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Introduction: ContextIntroduction: Context

• General context of the study: 
Remote sensing of oil slicks on sea surfaces

Better oil slick detection (& characterization and quantization)
 ⇒ More effective direction of oil spill countermeasures

Modeling of the EM scattering 
from oil slicks on sea surfaces

⇒ Integration in imagery simulators

• EM scattering → Normalized Radar Cross Section (NRCS)

NRCS   ∝ 

– one single interface → air/sea interface: 
relatively well-known

– two interfaces → air/oil and oil/sea interfaces: 
research in progress

scattered power
incident power

air
oil
sea
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Introduction: PurposeIntroduction: Purpose

• Different possible approaches:

rigorous asymptotic
   +  ‘exact’ +   fast
   -   extensive computing time -    restricted domain of validity
   -   extensive memory space

cf. oil slick detection

⇒ Statistical description of studied natural surfaces (hydrodynamic modeling)

1. GOA (Geometric Optics Approx.) 
+ intuitive approach (Thin Layer)

2. SSA-1 (Small Slope Approximation)
+ intuitive approach (Thin Layer)

3. etc.

MoM accelerated by 
PILE+FB+SA

[Déchamps et al., IEEE TAP, 2007]
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II.2. Case of clean and contaminated sea surfacesII.2. Case of clean and contaminated sea surfaces

Gravity waves:
- Large roughness σh,l

- Long correlation Lc,l

Capillary waves:
- Small roughness σh,s

- Short correlation Lc,s

Several roughness scales

σh,l σh,s

Lc,s

Lc,l

• Clean sea → Qualitative description:
Gravity and capillary waves:

Sea 
surface

air

sea
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II.2. Case of clean and contaminated sea surfacesII.2. Case of clean and contaminated sea surfaces

Gravity waves:
- Large roughness σh,l

- Long correlation Lc,l

Capillary waves:
- Smaller roughness σh,s

- Short correlation Lc,s

σh,l σh,s

Lc,l

Lc,s

• Contaminated sea → Qualitative description:
Damping of capillary waves

of both surfaces (air/oil and oil/sea)

o

Yet damping dependent on various parameters (hydrodynamics)

(

airoil slick 
film

sea H
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• Height spectrum S(k=2π/xd,φ) → Modeling:

– Clean sea surface:
Elfouhaily et al. surface spectrum model [Elfouhaily et al., JGR, 1997]: 

• Semi-empirical model 
• Consistent with Cox & Munk experimental model 

[Cox and Munk, JOSA, 1954] 
→ RMS slope σs

– Contaminated sea (air/oil and oil/sea surfaces): few results:
Lombardini et al. damping model [1] (Marangoni damping coefficient):

• Independent of the oil film thickness H
• Simple to use: 2 hydrodynamic parameters (oil)

Jenkins et al. damping model [2]:
• Dependent on the oil film thickness H 
• Harder to use: 8 hydrodynamic parameters (oil)

    ...

II.3. Spectrum of clean and contaminated surfacesII.3. Spectrum of clean and contaminated surfaces

[1]: [Lombardini et al., JAOT, 1989]
[2]: [Jenkins and Jacobs, PF, 1997]
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• Lombardini et al. spectrum [1,3]: Independent of the oil film thickness H:

Parameters relative to 
the oil type:

  - ωD (characteristic pulsation)
- E0 (elasticity modulus)       

Gravity waves:
Weak damping

Capillary waves:
Significant damping

[1]: [Lombardini et al., JAOT, 1989]
[3]: [Pinel et al., TGRS, 2008]

k=2π/xd

k² S(k)

k

In agreement with experimental results: 

[Ermakov, BIS Symposium, 2008]
[Sergievsakaya and Ermakov, 

BIS Symposium, 2008]

[Cox and Munk, JOSA, 1954]
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II.3. Spectrum of clean and contaminated surfacesII.3. Spectrum of clean and contaminated surfaces
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• RMS slopes σs: Comparison with experiments [4]

– Cox & Munk model [4]: experiments conducted for H~0.02mm
– Lombardini et al. model

II.3. Spectrum of clean and contaminated surfacesII.3. Spectrum of clean and contaminated surfaces

[4]: [Cox and Munk, JOSA, 1954]

Cox & Munk model 
vs. 

Lombardini et al. model:

Similar qualitative and 
quantitative results

Oil → significant damping 
of slopes
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• At radar frequencies:
 

Values of relative permittivities (εr
sea, εr

oil):

– Sea relative permittivity εr
sea: relatively well-known

– Oil relative permittivity εr
oil: only a few results of the literature, but…

at radar frequencies f: εr
oil only weakly varying with f, as well as with T

⇒ OK for EM modeling / Pb. for oil type characterization (→ optical frequencies)

• Homogeneous oil slicks (not emulsions):
 

Applicable to wind speeds u10 <~ 8-10m/s

• Use of the Lombardini et al. damping model:
 

Surfaces assumed to be identical and parallel:
air

sea

oil

III.1. III.1. Contaminated sea: Contaminated sea: Thin film of identical parallel interfacesThin film of identical parallel interfaces
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• Use of the height spectrum S(k) for an EM model:
 

Comparison between a rigorous method [5] (MoM+PILE+FB+SA)
and an asymptotic method using an intuitive approach

III.1. III.1. Contaminated sea: Contaminated sea: Thin film of identical parallel interfacesThin film of identical parallel interfaces

[5]: [Déchamps et al., IEEE TAP, 2007]

Oil films:

2 identical and parallel 
surfaces
+ Low to moderate 
thicknesses
+ Damping of capillary 
waves

      Application of the thin-layer (“TL”) approach to an asymptotic model: 
GOA-TL, then SSA1-TL, ...

oil

sea

Locally flat parallel interfaces (← capillary wave damping): 
From a double interface problem to a single interface problem:
 

⇒ , with
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• Simulation parameters:
– Radar frequency f:

– Wind speed (at 10 meters above the surface) u10:

– Incidence angle θi:

– Oil film (ωD = 6 rad/s, E0 = 9 mN/m) of thickness H:

– Monte-Carlo process (PILE+FB): N = 50 realizations:

III.2. Numerical results: III.2. Numerical results: Validation of the thin-layer approachValidation of the thin-layer approach

θi = {0; -20} deg.

H = {10; 1} mm

u10 = 5 m/s   (Beaufort scale 3–4: light breeze – gentle breeze)

Surface length: L = 250 λ0

Sampling step: ∆x = λ/10

εr
sea

 = 70 + 41j
εr

oil
 = 2.25 + 0.01j f = 1 GHz  ⇒

(λ0 = 30 cm)
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• Oil film thickness H=10mm – rigorous (PILE+FB) vs. GOA

III.2. Numerical results: III.2. Numerical results: Validation of the thin-layer approachValidation of the thin-layer approach

Good agreement with 
reference method

around the 
specular direction

 Sea (PILE+FB)
 Sea (GOA)
 Oil (PILE+FB)
  Oil (GOA)
 Oil-on-Sea (PILE+FB)
  Oil-on-Sea (GOA-TL)
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• Oil film thickness H=10mm – rigorous (PILE+FB) vs. SSA1

III.2. Numerical results: III.2. Numerical results: Validation of the thin-layer approachValidation of the thin-layer approach

Very good agreement 
with reference method

for all scattering angles

 Sea (PILE+FB)
ooo Sea (SSA1)
 Oil (PILE+FB)
 xxx Oil (SSA1)
 Oil-on-Sea (PILE+FB)
+++  Oil-on-Sea (SSA1-TL)



N. Pinel # 16/24RADAR'09 – Bordeaux (France), October 12-16, 2009

• Oil film thickness H=1mm – rigorous (PILE+FB) vs. SSA1

III.2. Numerical results: III.2. Numerical results: Validation of the thin-layer approachValidation of the thin-layer approach

Very good agreement 
with reference method

for all scattering angles

 Sea (PILE+FB)
ooo Sea (SSA1)
 Oil (PILE+FB)
 xxx Oil (SSA1)
 Oil-on-Sea (PILE+FB)
+++  Oil-on-Sea (SSA1-TL)
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III.2. Numerical results: III.2. Numerical results: Validation of the thin-layer approachValidation of the thin-layer approach

[Pinel et al., TGRS, 02/2008]

Very good agreement 
with reference method

for all scattering angles

 Sea (PILE+FB)
ooo Sea (SSA1)
 Oil (PILE+FB)
 xxx Oil (SSA1)
 Oil-on-Sea (PILE+FB)
+++  Oil-on-Sea (SSA1-TL)

• Oil film thickness H=1mm – rigorous (PILE+FB) vs. SSA1; θi=-20deg.
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• Simulation parameters (H polarization):
– Radar frequency f:

– Wind speed (at 10 meters above the surface) u10:

– Incidence angle θi:

– Oil film (ωD = 10 rad/s, E0 = 2 mN/m) of thickness H:

 
– Monte-Carlo process (PILE+FB+SA): N = 70 realizations:

III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

εr
sea

 = 76 + 70j
εr

oil
 = 2.25 + 0.01j f = 1 GHz  ⇒

(λ0 = 30 cm)

θi = {0; -20; -40; -60} deg.

H = {15} mm
⇒   H ≈ {λoil/13}

u10 = 6 m/s   (Beaufort scale 4: gentle breeze)

Surface length: L = 137 λ0

Sampling step: ∆x = λ/10
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

θi = 0° θi = -20°

θi = -40° θi = -60°
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• Simulation parameters (H polarization):
– Radar frequency f:

– Wind speed (at 10 meters above the surface) u10:

– Incidence angle θi:

– Oil film (ωD = 10 rad/s, E0 = 2 mN/m) of thickness H:

 
– Monte-Carlo process (PILE+FB+SA): N = 70 realizations:

III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

εr
sea

 = 76 + 70j
εr

oil
 = 2.25 + 0.01j f = 1 GHz  ⇒

(λ0 = 30 cm)

θi = {-60} deg.

H = {3; 15; 60; 120} mm
⇒   H ≈ {λoil/67; λoil/13; λoil/3; λoil/1.7}

u10 = 6 m/s   (Beaufort scale 4: gentle breeze)

Surface length: L = 137 λ0

Sampling step: ∆x = λ/10
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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Conclusions & Future workConclusions & Future work

• Hydrodynamic modeling → Surfaces statistical description:
Use of a simple damping model (Lombardini et al.)

)

Surfaces of the contaminated sea assumed to be identical and parallel
 

• Electromagnetic modeling:
Simple intuitive approach (→ Fabry-Pérot interferometer)

(

Radar NRCS: Application of this approach → GOA, SSA1; MoM
Validation by comparison with a reference numerical method 

[Déchamps et al., JOSAA, 2006]
Oil slick detection possible (characterization and quantization: hard)
Thin-layer approach: Validity domain study

• Future work:
● More investigations of the thin-layer approach validity domain
● Extension of the method to a 3D problem
● Use of a more physical damping model for oil films
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II.1. Natural interfaces: Statistical descriptionII.1. Natural interfaces: Statistical description

generally 
Gaussian

Σ12

z

x

Gaussian

ζ0

Height distribution (PDF): ph(ζ)
 
Height spectrum: S(k=2π/xd,φ)

6σh
ph(ζ)

ζ

ζ0

6σhx2xd

Lc

M2

M1

x1

Sea: much more 
complex…

 

W(xd)

xdx1 Lc

σh
2/e

σh
2

z = ζ(x)

2 main description tools:
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• Jenkins and Jacobs [4,5]: dependent on layer mean thickness H:

III. Case of sea and oil slick surfacesIII. Case of sea and oil slick surfaces

Stronger damping for
Lombardini et al. model

[4]: [Jenkins and Jacobs, Physics Fluids, 1997]
[5]: [Pinel et al., TGRS, to be published, 03/2008]

Parameters relative to oil type:
8 parameters (fluid mechanics)

ωD = 11 rad/s, E0 = 25 mN/m

١ ٠ - ١ ١ ٠ ٠ ١ ٠ ١ ١ ٠ ٢ ١ ٠ ٣

١ ٠ - ٥

١ ٠ - ٤

١ ٠ - ٣

١ ٠ - ٢ H =      ٠ µm
H =    ١ ٠ ٠ µm
H =  ١ ٠ ٠ ٠ ٠ µm
L o m b a r d i n i
C le a n  S e a

Identical

Gravity waves:
Weak damping

Capillarity waves:
Strong damping
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• Other statistical description tools:
– Slope distribution ps(γ)
– Autocorrelation function W(xd) ( =FT-1 of surface height spectrum S(k,φ) )

– Slope spectrum k² S(k,φ)
– etc. (other derivatives of height spectrum)

Different types of distributions: 
- Simple distributions: Gaussian, etc.

- Natural interfaces ⇒ more complex descriptions in general:
Clean / Contaminated sea surface → Statistical description:
 Height distribution function ph(ζ): ≈ Gaussian
 Height spectrum: → much more complex…

II.1. Natural interfaces: Statistical descriptionII.1. Natural interfaces: Statistical description
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• Sea covered in oil → Choice for height spectrum S(k):
Lombardini et al. model: Independent of H
 
Representation of air/oil and oil/sea surface 

heights and slopes:

II.3. Spectrum of clean and contaminated surfacesII.3. Spectrum of clean and contaminated surfaces

Confirmation of damping of 
small-scale height parts of S(k)

Significant damping of slopes 
k² S(k)

 

 Clean sea surface
   ωD= 16 rad/s, E0= 1 mN/m

 ωD= 10 rad/s, E0= 2 mN/m

 ωD=   1 rad/s, E0= 4 mN/m
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

V POLARIZATION
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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III.3. Thin-layer approach: Validity domain studyIII.3. Thin-layer approach: Validity domain study

H = 15mm

H = 120mmH = 60mm

H = 3 mm
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