

Modeling of radar scattering from oil films

Dr. Nicolas Pinel*, Dr. Christophe Bourlier

University of Nantes – IREENA Laboratory, Nantes, France

*E-mail: nicolas.pinel@univ-nantes.fr

N. Pinel

General context of the study:

Remote sensing of oil slicks on sea surfaces

Better oil slick detection (& characterization and quantization) ⇒ More effective direction of oil spill countermeasures

→ Modeling of the EM scattering from oil slicks on sea surfaces ⇒ Integration in imagery simulators

EM scattering → Normalized Radar Cross Section (NRCS)

Different possible approaches:

rigorous

- + 'exact'
- extensive computing time
- extensive memory space

- + fast
 - restricted domain of validity
 - cf. oil slick detection

MoM accelerated by PILE+FB+SA [Déchamps et al., IEEE TAP, 2007]

- GOA (Geometric Optics Approx.) + intuitive approach (Thin Layer)
 SSA-1 (Small Slope Approximation) + intuitive approach (Thin Layer)
- 3. etc.

⇒ Statistical description of studied natural surfaces (hydrodynamic modeling)

I. Introduction

II. Hydrodynamic modeling (surfaces)

- 1. Natural interfaces: Statistical description
- 2. Case of clean and contaminated sea surfaces
- 3. Spectrum of clean and contaminated surfaces

III. NRCS of clean and contaminated seas

IV. Conclusion & Future work

• Clean sea \rightarrow Qualitative description:

Gravity and capillary waves:

N. Pinel

• Contaminated sea \rightarrow Qualitative description:

Yet damping dependent on various parameters (hydrodynamics)

N. Pinel

- Height spectrum $S(k=2\pi/x_d,\phi) \rightarrow Modeling$:
 - Clean sea surface: *Elfouhaily et al. surface spectrum* model [*Elfouhaily et al., JGR, 1997*]:
 - Semi-empirical model
 - Consistent with Cox & Munk experimental model
 [Cox and Munk, JOSA, 1954]

 \rightarrow RMS slope $\sigma_{\!s}$

- Contaminated sea (air/oil and oil/sea surfaces): few results:
 Lombardini et al. damping model [1] (Marangoni damping coefficient):
 - Independent of the oil film thickness H
 - Simple to use: 2 hydrodynamic parameters (oil)
 - Jenkins et al. damping model [2]:
 - Dependent on the oil film thickness H
 - Harder to use: 8 hydrodynamic parameters (oil)

[1]: [Lombardini et al., JAOT, 1989][2]: [Jenkins and Jacobs, PF, 1997]

Lombardini et al. spectrum [1,3]: Independent of the oil film thickness H:
 k² S(k)

• RMS slopes σ_s : Comparison with experiments [4]

- Cox & Munk model [4]: experiments conducted for H~0.02mm
- Lombardini et al. model

Oil CoxsignWitionaknthotaoheping of sylsopes Lombardini et al. model:

Similar qualitative and quantitative results

[4]: [Cox and Munk, JOSA, 1954]

N. Pinel

I. Introduction

II. Hydrodynamic modeling (surfaces)

III. NRCS of clean and contaminated seas

- 1. Contaminated sea: Thin film of identical parallel interfaces
- 2. Numerical results: Validation of the thin-film approach
- 3. Thin-film approach: Validity domain study

IV. Conclusion & Future work

- At radar frequencies:
- Values of relative permittivities (ϵ_r^{sea} , ϵ_r^{oil}):
 - Sea relative permittivity ϵ_r^{sea} : relatively well-known
 - Oil relative permittivity ϵ_r^{oil} : only a few results of the literature, but... at radar frequencies f: ϵ_r^{oil} only weakly varying with f, as well as with T

 \Rightarrow OK for EM modeling / Pb. for oil type characterization (\rightarrow optical frequencies)

Homogeneous oil slicks (not emulsions):

Applicable to wind speeds $u_{10} < 8-10$ m/s

Use of the Lombardini et al. damping model:

Surfaces assumed to be identical and parallel:

Use of the height spectrum S(k) for an EM model:
 Comparison between a rigorous method [5] (MoM+PILE+FB+SA)

and an asymptotic method using an **intuitive approach**

III.1. Contaminated sea: Thin film of identical parallel interfactor

2 identical and parallel surfaces

Oil films:

+ Low to moderate

thicknesses

+ Damping of capillary waves

→ Locally flat parallel interfaces (← capillary wave damping): From a double interface problem to a single interface problem:

$$\Rightarrow \sigma^{cont} = \left| \frac{r_{eq}(\chi_i)}{r_{12}(\chi_i)} \right|^2 \times \sigma^{oil} \text{, with } \chi_i = -\frac{(\theta_r - \theta_i)}{2}$$

Application of the thin-layer ("TL") approach to an asymptotic model:

GOA-TL, then SSA1-TL, ... [5]: [Déchamps et al., IEEE TAP, 2007]

N. Pinel

- Simulation parameters: •
 - Radar frequency f:

$$f = 1 \text{ GHz} \implies \begin{cases} \varepsilon_r^{\text{sea}} = 70 + 41j \\ \varepsilon_r^{\text{oil}} = 2.25 + 0.01j \end{cases}$$

– Wind speed (at 10 meters above the surface) u_{10} :

 $u_{10} = 5 \text{ m/s}$ (Beaufort scale 3–4: light breeze – gentle breeze)

Incidence angle θ_i :

 $\theta_i = \{0; -20\} \text{ deg.}$

- Oil film (ω_{D} = 6 rad/s, E₀ = 9 mN/m) of thickness H: $H = \{10; 1\} mm$
- Monte-Carlo process (PILE+FB): N = 50 realizations:

Surface length: L = 250 λ_o Sampling step: $\Delta x = \lambda/10$

Oil film thickness H=10mm – rigorous (PILE+FB) vs. GOA

N. Pinel

Oil film thickness H=10mm – rigorous (PILE+FB) vs. SSA1

N. Pinel

Oil film thickness H=1mm – rigorous (PILE+FB) vs. SSA1

N. Pinel

RADAR'09 – Bordeaux (France), October 12-16, 2009

16/24

Oil film thickness H=1mm – rigorous (PILE+FB) vs. SSA1; θ_i=-20deg.

N. Pinel

RADAR'09 – Bordeaux (France), October 12-16, 2009

17/24

- Simulation parameters (H polarization): ٠
 - Radar frequency f:
 - $f = 1 \text{ GHz} \implies \begin{cases} \varepsilon_r^{\text{sea}} = 76 + 70j \\ \varepsilon_r^{\text{oil}} = 2.25 + 0.01j \end{cases}$
 - Wind speed (at 10 meters above the surface) u_{10} :

 $u_{10} = 6 \text{ m/s}$ (Beaufort scale 4: gentle breeze)

Incidence angle θ_i :

 $\theta_1 = \{0; -20; -40; -60\} \text{ deg.}$

- Oil film (ω_n = 10 rad/s, E₀ = 2 mN/m) of thickness H: $H = \{15\} mm$ \Rightarrow H \approx { λ_{ai} /13}
- Monte-Carlo process (PILE+FB+SA): N = 70 realizations:

Surface length: L = 137 λ_o Sampling step: $\Delta x = \lambda/10$

IREENA

N. Pinel

- Simulation parameters (H polarization): ٠
 - Radar frequency f:
 - $f = 1 \text{ GHz} \implies \begin{cases} \varepsilon_r^{\text{sea}} = 76 + 70j \\ \varepsilon_r^{\text{oil}} = 2.25 + 0.01j \end{cases}$
 - Wind speed (at 10 meters above the surface) u_{10} :

 $u_{10} = 6 \text{ m/s}$ (Beaufort scale 4: gentle breeze)

Incidence angle θ_i :

 $\theta_{i} = \{-60\} \text{ deg.}$

Oil film (ω_{D} = 10 rad/s, E₀ = 2 mN/m) of thickness H: H = {3; 15; 60; 120} mm

 \Rightarrow H \approx { λ_{oi} /67; λ_{oi} /13; λ_{oi} /3; λ_{oi} /1.7}

— Monte-Carlo process (PILE+FB+SA): N = 70 realizations:

Surface length: L = 137 λ_o Sampling step: $\Delta x = \lambda/10$

N. Pinel

I. Introduction

- II. Hydrodynamic modeling (surfaces)
- III. NRCS of clean and contaminated seas
- **IV. Conclusion & Future work**

Hydrodynamic modeling → Surfaces statistical description:

✓ Use of a simple damping model (Lombardini *et al.*)

- ✓ Surfaces of the contaminated sea assumed to be identical and parallel
- Electromagnetic modeling:
 - ✓ Simple intuitive approach (\rightarrow Fabry-Pérot interferometer)
 - ✓ Radar NRCS: Application of this approach \rightarrow GOA, SSA1; MoM
 - ✓ Validation by comparison with a reference numerical method

[Déchamps et al., JOSAA, 2006]

- ✓ Oil slick detection possible (characterization and quantization: hard)
- ✓ Thin-layer approach: Validity domain study

• Future work:

- More investigations of the thin-layer approach validity domain
- Extension of the method to a 3D problem
- Use of a more physical damping model for oil films

Modeling of radar scattering from oil films

Dr. Nicolas Pinel*, Dr. Christophe Bourlier

University of Nantes – IREENA Laboratory, Nantes, France

*E-mail: nicolas.pinel@univ-nantes.fr

N. Pinel

N. Pinel

RADAR'09 – Bordeaux (France), October 12-16, 2009

25/24

• Jenkins and Jacobs [4,5]: dependent on layer mean thickness H:

N. Pinel

RADAR'09 – Bordeaux (France), October 12-16, 2009

26/24

- Other statistical description tools:
 - Slope distribution $p_s(\gamma)$
 - Autocorrelation function $W(x_d)$ (=FT⁻¹ of surface height spectrum $S(k,\phi)$)
 - Slope spectrum $k^2 S(k,\phi)$
 - etc. (other derivatives of height spectrum)

Different types of distributions:

- Simple distributions: Gaussian, etc.
- Natural interfaces ⇒ more complex descriptions in general:
 Clean / Contaminated sea surface → Statistical description:
 - → Height distribution function $p_h(\zeta)$: ~ Gaussian
 - → Height spectrum: \rightarrow much more complex...

Sea covered in oil → Choice for height spectrum S(k):
 Lombardini *et al.* model: Independent of H

Representation of air/oil and oil/sea surface

heights and slopes:

$$--- \qquad \text{Clean sea surface} \\ ---- \qquad \omega_D = 16 \text{ rad/s, } E_0 = 1 \text{ mN/m} \\ ---- \qquad \omega_D = 10 \text{ rad/s, } E_0 = 2 \text{ mN/m} \\ ---- \qquad \omega_D = 1 \text{ rad/s, } E_0 = 4 \text{ mN/m}$$

Confirmation of damping of small-scale height parts of S(k)

Significant damping of slopes k² S(k)

RADAR'09 – Bordeaux (France), October 12-16, 2009

N. Pinel

IREENA

Institut de Recherche en Electrotechnique et Electronique de Nantes-Atlantique

N. Pinel

IREENA Institut de Recherche en Electrotechnique et Electronique

N. Pinel

IREENA

N. Pinel

N. Pinel

N. Pinel

V POLARIZATION

N. Pinel

RADAR'09 – Bordeaux (France), October 12-16, 2009

34/24

Institut de Recherche en Electrotechnique et Electronique de Nantes-Atlantique

N. Pinel

Institut de Recherche en Electrotechnique et Electronique de Nantes-Atlantique

N. Pinel

Institut de Recherche en Electrotechnique et Electroniqu

N. Pinel

N. Pinel

Institut de Recherche en Electrotechnique et Electronique

N. Pinel