of p.

Theorem 7. For any ζ ∈ P(E), and any test function w.r.t. E(n+1)∧p,

Ep
n,N(y1:n) ≤ 4

log 3

n
∑

i=1

δi
ε̃2i+1,pε̃

2
i+p+1,p

⌊(n−i)/p⌋−1
∏

j=2

ρ̃i+jp+1 (7.8)

where

δi = 3τpφi +
4aibi√
N
.

Proof. We first study the following local error, for µ ∈ P(En),

sup
f :‖f‖

∞
=1

EN

[∣

∣

∣

〈

R̃p
nH

p
n−1µ−Hp

nR
N
n µ, f

〉∣

∣

∣

∣

∣ Y0:n = y0:n

]

where the difference of operators can de decomposed into:

R̃p
nH

p
n−1 −Hp

nR
N
n =

(

R̃p
nH

p
n−1 − R̃p,N

n Hp
n−1

)

+
(

R̃p,N
n Hp

n−1 −Hp
nR

N
n

)

.

To bound the first term, one may use (25) p. 162 of Le Gland and Oudjane
(2004), for ν = Hp

n−1µ and Hypothesis 3:

EN

[∣

∣

∣

〈

R̃p
nν − R̃p,N

n Hp
n−1ν, f

〉∣

∣

∣

]

≤ 2anbn√
N

and, for the second term, one may apply Lemma 6:

EN

[∣

∣

∣

〈

R̃p,N
n Hp

n−1µ−Hp
nR

N
n µ, f

〉∣

∣

∣

]

≤ φnτ
p

so that
sup

f :‖f‖
∞

=1

EN

[∣

∣

∣

〈

R̃p
nµ−Hp

nR
N
n µ, f

〉∣

∣

∣

]

≤ δ′n

for δ′n = 2anbn/
√
N + φnτ

p. This local error is propagated using Lemma 4:

EN

[∣

∣

∣

〈

R̃p
1:nζ −Hp

nR
N
1:nζ, f

〉∣

∣

∣

]

≤ 8

log(3)

n
∑

i=1





δ′i
ε̃2i+1ε̃

2
i+p+1

⌊n−i

p
⌋−1

∏

j=2

ρ̃i+jp+1,p



 .

To conclude, one may decompose the global error as follows:

Hp
nR1:nζ −Hp

nR
N
1:nζ =

(

Hp
nR1:nζ − R̃p

1:nζ
)

+
(

R̃p
1:nζ −Hp

nR
N
1:nζ

)

.

where the second term is bounded above, and the first term is directly bounded
using Lemma 5.
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Since p is an arbitrary parameter, one may minimise the error bound with
respect to p. For instance, one has the following result for time-uniform esti-
mates. As noted above, the error Ep

n,N(y1:n) is an increasing function of p, so the

bound below applies a fortiori to E1
n,N (y1:n), the particle error corresponding to

the marginal filtering distribution of the last state Λn.

Corollary 8. If there exists constants c, ε, φ > 0 such that, almost surely,
anbn ≤ c, εn ≥ ε, and φn ≤ φ, then, provided τc3 < 1, the particle error is
bounded almost surely as follows:

Ep
n,N (y1:n) ≤ C {log(N) +D}

(

1√
N

)1+3 log c/ log τ

,

for N large enough, where

C =
16

ε6c2

( −1

log τ

)(

4c

3φ

)3 log c/ log τ

, D = 2 log(3φ/4cτ),

and

p =

⌈

log

{

4c

3φ
√
N

}

/ log τ

⌉

. (7.9)

Proof. Under these conditions, the RHS of (7.8) is smaller than or equal to:

Ep
n,N (y1:n) ≤ 4

log 3

c2(p−2)

ε4

(

3φτp +
4c√
N

) n
∑

i=1

(

1 − ε2c−(p−2)
)⌊(n−i)/p⌋−2

(7.10)

≤ 4

log 3

c2(p−2)

ε4

(

3φτp +
4c√
N

) n−1
∑

i=0

(

1 − ε2c−(p−2)
)i/p−1

≤ 4

log 3

c2(p−2)

ε4

(

3φτp +
4c√
N

)

(

1 − ε2c−(p−2)
)−1

1 −
(

1 − ε2c−(p−2)
)1/p

≤ 4c3(p−2)

ε6

(

3φτp +
4c√
N

)

p

for p large enough, since (1−x)a ≤ 1− ax for a ∈ (0, 1), x ∈ (0, 1), so, provided
c3τ < 1, one may take p as in (7.9), which gives:

Ep
n,N (y1:n) ≤ 32

ε6c2

(

4c

3φ

)3 log c

log τ
(

logN + 2 log(3φ/4c)

−2 log τ
+ 1

)(

1√
N

)1+ 3 log c

log τ

and conclude.

Obviously, this is a qualitative result, in that there are many practical models
where such time-uniform, deterministic bounds are not available. For specific
models, one may be able instead to use (7.8) in order to establish the asymptotic
stability of the expected particle error, where the expectation is with respect to
observed process (Yn). We provide an example of this approach in Section 8.
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8 Applications to practical models

In this section, we apply our general result to three practical models. We keep
the same settings and notations, i.e. the observed process (Yn) admits some
probability distribution conditional on the path Λ0:n = λ0:n of a Markov chain
(Λn), with initial distribution ζ and Markov transition Qn, which fulfil Hypoth-
esis 1, see Section 2. We derive conditions on the model parameters that ensure
asymptotic stability of the particle error; in particular, these conditions imply
that Hypotheses 2 and 3 are verified.

We state the following trivial result for further reference. Let (f, g) a pair
of probability densities (f, g) on E, then:

∀x ∈ E, | log {f(x)} − log {g(x)} | ≤ c

⇒ ∀x ∈ E, |f(x) − g(x)| ≤ (ec − 1) {f(x) ∧ g(x)} (8.11)

for c ≥ 0.

8.1 GARCH Mixture model

We assume that the observed process is such that

Yn = σn(Λ0:n)Zn, n ≥ 1,

where the Zn’s are i.i.d. N (0, 1) random variables, and the variance function
σ2

n is defined recursively, for n ≥ 1:

σ2
n(λ0:n) = α(λn) + β(λn)Y 2

n + γ(λn)σ2
n−1(λ0:n−1) (8.12)

and σ2
0(λ0) = α(λ0)/ {1 − γ(λ0)} , where α, β and γ are E → R

+ functions.
Conditional on Λ0:n, (Yn) is a GARCH (generalised autoregressive conditional
heteroskedasticity) process (Bollerslev, 1986); see Chopin (2007) for a finance
application of such a GARCH mixture model.

The potential functions equal

Ψn(λ0:n) =
1

√

2πσ2
n(λ0:n)

exp

{

− y2
n

2σ2
n(λ0:n)

}

,

for λ0:n ∈ En+1, and (Λn) is a Markov process, with Markov kernels Qn, which
satisfy Hypothesis 1.

The functions α, β and γ are assumed to be bounded as follows:

0 < αmin ≤ α(λ) ≤ αmax, 0 ≤ βmin ≤ β(λ) ≤ βmax < 1,

0 ≤ γmin ≤ γ(λ) ≤ γmax < 1.

We first consider the case where β(λ) = 0 for all λ ∈ E. As mentioned
in the introduction, this simplified model can be interpreted as a standard
hidden Markov model, with observed process (Yn), and Markov chain (κn) =
(

Λn, σ
2
n(Λ0:n)

)

. However, since σ2
n(Λ0:n) is a deterministic function of σ2

n−1(Λ0:n−1)
and λn, it does not have mixing or similar properties that are usually required
to obtain estimates of the particle error. Instead, analysing this model as a
Feynman-Kac flow with iterative, path-dependent potential functions make it
possible to derive such estimates.
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Lemma 9. For the simplified model described above (with β = 0), the expected
particle error of the corresponding particle approximation is uniformly stable in
time, i.e. there exists constants C, D, such that

E

[

Ep
n,N(Y1:n)

]

≤ C {log(N) +D}
(

1√
N

)1+3 log c/ log τ

,

where p is given by (7.9), provided ι < 2 and τc3 < 1, where τ = γmax, c =

(2/ι− 1)−1/2, and

ι =
αmax (1 − γmin)

αmin (1 − γmax)
.

Proof. From (8.12), one sees the process σ2
n is bounded, σ2

min ≤ σ2
n(λ0:n) ≤ σ2

max

for all λ0:n ∈ En+1, where

σ2
min =

αmin

1 − γmin
, σ2

max =
αmax

1 − γmax
.

so, for a given sequence observations y1:n, Hypothesis 3 is verified with:

1

an
=

1
√

2πσ2
max

exp

{

− y2
n

2σ2
min

}

, bn =
1

√

2πσ2
min

exp

{

− y2
n

2σ2
max

}

,

provided the truncated potential is taken as:

Ψ̃p
n(λn−p+1:n) = Ψn(z, . . . , z, λn−p+1:n)

where z is an arbitrary element of E. For Hypothesis 2, one has, for any
λ0:n, λ

′
0:n ∈ E(n+1) such that λ(n−p+1)+:n = λ′(n−p+1)+:n :

|log Ψn(λ0:n) − log Ψn(λ′0:n)| ≤ 1

2

∣

∣log σ2
n(λ0:n) − log σ2

n(λ′0:n)
∣

∣

+
y2

n

2

∣

∣

∣

∣

1

σ2
n(λ0:n)

− 1

σ2
n(λ′0:n)

∣

∣

∣

∣

≤ σ2
min + y2

n

2σ4
min

∣

∣σ2
n(λ0:n) − σ2

n(λ′0:n)
∣

∣

where σ2
n is contracting, in the sense that, for n ≥ p,

∣

∣σ2
n(λ0:n) − σ2

n(λ′0:n)
∣

∣ =

{

p−1
∏

i=0

γ(λn−i)

}

∣

∣σ2
n−p(λ0:n−p) − σ2

n−p(λ
′
0:n−p)

∣

∣

≤ 2γp
maxσ

2
max.

Thus, using (8.11), and the fact that (ex − 1)/x is an increasing function, Hy-
pothesis 2 is verified with τ = γmax and

φn = τ−q

[

exp

{

τqσ2
max

(

σ2
min + y2

n

)

σ4
min

}

− 1

]

,

for any q ≤ p. Finally, to compute the expectation with respect to process (Yn)
of the error bound (7.8), one may use repetitively the following results:

E
[

exp
(

aY 2
n

)

|Y1:n−1

]

≤
(

1 − 2aσ2
max

)−1/2
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for a < 1/2σ2
max, using standard calculations and the fact that Yn, conditional

on Y1:n−1 and Λ0:n = λ0:n is N
(

0, σ2
n(λ0:n)

)

. This implies in particular that:

E [anbn|Y1:n−1] ≤
(

2
σ2

min

σ2
max

− 1

)−1/2

= c

where the constant c is well-defined since σ2
max/σ

2
min < 2, then by Jensen in-

equality,

E

[

1

anbn

∣

∣ Y1:n−1

]

≥ c−1,

and similarly,

E [φn|Y1:n−1] ≤ τ−q

[

exp

{

τq σ
2
max

σ2
min

}(

1 − 2τq σ
4
max

σ4
min

)−1/2

− 1

]

= φ

where φ is properly defined for q large enough. Using the above results recur-
sively on the sum on the RHS of (7.8), one obtains the same expression as in
(7.10) for the error bound than in Corollary 8 for time-uniform estimates (with
the values of c, φ, τ as defined above), and concludes similarly.

If β is allowed to take positive values, stability results may be obtained under
more restrictive conditions. In particular, one may impose that γ is a constant
function.

Lemma 10. For the general mixture GARCH model defined above, the expected
particle error is uniformly stable in time, i.e. there exist constants C, D, such
that

E

[

Ep
n,N(Y1:n)

]

≤ C {log(N) +D}
(

1√
N

)1+3 log c/ log γ

provided γ is a constant function, γ(λ) = γ, τc3 < 1, ϑ < 2, where τ = γ,

c = (2/ϑ− 1)−1/2, p is given by (7.9), and

ϑ =

(

αmax

αmin
∨ βmax

βmin

)

.

Proof. We follow the same lines as above, except that the bounds of the process
σ2

n(λ0:n) must be replaced by:

σ2
min(n) =

γn

1 − γ
αmin +

n−1
∑

k=0

(αmin + βminy
2
n−k)γk,

σ2
max(n) =

γn

1 − γ
αmax +

n−1
∑

k=0

(αmax + βmaxy
2
n−k)γk,

which, by construction, are such that

σ2
max(n)

σ2
min(n)

≤ ϑ < 2.

Hence, one has again

E [anbn|Y1:n−1] ≤
(

2
σ2

min

σ2
max

− 1

)−1/2

= c
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and the rest of the calculation is identical to those of previous Lemma, with
τ = γ.

8.2 Mixture Kalman model

We focus on an univariate linear Gaussian model, i.e. conditional on Markov
process (Λn), one has X0 = 0 almost surely, and, for n ≥ 1,

Xn = h(Λn)Xn−1 +
√

w(Λn)Wn,

Yn = Xn +
√

v(Λn)Vn,

where the Vn’s and the Wn’s are independent N (0, 1) variables, and h, v, w are
real-valued functions. Using the recursions of the Kalman-Bucy Filter (Kalman
and Bucy, 1961), one is able to marginalise out the process Xn, and compute
recursively the probability density of Yn, conditional on Λ0:n = λ0:n, in the
following way:

Ψn(λ0:n) =
1

√

2πσ2
n(λ0:n)

exp

[

−{yn − µn(λ0:n)}2

2σ2
n(λ0:n)

]

where, the following quantities are defined recursively: for n ≥ 1,

µn(λ0:n) = h(λn)mn−1(λ0:n−1) (8.13)

σ2
n(λ0:n) = h(λn)2cn−1(λ0:n−1) + v(λn) + w(λn) (8.14)

an(λ0:n) =
{

h(λn)2cn−1(λ0:n−1) + w(λn)
}

/σ2
n(λ0:n) (8.15)

mn(λ0:n) = h(λn)mn−1(λ0:n−1) + an(λ0:n) {yn − µn(λ0:n)} (8.16)

cn(λ0:n) = h(λn)2cn−1(λ0:n−1) + w(λn) − an(λ0:n)2σ2
n(λ0:n) (8.17)

and m0(λ0) = c0(λ0) = 0.
We make the following assumptions:

1. Functions v and w are bounded as follows: for all λ ∈ E,

0 < v ≤ v(λ) ≤ v̄, 0 < w ≤ w(λ) ≤ w̄.

2. Function h is bounded as follows: for all λ ∈ E,

|h(λ)| ≤ h < 1

We first prove the following intermediate results.

Lemma 11. The sequence σ2
n is bounded and uniformly contracting, i.e. for all

p ≥ 1, for all λ0:n, λ′0:n, such that λn−p+1:n = λ′n−p+1:n, one has

σ2 ≤ σ2
n(λ0:n) ≤ σ̄2

∣

∣σ2
n(λ0:n) − σ2

n(λ′0:n)
∣

∣ ≤ Cστ
p
σ

where σ2 = v + w, σ̄2 = (h̄2 + 1)v̄ + w̄, Cσ = h̄2v̄/τσ, and

τσ =
1

1 + w/v̄ + 2
√

w/v̄ + w2/v̄2
< 1.

17



Proof. From (8.17), one deduces that

1

cn(λ0:n)
=

1

v(λn)
+

1

h(λn)2cn−1(λ0:n−1) + w(λn)
(8.18)

thus
(

1

v
+

1

w

)−1

≤ cn(λ0:n) ≤ v̄

and, from (8.14), that

v + w ≤ σ2
n(λ0:n) ≤ (h̄2 + 1)v̄ + w̄.

In addition, (8.18) implies that

log {cn(λ0:n)} = Υ (log {cn−1(λ0:n−1)} , λn)

where

Υ (c, λ) = − log

{

1

v(λ)
+

1

h(λ)2ec + w(λ)

}

.

It is easy to show that, for a fixed λ, the derivative of Υ (c, λ) with respect to c
is bounded from above by τσ as defined above. Thus, Υ (c, λ) is a contracting
function, and, by induction, for n ≥ p,

∣

∣σ2
n(λ0:n) − σ2

n(λ′0:n)
∣

∣ = |h(λn)|2
∣

∣cn−1(λ0:n−1) − cn−1(λ
′
0:n−1)

∣

∣

≤ h̄2v̄
∣

∣log cn−1(λ0:n−1) − log cn−1(λ
′
0:n−1)

∣

∣

≤ Cστ
p
σ .

where τσ and Cσ were defined above.

Lemma 12. The sequence µn is bounded and contracting in the sense that there
exists Cµ > 0 such that, for all p ≥ 1, for all n ≥ p, and λ0:n, λ′0:n, such that
λn−p+1:n = λ′n−p+1:n, one has

|µn(λ0:n)| ≤ āh̄

1 − ãh̄
Mn−1, |µn(λ0:n) − µn(λ′0:n)| ≤ CµMn−1τ

p,

where

Mn = max
i=1,...n

(|yi|) , τ = τσ ∨ h̄, ā =

(

1 − v

h̄2v̄ + w̄ + v

)

, ã =
v̄

v̄ + w
.

Proof. Note first that

1 − ã =
w

v̄ + w
≤ an(λ0:n) ≤

(

1 − v

h̄2v̄ + w̄ + v

)

= ā

so one shows recursively, using (8.13) and (8.16), that:

|µn(λ0:n)| ≤ āh̄

1 − ãh̄
Mn−1

18



and that, for λ0:n, λ′0:n such that λn−p+1:n = λ′n−p+1:n,

|µn(λ0:n) − µn(λ′0:n)| (8.19)

≤ Mn−1





p
∑

i=1

h̄i

∣

∣

∣

∣

∣

∣

an−i

i−1
∏

j=1

(1 − an−j) − a′n−i

i−1
∏

j=1

(1 − a′n−j)

∣

∣

∣

∣

∣

∣

+ 2h̄p+1





where an−i, a
′
n−i are short-hands for an−i(λ0:n−i), an−i(λ

′
0:n−i). The sequence

an itself in contracting, since, from (8.15), one has, for i < p:

∣

∣an−i − a′n−i

∣

∣ ≤ v̄

σ4

∣

∣σ2
n−i(λ0:n−i) − σ2

n−i−1(λ
′
0:n−i)

∣

∣

≤ v̄Cσ

σ4
τp−i
σ

so (8.19) and the fact that |xy − x′y′| ≤ |x− x′|+ |y− y′| provided x, x′, y, y′ ∈
[0, 1] leads to

|µn(λ0:n) − µn(λ′0:n)|

≤ Mn−1

[

v̄Cσ

σ4

p
∑

i=1

h̄i
(

τp−i
σ + . . .+ τp−1

σ

)

+ 2h̄p+1

]

≤ Mn−1

[

v̄Cστ
p−1
σ

σ4

p
∑

i=1

h̄i

(

τ−i
σ − 1

τ−1
σ − 1

)

+ 2h̄p+1

]

≤ Mn−1Cµτ
p

for τ = τσ ∨ h̄, and a well chosen value of Cµ.

We are now able to state the main result.

Lemma 13. For the model above, the particle error is bounded uniformly in
time, i.e. there exist C, D, such that

Ep
n,N (y1:n) ≤ C {log(N) +D}

(

1√
N

)1+3 log c/ log τ

,

almost surely, for p given by (7.9), provided the realizations yn are bounded, i.e.
|yn| ≤ Cy for all n ≥ 1, and that τc3 < 1, with τ = h̄ ∨ τσ and

c =
σ̄

σ
exp

[

C2
y

σ2

{

1 +

(

āh̄

1 − ãh̄

)2
}]

, τσ =
1

1 + w/v̄ + 2
√

w/v̄ + w2/v̄2
< 1.

Proof. This proposition is a direct application of Corrolary 8, so we need only
to prove that Hypotheses 2 and 3 are fulfilled. For Hypothesis 2, one may take

1

an
=

1√
2πσ̄2

exp

[

−C
2
y

σ2

{

1 +

(

āh̄

1 − ãh̄

)2
}]

, bn =
1

√

2πσ2

so that anbn ≤ c for c defined above. For Hypothesis 3, one has:

2 |log Ψn(λ0:n) − log Ψn(λ′0:n)| ≤
∣

∣log σ2
n(λ0:n) − log σ2

n(λ′0:n)
∣

∣

+

∣

∣

∣

∣

∣

{yn − µn(λ0:n)}2

σ2
n(λ0:n)

− {yn − µn(λ′0:n)}2

σ2
n(λ′0:n)

∣

∣

∣

∣

∣
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where the first term is such that

∣

∣log σ2
n(λ0:n) − log σ2

n(λ′0:n)
∣

∣ ≤ 1

σ2

∣

∣σ2
n(λ0:n) − σ2

n(λ′0:n)
∣

∣

≤ Cσ

σ2
τp
σ

according to Lemma 11, and the second term is such that
∣

∣

∣

∣

∣

{yn − µn(λ0:n)}2

σ2
n(λ0:n)

− {yn − µn(λ′0:n)}2

σ2
n(λ′0:n)

∣

∣

∣

∣

∣

≤ 1

σ2
n(λ′0:n)

∣

∣

∣{yn − µn(λ0:n)}2 − {yn − µn(λ′0:n)}2
∣

∣

∣

+
{yn − µn(λ0:n)}2

σ2
n(λ0:n)σ2

n(λ′0:n)

∣

∣σ2
n(λ0:n) − σ2

n(λ′0:n)
∣

∣

≤
2CµC

2
y

σ2

(

1 +
āh̄

1 − ãh̄

)

τp +
2C2

yCσ

σ4

[

1 +

(

āh̄

1 − ãh̄

)2
]

τp
σ

and one concludes using (8.11) and taking

φ = φn = exp

{

Cσ

2σ2
+
CµC

2
y

σ2

(

1 +
āh̄

1 − ãh̄

)

+
C2

yCσ

σ4

[

1 +

(

āh̄

1 − ãh̄

)2
]}

− 1.

Obviously, the boundness condition on the realizations yn is not entirely
satisfactory, as the generating process of (Yn) is such that Yn should leave any
interval eventually. However, Yn is marginally a Gaussian variable with variance
uniformly bounded in time (since h̄ < 1), so this remains a reasonable approx-
imation if Cy is large enough. Generalizing the above result to more general
conditions is left for future research.

8.3 Application to standard state-space models

Consider a ‘standard’ state-space model, based on a linear auto-regressive state
process (Xn):

Xn = ρXn−1 + Λn, Λ1, . . . ,Λn, . . . i.i.d. (8.20)

for t ≥ 0, ρ ∈ (−1, 1) and X0 = Λ0, and an observed process (Yn), with
conditional density, with respect to an appropriate dominating measure, and
conditional on Xn = xn, given by the potential function ΨX

n (xn).
In this section, we show how to apply our stability results to such a standard

state-space model, where the potential function depends only on the current
state Xn. We rewrite the model as a state space model with hidden Markov
chain (Λn), and observed process (Yn) corresponding to potential function

Ψn(λ0:n) = ΨX
n

(

n
∑

k=0

ρkλn−k

)

,

where the argument xn in the right hand side has been substituted with the
appropriate function of λ0:n, as derived from (8.20).
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Clearly, the reformulated model satisfies Hypothesis 1: the (Λn) are i.i.d.,
hence they form a Markov chain with mixing coefficient εn = 1. If we assume
that the Ψn(λ0:n) are such that Hypotheses 2 and 3 hold as well, then we can
apply directly Theorem 7. However, the path-dependent formulation of this
model is artificial, and, in practice, we are interested in filtering the process Xn,
conditional on the Yn’s, rather than filtering the Λn’s, again conditional on the
Yn’s. More precisely, we wish to approximate the conditional expectation of

g(Xn) = g





p−1
∑

k=0

ρkλn−k +

n
∑

k=p

ρkλn−k



 ,

for some bounded function g, and, provided g is also Lipschitz, with constant
K, and that the λn’s lie in interval [−l, l], for some l ≥ 0, one has:

∣

∣

∣

∣

∣

∣

g





p−1
∑

k=0

ρkλn−k +
n
∑

k=p

ρkλn−k



− g

(

p−1
∑

k=0

ρkλn−k

)

∣

∣

∣

∣

∣

∣

≤ Kl

1 − τ
τp,

where τ = |ρ|. Therefore, we must consider an additional term in the par-
ticle error attached to the filtering of (Xn), which stems from the difference
between the filtering distribution of Xn and that of Λn−p+1:n, for some integer
p. Consider the following estimate of the particle error for functions of Xn:

EX
n,N (y1:n) = sup

g:‖g‖∞=1,g∈Lip(K)

EN

(∣

∣〈R1:nζ −RN
1:nζ, fg〉

∣

∣ |Y0:n = y0:n
)

where Lip(K) denotes the set of Lipschitz functions with Lipschitz constant K,
and fg is the function En+1 → R such that

fg(λ0:n) = g

(

n
∑

k=0

ρkλn−k

)

,

i.e., loosely speaking, fg(λ0:n) = g(xn), where xn must be substituted by its
expression as a function of λ0:n.

Lemma 14. For the state-space model described above, one has, for any n ≥ p,

EX
n,N (y1:n) ≤ Ep

n,N(y1:n) +
Kl

1 − τ
τp.

Taking into account this additional error term, we can derive time-uniform
estimates of the stability of the particle algorithm. For the sake of space, we
focus on the following simple example: Yn ∈ {−1, 1}, Yn = 1 with probability
1/(1 + eXn), Yn = −1 otherwise. The potential function (for the model in its
standard formulation) equals:

ΨX
n (xn) =

1

1 + eynxn
.

We recall that the support of the (Λn) is [−l, l], and therefore Xn ∈ [−l′, l′]
almost surely, with l′ = l/(1−τ). Thus, Hypothesis 3 holds for bn = 1/(1+e−l′),
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an = 1+ el′ . For Hypothesis 2, standard calculations show that, for two vectors
λ0:n and λ′0:n such that λn−p+1:n = λ′n−p+1:n, one has

|log Ψn(λ0:n) − log Ψn(λ′0:n)| ≤

∣

∣

∣

∣

∣

∣

n
∑

k=p

ρk(λn−k − λ′n−k)

∣

∣

∣

∣

∣

∣

≤ 2l′τp

provided τ = |ρ|. Hence, using (8.11) inequality, Hypothesis 2 holds, with
φn = e2l′ − 1.

For this specific model, we have the following result.

Lemma 15. For the specific model described above, and provided cτ3 < 1, where
τ = |ρ|, c = el′ , one has:

EX
n,N (y1:n) ≤ C {log(N) +D}

(

1√
N

)1+3 log c/ log τ

+
E√
N

where C and D were defined in Corollary 8, φ = e2l′ − 1, and E = 4Kl′c/3φ.

The above model does not fulfil the usual conditions required in standard sta-
bility results, see e.g. Del Moral (2004, Section 7.4.3), because the Markov chain
(Xn) is not mixing. Thus, it is remarkable that the time-uniform stability of
this model is established using a Feynman-Kac formulation with path-dependent
potentials.

9 Conclusion

To extend our results to a broader class of models, three directions may be
worth investigating. First, it may be possible to bound directly the particle
error, without resorting to a comparison with an artificial, truncated potential
function. It seems difficult however to avoid some form of truncation, as the path
process Λ0:n itself does not benefit to any sort of mixing property, while fixed
segments Λn−p+1:n do. Second, one may try to loosen Hypothesis 1 (Markov
kernel is mixing) and Hypothesis 3 (potential function is bounded), using for
instance Oudjane and Rubenthaler (2005)’s approach. Third, it seems possible
to adapt our general result on the particle error bound to several models not
considered in this paper, in particular standard models with potential functions
depending on the last state only, by using and extending the approach developed
in the previous Section.
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Künsch, H. (2001). State space and hidden Markov models. In Barndorff-
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