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Rational solutions for the Riccati-Schrödinger equations associated to translationally

shape invariant potentials

Y. Grandati and A. Bérard
Institut de Physique, ICPMB, IF CNRS 2843, Université Paul Verlaine, 1 Bd Arago, 57078 Metz, Cedex 3, France

We develop a new approach to build the eigenfunctions of a translationally shape-invariant poten-
tial. For this we show that their logarithmic derivatives can be expressed as terminating continued
fractions in an appropriate variable. We give explicit formulas for all the eigenstates, their specific
form depending on the Barclay-Maxwell class to which the considered potential belongs.

PACS numbers:

I. INTRODUCTION

In the framework of SUSY quantum mechanics, the concept of shape invariance is a key feature of explicit exact
solvability7,8,9,10. Combining the hierarchy of SUSY partner hamiltonians with the shape-invariance condition, it is
possible, when the SUSY is unbroken, to obtain the entire spectrum of a SIP in terms of the functions characterizing
the partners’ correspondence. Moreover it gives an access to the eigenfunctions via a generalization of the harmonic
creation-annihilation operators. Among all SIP those for which the partner’s parameters are related by a translation
(TSIP) play a particular role. Indeed they are so far the only ones for which we have closed-form expressions for the
superpotentials and then for the eigenfunctions.

In this paper we propose an alternate way to determine the eigenfunctions of a TSIP. For this we construct analyti-
cally the logarithmic derivatives of the eigenfunctions, which we call hereafter the Riccati-Schrödinger (RS) functions
of the system. They are solutions of a particular type of Riccati equations depending upon the energy as a parameter
that we will call here Riccati-Schrödinger or RS equations. Using the finite-difference Bäcklund algorithm1,2,3,4,5,6

we obtain a terminating continued fraction expression for the RS functions in terms of the superpotential (a result
outlined in a different way and in an incomplete form by Kazimierz11). Then we consider two categories of poten-
tials which can be reduced to an harmonic or isotonic form by a change of variable satisfying a constant coefficient
Riccati equation. We show that their ground state RS function is a first degree polynomial or a first degree Laurent
polynomial (depending on the category under consideration) in the new variable and that they are translationally
shape invariant, giving general simple algebraic formula for the energy spectrum. Combining these results, we obtain
exact rational expressions for the RS functions in terms of the new variable, which permits to recover in a simple
way the eigenfunctions of the system. Finally we establish the equivalence between these two categories and the two
Barclay-Maxwell classes of TSIP12,13 which shows that the above construction applies in fact to the whole set of TSIP.

II. BÄCKLUND ALGORITHM

A. Invariance group on the set of Riccati equations

As established by Cariñena et al.1,2, the finite-difference Bäcklund algorithm is a consequence of the invariance of

the set of Riccati equations under a subset of the group G of smooth SL(2,R)-valued curves Map(R, SL(2,R)). For
any element A ∈ G characterized by the matrix:

A(x) =

(
α(x) β(x)
γ(x) δ(x)

)
, detA(x) = α(x)δ(x) − β(x)γ(x) = 1, (1)

the action of A on Map(R,R) is given by:

w(x)
A→ w̃(x) =

α(x)w(x) + β(x)

γ(x)w(x) + δ(x)
=
α(x)

γ(x)
− 1

γ(x)

1

γ(x)w(x) + δ(x)
. (2)

If A acts on a solution of the Riccati equation:
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w′(x) = a0(x) + a1(x)w(x) + a2(x)w
2(x) (3)

we obtain a solution of a new Riccati equation:

w̃′(x) = ã0(x) + ã1(x)w̃(x) + ã2(x)w̃
2(x) (4)

the coefficients of which being given by −→u (x) =




u2(x)
u1(x)
u0(x)



:

−→
ã (x) = M(A)−→a (x) +

−→
W (x), (5)

where:

M(A) =




δ2(x) −γ(x)δ(x) γ2(x)
−2β(x)δ(x) α(x)δ(x) + β(x)γ(x) −2α(x)γ(x)

β2(x) −α(x)β(x) α2(x)


 , (6)

−→
W (x) =




W (γ, δ;x)
W (δ, α;x) +W (β, γ;x)

W (α, β;x)


 (7)

and W (f, g;x) = f(x)g′(x) − f ′(x)g(x) is the wronskian of f(x) and g(x) in x. As noted in1, Eq.(5) defines an affine
action of G on the set of general Riccati equations.

B. Riccati-Schrödinger equations

To a one-dimensional Schrödinger equation (~ = 1,m = 1
2 ) for a potential V (x):

ψ′′(x) + (E − V (x))ψ(x) = 0 (8)

the transformation:

w(x) = −ψ
′(x)

ψ(x)
(9)

associates a particular Riccati equation of the form:

− w′(x) + w2(x) = V (x) − E (10)

which corresponds to Eq.(3) with the coefficients a0(x) = E − V (x), a1(x) = 0 and a2(x) = 1.
We’ll call such an equation a Riccati-Schrödinger (RS) equation and w(x) a RS function. Note that, up to a i

factor, the RS function identifies with the quantum momentum function at energy E in the Quantum Hamilton-
Jacobi formalism (QHJ) of Leacock and Padgett14,15 From the knowledge of the RS function, we recover immediately
the corresponding wave function via:

ψ(x) ∼ exp

(
−
∫ x

w(s)ds

)
(11)

and the Schrödinger equation Eq(8) can be rewritten:
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Hψ(x) =
(
L+L+ E

)
ψ(x) = Eψ(x) (12)

with

L =
d

dx
+ w(x). (13)

To each node of ψ(x) (which is necessarily simple) corresponds a simple pole of w(x). Moreover w(x) decreases in
the interval [x1, x2], x1 and x2 being the turning points of the classical motion.

C. Finite difference Bäcklund algorithm

When applied to the RS equation Eq.(10), Eq(5) gives:






ã2(x) = δ2(x) + (E − V (x)) γ2(x) +W (γ, δ;x)

ã1(x) = −2β(x)δ(x) − 2α(x)γ(x) (E − V (x)) +W (δ, α;x) +W (β, γ;x)

ã0(x) = β2(x) + α2(x) (E − V (x)) +W (α, β;x).

(14)

The most general elements of G preserving the subset of RS equations has been determined in1. Among them we
find in particular the elements of the form:

A(x) =
1√
λ

(
φ(x) λ− φ2(x)
−1 φ(x)

)
, λ > 0 (15)

where φ(x) satisfies an RS equation with the same potential as Eq.(10) but with a shifted energy:

− φ′(x) + φ2(x) = V (x) − (E − λ) (16)

With this choice Eq(14) becomes






ã2(x) = 1
λ

(
−φ′(x) + φ2(x) + E − V (x)

)
= 1

ã1(x) = 2φ(x)
λ

(
−φ′(x) + φ2(x) + E − V (x)

)
− 2φ(x) = 0

ã0(x) = φ2(x)
λ

(
−φ′(x) + φ2(x) + E − V (x)

)
+ λ− 2φ2(x) − φ′(x) = V (x) + 2φ′(x)

(17)

and w̃(x) satisfies the RS equation:

− w̃′(x) + w̃2(x) = Ṽφ(x) − λ (18)

where Ṽφ(x) = V (x) + 2φ′(x).
Suppose then that the spectrum of the hamiltonian H associated to V (x) is (El, ψl(x)) with l ≥ 0 not necessarily

discrete. The corresponding RS functions wl(x) = −ψ′
l(x)/ψl(x) satisfy the RS equations associated with the different

values of the energy:

− w′
l(x) + w2

l (x) = V (x) − El. (19)

Starting from a given wk(x), for every value of l such that El > Ek , we can build a element Akl ∈ G of the form:
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Akl(x) =
1√

El − Ek

(
wk(x) El − Ek − wk

2(x)
−1 wk(x)

)
(20)

which transforms wl as:

wl(x)
Akl→ w̃l(x) = wkl(x) = −wk(x) +

El − Ek

wk(x) − wl(x)
, (21)

where wkl is a solution of the RS equation:

− w′
kl(x) + w2

kl(x) = Ṽk(x) − El (22)

with the same energy El as in Eq(19) but with a modified potential Ṽk(x) = V (x) + 2w′
k(x) = w′

k(x) + w2
k(x) + Ek.

This is the content of the finite-difference Bäcklund algorithm1,3,4,5,6.
In the following we use a slightly different formulation of the Bäcklund algorithm:
If wkl(x) satisfy equation Eq(22), then for every l such that El > Ek:

wl(x) = wk(x) − El − Ek

wk(x) + wkl(x)
. (23)

In particular, choosing k = 0, we have for every excited level El > E0:

wl(x) = w0(x) −
El − E0

w0(x) + w0l(x)
, (24)

where w0l(x) is a solution of:

− w′
0l(x) + w2

0l(x) = Ṽ0(x) − El (25)

with Ṽ0(x) = V (x) + 2w′
0(x).

III. RS FUNCTIONS FOR SHAPE INVARIANT POTENTIALS AS TERMINATING CONTINUED

FRACTIONS

A. Basics elements

We recall some basic elements concerning SUSY quantum mechanics and shape invariance7,8,9,10.
Let H− = −d2/dx2 +V−(x) be an hamiltonian the ground state energy E0 of which is supposed to be zero: E0 = 0.

The RS function w0(x) associated to the corresponding ground state is called the superpotential of the system and
we can write:

H− = L+L, (26)

where L = d/dx+ w0(x). The supersymmetric partner of the potential is V− defined via:

H+ = LL+ = − d2

dx2
+ V+(x). (27)

We then have:

V±(x) = ±w′
0(x) + w2

0(x). (28)
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The potential V−(x) is said to be shape invariant (SIP) if it depends upon a (multi)parameter a ∈ R
N and if we

have the relation:

V+(x, a) = V−(x, f(a)) +R(a) (29)

R (a) ∈ R and f(a) ∈ R
N being two given functions of a.

The complete spectrum of H− is then given by:

En(a) = R(a) +R(a1) + ...+R(an−1) =

n−1∑

k=0

R(ak), (30)

where ak = f (k)(a) =

k times︷ ︸︸ ︷
f ◦ ... ◦ f(a).

When f is a simple translation f(a) = a+ ε, ε ∈ R
N , V− is said to be translationally shape invariant and we call

it a TSIP.

B. SIP and Bäcklund algorithm

We suppose below that the potential of the system is an SIP, V−(x, a), with a discrete spectrum part (En(a))n≥0,

the En(a) forming an increasing sequence for every value of a with E0(a) = 0.
Eq(25) becomes

− w′
0n(x, a) + w2

0n(x, a) = Ṽ0(x, a) − En(a) = V−(x, a) + 2w′
0(x, a) − En(a), (31)

that is

− w′
0n(x, a) + w2

0n(x, a) = V+(x, a) − En(a). (32)

Using the shape-invariance condition Eq(29), we obtain:

− w′
0n(x, a) + w2

0n(x, a) = V−(x, a1) +R(a) − En(a), (33)

that is, for every m

− (w0n(x, a) − wm(x, a1))
′
+ w2

0n(x, a) − w2
m(x, a1) = Em(a1) − En(a) +R(a). (34)

If we take for m the specific value m = n− 1 and use Eq.(30), Eq.(34) becomes

− (w0n(x, a) − wn−1(x, a1))
′
+ w2

0n(x, a) − w2
n−1(x, a1) = 0 (35)

which is satisfied by

w0n(x, a) = wn−1(x, a1). (36)

Eq(24) can be now rewritten as

wn(x, a) = w0(x, a) −
En(a)

w0(x, a) + wn−1(x, a1)
= w0(x, a) −

n−1∑

k=0

R(ak)

w0(x, a) + wn−1(x, a1)
. (37)
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By a direct iteration, using a standard notation for continued fractions, we arrive at:
* For n = 1:

w1(x, a) = w0(x, a) −
R(a)

w0(x, a) + w0(x, a1)
(38)

* For n = 2:

w2(x, a) = w0(x, a) −
R(a) +R(a1)

w0(x, a) + w0(x, a1)−
�

R(a1)

w0(x, a1) + w0(x, a2)
(39)

* For n = 3:

w3(x, a) = w0(x, a) −
R(a) +R(a1) +R(a2)

w0(x, a) + w0(x, a1)−
�

R(a1) +R(a2)

w0(x, a1) + w0(x, a2)−
�

R(a2)

w0(x, a2) + w0(x, a3)
(40)

...
and more generally:

wn(x, a) = w0(x, a) −
En(a)

w0(x, a) + w0(x, a1)−
� ... �

En(a) − Ej−1(a)

w0(x, aj−1) + w0(x, aj)−
� ... �

En(a) − En−1(a)

w0(x, an−1) + w0(x, an)
(41)

In11 an incomplete version of such a formula has been outlined in a very different way. Note also that, working
to connect the QHJ formalism and SUSY quantum mechanics, Rasinariu et al.16 had obtained the recursion relation
Eq(37) for n = 1 in a distinct context and again in a very different way. Their exploitation of this result diverges
from ours.

From the knowledge of the superpotential w0(x, a), Eq.(41) offers, on the basis of purely algebraic manipulations,
a direct access to the whole set of discrete excited states. It has to be compared to the known formula7,8 giving the
eigenstates of a SIP via the application of differential operators (generalizing the usual creator-annihilator ones) on
the ground state:

ψn(x, a) ∼ L+(a)ψn−1(x, a1) ∼ L+(a)...L+(an−1)ψ0(x, an) (42)

with L(aj) = d/dx+ w0(x, aj). Note that Eq(42) can be easily retrieved from the recursion relation Eq(37). Indeed
we have from this last:

wn−1(x, a1) = −w0(x, a) +
En(a)

w0(x, a) − wn(x, a)
(43)

with

En(a) = − (w0(x, a) − wn(x, a))
′
+ w2

0(x, a) − w2
n(x, a1) (44)

Consequently

wn−1(x, a1) = wn(x, a) − (w0(x, a) − wn(x, a))′

w0(x, a) − wn(x, a)
(45)

and

ψn−1(x, a1) ∼ (w0(x, a) − wn(x, a))ψn(x, a) = L(a)ψn(x, a) (46)

In both cases the knowledge of the ground state permits a complete reconstitution of the spectrum. Nevertheless
Eq(41) avoids to use successive differentiations and is invariant with respect to changes of the position variable, a
property which is useful in the following. We see how the preceding results apply to simple systems, namely the
one-dimensional harmonic oscillator, the isotonic oscillator, the effective radial potential for the Kepler problem and
the Morse potential.
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C. One dimensional harmonic oscillator

The one dimensional harmonic oscillator potential is7:

V−(x) =
ω2

4
x2 + V0 (47)

and the RS equation for the ground state (E0 = 0) is

− w′
0(x) + w2

0(x) =
ω2

4
x2 + V0 (48)

or

(
d

dx
−
(
w0(x) +

ω

2
x
))(

w0(x) −
ω

2
x
)

= −V0 −
ω

2
(49)

Choosing V0 = −ω
2 , this equation admits clearly a polynomial solution:

w0(x) =
ω

2
x (50)

which is such that w′(x) > 0 between the turning points of the classical motion (for a bound state we must have
in this domain E < V (x)). As required, the ground-state eigenfunction associated to this superpotential does not
present any nodes on the real line.

The SUSY partner of V−(x) is then:

V+(x) = w′
0(x) + w2

0(x) =
ω2

4
x2 +

ω

2
= V−(x) + ω (51)

We recognize a SIP (cf Eq(29)) characterized by:

a =
ω

2
= f(a), ak = a, R(a) = 2a = ω (52)

that is a TSIP with a zero translation amplitude.
Consequently:





En(a) − Ej−1(a) =

n−1∑

k=j−1

ω = (n− j + 1)ω

w0(x, aj−1) + w0(x, aj) = ωx

(53)

and Eq(41) becomes in this case:

wn(x, ω) =
ω

2
x− nω

ωx− � ... �
(n− j + 1)ω

ωx− � ... �
1

x
. (54)

In particular:





w1(x) = ω
2 x− 1

x

w2(x) = ω
2 x− 2ω

ωx−1/x = ω
2 x− 2ωx

ωx2−1

w3(x) = ω
2 x− 3ω

ωx−2ω/(ωx−1/x) = ω
2 x− 3(ωx2−1)

x(ωx2−3)

(55)
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from which, with Eq(50), we deduce immediately the corresponding four first eigenstates:





ψ0(x) = exp
(
−
∫ x

w0(s)ds
)
∼ exp

(
−ω

4 x
2
)

ψ1(x) = exp
(
−
∫ x

w1(s)ds
)
∼ exp

(
−ω

4 x
2
)
exp

(∫ x 1
sds
)

= x exp
(
−ω

4 x
2
)

ψ2(x) = exp
(
−
∫ x

w2(s)ds
)
∼ exp

(
−ω

4 x
2
)
exp

(∫ x 2ωs
ωs2−1ds

)
=
(
ωx2 − 1

)
exp

(
−ω

4 x
2
)

ψ3(x) = exp
(
−
∫ x

w3(s)ds
)
∼ exp

(
−ω

4 x
2
)
exp

(∫ x 3(ωs2−1)
ωs3−3s ds

)
=
(
ωx3 − 3x

)
exp

(
−ω

4 x
2
)
.

(56)

D. Isotonic oscillator

The isotonic oscillator potential is17,18:

V−(x) =
ω2

4
x2 +

l(l + 1)

x2
+ V0, l > 0 (57)

and the RS equation for the ground state (E0 = 0):

− w′
0(x) + w2

0(x) =
ω2

4
x2 +

l(l+ 1)

x2
+ V0 (58)

Looking for a solution of the form w0(x) = λx − µ/x, we obtain immediately that Eq(58) is satisfied when λ =
ω/2, µ = l + 1 and V0 = −ω

(
l + 3

2

)
, giving for the superpotential:

w0(x) =
ω

2
x− l + 1

x
(59)

The signs have been chosen in order that w′(x) > 0 between the turning points of the classical motion.
The SUSY partner of V−(x) is then:

V+(x) = w′
0(x) + w2

0(x) =
ω2

4
x2 +

(l + 2)(l + 1)

x2

ω

2
− ω

(
l +

3

2

)
+ ω. (60)

We recognize a TSIP (cf Eq(29)) characterized by:

a =
(ω

2
, l + 1

)
, f(a) =

(ω
2
, l + 2

)
, ak =

(ω
2
, l + 1 + k

)
, R(a) = 2ω. (61)

Consequently





En(a) − Ej−1(a) =

n−1∑

k=j−1

2ω = 2 (n− j + 1)ω

w0(x, aj−1) + w0(x, aj) = ωx− (2 (l + j) + 1) /x

(62)

and Eq(41) becomes in this case:

wn(x, a) =
ω

2
x− l + 1

x
− 2nω

ωx− (2l + 3) /x− � ... �
2 (n− j + 1)ω

ωx− (2 (l + j) + 1) /x− � ... �
2ω

ωx− (2 (l + n) − 1) /x
(63)

with in particular:
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w1(x, a) =
ω

2
x− l + 1

x
− 2ω

ωx− (2l+ 3) /x
. (64)

From Eq(59) and Eq(64) we deduce immediately the corresponding two first eigenstates:





ψ0(x) = exp
(
−
∫ x

w0(s, a)ds
)
∼ exp

(
−ω

4 x
2
)
exp

(
(l + 1)

∫ x 1
sds
)

= xl+1 exp
(
−ω

4 x
2
)

ψ1(x) = exp
(
−
∫ x

w1(s, a)ds
)
∼ xl+1 exp

(
−ω

4 x
2
)
exp

(∫ x 2nω
ωs−(2l+3)/sds

)
= xl+1

(
ωx2 − (2l+ 3)

)
exp

(
−ω

4 x
2
)
.

(65)

E. Effective radial potential for the Kepler-Coulomb problem

The effective radial potential for the Kepler-Coulomb is7:

V−(x) = −γ
x

+
l(l + 1)

x2
+ V0, k > 0 (66)

Defining y = 1
x , V− takes the form:

V−(y) = −γy + l(l+ 1)y2 + V0, k > 0 (67)

and the RS equation for the ground state (E0 = 0):

y2w′
0(y) + w2

0(y) = −γy + l(l + 1)y2 + V0 (68)

Looking for a solution of the form w0(x) = −λy + µ, we obtain immediately that Eq(58) is satisfied when λ =

l + 1, µ = γ
2(l+1) and V0 = γ2

4(l+1)2 , giving for the superpotential:

w0(y) = − (l + 1) y +
γ

2(l+ 1)
(69)

The signs have been chosen in order that w′(x) > 0 between the turning points of the classical motion.
The SUSY partner of V−(x) is then:

V+(y) = −2y2w′
0(y) + V−(y) = −γy + (l + 1) (l + 2) y2 +

γ2

4(l + 1)2
(70)

We recognize a TSIP (cf Eq(29)) characterized by:

a = l + 1, f(a) = l + 2, ak = l + 1 + k, R(ak) =
γ2

4a2
k

− γ2

4a2
k+1

. (71)

Consequently

En(a) =

n−1∑

k=0

R(ak) =
γ2

4a2
− γ2

4a2
n

=
γ2

4 (l + 1)2
− γ2

4 (l + 1 + n)2
(72)

and
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




En(a) − Ej−1(a) = γ2

4a2

j−1

− γ2

4a2
n

= γ2

4

(
1

(l+j)2
− 1

(l+1+n)2

)

w0(x, aj−1) + w0(x, aj) = − (aj−1 + aj) y + γ
2

(
1

aj−1

+ 1
aj

)
= −2

(
l + j + 1

2

)
y + γ

2

(
1

l+j + 1
l+1+j

) (73)

Eq(41) becomes in this case:

wn(y, a) = −ay +
γ

2a
− γ2/4a2 − γ2/4a2

n

− (a+ a1) y + γ/2 (1/a+ 1/a1)−
� (74)

... �
γ2/4a2

j−1 − γ2/4a2
n

− (aj−1 + aj) y + γ/2 (1/aj−1 + 1/aj)−
�

... �
γ2/4a2

n−1 − γ2/4a2
n

− (an−1 + an) y + γ/2 (1/an−1 + 1/an)

In particular:

w1(y, a) = w0(y) +

(
γ

2aa1

)2
1

y − γ/2aa1
(75)

or

w1(x, a) = w0(x) +
1

2aa1/γ − x
− γ

2aa1
(76)

From Eq(69) and Eq(76) we deduce immediately the corresponding two first eigenstates:

ψ0(x) = exp

(
−
∫
w0(x, a)dx

)
= exp

(∫ (
(l + 1)

x
− γ

2(l + 1)

)
dx

)
(77)

∼ xl+1 exp

(
− γ

2(l+ 1)
x

)
(78)

and:

ψ1(x) = exp

(
−
∫
w1(x, a)dx

)
= exp

(
−
∫
w0(x, a)dx

)
exp

(∫ (
1

x− 2aa1/γ
+

γ

2aa1

)
dx

)
(79)

∼ xl+1

(
x− 2 (l + 1) (l+ 2)

γ

)
exp

(
− γ

2(l+ 2)
x

)
.

F. Morse potential

The Morse potential is7:

V−(x) = A2 +B2e−2αx − 2B
(
A+

α

2

)
e−αx, α > 0 (80)

Defining y = e−αx, V− takes the form:

V−(y) = (By −A)
2 − αBy. (81)

In terms of the y variable, the associated RS equation is:
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−αyw′
n(y) = En − (By −A)

2
+ αBy + w2

n(y)

and for the ground state, E0 = 0, we have

(
αy

d

dy
+ (w0(y) − (By −A))

)
(w0(y) + (By −A)) = 0 (82)

a solution of which is immediately obtained as

w0(y) = −By +A (83)

The SUSY partner of V−(x) is then:

V+(y) = −αyw′
0(y) + w2

0(y) = (By −A+ α)
2 − αBy + α2 − 2αA (84)

We recognize a TSIP (cf Eq(29)) characterized by:

a = A, f(a) = A− α, R(a) = α2 − 2α = a2 − a2
1 (85)

Consequently

En(a) =

n−1∑

k=0

R(ak) = a2 − a2
n = nα (2a− nα) (86)

and




En(a) − Ej−1(a) =

n−1∑

k=j−1

(
a2

k − a2
k+1

)
= a2

j−1 − a2
n

w0(x, aj−1) + w0(x, aj) = aj−1 + aj − 2By

(87)

Eq(41) becomes in this case:

wn(y, a) = a− By − a2 − a2
n

a+ a1 − 2By− � ... �
a2

j−1 − a2
n

aj−1 + aj − 2By− � ... �
a2

n−1 − a2
n

an−1 + an − 2By
(88)

In particular:





w1(y, a) = a−By − a2−a2

1

a+a1−2By

w2(y, a) = a−By − a2−a2

2

a+a1−2By−(a2

1
−a2

2)/(a1+a2−2By)

(89)

From Eq(83) and Eq(89) we deduce immediately the corresponding two first eigenstates:

ψ0(x) = exp

(
−
∫
w0(x, a)dx

)
= exp

(
1

α

∫
w0(y, a)

y
dy

)
∼ yA/α exp

(
−B
α
y

)
= exp

(
−Ax− B

α
exp (−αx)

)
(90)

and:

ψ1(x) = exp

(
−
∫
w1(x, a)dx

)
= exp

(
1

α

∫
w1(y, a)

y
dy

)
∼ y(A−α)/α exp

(
−B
α
y

)(
By −

(
A− 1

2
α

))
(91)

∼ exp

(
− (A− α)x− B

α
e−αx

)(
Be−αx −

(
A− 1

2
α

))
.
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IV. POTENTIALS OF FIRST AND SECOND CATEGORIES

A. Definitions

1. First category

We say that a one-dimensional potential is of first category if there exists a change of variable x→ u transforming

the potential into an harmonic one V (x) → V (u) = λ̃2u
2 + λ̃1u + λ̃0, such that u(x) satisfies a constant coefficient

Riccati equation:

du(x)

dx
= A0 +A1u(x) +A2u

2(x), (92)

du(x)/dx being of constant sign in all the range of values of x and u.
The one-dimensional harmonic oscillator corresponds to the special case A1 = A2 = 0 and the Morse potential is

generically associated to the case A1 6= 0, A2 = 0. These two examples have been treated above.
We note ∆ = A2

1 − 4A2A0 the discriminant of the right hand side polynomial in Eq(92).
If A2 6= 0, ∆ 6= 0, it is always possible, via an affine change of variable u = ay+b, to reduce Eq(92) to the canonical

form:

dy

dx
= α± αy2(x), α > 0. (93)

If A2 6= 0, ∆ = 0, a straightforward affine change of variable brings Eq(92) to the form:

dy

dx
= αy2(x), α > 0. (94)

that is y = 1
α(x−x0)

which corresponds to the radial effective Kepler-Coulomb potential studied above.

In the following we then consider that all the first category potentials are of the type:

{
V (x) → V (y) = λ2y

2 + λ1y + λ0, λ2 > 0
dy/dx = α± αy2(x), α > 0.

(95)

The new variable is then y = tan (α (x− x0)) , x − x0 ∈
]
− π

2α ,
π
2α

[
, y ∈ R for the positive sign and

y = tanh (α (x− x0)) , x − x0 ∈ R, y ∈ ]−1, 1[ for the negative sign. In both cases the change of variable is
one-to-one and increasing.

In this category we find all the potentials listed in the Annexe A which contains also the three exceptional cases
corresponding to the harmonic, Morse and effective radial Kepler-Coulomb potentials.

2. Second category

We’ll say that a one dimensional potential is of second category if there exists a change of variable x → u trans-

forming the potential into an isotonic one V (x) → V (u) = λ̃2u
2 + λ̃0 + µ̃2/u

2, such that u(x) satisfies a constant
coefficient Riccati equation of the form

du(x)

dx
= A0 +A2u

2(x) (96)

du(x)/dx being of constant sign in all the range of values of x and u.
When A2 and A0 are nonzero, a linear change of variable u = ay reduces Eq(96) to the canonical form:

{
V (x) → V (y) = λ2y

2 + µ
2

y2 + λ0, λ2, µ2 > 0

dy/dx = α± αy2(x), α > 0.
, (97)
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Again, the new variable is then y = tan (α (x− x0)) , x − x0 ∈
]
0, π

2α

[
, y > 0 for the positive sign and y =

tanh (α (x− x0)) , x− x0 > 0, y ∈ ]0, 1[ for the negative sign. In both cases the change of variable is one-to-one and
increasing.

The example of the isotonic potential, treated above, is generically associated to the cases A0 = 0 or A2 = 0.
In this category we find all the potentials listed in the Annexe B.

V. POLYNOMIAL SOLUTIONS FOR THE RS EQUATIONS ASSOCIATED TO FIRST AND SECOND

CATEGORY POTENTIALS

A. First category

The RS equation associated to a first category potential V (x) is in terms of the y variable(see Eq.(95)):

−
(
α0 + α1y + α2y

2
)
w′(y) + w2(y) = λ2y

2 + λ1y + λ0 − E (98)

(α0 = α = ±α2 , α1 = 0).
We look for a polynomial solution of degree N of this equation, describing a bound state of the system. Inserting

w(y) =

N∑

n=0

bny
n, bN 6= 0 (99)

into Eq.(98), we obtain:

−
N+1∑

l=0




N−1∑

n=0
n+m=l

2∑

m=0

(n+ 1)αmbn+1


 yl +

2N∑

l=0




N∑

n,m=0
n+m=l

bnbm


 yl =

2∑

n=0

(λn − Eδn,0) y
n. (100)

Since bN 6= 0, we must have N + 1 = 2N ⇔ N = 1 or 2 = 2N ⇔ N = 1. The polynomial is necessarily of degree 1:

w(y) = b0 + b1y. (101)

Since y(x) satisfies a constant coefficient Riccati equation, we recover the first Gendenshtein ansatz9.
For a bound state E < V (x), that is, w′(x) > 0, between the turning points of the classical motion and b1 is of the

same sign as y′(x), that is positive. In this domain w(x) is not singular and the wave function does not present any
node, which corresponds to the ground state.

Inserting Eq.(101) into Eq.(100) we obtain for the unknown coefficients b0, b1 a set of 3 equations:






−αb1 + b20 = λ0 − E

2b0b1 = λ1

∓αb1 + b21 = λ2 > 0

(102)

which imply a constraint on E fixing the value of the ground state energy.
After straightforward calculations we arrive at

{
b0 = λ1/2β± (λ2)
b1 = β± (λ2) > 0

(103)

with

β± (λ) = ±α/2 +

√
(α/2)

2
+ λ. (104)
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The ground state energy is given by

E0 = λ0 ± αβ± (λ2) −
(
λ1/2β± (λ2)

)2
(105)

and the corresponding RS function:

w0(y) =
λ1

2β± (λ2)
+ β± (λ2) y (106)

B. Second category

The RS equation associated to a first category potential V (x) is in terms of the y variable(see Eq.(97)):

−
(
α0 + α1y + α2y

2
)
w′(y) + w2(y) = λ2y

2 + λ0 +
µ2

y2
− E (107)

(α0 = α = ±α2 , α1 = 0).
We look for a solution of Eq.(107) which is a Laurent polynomial, that is a polynomial in y and 1/y. Inserting

w(y) =

N∑

n=−M

bny
n, bN , b−M 6= 0 (108)

into Eq.(107) we obtain:

−
N+1∑

l=−M+1




N−1∑

n=−M−1
n+m=l

2∑

m=0

(n+ 1)Ambn+1


 yl +

2N∑

l=−2M




N∑

n,m=−M
n+m=l

bnbm


 yl = λ2y

2 + λ0 +
µ2

y2
− E (109)

Since bN , b−M 6= 0, we must have N + 1 = 2N ⇔ N = 1 or 2 = 2N ⇔ N = 1 and 2M = M − 1 ⇔ M = 1 or
2 = 2M ⇔M = 1. The Laurent polynomial is then of degree 1, as for the regular part as for the singular part:

w(y) = b0 + b1y +
b−1

y
. (110)

Since y(x) satisfies now a constant coefficients Riccati equation without a term of first degree, we recover the second
Gendenshtein ansatz9.

For a bound state E < V (x), that is w′(x) > 0, between the turning points of the classical motion and b1 − b−1/y
2

is of the same sign as y′(x), that is positive. This necessitates that b1 is positive and b−1 negative. In this domain
w(x) is not singular and the wave function does not present any node, which corresponds to the ground state.

Inserting Eq.(110) into Eq.(109), we obtain for the unknown coefficients b0, b1 and b−1 a set of 4 equations:






E − λ0 = αb1 − b20 ∓ αb−1 − 2b1b−1

b0b−1 = b0b1 = 0

b21 ∓ b1α = λ2 > 0

b2−1 + b−1α = µ2 > 0

(111)

which imply a constraint on E, fixing the value of the ground state energy.

Eq.(111) gives (see Eq.(104)):
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



b0 = 0
b1 = β± (λ2) > 0

b−1 = −β+ (µ2) < 0.
(112)

The ground-state energy is given by:

E0 = λ0 + α
(
β± (λ2) ± β+ (µ2)

)
+ 2β± (λ2) β+ (µ2) (113)

and the corresponding RS function is

w0(y) = β± (λ2) y −
β+ (µ2)

y
(114)

VI. SHAPE INVARIANCE PROPERTIES OF FIRST AND SECOND CATEGORY POTENTIALS

A. First category

We consider a first category potential (see Eq.(95)) V−(y) = λ2y
2 + λ1y + λ0, λ2 > 0, for which dy/dx = α ±

αy2(x), α > 0 and E0 = 0. This last constraint implies (see Eq.(105)) that

λ0 = λ0 (λ2) =

(
λ1

2β± (λ2)

)2

− αβ± (λ2) .

The SUSY partner of V−(y) is

V+(y) = V−(y) + 2w′
0(x) = V−(y) + 2w′

0(y)
dy

dx
(115)

= y2
(
λ2 ± 2αβ± (λ2)

)
+ λ1y + λ0 (λ2) + 2αβ± (λ2) . (116)

We make the following change of parameter:

a = β± (λ2) (117)

in which case

λ2 = a (a∓ α) , λ0(a) =

(
λ1

2a

)2

− αa.

The initial potential is now

V−(y, a) = a (a∓ α) y2 + λ1y + λ0(a) (118)

and its SUSY partner is

V+(y, a) = y2a (a± α) + λ1y + λ0 (a) + 2αa (119)

= y2a1 (a1 ∓ α) + λ1y + λ0 (a1) +R(a)

with:
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{
a1 = a± α

R(a) = λ0 (a) − λ0 (a1) + 2αa = φ1,± (a) − φ1,± (a1) ,
(120)

where

φ1,± (a) = ∓a2 +
λ2

1

4a2
(121)

We recognize (see Eq.(29)) the characteristic behaviour of a TSIP. More generally

{
ak = a± kα

R(ak) = φ1,± (ak) − φ1,± (ak+1) ,
(122)

The spectrum (see Eq.(30)) becomes

En(a) = φ1,± (a) − φ1,± (an) (123)

or

En(a) = φ1,± (a) ± α2
(
n± a

α

)2

− λ2
1

4α2

1
(
n± a

α

)2 (124)

En is then an isotonic function of n±a/α. As for the corresponding superpotential, it takes the form (see Eq.(106)):

w0(y, a) = ay +
λ1

2a
, a > 0 (125)

Using Eq.(41), Eq.(123) and Eq.(125) we deduce finally the general form for the RS function associated to the nth

level of the spectrum of an arbitrary potential of the first category:

wn(y, a) = ay +
λ1

2a
−

φ1,± (a) − φ1,± (an)

(a+ a1) y + λ1

2 (1/a+ 1/a1)−
� ... (126)

�
φ1,± (aj−1) − φ1,± (an)

(aj−1 + aj) y + λ1

2 (1/aj−1 + 1/aj)−
� ...

�
φ1,± (an−1) − φ1,± (an)

(an + an−1) y + λ1

2 (1/an−1 + 1/an)

B. Second category

We consider a second category potential (see Eq.(97)) V−(y) = λ2y
2 + λ0 + µ

2

y2 , for which dy
dx = α± αy2(x), α > 0

and E0 = 0. This last constraint implies (see Eq.(113)) that

λ0 = −α
(
β± (λ2) ± β+ (µ2)

)
− 2β± (λ2)β+ (µ2) .

The SUSY partner of V−(y) is:

V+(y) = V−(y) + 2w′
0(x) = V−(y) + 2w′

0(y)
dy

dx
(127)

= y2
(
λ2 ± 2αβ± (λ2)

)
+

1

y2

(
µ2 + 2αβ+ (µ2)

)
+ λ0 + 2α

(
β± (λ2) ± β+ (µ2)

)
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We define the following multiparameter:

a = (λ, µ)

{
λ = β± (λ2) > 0, λ2 = λ (λ∓ α)
µ = β+ (µ2) > 0, µ2 = µ (µ− α) .

(128)

The initial potential is now

V−(y, a) = λ (λ∓ α) y2 +
µ (µ− α)

y2
+ λ0(a) (129)

with

λ0(a) = −α(λ± µ) − 2λµ (130)

Its SUSY partner is

V+(y, a) = λ (λ± α) y2 +
µ (µ+ α)

y2
+ λ0(a) + 2α (λ± µ) (131)

= V−(y, a1) +R(a),

where

{
a1 = (λ1, µ1) = (λ± α, µ+ α) = a+A±

R(a) = λ0 (a) − λ0 (a1) + 2α (λ± µ) = φ2,± (a1) − φ2,± (a) ,
(132)

with A± = (±α, α) and:

φ2,± (a) = φ2,±(λ, µ) = (λ± µ)
2
. (133)

We recognize (see Eq.(29)) the characteristic behaviour of a TSIP. More generally

{
ak = a+ kA = (λk, µk) = (λ± kα, µ+ kα)

R(ak) = φ2,± (ak+1) − φ2,± (ak) ,
(134)

The spectrum (see Eq.(30)) becomes

En,±(a) = φ2,± (an) − φ2,± (a) (135)

or

En,±(a) = 4α2

(
n− λ± µ

2α

)2

− φ2,± (a) (136)

En,± is then an harmonic function of n + (µ± λ) /2α. As for the corresponding superpotential, it takes the form
(see Eq.(114)):

w0(y, a) = λy − µ

y
. (137)

Using Eq.(41), Eq.(135) and Eq.(137), we finally deduce the general form for the RS function associated to the nth

level of the spectrum of an arbitrary potential of the second category of the considered type:

wn,±(y, a) = λy − µ

y
−

φ2,± (an) − φ2,± (a)

(λ+ λ1) y − (µ+ µ1) /y−
� ... (138)

�
φ2,± (an) − φ2,± (aj−1)

(λj−1 + λj) y −
(
µj−1 + µj

)
/y−

� ...

�
φ2,± (an) − φ2,± (an−1)

(λn−1 + λn) y −
(
µn−1 + µn

)
/y
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C. Comparison with the Barclay-Maxwell classification of TSIP

1. Barclay-Maxwell classification of TSIP

Concerning the case of TSIP, using exactness arguments of the SWKB condition7,19,20, Barclay and Maxwell12,13

have established that their associated superpotentials obey one or other of the following equations:
* Class I potentials:

w′
0(x) = α0 + α1w0(x) + α2w

2
0(x) (139)

αi ∈ R, i = 0, 1, 2
* Class II potentials:

w′
0(x) = α0 + α1w0(x)

√
α0 + α2w2

0(x) + α2w
2
0(x) (140)

αi ∈ R, i = 0, 1, 2
Moreover Barclay has shown21:
* For Class I potentials, there exists a change of variable x → v in which the potential is transformed into that of

an harmonic oscillator V (x) → V (v) = v2 + V0, v(x) being solution of a Riccati equation with constant coefficients:

dv(x)

dx
= A0 +A1v(x) +A2v

2(x) (141)

with

V0 = − α2
1

4 (1 − α2)
− α0. (142)

* For class II potentials, there exists a change of variable x→ y in which the potential is transformed into that of
an harmonic oscillator V (x) → V (v) = v2 + V0, v(x) being solution of a first-order ODE of the form:

dv(x)

dx
= A0 +A1v(x)

√
A0 +A2v2(x) +A2v

2(x) (143)

with

V0 = −α0 −
α0 (1 − α2)

2α2

(
1 −

√
1 − α2

1α2

(1 − α2)
2

)
. (144)

2. First category

From Eq.(141) and Eq.(92), it appears clearly that the first category of potentials coincides with the above first
class. Eq.(139) is still easily verified using the fact that the superpotential associated to a first category potential

V (u) = λ̃2u
2 + λ̃1u+ λ̃0 is an affine function in the y variable (see Eq.(101)) and then also in the u variable.

Conversely, if w0(x) obeys Eq.(139), then, if we define w0(x) = cu+ d, c, d ∈ R, V (x) = −w′
0(x) + w2

0(x) becomes
quadratic in u and u(x) obeys a constant coefficient Riccati equation.
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3. Second category

For the second category potential V (y) = λ2y
2 + λ0 + µ2/y

2, with dy(x)/dx = A0 +A2y
2(x), we have obtained in

Eq.(137) that the superpotential is given by:

w0 = b1y +
b−1

y
. (145)

Then:

w′
0(x) = y′(x)

(
b1 −

b−1

y2

)
= (A0b1 −A2b−1) +A2b1y

2 −A0b−1
1

y2
. (146)

From Eq.(145) we have also that





y = 1
2b1

(
w0 ±

√
w2

0 − 4b1b−1

)

1
y = 1

2b
−1

(
w0 ∓

√
w2

0 − 4b1b−1

) (147)

which combined with Eq.(146) gives

w′
0(x) = A+Bw2

0(x) + C
√
A+Bw2

0(x) (148)

with





A = 2 (A0b1 −A2b−1)

B = −A/4b1b−1

C = ± (A0b1 +A2b−1) /b1b−1

√
B.

(149)

Consequently any second-category potential is a Class-II potential.
Conversely, suppose V (x) = −w′

0(x) + w2
0(x) is a Class II potential (see Eq.(140)). We then define the y variable

via:

w0 = b1y +
b−1

y
, (150)

where b1b−1 = −α0/4α2. Then using Eq.(147) we have

√
w2

0 +
α0

α2
= b1y −

b−1

y

and from Eq.(140) we deduce that

y′

y

(
b1y −

b−1

y

)
= α2

(
α0

α2
+ w2

0

)
+ α1

√
α2w0

√
α0

α2
+ w2

0 (151)

= α2

(
b1y −

b−1

y

)2

+ α1
√
α2

(
b1y +

b−1

y

)(
b1y −

b−1

y

)
,

that is,
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y′ = A0 +A2y
2 (152)

with

{
A0 =

(
α1

√
α2 − α2

)
b−1

A2 =
(
α1

√
α2 + α2

)
b1.

(153)

As for the potential, it takes the form

V = −α0 − α1
√
α2w0

√
α0

α2
+ w2

0 + (1 − α2)w
2
0 (154)

= −α0 − α1
√
α2

(
b1y +

b−1

y

)(
b1y −

b−1

y

)
+ (1 − α2)

(
b1y +

b−1

y

)2

= λ2y
2 + λ0 +

µ2

y2

with






λ2 = b21
(
1 − α1

√
α2 − α2

)

µ2 = b2−1

(
1 + α1

√
α2 − α2

)

λ0 = −α0/2 (1 + 1/α2)
(155)

Consequently any Class-II potential is a second-category potential.
Our two categories of potentials coincide then respectively with the two Barclay-Maxwell classes. Since every TSIP

is necessarily a member of either one of these classes12,13, we can finally conclude that the rational representations of
the excited states of the RS functions given in Eq.(126) and Eq.(138) are valid for the whole set of TSIP.

VII. CONCLUSION

In this paper we have given an exact expression for the RS functions associated with the excited bound states of
every SIP in terms of terminating continued fractions built on the superpotential (see Eq.(140)). Considering the set
of translationally shape-invariant potentials (TSIP), we have shown that it can be divided in two categories, coinciding
with the Barclay-Maxwell classes12,13 but using a different characterization. More precisely any TSIP can be brought
into an harmonic or isotonic form using a change of variable resting on a constant coefficient Riccati equation without
a term of first degree (see Eq.(95) and Eq.(97)). It can be noticed that, according to the Chalykh-Veselov theorem,
the harmonic and isotonic potentials are the only rational isochronous ones and they present equispaced spectra22,23.
In terms of this new variable, the superpotential is a first-degree polynomial or a first-degree Laurent polynomial
(see Eq.(125) and Eq.(137)) recovering the Gendenshtein ansätze9. With this formulation, the shape invariance
characteristics of the potential appear in a very transparent manner offering a compact expression for the spectrum of
any TSIP (see Eq.(123) and Eq.(135)). Interestingly, we obtain a kind of duality between the TSI potentials and the
associated energy spectrums. For a second category potential which can be brought into an isotonic form, the energy
is an harmonic function of the shifted quantum number n ± a/α (see Eq.(124)). Reciprocally, for a first category
potential which can be brought into an harmonic form, the energy is an isotonic function of n + (µ± λ) /2α (see
Eq.(136)). Collecting these results together we obtain compact rational representations (see Eq.(126) and Eq.(138)
for all the excited states RS functions associated to a TSIP.
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IX. ANNEXE A

Morse

V (y) = A2 − 2B
(
A+

α

2

)
y +B2y2, α > 0 (156)

with






y(x) = e−αx, x ∈ R

y′(x) = −αy(x) < 0.
(157)

Rosen-Morse 1

V (y) = A(A− α)y2 + 2By +
B2

A2
− αA (158)

with:






y(x) = cotαx, x ∈
[
0, π

α

]

y′(x) = −α− αy2(x) < 0.
(159)

Rosen-Morse 2

V (y) = A(A+ α)y2 + 2By +
B2

A2
− αA, B < A2 (160)

with





y(x) = tanhαx, x ∈ R

y′(x) = α− αy2(x) > 0.
(161)

Eckardt

V (y) = A(A− α)y2 − 2By +
B2

A2
+ αA, B > A2 (162)

with





y(x) = cothαx, x ∈ R

y′(x) = α− αy2(x) < 0.
(163)

Effective radial Kepler-Coulomb

V (y) = −ky + l(l+ 1)y2 +
k2

4(l + 1)2
, k > 0 (164)

with





y(x) = 1
x

y′(x) = −y2(x) < 0.
(165)
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X. ANNEXE B

Pöschl-Teller

V (y) =
A2 −B2 −Aα

2
+

(A−B) (A−B + α)

4

1

y2
+

(A+B) (A+B + α)

4
y2 (166)

with






y(x) = tanh αx
2 , x ∈ R

y′(x) = α
2 − α

2 y
2(x) > 0.

(167)

Pöschl-Teller I

V (y) = −α(B +A) − 2AB +A(A− α)y2 +B(B − α)
1

y2
(168)

with






y(x) = tanαx, x ∈
[
0, π

α

]

y′(x) = α+ αy2(x) > 0.
(169)

Pöschl-Teller II

V (y) = α(B −A) − 2AB − A(A+ α)y2 +B(B − α)
1

y2
, B < A (170)

with





y(x) = tanhαx, x ∈ R

y′(x) = α− αy2(x) > 0.
(171)

Scarf I

V (y) =
B2 −A2 −Aα

2
+

(B −A) (B −A+ α)

4

1

y2
+

(A+B) (A+B − α)

4
y2 (172)

with






y(x) = tan
(

αx
2 − π

4

)
, x ∈

[
− π

2α ,
π
2α

]

y′(x) = α
2 + α

2 y
2(x) < 0.

(173)
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